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Finite Difference Approximations
Let α(θ) := E [Y (θ)] be the price of a particular derivative security.
Then α′(θ) is the derivative price’s sensitivity to changes in the parameter θ.

e.g. If Y = e−rT(ST −K )+ in the Black-Scholes framework and θ = S0 then
α′(θ) is the delta of the option (and it can be calculated explicitly.)

In general an explicit expression for α′(θ) not available
- but we can use Monte-Carlo methods to estimate it.

One approach is to use the forward-difference ratio

∆F := α(θ + h)− α(θ)
h .

Generally don’t know α(θ + h) (or α(θ)) but we can estimate them.
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Finite Difference Approximations
Simulate n samples of Y (θ) and a further n samples of Y (θ + h).
Let Ȳn(θ) and Ȳn(θ + h) be their averages and then take

∆̂F := Ȳn(θ + h)− Ȳn(θ)
h

as our estimator.

If α twice differentiable at θ then

α(θ + h) = α(θ) + α′(θ)h + 1
2α
′′(θ)h2 + o(h2)

and so the bias of ∆̂F satisfies

Bias(∆̂F) := E
[
∆̂F − α′(θ)

]
= 1

2α
′′(θ)h + o(h). (1)
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Finite Difference Approximations
Could instead, however, simulate at θ − h and θ + h and then use the
central-difference estimator

∆̂C := Ȳn(θ + h)− Ȳn(θ − h)
2h (2)

as our estimator of α′(θ).

The same Taylor expansion argument then shows that the bias of ∆̂C satisfies

Bias(∆̂C ) := E
[
∆̂C − α′(θ)

]
= o(h)

which is superior to the O(h) bias of ∆̂F in (1).

The central difference estimator requires a little extra work. Why?!

But we prefer it to the forward-difference estimator on account of the superior
convergence of its bias to zero.
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Variance of the Finite Difference Estimators
Very reasonable to assume the pairs (Y (θ + h),Y (θ − h)) and
(Yi(θ + h),Yi(θ − h)) for i = 1, . . . ,n are IID.

Then follows from (2) that

Var
(

∆̂C

)
= Var (Y (θ + h)−Y (θ − h))

4nh2 (3)

so analyzing Var
(

∆̂C

)
comes down to analyzing Var (Y (θ + h)−Y (θ − h)).

There are three cases that typically arise:

Var (Y (θ + h)−Y (θ − h)) =

 O(1), Case (i)
O(h), Case (ii)
O(h2), Case (iii).

(4)

Case (i) occurs if we simulate Y (θ + h) and Y (θ − h) independently since then

Var (Y (θ + h)−Y (θ − h)) = Var (Y (θ + h)) + (Y (θ − h))
→ 2 Var (Y (θ)) .
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Variance of the Finite Difference Estimators
Case (ii) is the typical case when we simulate Y (θ + h) and Y (θ − h) using
common random numbers, i.e. when we simulate Y (θ + h) and Y (θ − h) from
the same sequence U1,U2, . . . of uniform random numbers.

In that event, Y (θ + h) and Y (θ − h) should be strongly correlated so that
Var

(
∆̂C

)
= O(h−1) in (3).

For case (iii) to apply must again use common random numbers with the
additional condition that Y (·) is continuous in θ almost surely.

This last condition is often not met
- which is why case (ii) is the typical case when common random numbers are

used.

Under case (iii) we see Var
(

∆̂C

)
in (3) is independent of h as h → 0

- so no need to worry about a variance explosion.
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System Comparison and Common Random Numbers

Common random numbers should always be applied when estimating Greeks
using finite difference estimators.

More generally, common random numbers can be very useful whenever we are
interested in comparing the performance of similar systems.

The following example does not involve the estimation of a sensitivity but it’s
clearly in the same spirit as the problem of estimating finite differences via
Monte-Carlo.

While in general it cannot always be guaranteed to work, i.e. decrease the
variance, common random numbers are often very effective, sometimes
decreasing the variance by orders of magnitude.

The philosophy of the method is that comparisons of the two systems should be
made “under similar experimental conditions”.
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Comparing Two Queueing Systems
Consider a queueing system where customers arrive according to a Poisson
process, N (t).

System operator needs to install a server to service the arrivals and he has a
choice of two possible servers, M and N .

In the event that M is chosen, let Sm
i denote the service time of the ith

customer, and let Xm denote the total time in the system of all the customers
who arrive before time T . That is,

Xm =
N(T)∑
i=1

W m
i

where W m
i is the total time in the system of the ith customer.

This implies W m
i = Sm

i + Qm
i where Qm

i is the waiting time (before being
served) for the ith customer.

Sn
i , Xn, W n

i and Qn
i are all defined in the same way for server N .
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Comparing Two Queueing Systems
The operator wants to estimate

θ = E[Xm]− E[Xn].

Obvious approach is to estimate θm := E[Xm] and θn := E[Xn] independently
and then set θ̂ = θ̂m − θ̂n.

Variance of θ̂ then given by

Var(θ̂) = Var(θ̂m) + Var(θ̂n).

But can do better by allowing θ̂m and θ̂n to be dependent for then

Var(θ̂) = Var(θ̂m) + Var(θ̂n)− 2Cov(θ̂m, θ̂n).

If we can arrange it that Cov(θ̂m, θ̂n) > 0, then can achieve a variance reduction.

Sometimes can achieve a significant variance reduction using common random
numbers.
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Comparing Two Queueing Systems
Let Xm

1 , . . . ,Xm
r and Xn

1 , . . . ,Xn
r be the sets of r samples that we use to

estimate E[Xm] and E[Xn], respectively.

Now set
Zi := Xm

i −Xn
i , i = 1, . . . , r .

If the Zi ’s are IID, then

θ̂ =
∑r

i=1 Zi

r

Var(θ̂) = Var(Xm
i ) + Var(Xn

i )− 2Cov(Xm
i ,Xn

i )
r .

To reduce Var(θ̂), would like to make Cov(Xm
i ,Xn

i ) as large as possible.

Can achieve this by using common random numbers to generate Xm
i and Xn

i .

In particular, we should use the same arrival sequences for each possible server.
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Comparing Two Queueing Systems
We can do more: while Sm

i and Sn
i will generally have different distributions we

might still be able to arrange it so that Sm
i and Sn

i are positively correlated.

For example, if they are generated using the inverse transform method, we should
use the same Ui ∼ U (0, 1) to generate both Sm

i and Sn
i .

Since the inverse of the CDF is monotonic, this means that Sm
i and Sn

i will in
fact be positively correlated.

By using common random numbers in this manner and synchronizing them
correctly as we have described, it should be the case that Xm

i and Xn
i are

strongly positively correlated.

For example, if Xm
i is large, then that would suggest that there have been many

arrivals in [0,T ] and / or service times have been very long. But then the same
should be true for the system when N is the server, implying that Xn

i should also
be large.
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The Pathwise Estimator
Recalling that α(θ) := E [Y (θ)], the pathwise estimator is calculated by
interchanging the order of differentiation and expectation to obtain

α′(θ) = ∂

∂θ
E [Y (θ)] = E

[
∂Y (θ)
∂θ

]
. (5)

Need to justify the interchange of differentiation and expectation in (5)!

To operationalize (5) must first explicitly state the relationship between Y and θ.

We assume there is a collection of random variables {Y (θ) : θ ∈ Θ} defined on a
single probability space (Ω,F ,P).

If we fix ω ∈ Ω then can consider θ 7→ Y (θ, ω) as a random function on Θ so

Y ′(θ) = ∂Y (θ)
∂θ

= Y ′(θ, ω)

is the derivative of this random function with respect to θ, taking ω as fixed.
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The Pathwise Estimator
This is what we mean by the pathwise derivative of Y at θ.

Implicitly assuming it exists with probability 1
- which is usually the case

- and if so then the rightmost expectation in (5) is then defined.

All that then remains is justifying the interchange of differentiation and
integration in (5)

- note that sometimes this interchange is not justified.

But before addressing this issue we consider various examples from Glasserman ...
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The Pathwise Estimator: Delta of a European Call
Consider a European call strike K, maturity T in the Black-Scholes framework.
First write the option payoff as

Y = e−rT (ST −K )+ (6)

ST = S0 e
(

r−σ2
2

)
T+σ

√
TZ (7)

where Z ∼ N(0, 1). It follows from (6) and (7) that

∂Y
∂S0

= ∂Y
∂ST

∂ST

∂S0

= e−rT1{ST>K}
ST

S0
. (8)

The estimator (8) is easily calculated via a Monte-Carlo simulation.

Should also be clear that (8) is valid for any model of security prices where
St = S0eXt for any (risk-neutral) stochastic process Xt that does not depend on
S0.
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The Pathwise Estimator: Vega of a European Call
A similar argument shows the pathwise estimator for the vega of a call option in
the Black-Scholes world is given by

∂Y
∂σ

= e−rT
(
−σT +

√
TZ
)

ST 1{ST>K}

= e−rT
(

log (ST/S0)− (r + σ2/2) T
σ

)
ST 1{ST>K}. (9)
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The Pathwise Estimator: Path-Dependent Deltas
Consider an Asian option with payoff

Y = e−rT [S̄ −K
]+
, S̄ := 1

m

m∑
i=1

Sti

for some fixed dates 0 < t1 < · · · < tm ≤ T .

Assuming the Black-Scholes framework, would like to construct the pathwise
estimator for the delta of this option. We have

∂Y
∂S0

= ∂Y
∂S̄

∂S̄
∂S0

= e−rT1{S̄>K}
∂S̄
∂S0

= e−rT1{S̄>K}
1
m

m∑
i=1

∂Sti

∂S0

= e−rT1{S̄>K}
1
m

m∑
i=1

Sti

S0

= e−rT1{S̄>K}
S̄
S0
.
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The Pathwise Estimator
We haven’t justified interchanging the order of differentiation and integration as
in (5) to show that these estimators are unbiased.

But a general rule of thumb is that the interchange can be justified when the
payoff Y is (almost surely) continuous in θ

- clearly the case in the examples above.

In contrast, the interchange is generally invalid when Y is not continuous in θ.

This means in particular that the pathwise method does not work in general for
barrier and digital option

- will return to barriers and digitals later.

Exercise: Show that the pathwise estimator of the vega of the Asian option is
given by

∂Y
∂σ

= e−rT1{S̄>K}
1
m

m∑
i=1

∂Sti

∂σ
(10)

where ∂Sti/∂σ is given by the term in parentheses in (9) with T = ti times Sti .
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The Pathwise Method for SDEs
Have only considered GBM models so far but the pathwise method can be
applied to considerably more general models.

e.g. Suppose a security price St satisfies the SDE

dSt = µtSt dt + σtSt dWt

where µt and σt could be stochastic but do not depend on S0.

Then Itô’s Lemma implies

ST = S0 exp
(∫ T

0

(
µt − σ2

t /2
)

dt +
∫ T

0
σt dWt

)
(11)

and so we still have ∂ST/∂S0 = ST/S0.

Indeed this expression holds more generally for any model in which
St = S0 exp(Xt) as long as the process Xt does not depend on S0.

The following example is one where the process is not linear in its state.
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Square-Root Diffusions
Suppose Xt satisfies the SDE

dXt = κ(β −Xt) dt + σ
√

Xt dWt .

Can’t find an explicit expression for Xt it is well known that

Xt ∼ c1χ
′2
ν (c2X0)

where χ′2ν (c2X0) is the non-central chi-squared distribution with ν d.o.f and
non-centrality parameter c2X0.

As long as ν > 1 then Xt can be generated using the representation

Xt = c1

((
Z +

√
c2X0

)2
+ χ2

ν−1

)
(12)

with Z ∼ N(0, 1) and χ2
ν−1 an ordinary chi-squared random variable with ν − 1

d.o.f and independent of Z .
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Square-Root Diffusions
It follows that

∂Xt

∂X0
= c1c2

(
1 + Z√

c2X0

)
. (13)

More generally, if we need to simulate a path of Xt at the times t1 < t2 < · · · <
then we can use (13) (with 0 and t replaced by ti and ti+1, respectively) to
obtain the recursion

∂Xti+1

∂X0
=

∂Xti+1

∂Xti

∂Xti

∂X0

= c1,ic2,i

(
1 + Zi+1√

c1,2Xti

)
∂Xti

∂X0

where Zi+1 ∼ N(0, 1) is used to generate Xti+1 from Xti .

The constants c1,i and c2,i depend on the time increment ti+1 − ti

- see Example 7.2.5 of Glasserman for further details.
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Inapplicability of Pathwise Method for Digital Options

Consider a digital call option which has discounted payoff

Y = e−rT1{ST>K}. (14)

Note that ∂Y /∂S0 = 0 everywhere except at ST = K where the derivative does
not exist.

The pathwise derivative therefore exists and equals zero almost surely. Therefore
have

0 = E
[
∂Y
∂S0

]
6= ∂

∂S0
E [Y ]

so clearly the interchange of expectation and differentiation is not valid here!

Intuitively, the reason for this is that the change in E[Y ] due to a change in S0 is
due to the possibility that the change in S0 will cause ST to cross (or not cross)
the barrier K . But this change is not captured by the pathwise derivative which
is zero almost surely.
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Inapplicability of Pathwise Method for Estimating Gamma

For the same reason the Black-Scholes gamma cannot be estimated via the
pathwise method because the “payoff” for the gamma is the delta of (8).

In particular, the gamma for a European call option with Y as in (6) is given by
∂2

∂S2
0
E[Y ] = ∂

∂S0

(
∂

∂S0
E[Y ]

)
= ∂

∂S0
E
[
∂Y
∂S0

]
(15)

= ∂

∂S0
E
[
e−rT1{ST>K}

ST

S0

]
. (16)

The interchange of expectation and differentiation in (15) is justified (as we
noted earlier) by our rule of thumb.

However, as was the case with the digital option, we cannot interchange order of
expectation and differentiation in (16) and therefore obtain an unbiased pathwise
estimator for the gamma of the call option.

This observation is also true for barrier options.
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The Likelihood Ratio Method
In contrast to the pathwise method, the LR method differentiates a probability
density wr.t. the parameter of interest, θ.

It provides a good potential alternative to the pathwise method when Y is not
continuous in θ.

In order to develop the method we write the payoff as Y = f (X1, . . . ,Xm)
- the Xi ’s might represent the price of an underlying security at different dates
- or the prices of several underlying securities at the same date.

We assume that X has a density g and that θ is a parameter of this density
- will therefore write gθ and use Eθ to denote expectations are taken w.r.t gθ.

Can therefore write
Eθ[Y ] =

∫
Rm

f (x)gθ(x) dx. (17)
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The Likelihood Ratio Method
Can now differentiate across (17) to obtain

α′(θ) = ∂

∂θ
Eθ [Y ]

=
∫
Rm

f (x) ∂
∂θ

gθ(x) dx (18)

– have assumed the interchange of the order of differentiation and integration is
again justified.

Writing ġθ for ∂gθ/∂θ we can multiply and divide the integrand in (18) by gθ to
obtain

α′(θ) =
∫
Rm

f (x) ġθ(x)
gθ(x) gθ(x) dx

= Eθ
[
f (X) ġθ(X)

gθ(X)

]
. (19)

The ratio ġθ(X)/gθ(X) is known as the score function.
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The Likelihood Ratio Method
While the interchange of the order of differentiation and integration needs to be
justified this is typically not a problem since density functions are usually smooth
functions of their parameters

- unlike option payoffs which are the focus of the pathwise approach.

Also worth noting there is considerable flexibility in whether we choose to view θ
as a parameter of the payoff Y or of the density g.

In (7), for example, it’s clear that S0 is a parameter of the path and not of the
density which is N(0, 1) there.

But could also have written the density as a function of S0 as we now do ...
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The Black-Scholes Delta
The lognormal density of ST is given by

g(x) = 1
xσ
√

T
φ (ζ(x)) , ζ(x) := log(x/S0)− (r − σ2/2)T

σ
√

T

where φ(·) denotes the standard normal density.

Taking θ = S0 we see that the score is given by

dg(x)/dS0

g(x) = −ζ(x)dζ(x)
dS0

= log(x/S0)− (r − σ2/2)T
S0σ2T .

An unbiased estimator of the delta in then obtained by multiplying the score by
the option payoff as in (19).
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The Black-Scholes Delta
If ST is generated from S0 as in (7) with Z ∼ N(0, 1) then ζ(ST) = Z and the
estimator simplifies to

∂C
∂S0

= E
[
e−rT(ST −K )+ Z

S0σ
√

T

]
(20)

where C = Eθ[Y ] denote the Black-Scholes call price.

Expression inside expectation in (20) is our LR estimator for the option delta.

Note that given the score Z/S0σ
√

T , we can immediately compute the delta for
other option payoffs as well

- a particular advantage of the likelihood ratio method.

e.g. The delta of a digital can be estimated using

e−rT1{ST>K}
Z

S0σ
√

T
.
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Path-Dependent Deltas
Consider our Asian option where the payoff is a function of St1 , . . . ,Stm .

Markov property of GBM implies we can factor joint density of (St1 , . . . ,Stm ) as

g(x1, . . . , xm) = g1(x1 |S0)g2(x2 | x1) · · · gm(xm | xm−1) (21)

where each gj(xj | xj−1) is the (lognormal) transition density from time tj−1 to
time tj and satisfies

gj(xj | xj−1) = 1
xjσ
√

tj − tj−1
φ (ζj(xj |xj−1))

with
ζj(xj |xj−1) := log(xj/xj−1)− (r − σ2/2)(tj − tj−1)

σ
√

tj − tj−1
.

Note that S0 is a parameter of the first factor g1 but not of the other factors.
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Path-Dependent Deltas
From (21) it therefore follows that the score satisfies

∂ log (g(St1 , . . . ,Stm ))
∂S0

= ∂ log (g1(St1 |S0))
∂S0

= ζ1(S1|S0)
S0σ
√

t1
.

This last expression can be written as

Z1

S0σ
√

t1

where Z1 is the standard normal used to generate St1 from S0 as in (7).

The LR estimator of the Asian option delta is therefore given by

e−rT (S̄ −K
)+ Z1

S0σ
√

t1
.
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Path-Dependent Vega
Suppose we wish to estimate the vega for the same Asian option.

First note that σ appears in every transition density gj rather than only g1.

Omitting some of the calculations, this implies the score takes the form

∂ log (g(St1 , . . . ,Stm ))
∂σ

=
m∑

j=1

∂ log
(
gj(Stj |Stj−1)

)
∂σ

= −
m∑

j=1

(
1
σ

+ ζj
(
Stj |Stj−1

) ∂ζj

∂σ

)

=
m∑

j=1

(Z2
j − 1
σ

− Zj
√

tj − tj−1

)
(22)

with the Zj ’s IID normal and each Zj used to generate Stj from Stj−1 .
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Bias of the Likelihood Ratio Estimator
Justifying the interchange of the order of differentiation and integration in (18)
needs to be justified mathematically in order to guarantee the LR estimator in
(19) is unbiased.

This is rarely an issue, however, since density functions are usually smooth
functions of their parameters and such smoothness is generally sufficient to
justify the interchange.

But worth considering the issue as it will help shed some light on why the
variance of LR estimators can be very large.
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Bias of the Likelihood Ratio Estimator
Recall that the goal is to compute

α′(θ) = ∂

∂θ

∫
Rm

f (x)gθ(x) dx

= lim
h→0

∫
Rm

f (x)
(

gθ+h(x)− gθ(x)
h

)
dx

= lim
h→0

∫
Rm

f (x) 1
h

(
gθ+h(x)
gθ(x) − 1

)
gθ(x) dx

= lim
h→0

1
h

(
Eθ
[
f (X)gθ+h(X)

gθ(X)

]
− Eθ [f (X)]

)
. (23)

Let’s now fix h and consider the first expectation in (23).

We recognize Eθ
[
f (X) gθ+h(X)

gθ(X)

]
as an importance sampling (IS) estimator of

Eθ+h [f (X)].

And we know that for this IS estimator to be unbiased we require an absolute
continuity condition, namely that gθ(x) > 0 whenever gθ+h(x) > 0.
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Absolute Continuity
Glasserman provides a simple example where this absolute continuity condition
fails.

In particular, let
gθ(x) := 1

θ
1{0<x<θ}

and note that it is differentiable in θ for any fixed x ∈ (0, θ)
- so the score exists w.p. 1 and equals −1/θ.

But it can be easily checked that the LR estimator of the derivative of Eθ[X ] is
biased.

Exercise: Show the expected value of the LR estimator is −1/2 whereas the true
sensitivity is +1/2.
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Variance of the Likelihood Ratio Estimator
In practice, use of the LR method tends to be limited by either:
(i) not having gθ available explicitly

or
(ii) the absolute continuity requirement being ”close” to not holding.

In case (ii) the variance of the LR estimator can be very large and in practice,
this is often the problem that we actually encounter.

e.g. Can see from (20) that the variance of the LR estimator will be very high
when T is close to 0 and in fact it will grow without bound as T → 0.

Can be a serious problem for the method more generally when the payoff of the
derivative security depends on the underlying price at a range of times with small
increments between them.

e.g. Consider the score in (22) for the path-dependent vega.

If we keep the time increments tj − tj−1 fixed but increase m then the variance of
the score will increase linearly in m.
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Variance of the Likelihood Ratio Estimator
Could also, however, keep the maturity T fixed and increase m by shrinking the
time increments tj − tj−1.

In this case we see again that the variance of the score can increase without
bound as m →∞.

Exercise: Can you see how an absolute continuity argument can help to explain
why the variance of the scores in (20) and (22) grow without bound as T → 0
and m →∞, respectively?
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Variance Comparison of Pathwise and LR Estimators

Following Glasserman, we study the growth in the variance of the vega estimator
of an Asian option as the number of averaging periods, m, varies.

We estimate the variance of the pathwise and LR vega estimators given by (10)
and (22) (multiplied by the discounted Asian payoff of course), respectively.

Parameters are: S0 = K = 100, σ = 0.3, r = .04 and equally spaced dates
corresponding to 1 week, i.e. tj − tj−1 = 1/52 for all j.

The results are displayed on next slide and are based on 500k samples.
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Estimating Second Derivatives
A similar argument to the one that lead to (19) can be used to show that

f (X) g̈θ(X)
gθ(X) (24)

is an unbiased estimator of the second derivative

α′′(θ) := ∂2

∂θ2 Eθ [f (X)] .

Of course the correctness of (24) relies as usual on the interchange of the order
of expectation and differentiation being justified – which is typically the case with
the LR method.

Even more so than the score, however, the estimator in (24) can often lead to
very large variances.

There are various possible solutions to this problem including the combination of
pathwise and LR methods.
e.g. Use the pathwise estimator to estimate the first derivative and then applying
the LR estimator to the pathwise estimator to obtain an estimator of the second
derivative.
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Combining the Pathwise and Likelihood Ratio Methods

Can combine the pathwise and LR estimators in order to leverage the strengths
of each approach.

e.g. Consider problem of estimating the delta of a digital call option with strike
K .

Know that the pathwise approach cannot be used directly here.

Nonetheless can proceed by writing the digital payoff as

1{x>K} = fε(x) +
(
1{x>K} − fε(x)

)
= fε(x) + hε(x)

where
fε(x) := min

{
1, max {0, x −K + ε}

2ε

}
and hε(x) := 1{x>K} − fε(x).

Note that fε(x) is piecewise linear approximation to the payoff function 1{x>K}
and that hε(x) corrects the approximation.
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Combining the Pathwise and Likelihood Ratio Methods

We can apply the pathwise estimator to fε(ST) (since it’s continuous almost
surely in S0) and the LR estimator to hε(ST).

Assuming as before that St ∼ GBM(r , σ), the resulting estimator is given by

e−rT ×
[

1
2ε1{|ST−K|<ε}

ST

S0
+ hε(ST) ζ(ST)

S0σ
√

T

]
. (25)

Figure on next slide plots the variance of the estimator in (25) as a function of ε.

Not surprising to see variance of the mixed estimator increase as ε decreases.
Why?
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