
IEOR E4703 Monte-Carlo Simulation
Martin Haugh Due: 12.55pm Thursday 27 April 2017

Assignment 8: Answer Q2, Q4 and one other question

1. (Estimating Genotype Frequencies (from Robert & Casella))
The data in the table below displays observed genotype frequencies from blood-type
data. The effect of a dominant allele creates a missing data problem. For example, if
someone has genotype AA or AO then only A will be observed. Similarly, a person
with genotype BB or BO will result in an observation of B. The goal of the study is to
estimate the unknown parameters pA, pB and pO = 1− pA − pB.

Genotype Probability Observed Probability Frequency
AA p2

A A p2
A + 2pApO nA = 186

AO 2pApO
BB p2

B B p2
B + 2pBpO nB = 38

BO 2pBpO
AB 2pApB AB 2pApB nAB = 13
OO p2

O AO p2
O nO = 284

We will assume a Dirichlet D(α1, α2, α3) prior so that

π(pA, pB) ∝ pα1−1
A pα2−1

B (1− pA − pB)α3−1. (1)

(a) Write out the likelihood of the data and the posterior distribution. How would
you estimate pA, pB and pO using an MCMC algorithm?

(b) We can also view this model as a missing data problem. Describe the likelihood
in this missing data formulation.

Hint: Let zAA, zAO, zBB and zBO denote the number of AA, AO, BB and BO geno-
types, respectively, in the data-set. They are unobserved whereas nA := zAA+zAO
and nB := zBB + zBO are observed.

(c) Derive a Gibbs sampler to sample from your posterior. In particular, what are
the various conditional distributions?

(d) Implement your Gibbs sampler and after discarding a suitable number of burn-in
samples, plot histograms of the marginal distributions of pA, pB and pO. (One
should generally perform some convergence diagnostics as well so feel free to do
this. It should be easy to recycle your code from the last assignment.)
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2. (Gibbs Sampling in a DAG After Observing Some Nodes)
In the case of a general acyclic directed graph (DAG) the lecture slides claim that

p(xi | x−i) =
1

Z
p(xi | pa(xi))

∏
j∈ch(i)

p(xj | pa(xj)) (2)

where pa(xi) and ch(i) are the parent and children nodes, respectively, of xi, and Z is
the normalization constant

Z =
∑
xi

p(xi | pa(xi))
∏

j∈ch(i)

p(xj | pa(xj)).

(a) Prove (2). Hint: Use the representation of the joint distribution of a DAG that
we gave in the lecture notes.

(b) Suppose now a subset of the nodes EObs ⊂ {x1, . . . , xK} have been observed. Let
EUnObs := {x1, . . . , xK} \EObs denote the unobserved nodes. Explain clearly how
you could use Gibbs sampling to simulate from p(EUnObs |EObs).

3. (Exercise 3.1 from Barber: the Party Animal)
Consider the following list of binary random variables:

• P ∈ {0, 1}: worker went to a party

• D ∈ {0, 1}: worker is not motivated at work

• H ∈ {0, 1}: worker has headache

• U ∈ {0, 1}: worker under-performing at work

• A ∈ {0, 1}: boss angry

Suppose the joint distribution of these random variables decomposes as follows.

p(A,D,H, P, U) = p(P )p(D)p(H | P )p(U | D,P )p(A | U)

This distribution corresponds to the following Bayes Network

To complete the above specification, assume that
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• p(P = 1) = 0.2

• p(D = 1) = 0.4

• p(A = 1 | U = 1) = 0.95, p(A = 1 | U = 0) = 0.5

• p(H = 1 | P = 0) = 0.2, p(H = 1 | P = 1) = 0.9

• p(U = 1 | P = 1, D = 1) = 0.999, p(U = 1 | P = 1, D = 0) = 0.9, p(U = 1 | P =
0, D = 1) = 0.9, p(U = 1 | P = 0, D = 0) = 0.01.

It can be shown (via tedious calculations) that p(P = 1 | H = 1, A = 1) = 0.6097.
You will confirm this via MCMC in parts (a) and (b) below! (In these parts there is
no need to run convergence diagnostics since we know the answer in advance but note
that in general, convergence diagnostics should always be performed.)

(a) Write a Metropolis-Hastings based MCMC code that generates samples from the
conditional distribution

P(P,D,U | H = 1, A = 1) ∝ P(P,D,U,H = 1, A = 1)

where your proposal distribution is one that flips the bit value of a randomly
chosen element from the set {P,D,U}. For example, if D is the randomly chosen
element and its current value if 0 then its value in the next sample (if accepted)
will be 1 with the values of P and U unchanged.

Compute the average of the samples for P , and check that it converges to the
value that you computed in part (a). (The more diligent among you might want
to implement the Gelman-Rubin approach to diagnose when convergence to sta-
tionarity has occurred. In general you should do this!!)

(b) Write a Gibbs sampler MCMC code that generates samples from the conditional
distribution

P(P,D,U | H = 1, A = 1) ∝ P(P,D,U,H = 1, A = 1).

Cycle through the variables {P,D,U} in a round robin fashion. Note that condi-
tioned on all other variables, the transition probability of a binary variable X is
easy to compute. In particular,

P(X = 1 | Xc = xc) ∝ P(X = 1, Xc = xc),

where Xc denotes all the other variables other than X, and Xc = xc denotes that
all these other binary variables are set to the values in xc.

Compute the time average of the samples for P , and see if it converges to the
value that you computed in part (a).
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4. (Empirical Bayes)
Assume X | θ is exponential with density f(x | θ) = e−x/θ/θ and corresponding CDF,
F (x | θ). Let π(θ) be the prior on θ. Then mπ(x) :=

∫
Θ
f(x | θ)π(θ) dθ is the marginal

density of X and Mπ(x) :=
∫ x

0
mπ(x) dx is the corresponding CDF.

(a) Show that θ = (1− F (x | θ))/f(x | θ).

(b) Show that Bayes estimator of θ with respect to π is

δ(x) :=
1−Mπ(x)

mπ(x)
.

(c) Suppose you observe Xi | θi for i = 1, . . . , n+ 1. Explain how you would estimate
θn+1 in the empirical Bayes fashion, using the result in (b).

4


