
IEOR E4703: Monte-Carlo Simulation
Generating Random Variables and Stochastic Processes

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

mailto:martin.b.haugh@gmail.com

Outline
Monte Carlo Integration

Multi-Dimensional Monte Carlo Integration

Generating Univariate Random Variables
The Inverse Transform Method
The Composition Approach
The Acceptance-Rejection Algorithm
Other Methods for Generating Univariate Random Variables

Generating Normal Random Variables

Generating Multivariate Normally Distributed Random Vectors

Simulating Poisson Processes
The Non-Homogeneous Poisson Process

Simulating (Geometric) Brownian Motion
Simulating Brownian Motion
Geometric Brownian Motion
Application: Hedging in Black-Scholes

2 (Section 0)

Monte Carlo Integration
Suppose then that we want to compute

θ :=
∫ 1

0
g(x) dx.

If we cannot compute θ analytically, then we could use numerical methods.
But can also use Monte-Carlo simulation by noting that

θ = E[g(U)]

where U ∼ U (0, 1).

Can use this to estimate θ as follows:
1. Generate U1,U2, . . .Un ∼ IID U (0, 1)
2. Estimate θ with

θ̂n := g(U1) + . . .+ g(Un)
n

3 (Section 1)

Monte Carlo Integration
There are two reasons that explain why θ̂n is a good estimator:

1. θ̂n is unbiased, i.e., E[θ̂n] = θ.

2. θ̂n is consistent, i.e., θ̂n → θ as n →∞ with probability 1
- follows immediately from Strong Law of Large Numbers (SLLN) since

g(U1), g(U2), . . . , g(Un) are IID with mean θ.

Monte Carlo Integration can be especially useful for estimating high-dimensional
integrals. Why?

4 (Section 1)

An Example
Wish to estimate θ =

∫ 3
1 (x2 + x) dx again using simulation.

Can estimate it by noting that

θ = 2
∫ 3

1

x2 + x
2 dx

= 2E[X2 + X]

where X ∼ U (1, 3).

So can estimate θ by:

1. Generating n IID U (0, 1) random variables
2. Converting them (how?) to U (1, 3) variables, X1, . . . ,Xn

3. Then taking

θ̂n := 2
n∑

i=1
(X2

i + Xi)/n.

5 (Section 1)

High-Dimensional Monte Carlo Integration
Can also apply Monte Carlo integration to more general problems.

e.g. Suppose we want to estimate

θ :=
∫ ∫

A
g(x, y)f (x, y) dx dy

where f (x, y) is a density function on A.

Then observe that θ = E[g(X ,Y)] where X ,Y have joint density f (x, y).

To estimate θ using simulation we simply generate n random vectors (X ,Y) with
joint density f (x, y) and then estimate θ with

θ̂n := g(X1,Y1) + . . . + g(Xn,Yn)
n .

6 (Section 1)

Generating Univariate Random Variables
There are many methods for generating univariate random variables:

1. The inverse transform method
2. The composition method
3. The acceptance-rejection (AR) algorithm
4. Other approaches.

7 (Section 2)

The Inverse Transform Method: Discrete Random Variables

Suppose X can take on n distinct values, x1 < x2 < . . . < xn, with

P(X = xi) = pi for i = 1, . . . ,n.

Then to generate a sample value of X we:
1. Generate U
2. Set X = xj if

∑j−1
i=1 pi < U ≤

∑j
i=1 pi .

That is, we set X = xj if F(xj−1) < U ≤ F(xj).

Should be clear that this algorithm is correct!

If n is large, then might want to search for xj more efficiently!

8 (Section 2)

Example: Generating a Geometric Random Variable

X is geometric with parameter p so P(X = n) = (1− p)n−1p.

Can then generate X as follows:

1. Generate U
2. Set X = j if

∑j−1
i=1(1− p)i−1p < U ≤

∑j
i=1(1− p)i−1p.

That is, X = j if 1− (1− p)j−1 < U ≤ 1− (1− p)j .

Step 2 amounts to setting X = Int
(

log(U)
log(1−p)

)
+ 1.

Question: How does this compare to the coin-tossing method for generating X?

9 (Section 2)

Inverse Transform for Continuous Random Variables

Suppose now that X is a continuous random variable.

When X was discrete, we could generate a variate by first generating U and then
setting X = xj if F(xj−1) < U ≤ F(xj).

This suggests that when X is continuous, we might generate X as follows:
1. Generate U
2. Set X = x if Fx(x) = U , i.e., set X = F−1

x (U).

Need to prove that this algorithm actually works! But this follows since

P(X ≤ x) = P(F−1
x (U) ≤ x)

= P(U ≤ Fx(x))
= Fx(x)

as desired.

10 (Section 2)

Inverse Transform for Continuous Random Variables

This argument assumes F−1
x exists.

But there is no problem even when F−1
x does not exist. All we have to do is:

1. Generate U
2. Set X = min{x : Fx(x) ≥ U}.

This works for discrete and continuous random variables or mixtures of the two.

11 (Section 2)

Example: Generating an Exponential Random Variable

We wish to generate X ∼ Exp(λ).

In this case Fx(X) = 1− e−λx so that F−1
x (u) = − log(1− u)/λ.

Can generate X then by generating U and setting (why?) X = − log(U)/λ.

12 (Section 2)

Generating Order Statistics via Inverse Transform
Suppose X has CDF Fx and let X1, . . . ,Xn be IID ∼ X .

Let X(1), . . . ,X(n) be the ordered sample so that

X(1) ≤ X(2) ≤ . . . ≤ X(n).

We say X(i) is the ith ordered statistic.

Several questions arise:

1. How do we generate a sample of X(i)?

2. Can we do better?

3. Can we do even better? Hint: Suppose Z ∼ beta(a, b) on (0, 1) so that

f (z) = cza−1(1− z)b−1 for 0 ≤ z ≤ 1

where c is a constant.

13 (Section 2)

Advantages / Disadvantages of Inverse Transform Method

Two principal advantages to the inverse transform method:
1. Monotonicity – have already seen how this can be useful.
2. The method is 1-to-1, i.e. one U (0, 1) variable produces one X variable

- can be useful for some variance reduction techniques.

Principal disadvantage is that F−1
x may not always be computable.

e.g. Suppose X ∼ N(0, 1). Then

Fx(x) =
∫ x

−∞

1√
2π

exp
(
−z2

2

)
dz

so that we cannot even express Fx in closed form.

Even if Fx is available in closed form, it may not be possible to find F−1
x in

closed form.
e.g. Suppose Fx(x) = x5(1 + x)3/8 for 0 ≤ x ≤ 1. Then cannot compute F−1

x .

One possible solution to these problems is to find F−1
x numerically.

14 (Section 2)

The Composition Approach
Can often write

Fx(x) =
∞∑

j=1
pjFj(x)

where the Fj ’s are also CDFs, pj ≥ 0 for all j, and
∑

pj = 1.

Equivalently, if the densities exist then we can write

fx(x) =
∞∑

j=1
pjfj(x).

Such a representation often occurs very naturally.
e.g. Suppose X ∼ Hyperexponential(λ1, α1, . . . , λn, αn) so that

fx(x) =
n∑

j=1
αiλie−λix

where λi , αi ≥ 0, and
∑n

i αi = 1.

If difficult to simulate X using inverse transform then could use the composition
algorithm instead.

15 (Section 2)

The Composition Algorithm
1. Generate I that is distributed on the non-negative integers so that

P(I = j) = pj . (How do we do this?)
2. If I = j, then simulate Yj from Fj
3. Set X = Yj

Claim that X has the desired distribution!
Proof. We have

P(X ≤ x) =
∞∑

j=1
P(X ≤ x|I = j)P(I = j)

=
∞∑

j=1
P(Yj ≤ x)P(I = j)

=
∞∑

j=1
Fj(x)pj

= Fx(x).

16 (Section 2)

The Acceptance-Rejection Algorithm
Let X be a random variable with density, f (·), and CDF, Fx(·).

Suppose it’s hard to simulate a value of X directly using inverse transform or
composition algorithms.

Might then wish to use the acceptance-rejection algorithm.

Towards this end let Y be another r.var. with density g(·) and suppose it’s easy
to simulate Y .

If there exists a constant a such that

f (x)
g(x) ≤ a for all x

then can simulate a value of X as follows.

17 (Section 2)

The Acceptance-Rejection Algorithm

generate Y with PDF g(·)
generate U
while U > f (Y)

ag(Y)

generate Y
generate U

set X = Y

Must prove the algorithm does indeed work.

So define B to be event that Y has been accepted in the while loop, i.e.,
U ≤ f (Y)/ag(Y).

We need to show that P(X ≤ x) = Fx(x)

18 (Section 2)

The Acceptance-Rejection Algorithm
Proof. First observe

P(X ≤ x) = P(Y ≤ x|B) = P ((Y ≤ x) ∩ B)
P(B) . (1)

We can compute P(B) as

P(B) = P
(

U ≤ f (Y)
ag(Y)

)
= 1

a
while the numerator in (1) satisfies

P ((Y ≤ x) ∩ B) =
∫ ∞
−∞

P ((Y ≤ x) ∩ B | Y = y) g(y) dy

=
∫ ∞
−∞

P
(

(Y ≤ x) ∩
(

U ≤ f (Y)
ag(Y)

) ∣∣∣ Y = y
)

g(y) dy

=
∫ x

−∞
P
(

U ≤ f (y)
ag(y)

)
g(y) dy (why?)

= Fx(x)
a

Therefore P(X ≤ x) = Fx(x), as required.
19 (Section 2)

Example: Generating a Beta(a, b) Random Variable

Suppose we wish to simulate from the Beta(4, 3) so that

f (x) = 60x3(1− x)2 for 0 ≤ x ≤ 1.

We could integrate f (·) to find F(·) and then try to use the inverse transform
approach.

But no analytic expression for F−1(·) so let’s use the acceptance-rejection
algorithm instead.

1. First choose g(y): let’s take g(y) = 1 for y ∈ [0, 1], i.e., Y ∼ U (0, 1)
2. now find a. Recall we must have

f (x)
g(x) ≤ a for all x,

which implies
60x3(1− x)2 ≤ a for all x ∈ [0, 1].

So take a = 3.
Easy to check that this value works.

20 (Section 2)

Example: Generating a Beta(a, b) Random Variable

We then have the following A-R algorithm.

generate Y ∼ U (0, 1)
generate U ∼ U (0, 1)
while U > 20Y 3(1−Y)2

generate Y
generate U

set X = Y

21 (Section 2)

Efficiency of the Acceptance-Rejection Algorithm
Let N be the number of loops in the A-R algorithm until acceptance.

As before, let B be the event U ≤ f (Y)/ag(Y)
- saw earlier that P(B) = 1/a.

Question: What is the distribution of N?

Question: What is E[N]?

Question: How should we choose a?

Question: How should we choose g(·)?

22 (Section 2)

Other Methods for Generating Univariate Random Variables

Suppose we want to simulate a value of a random variable, X , and we know that

X ∼ g(Y1, . . . ,Yn)

for some random variables Y1, . . . ,Yn and some function g(·)
- note that the Yi ’s need not necessarily be IID.

If we know how to generate (Y1, . . . ,Yn) then can generate X by:
1. Generating (Y1, . . . ,Yn)
2. Setting X = g(Y1, . . . ,Yn).

23 (Section 2)

Generating Normal Random Variables
Typically rely on software packages to generate normal random variables.

Nonetheless worthwhile understanding how to do this.

First note that if Z ∼ N(0, 1) then

X := µ+ σZ ∼ N(µ, σ2)

so only need to concern ourselves with generating N(0, 1) random variables.

One possibility for doing this is to use the inverse transform method
- but would have to compute F−1

z (·) := Φ−1(·) numerically.

Other approaches for generating N(0, 1) random variables include:

1. The Box-Muller method
2. The Polar method
3. Rational approximations.

Could also the A-R algorithm.
24 (Section 3)

The Box Muller Algorithm
The Box-Muller algorithm uses two IID U (0, 1) random variables to produce two
IID N(0, 1) random variables. It works as follows:

generate U1 and U2 IID U (0, 1)
set

X =
√
−2 log(U1) cos(2πU2)

Y =
√
−2 log(U1) sin(2πU2).

25 (Section 3)

Rational Approximations
Let X ∼ N(0, 1) and suppose U ∼ U (0, 1). The inverse transform method then
seeks xu = Φ−1(U).

Finding Φ−1 in closed form is not possible but instead, we can instead use
rational approximations to Φ−1

- these are very accurate and efficient methods for estimating xu.

e.g. For 0.5 ≤ u ≤ 1
xu ≈ t − a0 + a1t

1 + b1t + b2t2

where a0, a1, b1 and b2 are constants, and t =
√
−2 log(1− u).

The error is bounded in this case by .003.

Even more accurate approximations are available, and since they are very fast,
many packages use them for generating normal random variables.

26 (Section 3)

The Multivariate Normal Distribution
If X multivariate normal with mean vector µ and covariance matrix Σ then write

X ∼ MNn(µ,Σ).

Standard multivariate normal: µ = 0 and Σ = In, the n × n identity matrix.

PDF of X given by

f (x) = 1
(2π)n/2|Σ|1/2 e− 1

2 (x−µ)> Σ−1(x−µ) (2)

where | · | denotes the determinant.

Characteristic function satisfies

φX(s) = E
[
eis>X

]
= eis>µ − 1

2 s>Σs.

27 (Section 4)

The Multivariate Normal Distribution
Let X1 = (X1, . . . ,Xk)> and X2 = (Xk+1, . . . ,Xn)> be a partition of X with

µ =
(

µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Then marginal distribution of a multivariate normal random vector is itself
(multivariate) normal. In particular, Xi ∼ MN(µi ,Σii), for i = 1, 2.

Assuming Σ is positive definite, the conditional distribution of a multivariate
normal distribution is also a (multivariate) normal distribution. In particular,

X2 | X1 = x1 ∼ MN(µ2.1,Σ2.1)

where

µ2.1 = µ2 + Σ21 Σ−1
11 (x1 − µ1)

Σ2.1 = Σ22 −Σ21Σ−1
11 Σ12.

28 (Section 4)

Generating MN Distributed Random Vectors
Suppose we wish to generate X = (X1, . . . ,Xn) where X ∼ MNn(0,Σ)

- it is then easy to handle the case where E[X] 6= 0.

Let Z = (Z1, . . . ,Zn)> where Zi ∼ N(0, 1) and IID for i = 1, . . . ,n.

If C an (n ×m) matrix then

C>Z ∼ MN(0,C>C).

Problem therefore reduces to finding C such that C>C = Σ.

Usually find such a matrix, C, via the Cholesky decomposition of Σ.

29 (Section 4)

The Cholesky Decomposition of a Symmetric PD Matrix

Any symmetric positive-definite matrix, M, may be written as

M = U>DU

where:
U is an upper triangular matrix
D is a diagonal matrix with positive diagonal elements.

Since Σ is symmetric positive-definite, can therefore write

Σ = U>DU
= (U>

√
D)(
√

DU)
= (

√
DU)>(

√
DU).

C =
√

DU therefore satisfies C>C = Σ
- C is called the Cholesky Decomposition of Σ.

30 (Section 4)

The Cholesky Decomposition in Matlab
Easy to compute the Cholesky decomposition of a symmetric positive-definite
matrix in Matlab using the chol command

- so also easy to simulate multivariate normal random vectors in Matlab.

Sample Matlab Code
>> Sigma = [1.0 0.5 0.5;

0.5 2.0 0.3;
0.5 0.3 1.5];

>> C = chol(Sigma);
>> Z = randn(3,1000000);
>> X = C’*Z;
>> cov(X’)

ans =
0.9972 0.4969 0.4988
0.4969 1.9999 0.2998
0.4988 0.2998 1.4971

31 (Section 4)

The Cholesky Decomposition in Matlab and R
Must be very careful in Matlab and R to pre-multiply Z by C> and not C.

Some languages take C> to be the Cholesky Decomposition rather C
- must therefore always know what convention your programming language /

package is using.

Must also be careful that Σ is indeed a genuine variance-covariance matrix.

32 (Section 4)

Simulating Poisson Processes
A Poisson process, N (t), with intensity λ is a process such that

P (N (t) = r) = (λt)re−λt

r ! .

For a Poisson process the numbers of arrivals in non-overlapping intervals
are independent and the distribution of the number of arrivals in an interval
only depends on the length of the interval.

The Poisson process is good for modeling many phenomena including the
emission of particles from a radioactive source and the arrivals of customers to a
queue.

The ith inter-arrival time, Xi , is defined to be the interval between the (i − 1)th

and ith arrivals of the Poisson process.

Easy to see the Xi ’s are IID ∼ Exp(λ)
- so can simulate a Poisson process by simply generating the Exp(λ)

inter-arrival times, Xi .

Following algorithm simulates the first T time units of a Poisson process:
33 (Section 5)

Simulating a Poisson Processes

Simulating T Time Units of a Poisson Process

set t = 0, I = 0
generate U
set t = t − log(U)/λ
while t < T

set I = I + 1, S(I) = t
generate U
set t = t − log(U)/λ

34 (Section 5)

The Non-Homogeneous Poisson Process
Obtain a non-homogeneous Poisson process, N (t), by relaxing assumption that
the intensity, λ, is constant.

If λ(t) ≥ 0 is the intensity of the process at time t, then we say N (t) is a
non-homogeneous Poisson process with intensity λ(t).

Define the function m(t) by

m(t) :=
∫ t

0
λ(s) ds.

Can be shown that N (t + s)−N (t) is a Poisson random variable with parameter
m(t + s)−m(t), i.e.,

P (N (t + s)−N (t) = r) = exp (−mt,s) (mt,s)r

r !

where mt,s := m(t + s)−m(t).

35 (Section 5)

Simulating a Non-Homogeneous Poisson Process
Before we describe the thinning algorithm for simulating a non-homogeneous
Poisson process, first need the following proposition.

Proposition. Let N (t) be a Poisson process with constant intensity λ. Suppose
that an arrival that occurs at time t is counted with probability p(t),
independently of what has happened beforehand.
Then the process of counted arrivals is a non-homogeneous Poisson process with
intensity λ(t) = λp(t). 2

Suppose now N (t) is a non-homogeneous Poisson process with intensity λ(t) and
that there exists a λ such that λ(t) ≤ λ for all t ≤ T .

Then we can use the following algorithm, based on Proposition 1, to simulate
N (t).

36 (Section 5)

Simulating a Non-Homogeneous Poisson Process

The Thinning Algorithm for Simulating T Time Units of a NHPP

set t = 0, I = 0
generate U1
set t = t − log(U1)/λ
while t < T

generate U2
if U2 ≤ λ(t)/λ then

set I = I + 1, S(I) = t
generate U1
set t = t − log(U1)/λ

37 (Section 5)

Brownian Motion
Definition. A stochastic process, {Xt : t ≥ 0}, is a Brownian motion with
parameters (µ, σ) if

1. For 0 < t1 < t2 < . . . < tn−1 < tn

(Xt2 −Xt1), (Xt3 −Xt2), . . . , (Xtn −Xtn−1)

are mutually independent.
2. For s > 0, Xt+s −Xt ∼ N(µs, σ2s) and
3. Xt is a continuous function of t w.p. 1.

Say that X is a B(µ, σ) Brownian motion with drift, µ, and volatility, σ.
When µ = 0 and σ = 1 we have a standard Brownian motion (SBM).
If X ∼ B(µ, σ) and X0 = x then can write

Xt = x + µt + σBt .

38 (Section 6)

Simulating a Brownian Motion

Simulating a Standard Brownian Motion at Times t1 < t2 < . . . < tn

set t0 = 0, Bt0 = 0
for i = 1 to n

generate X ∼ N(0, ti − ti−1))
set Bti = Bti−1 + X

Question: Can you suggest another method to generate Bti for
t1 < t2 < . . . < tn?

39 (Section 6)

Geometric Brownian Motion
Definition. A stochastic process, {Xt : t ≥ 0}, is a (µ, σ) geometric Brownian
motion (GBM) if

log(X) ∼ B(µ− σ2/2, σ).

We write X ∼ GBM(µ, σ) and call µ the drift and σ the volatility.

Note if X ∼ GBM (µ, σ), then Xt ∼ LN ((µ− σ2/2)t, σ2t).

Question: How would you simulate Xti for t1 < t2 < . . . < tn?

40 (Section 6)

Modelling Stock Prices as Geometric Brownian Motion

Suppose X ∼ GBM(µ, σ). Then:

1. If Xt > 0, then Xt+s > 0 for any s > 0 so limited liability is not violated.
2. Distribution of Xt+s

Xt
only depends on s

- so distribution of returns from one period to the next only depends on the
length of the period.

This suggests that GBM might be a reasonable model for stock prices.

Will often model stock prices as GBM’s and will use the following notation:

S0 is the known stock price at t = 0

St is the random stock price at time t and satisfies

St = S0e(µ−σ2/2)t+σBt .

so that
St+∆t = Ste(µ−σ2/2)∆t+σ(Bt+∆t−Bt).

41 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

Now consider the use of the Black-Scholes model to hedge a vanilla European
call option in the model.

Will assume that assumptions of Black-Scholes are correct:
Security price has GBM dynamics
Possible to trade continuously at no cost
Borrowing and lending at the risk-free rate are also possible.

Then possible to dynamically replicate payoff of the call option using a
self-financing (s.f.) trading strategy

- initial value of this s.f. strategy is the famous Black-Scholes arbitrage-free
price of the option.

The s.f. replication strategy requires continuous delta-hedging of the option but
of course not practical to do this.

Instead we hedge periodically – this results in some replication error
- but this error goes to 0 as the interval between rebalancing goes to 0.

42 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

Pt denotes time t value of the discrete-time s.f. strategy and C0 denotes initial
value of the option.

The replicating strategy is then satisfies

P0 := C0 (3)
Pti+1 = Pti + (Pti − δti Sti) r∆t + δti

(
Sti+1 − Sti + qSti ∆t

)
(4)

where:

∆t := ti+1 − ti

r = risk-free interest rate

q is the dividend yield

δti is the Black-Scholes delta at time ti
– a function of Sti and some assumed implied volatility, σimp.

Note that (3) and (4) respect the s.f. condition.

43 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

Stock prices are simulated assuming St ∼ GBM(µ, σ) so that

St+∆t = Ste(µ−σ2/2)∆t+σ
√

∆tZ

where Z ∼ N(0, 1).

In the case of a short position in a call option with strike K and maturity T , the
final trading P&L is then defined as

P&L := PT − (ST −K)+ (5)

where PT is the terminal value of the replicating strategy in (4).

In the Black-Scholes world we have σ = σimp and the P&L = 0 along every price
path in the limit as ∆t → 0.

In practice, however, we cannot know σ and so the market (and hence the option
hedger) has no way to ensure a value of σimp such that σ = σimp.

44 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

This has interesting implications for the trading P&L: it means we cannot exactly
replicate the option even if all of the assumptions of Black-Scholes are correct!

In figures on next two slides we display histograms of the P&L in (5) that results
from simulating 100k sample paths of the underlying price process with
S0 = K = $100.

45 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

−8 −6 −4 −2 0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

of

 P
at

hs

Histogram of delta-hedging P&L with true vol. = 30% and implied vol. = 20%.

Option hedger makes substantial loses. Why?
46 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

−8 −6 −4 −2 0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

7000

8000

of

 P
at

hs

Histogram of delta-hedging P&L with true vol. = 30% and implied vol. = 40%.

Option hedger makes substantial gains. Why?
47 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

Clearly then this is a situation where substantial errors in the form of non-zero
hedging P&L’s are made

- and this can only be due to the use of incorrect model parameters.

This example is intended to highlight the importance of not just having a good
model but also having the correct model parameters.

The payoff from delta-hedging an option is in general path-dependent.

Can be shown that the payoff from continuously delta-hedging an option satisfies

P&L =
∫ T

0

S2
t
2
∂2Vt

∂S2

(
σ2

imp − σ2
t
)

dt

where Vt is the time t value of the option and σt is the realized instantaneous
volatility at time t.

We recognize the term S2
t

2
∂2Vt
∂S2 as the dollar gamma

- always positive for a vanilla call or put option.
48 (Section 6)

E.G: Parameter Uncertainty and Hedging in Black-Scholes

Returning to s.f. trading strategy of (3) and (4), note that we can choose any
model we like for the security price dynamics

- e.g. other diffusions or jump-diffusion models.

It is interesting to simulate these alternative models and to then observe what
happens to the replication error from (3) and (4).

It is common to perform numerical experiments like this when using a model to
price and hedge a particular security.

Goal then is to understand how robust the hedging strategy (based on the given
model) is to alternative price dynamics that might prevail in practice.

Given the appropriate data, one can also back-test the performance of a model
on realized historical price data to assess its hedging performance.

49 (Section 6)

	Monte Carlo Integration
	Multi-Dimensional Monte Carlo Integration

	Generating Univariate Random Variables
	The Inverse Transform Method
	The Composition Approach
	The Acceptance-Rejection Algorithm
	Other Methods for Generating Univariate Random Variables

	Generating Normal Random Variables
	Generating Multivariate Normally Distributed Random Vectors
	Simulating Poisson Processes
	The Non-Homogeneous Poisson Process

	Simulating (Geometric) Brownian Motion
	Simulating Brownian Motion
	Geometric Brownian Motion
	Application: Hedging in Black-Scholes

