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Simulation Efficiency
As usual we wish to estimate θ := E[h(X)]. Standard simulation algorithm is:

1. Generate X1, . . . ,Xn

2. Estimate θ with θ̂n =
∑n

j=1 Yj/n where Yj := h(Xj).
3. Approximate 100(1− α)% confidence intervals are then given by[

θ̂n − z1−α/2
σ̂n√

n
, θ̂n + z1−α/2

σ̂n√
n

]
.

Can measure quality of θ̂n by the half-width HW of the CI

HW = z1−α/2

√
Var(Y )

n .

Would like HW to be small but sometimes this is difficult to achieve.

So often imperative to address the issue of simulation efficiency. There are a
number of things we can do:
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Simulation Efficiency
1. Develop a good simulation algorithm.
2. Program carefully to minimize storage requirements.

e.g. Do not need to store all Yj ’s. Instead just store
∑

Yj and
∑

Y 2
j to

compute θ̂n and approximate CI’s.
3. Program carefully to minimize execution time.
4. Decrease variability of simulation output that we use to estimate θ.

Techniques used to do this are called variance reduction techniques.

Will now study some of the simplest variance reduction techniques, and assume
we are doing items (1) to (3) as well as possible.

But first we should first discuss a measure of simulation efficiency.
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Measuring Simulation Efficiency
Suppose there are two r.vars, W and Y , such that E[W ] = E[Y ] = θ.

Let Mw and My denote methods of estimating θ by simulating the Wi ’s and
Yi ’s, respectively.

Question: Which method is more efficient, Mw or My?

To answer this, let nw and ny be the number of samples of W and Y ,
respectively, that are needed to achieve a half-width, HW . Then

nw =
(z1−α/2

HW

)2
Var(W )

ny =
(z1−α/2

HW

)2
Var(Y ).

Let Ew and Ey denote the amount of computational effort required to produce
one sample of W and Y , respectively.
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Measuring Simulation Efficiency
Then the total effort expended by Mw and My, respectively, to achieve HW are

TEw =
(z1−α/2

HW

)2
Var(W ) Ew

TEy =
(z1−α/2

HW

)2
Var(Y ) Ey.

Say Mw is more efficient than My if TEw < TEy. This occurs if and only if

Var(W )Ew < Var(Y )Ey. (1)

Will therefore use Var(W )Ew as a measure of Mw’s efficiency of the.

Note that (1) implies we cannot conclude that Mw is better than My simply
because Var(W ) < Var(Y ).

But often the case that Ew ≈ Ey and Var(W ) << Var(Y ).
In such cases it is clear that using Mw provides a substantial improvement over
using My.
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Control Variates
We wish to estimate θ := E[Y ] where Y = h(X) is the output of a simulation
experiment.

Suppose Z is also an output (or that we can easily output it if we wish).

Also assume we know E[Z ].

Then can construct many unbiased estimators of θ:
1. θ̂ = Y , our usual estimator
2. θ̂c := Y + c(Z − E[Z ]).

Variance of θ̂c satisfies

Var(θ̂c) = Var(Y ) + c2Var(Z ) + 2c Cov(Y ,Z ). (2)

Can choose c to minimize this quantity and optimal value given by

c∗ = −Cov(Y ,Z )
Var(Z ) .
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Control Variates
Minimized variance satisfies

Var(θ̂c∗) = Var(Y )− Cov(Y ,Z )2

Var(Z )

= Var(θ̂)− Cov(Y ,Z )2

Var(Z ) .

In order to achieve a variance reduction therefore only necessary that
Cov(Y ,Z ) 6= 0.

New resulting Monte Carlo algorithm proceeds by generating n samples of Y and
Z and then setting

θ̂c∗ =
∑n

i=1 (Yi + c∗(Zi − E[Z ]))
n .

There is a problem with this, however, as we usually do not know Cov(Y ,Z ).

Resolve this problem by doing p pilot simulations and setting

Ĉov(Y ,Z ) =
∑p

j=1(Yj −Y p)(Zj − E[Z ])
p − 1 .
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Control Variates
If it is also the case that Var(Z ) unknown, then can also estimate it with

V̂ar(Z ) =
∑p

j=1(Zj − E[Z ])2

p − 1

and finally set

ĉ∗ = − Ĉov(Y ,Z )
V̂ar(Z )

.

Our control variate simulation algorithm is as follows:
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Control Variate Simulation Algorithm for Estimating E[Y ]

/∗Do pilot simulation first ∗/
for i = 1 to p

generate (Yi ,Zi)
end for
compute ĉ∗

/∗Now do main simulation ∗/
for i = 1 to n

generate (Yi ,Zi)
set Vi = Yi + ĉ∗(Zi − E[Z ])

end for
set θ̂ĉ∗ = V n =

∑n
i=1 Vi/n

set σ̂2
n,v =

∑
(Vi − θ̂ĉ∗)2/(n − 1)

set 100(1− α)%

CI =
[
θ̂ĉ∗ − z1−α/2

σ̂n,v√
n
, θ̂ĉ∗ + z1−α/2

σ̂n,v√
n

]



e.g. Pricing an Asian Call Option
Payoff of an Asian call option given by

h(X) := max
(

0,
∑m

i=1 SiT/m

m −K
)

where X := {SiT/m : i = 1, . . . ,m}, K is the strike and T the expiration date.

Price of option then given by

Ca = EQ
0 [e−rTh(X)].

Will assume as usual that St ∼ GBM (r , σ) under Q.

Usual simulation method for estimating Ca is to generate n independent samples
of the payoff, Yi := e−rTh(Xi), for i = 1, . . . ,n, and to set

Ĉa =
∑n

i=1 Yi

n .
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e.g. Pricing an Asian Call Option
But could also estimate Ca using control variates and there are many possible
choices:

1. Z1 = ST
2. Z2 = e−rt max(0,ST −K )
3. Z3 =

∑m
j=1 SiT/m/m

In each of the three cases, it is easy to compute E[Z ].

Would also expect Z1, Z2 and Z3 to have a positive covariance with Y , so that
each one would be a suitable candidate for use as a control variate.

Question: Which one would lead to the greatest variance reduction?

Question: Explain why you could also use the value of the option with payoff

g(X) := max

0,
( m∏

i=1
SiT/m

)1/m

−K


as a control variate. Do you think it would result in a substantial variance
reduction?
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e.g. The Barbershop
A barbershop opens for business every day at 9am and closes at 6pm.

There is only 1 barber but he’s considering hiring another one.

But first he would like to estimate the mean total time that customers spend
waiting each day.

Assume customers arrive at barbershop according to a non-homogeneous Poisson
process, N (t), with intensity λ(t).

Let Wi denote waiting time of ith customer.

The barber closes the shop after T = 9 hours but still serves any customers who
have arrived before then.

Quantity that he wants to estimate is θ := E[Y ] where

Y :=
N(T)∑
j=1

Wj .
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e.g. The Barbershop
Assume the service times of customers are IID with CDF, F(.), and that they are
also independent of the arrival process, N (t).

Usual simulation algorithm: simulate n days of operation in the barbershop,
thereby obtaining n samples, Y1, . . . ,Yn, and then set

θ̂n =
∑n

j=1 Yj

n .

However, a better estimate could be obtained by using a control variate.
Let Z denote the total time customers on a given day spend in service so that

Z :=
N(T)∑
j=1

Sj

where Sj is the service time of the jth customer. Then easy to see that

E[Z ] = E[S ]E[N (T )].

Intuition suggests that Z would be a good candidate to use as a control variate.
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Multiple Control Variates
No reason why we should not use more than one control variate.

So suppose again that we wish to estimate θ := E[Y ] where Y is the output of a
simulation experiment.

Also suppose that for i = 1, . . . ,m, Zi is an output or that we can easily output
it if we wish, and that E[Zi ] is known for each i.

Can then construct unbiased estimators of θ by defining

θ̂c := Y + c1(Z1 − E[Z1]) + . . . + cm(Zm − E[Zm]).

Variance of θ̂c satisfies

Var(θ̂c) = Var(Y ) + 2
m∑

i=1
ciCov(Y ,Zi) +

m∑
i=1

m∑
i=1

cicjCov(Zi ,Zj) (3)

Can easily minimize Var(θ̂c) w.r.t the ci ’s.
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Multiple Control Variates
As before, however, optimal solutions c∗i will involve unknown covariances (and
possibly variances of the Zi ’s) that will need to be estimated using a pilot
simulation.

A convenient way of doing this is to observe that

ĉ∗i = −bi

where the bi ’s are the least squares solution to the following linear regression:

Y = a + b1Z1 + . . .+ bmZm + ε. (4)

The simulation algorithm with multiple control variates is exactly analogous to
the simulation algorithm with just a single control variate.
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Antithetic Variates
As usual would like to estimate θ = E[h(X)] = E[Y ].

Suppose we have generated two samples, Y1 and Y2.

Then an unbiased estimate of θ is given by

θ̂ := (Y1 + Y2)/2

with
Var(θ̂) = Var(Y1) + Var(Y2) + 2Cov(Y1,Y2)

4 .

If Y1 and Y2 are IID, then Var(θ̂) = Var(Y )/2.

However, we could reduce Var(θ̂) if we could arrange it so that Cov(Y1,Y2) < 0.
We now describe the method of antithetic variates for doing this.

We will begin with the case where Y is a function of IID U (0, 1) random variables
so that θ = E[h(U)] where U = (U1, . . . ,Um) and the Ui ’s are IID ∼ U (0, 1).
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Usual Simulation Algorithm for Estimating θ (with 2n Samples)

for i = 1 to 2n
generate Ui
set Yi = h(Ui)

end for
set θ̂2n = Y 2n =

∑2n
i=1 Yi/2n

set σ̂2
2n =

∑2n
i=1(Yi −Y 2n)2/(2n − 1)

set approx. 100(1− α) % CI = θ̂2n ± z1−α/2
σ̂2n√

2n



Antithetic Variates
In above algorithm, however, could also have used the 1−Ui ’s to generate
sample Y values.

Can use this fact to construct another estimator of θ as follows:

1. As before, set Yi = h(Ui), where Ui = (U (i)
1 , . . . , U (i)

m ).
2. Also set Ỹi = h(1−Ui), where we use 1−Ui = (1−U (i)

1 , . . . , 1−U (i)
m ).

3. Set Zi := (Yi + Ỹi)/2.

Note that E[Zi ] = θ so Zi also unbiased estimator of θ.

If the Ui ’s are IID, then so too are the Zi ’s and can use them as usual to
compute approximate CI’s for θ.

We say that Ui and 1−Ui are antithetic variates.

Have the following antithetic variate simulation algorithm.
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Antithetic Variate Simulation Algorithm for Estimating θ

for i = 1 to n
generate Ui
set Yi = h(Ui) and Ỹi = h(1−Ui)
set Zi = (Yi + Ỹi)/2

end for
set θ̂n,a = Zn =

∑n
i=1 Zi/n

set σ̂2
n,a =

∑n
i=1(Zi − Zn)2/(n − 1)

set approx. 100(1− α) % CI = θ̂a,n ± z1−α/2
σ̂n,a√

n

θ̂a,n is unbiased and SLLN implies θ̂n,a → θ w.p. 1 as n →∞.

Each of the two algorithms uses 2n samples so question arises as to which
algorithm is better?

Both algorithms require approximately same amount of effort so comparing the
two algorithms amounts to computing which estimator has a smaller variance.



Comparing Estimator Variances
Easy to see that

Var(θ̂2n) = Var
(∑2n

i=1 Yi

2n

)
= Var(Y )

2n

and

Var(θ̂n,a) = Var
(∑n

i=1 Zi

n

)
= Var(Z )

n

= Var(Y + Ỹ )
4n = Var(Y )

2n + Cov(Y , Ỹ )
2n

= Var(θ̂2n) + Cov(Y , Ỹ )
2n .

Therefore Var(θ̂n,a) < Var(θ̂2n) if and only Cov(Y , Ỹ ) < 0.

Recalling that Y = h(U) and Ỹ = h(1−U), this means that

Var(θ̂n,a) < Var(θ̂2n)⇐⇒ Cov (h(U), h(1−U)) < 0.
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When Can a Variance Reduction Be Guaranteed?
Consider first the case where U is a scalar uniform so m = 1, U = U and
θ = E[h(U )].

Suppose h(.) is a non-decreasing function of u over [0, 1].

Then if U is large, h(U ) will also tend to be large while 1−U and h(1−U ) will
tend to be small. That is, Cov(h(U ), h(1−U )) < 0.

Can similarly conclude that if h(.) is a non-increasing function of u then once
again, Cov(h(U ), h(1−U )) < 0.

So for the case where m = 1, a sufficient condition to guarantee a variance
reduction is for h(.) to be a monotonic function of u on [0, 1].

Consider the more general case where m > 1, U = (U1, . . . ,Um) and
θ = E[h(U)].

Say h(u1, . . . , um) is a monotonic function of each of its m arguments if, in each
of its arguments, it is non-increasing or non-decreasing.
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Comparing Estimator Variances
Theorem. If h(u1, . . . , um) is a monotonic function of each of its arguments on
[0, 1]m, then for a set U := (U1, . . . ,Um) of IID U (0, 1) random variables

Cov(h(U), h(1−U)) < 0

where Cov(h(U), h(1−U)) := Cov(h(U1, . . . ,Um), h(1−U1, . . . , 1−Um)).

Proof See Sheldon M. Ross’s Simulation. 2

Note that the theorem specifies sufficient conditions for a variance reduction,
but not necessary conditions.

So still possible to obtain a variance reduction even if conditions of the theorem
are not satisfied.
For example, if h(.) is “mostly” monotonic, then a variance reduction might be
still be obtained.
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Non-Uniform Antithetic Variates
So far have only considered problems where θ = E[h(U)], for U a vector of IID
U (0, 1) random variables.

But often the case that θ = E[Y ] where Y = h(X1, . . . ,Xm), and where
(X1, . . . ,Xm) is a vector of independent random variables.

Can still use antithetic variable method for such problems if we can use the
inverse transform method to generate the Xi ’s.

To see this, suppose Fi(.) is the CDF of Xi . If Ui ∼ U (0, 1) then F−1
i (Ui) has

the same distribution as Xi .

So can generate Y by generating U1, . . . ,Um ∼ IID U (0, 1) and setting

Z = h
(
F−1

1 (U1), . . . ,F−1
m (Um)

)
.

Since the CDF of any random variable is non-decreasing, it follows that F−1
i (.)

also non-decreasing.

So if h(x1, . . . , xm) monotonic in each of its arguments, then
h(F−1

1 (U1), . . . ,F−1
m (Um)) also monotonic function of the Ui ’s.
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The Barbershop Revisited
Consider again our barbershop example and suppose the barber now wants to
estimate the average total waiting time, θ, of the first 100 customers.

Then θ = E[Y ] where Y =
∑100

j=1 Wj and where Wj is the waiting time of the
jth customer.

For each customer, j, there is an inter-arrival time, Ij = time between the
(j − 1)th and jth arrivals.

There is also a service time, Sj = amount of time the barber spends cutting the
jth customer’s hair.

Therefore there is some function, h(.), for which

Y = h(I1, . . . , I100,S1, . . . ,S100).

For many queueing systems, h(.) will be a monotonic function of its arguments.
Why?

Antithetic variates guaranteed to give a variance reduction in these systems.
25 (Section 3)



Normal Antithetic Variates
Can also generate antithetic normal random variates without using the inverse
transform technique.

For if X ∼ N(µ, σ2) then X̃ ∼ N(µ, σ2) also, where X̃ := 2µ−X .

Clearly X and X̃ are negatively correlated.

So if θ = E[h(X1, . . . ,Xm)] where the Xi ’s are IID N(µ, σ2) and h(.) is
monotonic in its arguments, then we can again achieve a variance reduction by
using antithetic variates.
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e.g. Normal Antithetic Variates
Suppose we want to estimate θ = E[X2] where X ∼ N(2, 1).

Then easy to see that θ = 5, but can also estimate it using antithetic variates.

Question: Is a variance reduction guaranteed? Why or why not?

Question: What would you expect if Z ∼ N(10, 1)?

Question: What would you expect if Z ∼ N(0.5, 1)?
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e.g. Estimating the Price of a Knock-In Option
Wish to price a knock-in option where the payoff is given by

h(ST) = max(0,ST −K )I{ST>B}

where B is some fixed constant and St ∼ GBM (r , σ2) under Q.

Option price may be then written as

C0 = EQ
0 [e−rT max(0,ST −K )I{ST>B}]

Can write ST = S0e(r−σ2/2)T+σ
√

TX where X ∼ N(0, 1) so we can use antithetic
variates to estimate C0.

Question: Are we sure to get a variance reduction?

Worth emphasizing that the variance reduction that can be achieved through the
use of antithetic variates is rarely (if ever!) dramatic.
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Conditional Monte Carlo
Let X and Z be random vectors, and let Y = h(X) be a random variable.
Suppose we set

V = E[Y |Z].

Then V is itself a random variable that depends on Z, so can write V = g(Z)
for some function, g(·).

Also know that
E[V ] = E[E[Y |Z]] = E[Y ]

so if we are trying to estimate θ = E[Y ], could simulate V instead of Y .

To determine the better estimator we compare variances of Y and V = E[Y |Z].

To do this, recall the conditional variance formula:

Var(Y ) = E[Var(Y |Z)] + Var(E[Y |Z]). (5)
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Conditional Monte Carlo
Must have (why?) E[Var(Y |Z)] ≥ 0 but then (5) implies

Var(Y ) ≥ Var(E[Y |Z]) = Var(V )

so we can conclude (can we?!) that V is a better estimator of θ than Y .

To see this from another perspective, suppose that to estimate θ we first have to
simulate Z and then simulate Y given Z.

If we can compute E[Y |Z] exactly, then we can eliminate the additional noise
that comes from simulating Y given Z, thereby obtaining a variance reduction.

Question: Why must Y and Z be dependent for the conditional Monte Carlo
method to be worthwhile?
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Conditional Monte Carlo
Summarizing, we want to estimate θ := E[h(X)] = E[Y ] using conditional MC.

To do so, must have another variable or vector, Z, that satisfies:

1. Z can be easily simulated
2. V := g(Z) := E[Y |Z] can be computed exactly.

If these two conditions satisfied then can simulate V by first simulating Z and
then setting V = g(Z) = E[Y |Z].

Question: It may be possible to identify the distribution of V = g(Z). What
might we do in that case?

Also possible that other variance reduction methods could be used in conjunction
with conditioning.
e.g. If g(.) a monotonic function of its arguments, then antithetic variates might
be useful.
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Conditional Monte Carlo Algorithm for Estimating θ

for i = 1 to n
generate Zi
compute g(Zi) = E[Y |Zi ]
set Vi = g(Zi)

end for
set θ̂n,cm = V n =

∑n
i=1 Vi/n

set σ̂2
n,cm =

∑n
i=1(Vi −V n)2/(n − 1)

set approx. 100(1− α) % CI = θ̂n,cm ± z1−α/2
σ̂n,cm√

n



An Example of Conditional Monte Carlo
We wish to estimate θ := P(U + Z > 4) where U ∼ Exp(1) and Z ∼ Exp(1/2).

Let Y := I{U+Z>4} then θ = E[Y ] and can use conditional MC as follows.

Set V = E[Y |Z ] so that

E[Y |Z = z] = P(U + Z > 4|Z = z) = P(U > 4− z) = 1− Fu(4− z)

where Fu(.) is the CDF of U .

Therefore
1− Fu(4− z) =

{
e−(4−z) if 0 ≤ z ≤ 4,
1 if z > 4.

which implies

V = E[Y |Z ] =
{

e−(4−Z) if 0 ≤ Z ≤ 4,
1 if Z > 4.

33 (Section 4)



An Example of Conditional Monte Carlo
Now the conditional Monte Carlo algorithm for estimating θ = E[V ] is:

1. Generate Z1, . . . ,Zn all independent
2. Set Vi = E[Y |Zi ] for i = 1, . . . ,n
3. Set θ̂n,cm =

∑n
i=1 Vi/n

4. Compute approximate CI’s as usual using the Vi ’s.

Could also use other variance reduction methods in conjunction with conditioning.
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Pricing a Barrier Option
Definition. Let c(x, t,K , r , σ) be the Black-Scholes price of a European call
option when the current stock price is x, the time to maturity is t, the strike is
K , the risk-free interest rate is r and the volatility is σ.

Want to estimate price of a European option with payoff

h(X) =
{

max(0,ST −K1) if ST/2 ≤ L,
max(0,ST −K2) otherwise.

where X = (ST/2,ST).

Can write option price as

C0 = EQ
0

[
e−rT

(
max(0,ST −K1)I{ST/2≤L} + max(0,ST −K2)I{ST/2>L}

)]
where as usual St ∼ GBM (r , σ2) under Q.

Question: How would you estimate C0 using simulation and only one normal
random variable per sample payoff?

Question: Could you use antithetic variates as well? Would they be guaranteed
to produce a variance reduction?
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An Exercise: Estimating Portfolio Credit Risk
A bank has a portfolio of N = 100 loans to N companies and wants to evaluate
its credit risk.

Given that company n defaults, the loss for the bank is a N(µ, σ2) random
variable Xn where µ = 3, σ2 = 1.

Defaults are dependent and described by indicators D1, . . . ,DN and a background
random variable P, such that D1, . . . ,DN are IID Bernouilli(p) given P = p.

P has a Beta(1, 19) distribution, i.e. P has density (1− p)18/19, 0 < p < 1.

How would you estimate P(L > x), where L =
∑N

n=1 DnXn is the loss, using
conditional Monte Carlo, where the conditioning is on

∑N
n=1 Dn?
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