
IEOR E4703: Monte-Carlo Simulation
Other Miscellaneous Topics and Applications of Monte-Carlo

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

mailto:martin.b.haugh@gmail.com

Outline

Capital Allocation in Risk Management
An Application

Quasi-Monte-Carlo

Pricing Bermudan Options

2 (Section 0)

Capital Allocation in Risk Management
Total loss given by L =

∑n
i=1 Li .

Suppose we have determined the risk, %(L), of this loss.

The capital allocation problem seeks a decomposition, AC1, . . . ,ACn, such that

%(L) =
n∑

i=1
ACi (1)

- ACi is interpreted as the risk capital allocated to the ith loss, Li .

This problem is important in the setting of performance evaluation where we
want to compute a risk-adjusted return on capital (RAROC).

e.g. We might set RAROCi = Expected Profiti / Risk Capitali
- must determine risk capital of each Li in order to compute RAROCi .

3 (Section 1)

Capital Allocation
More formally, let L(λ) :=

∑n
i=1 λiLi be the loss associated with the portfolio

consisting of λi units of the loss, Li , for i = 1, . . . ,n.

Loss on actual portfolio under consideration then given by L(1).

Let %(·) be a risk measure on a space M that contains L(λ) for all λ ∈ Λ, an
open set containing 1.

Then the associated risk measure function, r% : Λ→ R, is defined by

r%(λ) = %(L(λ)).

We have the following definition ...

4 (Section 1)

Capital Allocation Principles
Definition: Let r% be a risk measure function on some set Λ ⊂ Rn \ 0 such that
1 ∈ Λ.
Then a mapping, f r% : Λ→ Rn, is called a per-unit capital allocation principle
associated with r% if, for all λ ∈ Λ, we have

n∑
i=1

λif
r%
i (λ) = r%(λ). (2)

We then interpret f r%
i as the amount of capital allocated to one unit of Li

when the overall portfolio loss is L(λ).

The amount of capital allocated to a position of λiLi is therefore λif
r%
i and

so by (2), the total risk capital is fully allocated.

5 (Section 1)

The Euler Allocation Principle
Definition: If r% is a positive-homogeneous risk-measure function which is
differentiable on the set Λ, then the per-unit Euler capital allocation principle
associated with r% is the mapping

f r% : Λ→ Rn : f r%
i (λ) = ∂r%

∂λi
(λ).

The Euler allocation principle is a full allocation principle since a well-known
property of any positive homogeneous and differentiable function, r(·) is
that it satisfies

r(λ) =
n∑

i=1
λi
∂r
∂λi

(λ).

The Euler allocation principle therefore gives us different risk allocations for
different positive homogeneous risk measures.

There are good economic reasons for employing the Euler principle when
computing capital allocations.

6 (Section 1)

Value-at-Risk and Value-at-Risk Contributions
Let rαVaR(λ) = VaRα(L(λ)) be our risk measure function.

Then subject to technical conditions can be shown that

f rαVaR
i (λ) = ∂rαVaR

∂λi
(λ)

= E [Li | L(λ) = VaRα(L(λ))] , for i = 1, . . . ,n. (3)

Capital allocation, ACi , for Li is then obtained by setting λ = 1 in (3).

Will now use (3) and Monte-Carlo to estimate the VaR contributions from each
security in a portfolio.

- Monte-Carlo is a general approach that can be used for complex portfolios
where (3) cannot be calculated analytically.

7 (Section 1)

An Application: Estimating Value-at-Risk Contributions

Recall total portfolio loss is L =
∑n

i=1 Li .

According to (3) with λ = 1 we know that

ACi = E [Li | L = VaRα(L)] (4)

= ∂ VaRα(λ)
∂λi

∣∣∣∣
λ=1

= wi
∂ VaRα
∂wi

(5)

for i = 1, . . . ,n and where wi is the number of units of the ith security held in
the portfolio.

Question: How might we use Monte-Carlo to estimate the VaR contribution,
ACi , of the ith asset?

Solution: There are three approaches we might take:
8 (Section 1)

First Approach: Monte-Carlo and Finite Differences

As ACi is a (mathematical) derivative we could estimate it numerically using a
finite-difference estimator.

Such an estimator based on (5) would take the form

ÂC i := VaRi,+
α − VaRi,−

α

2δi
(6)

where VaRi,+
α (VaRi,−

α) is the portfolio VaR when number of units of the ith

security is increased (decreased) by δiwi units.

Each term in numerator of (6) can be estimated via Monte-Carlo
- same set of random returns should be used to estimate each term.

What value of δi should we use? There is a bias-variance tradeoff but a value of
δi = .1 seems to work well.

This estimator will not satisfy the additivity property so that
∑n

i ÂC i 6= VaRα
- but easy to re-scale estimated ÂC i ’s so that the property will be satisfied.

9 (Section 1)

Second Approach: Naive Monte-Carlo
Another approach is to estimate (4) directly. Could do this by simulating N
portfolio losses L(1), . . . ,L(N) with L(j) =

∑n
i=1 L(j)

i

- L(j)
i is the loss on the ith security in the jth simulation trial.

Could then set (why?) ACi = L(m)
i where m denotes the VaRα scenario, i.e.

L(m) is the dN (1− α)eth largest of the N simulated portfolio losses.

Question: Will this estimator satisfy the additivity property, i.e. will∑n
i ACi = VaRα?

Question: What is the problem with this approach? Will this problem disappear
if we let N →∞?

10 (Section 1)

A Third Approach: Kernel Smoothing Monte-Carlo

An alternative approach that resolves the problem with the second approach is to
take a weighted average of the losses in the ith security around the VaRα
scenario.

A convenient way to do this is via a kernel function.

In particular, say K (x; h) := K
(x

h
)

is a kernel function if it is:

1. Symmetric about zero
2. Takes a maximum at x = 0
3. And is non-negative for all x.

A simple choice is to take the triangle kernel so that

K (x; h) := max
(

1−
∣∣∣xh ∣∣∣ , 0

)
.

11 (Section 1)

A Third Approach: Kernel Smoothing Monte-Carlo

The kernel estimate of ACi is then given by

ÂC
ker
i :=

∑N
j=1 K

(
L(j) − ˆVaRα; h

)
L(j)

i∑N
j=1 K

(
L(j) − ˆVaRα; h

) (7)

where V̂aRα := L(m) with m as defined above.

One minor problem with (7) is that the additivity property doesn’t hold. Can
easily correct this by instead setting

ÂC
ker
i := V̂aRα

∑N
j=1 K

(
L(j) − ˆVaRα; h

)
L(j)

i∑N
j=1 K

(
L(j) − ˆVaRα; h

)
L(j)

. (8)

Must choose an appropriate value of smoothing parameter, h.

Can be shown that an optimal choice is to set
h = 2.575σN−1/5

where σ = std(L), a quantity that we can easily estimate.
12 (Section 1)

When Losses Are Elliptically Distributed
If L1, . . . ,LN have an elliptical distribution then it may be shown that

ACi = E [Li] + Cov (L,Li)
Var (L) (VaRα(L)− E [L]) . (9)

In numerical example below, we assume 10 security returns are elliptically
distributed. In particular, losses satisfy (L1, . . . ,Ln) ∼ MNn(0,Σ).

Other details include:
1. First eight securities were all positively correlated with one another.
2. Second-to-last security uncorrelated with all other securities.
3. Last security had a correlation of -0.2 with the remaining securities.
4. Long position held on each security.

Estimated VaRα=.99 contributions of the securities displayed in figure below
- last two securities have a negative contribution to total portfolio VaR
- also note how inaccurate the “naive” Monte-Carlo estimator is
- but kernel Monte-Carlo is very accurate!

13 (Section 1)

14 (Section 1)

Quasi Monte-Carlo Methods
Consider problem of computing an integral over the d-dimensional unit cube.

A principle advantage of Monte Carlo is the order 1/
√

n convergence rate
- which is independent of d.

In contrast, standard numerical integration schemes based on a rectangular grid
of points converge as 1/(n2/d).

But many interesting problems are high-dimensional so Monte Carlo simulation
can provide a significant computational advantage.

But ... a sample of uniformly distributed points in the d-dimensional unit cube
covers the cube inefficiently

- see figure on next slide for example

15 (Section 2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniform Random Variables

Uniform Random Samples in [0, 1]2

Low Discrepancy Sequences
A d-dimensional low discrepancy sequence (LDS) is a deterministic sequence of
points in the d-dimensional unit cube that fills the cube efficiently, i.e. it has a
low discrepancy.

This low discrepancy property results in a convergence rate of (log n)d/n,
implying in particular that they can often be much more effective than Monte
Carlo methods.

An example of a 2-dimensional LDS is plotted in figure on next slide.

17 (Section 2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Low Discrepancy Sequence

Dimensional Low Discrepancy Points in [0, 1]2

Low Discrepancy Sequences
It is clear there is nothing random about low discrepancy points.

Hence the term Quasi Monte Carlo often used to refer to approaches that use
LDS as an alternative to standard Monte Carlo methods.

If the objective is to calculate

θ := E[f (U1, . . . ,Ud)] =
∫

[0,1)d
f (x) dx

then we can estimate it with

θ̂ := 1
n

n∑
i=1

f (xi)

where x1, . . . , xn are a d-dimensional sequence of low-discrepancy points from the
unit hypercube, [0, 1)d .

19 (Section 2)

Discrepancy
Definition: Given a collection, A, of subsets of [0, 1)d , we define the discrepancy
of a set of points {x1, . . . , xn} relative to A as

D(x1, . . . , xn; A) := sup
A∈A

∣∣∣∣#{xi ∈ A}
n − vol(A)

∣∣∣∣
where vol(A) denotes the volume of A.

The discrepancy of a sequence, D(x1, . . . , xn), is then obtained by taking A
to be the collection of rectangles of the form

d∏
j=1

[uj , vj), 0 ≤ uj < vj ≤ 1. (10)

The star discrepancy, D∗(x1, . . . , xn) is obtained by taking uj = 0 in (10).

Low discrepancy sequences are sequences of points for which the star
discrepancy is small (in a sense we do not define here).

20 (Section 2)

Low Discrepancy Sequences
Recall that if we wish to generate IID d-dimensional vectors of U (0, 1) random
variables then we can simply:

1. Generate a sequence of U1, . . . ,Ud ,Ud+1, . . . ,U2d , . . . of IID uniforms
2. Take (U1, . . . ,Ud), (Ud+1, . . . ,U2d), . . . as our sequence of IID vectors.

This is not the case with low discrepancy sequences: the dimensionality, d, is a
key component in constructing the low discrepancy points.

This dependence on the dimensionality of the problem is clear when we realize
the need to specify the dimensionality of the problem before tackling any given
problem.

Question: How might you evaluate an expectation

θ := E[f (X)]

where X is a d-dimensional multivariate normal random vector? Consider first
the case where the d normal random variables are independent.

21 (Section 2)

Advantages of Low Discrepancy Sequences
1. Their asymptotic convergence properties are superior to those of Monte

Carlo simulation and their performance is often dramatically superior in
practice.

2. The number of points, n, need not be known in advance. This is a property
shared with Monte Carlo but not with numerical integration techniques that
are based on regular grids.

22 (Section 2)

Disadvantages of Low Discrepancy Sequences
1. For a fixed sample size, n, there is no guarantee that low discrepancy

sequences will outperform Monte Carlo simulation.

e.g. Many popular LDS cover the initial coordinates, (x1, x2), more or less
uniformly.
But they do not cover the final coordinates, (xd−1, xd), in a sufficiently uniform
manner (until n is sufficiently large).

Figures (a) and (b) display 2-dimensional projections of the first 2 and final 2
coordinates, respectively, of the first 1, 000 points of the 32-dimensional Halton
sequence.

23 (Section 2)

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

(a) 1st 2 dimensions of 32-dimensional Halton
sequence

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Last 2 dimensions of the sequence.

Disadvantages of Low Discrepancy Sequences
e.g. ctd. Clear the 1, 000 points fill first 2 dimensions much more uniformly than
the final two dimensions.

This behavior is not atypical and can lead to very inaccurate results if:
1. An insufficient number of points is used
2. Function being integrated depends to a significant extent on arguments of

the higher dimensions
- often the case when pricing derivative securities, for example
- might then be necessary to raise n to an unsatisfactorily high level.

There are various methods available for counteracting this problem, including the
use of leaped and scrambled sequences.

Also possible to use the Brownian bridge construction and / or stratified
sampling techniques to overcome some of these problems.

25 (Section 2)

Disadvantages of Low Discrepancy Sequences
2. Since LDS are deterministic, confidence intervals (CIs) are not readily

available
- so difficult to tell whether or not an estimate is sufficiently accurate.

There are now methods available to randomize LDS, however, and so
approximate CIls can be constructed.

One method is to generate a uniform random vector, U1 ∈ Rd , and then set

θ̂1 := 1
n

n∑
i=1

f ((xi + U1) mod 1)

where the mod 1 operation is applied separately to each of the d coordinates.

Note that θ̂1 is now (why?) an unbiased estimator of θ.

Can repeat this m times to obtain IID sample θ̂1, . . . , θ̂m which can then be used
to construct CIs for θ.

26 (Section 2)

Quasi Monte-Carlo
More care needed when applying LDS than when applying Monte Carlo.

But LDS often produce significantly better estimates
- therefore worth considering for applications where computational

requirements are very demanding.

In practice LDS are often applied in very high-dimensional problems when
traditional Monte-Carlo might be too slow

e.g. pricing of mortgage-backed securities.

But precisely in high-dimensional applications where most care is needed when
using LDS.

Also worth noting that careful use of variance reduction techniques can often
narrow the gap significantly between the performance of LDS and Monte-Carlo.

Theory underlying LDS is based on number theory and abstract algebra and is
not probabilistic.

27 (Section 2)

An Application: Pricing MBS
We consider the pricing of a principal-only (PO) and interest-only (IO) MBS.

Underlying mortgage pool has the following characteristics:

Initial balance of the pool is $10m

Each underlying mortgage has T = 30 years to maturity

Each mortgage makes monthly payments

Average coupon rate is 10%

But service and guaranty fees of .5% yield a pass-through rate of

10%− .5% = 9.5%

.
We need a prepayment model and a term-structure model.

28 (Section 2)

A Prepayment Model (Richard and Roll 1989)
We assume

CPRk = RIk ×AGEk ×MMk × BMk (11)
where:

RIk is the refinancing incentive with

RIk := .28 + .14 tan−1 (−8.57 + 430 (WAC − rk(10))) (12)

where rk(10) is the prevailing 10-year spot rate at time k.

AGEk = min (1, t/30) is the seasoning multiplier.

MMk is the monthly multiplier with, for example,

x := [.94 .76 .74 .95 .98 .92 .98 1.1 1.18 1.22 1.23 .98].

Then MMk = x(5) if k falls in May or MMk = x(2) if k falls in February etc.

BMk = .3 + .7Mk−1/M0 is the burnout multiplier where Mk = remaining
principal balance at time k.

29 (Section 2)

Choosing a Term Structure Model
Also need to specify a term-structure model in order to fully specify the model.
The term structure model will be used to:

(i) discount all of the MBS cash-flows in the usual martingale pricing framework
(ii) to compute the refinancing incentive according to (11) and (12).

Will assume a Vasicek model for the term structure so that

drt = α(µ− rt) dt + σ dWt

where r0 = .08, α = 0.2, µ = 0.1, σ = .05 and Wt is a Q-Brownian motion.

With this choice we can compute rt(10) analytically.

30 (Section 2)

Monte-Carlo Prices of IO and PO MBS
Used N = 20, 000 paths.

Approximate 95% CI for the IO MBS was

[$4.009m, $4.019m].

Approximate 95% CI for the PO MBS was

[$6.225m, $6.279m].

Question: Can you give any intuition for why the approximate 95% confidence
interval for the PO is much wider than the corresponding interval for the IO?

31 (Section 2)

Quasi Monte-Carlo Prices of IO and PO MBS
Pricing IO and PO securities using 20, 000 points of a 360-dimensional LDS we
obtain price estimates of $4.011m and $6.257m, respectively.

Both of these estimates are inside the 95% Monte-Carlo CIs
- thereby suggesting that the 20, 000 points is probably sufficient.

If instead we use 10 blocks of 10, 000 low discrepancy points where we randomize
each block, then we obtain

95% CI for IO Price = [$4.013m, $4.016m]
95% CI for PO Price = [$6.252m, $6.256m]

Note that these CIs are inside the CIs that were obtained using Monte-Carlo.

Of course five times as many points were used to obtain these LDS-based CIs but
they are narrower than the Monte-Carlo based CIs by a factor greater than

√
5.

32 (Section 2)

Pricing Bermudan Options
The general Bermudan option pricing problem at time t = 0 is to compute

V0 := sup
τ∈T

EQ0
[

hτ
Bτ

]
(13)

T = {0 ≤ t1, . . . , tn = T} is the set of possible exercise dates
Bt is the value of the cash account at time t
ht = h(Xt) is the payoff function if the option is exercised at time t
Xt represents the time t (vector) value of the state variables in the model.

e.g. In the case of a Bermudan swaption in the LIBOR market model Xt would
represent the time t value of the various forward LIBOR rates.

33 (Section 3)

Value Iteration and Q-Value Iteration
In theory (13) is easily solved using value iteration:

VT = h(XT) and

Vt = max
(

h(Xt), EQt
[

Bt

Bt+1
Vt+1(Xt+1)

])
.

- option price then given by V0(X0).

Value iteration is one of the main approaches for solving DPs.

An alternative to value iteration is Q-value iteration.

The Q-value function is the value of the option conditional on it not being
exercised today, i.e. the Q-value is the continuation value of the option

Qt(Xt) = EQt
[

Bt

Bt+1
Vt+1(Xt+1)

]
. (14)

34 (Section 3)

Q-Value Iteration
Option value at time t + 1 then given by

Vt+1(Xt+1) = max(h(Xt+1),Qt+1(Xt+1)) (15)

so that if we substitute (15) into (14) we obtain

Qt(Xt) = EQt
[

Bt

Bt+1
max (h(Xt+1),Qt+1(Xt+1))

]
. (16)

- this is Q-value iteration.

If Xt is high dimensional, then both value iteration and Q-value iteration are
impractical

- this is the so-called curse of dimensionality.

But we can perform an approximate and efficient version of Q-value iteration
using cross-path regressions.

35 (Section 3)

Cross-Path Regressions
First step is to choose a set of basis functions, φ1(X), . . . , φm(X).

These basis functions define a linear architecture that will be used to approximate
the Q-value functions.

In particular, will approximate Qt(Xt) with

Q̃t(Xt) := r (t)
1 φ1(Xt) + . . . + r (t)

m φm(Xt)

where rt := (r (t)
1 , . . . , r (t)

m) is a vector of time t parameters.

36 (Section 3)

Cross-Path Regression for Approximate Q-Value Iteration

generate N independent paths of Xt for t = 1, ...,T
set Q̃T(X i

T) = 0 for all i = 1 to N
for t = T − 1 Down to 1

Estimate rt = (r (t)
1 , . . . , r (t)

m)
set Q̃t(X i

t) =
∑

k r (t)
k φk(X i

t) for all i
end for
set Ṽ0(X0) = max

(
h(X0), Q̃0(X0)

)

37 (Section 3)

Cross-Path Regression for Approximate Q-Value Iteration

Two steps require further explanation:

1. Estimate rt by regressing αmax
(

h(Xt+1), Q̃(Xt+1)
)

on
(φ1(Xt), . . . , φm(Xt)) where α := Bt/Bt+1 is the discount factor for period
[t, t + 1].

Have N observations for this regression with N typically ≈ 10k to 50k.

2. Since all N paths have the same starting point, X0, can estimate Q̃0(X0) by
averaging and discounting Q̃1(·) evaluated at the N successor points of X0.

Obviously more details are required to fully specify the algorithm.

38 (Section 3)

Constructing a Lower Bound on the True Option Price

Quite common in practice to use an alternative estimate, V 0, of V0.

V 0 obtained by simulating the exercise strategy that is defined implicity by the
sequence of Q-value function approximations.

That is, define
τ̃ := min{t ∈ T : Q̃t ≤ ht}

and
V 0 := EQ0

[h
τ̃

B
τ̃

]
.

Question: Why is V 0 is an unbiased lower bound on V0?

Question: Can you guess why we prefer to do an approximate Q-value iteration
instead of an approximate value-iteration?

39 (Section 3)

Constructing a Lower Bound on the True Option Price

These algorithms perform extremely well on realistic high-dimensional problems.

There has also been considerable theoretical work explaining why this is so.

Quality of V 0 can be explained in part by noting that exercise errors are never
made as long as Qt(·) and Q̃t(·) lie on the same side of the optimal exercise
boundary.

This means that it is possible to have large errors in Q̃t(·) that do not impact the
quality of V 0!

40 (Section 3)

Computing Upper Bounds on Bermudan Option Prices

For an arbitrary super-martingale, πt , value of the Bermudan option satisfies

V0 = sup
τ∈T

EQ0
[

hτ
Bτ

]
= sup

τ∈T
EQ0
[

hτ
Bτ
− πτ + πτ

]
≤ sup

τ∈T
EQ0
[

hτ
Bτ
− πτ

]
+ sup
τ∈T

EQ0 [πτ]

≤ sup
τ∈T

EQ0
[

hτ
Bτ
− πτ

]
+ π0

≤ EQ0
[
max
t∈T

(
ht

Bt
− πt

)]
+ π0 (17)

where the second inequality follows from the optional sampling theorem.

Taking the infimum over πt on rhs of (17) implies

V0 ≤ U0 := inf
π

EQ0
[
max
t∈T

(
ht

Bt
− πt

)]
+ π0. (18)

41 (Section 3)

Computing Upper Bounds on Bermudan Option Prices

But it is known(!) that Vt/Bt is itself a super-martingale so

U0 ≤ EQ0
[
max
t∈T

(ht/Bt −Vt/Bt)
]

+ V0.

Since Vt ≥ ht for all t, can conclude that U0 ≤ V0.

Therefore, V0 = U0, and equality is attained when πt = Vt/Bt .

Therefore an upper bound on V0 can be constructed simply by evaluating rhs of
(17) for any super-martingale, πt .

And if super-martingale satisfies πt ≥ ht/Bt , then V0 bounded above by π0.

42 (Section 3)

Computing Upper Bounds on Bermudan Option Prices

If πt = Vt/Bt then upper bound on the rhs of (17) equals the true price, V0.

Suggests a tight upper bound can be obtained by using an accurate
approximation, Ṽt , to define πt .

One possibility is to define πt as a martingale:

π0 = Ṽ0 (19)

πt+1 = πt + Ṽt+1

Bt+1
− Ṽt

Bt
− Et

[
Ṽt+1

Bt+1
− Ṽt

Bt

]
. (20)

Let V 0 denote the upper bound from (17) corresponding to choice of
super-martingale in (19) and (20).

Then easy to see the upper bound explicitly given by

V 0 = Ṽ0 + EQ0

[
max
t∈T

(
ht

Bt
− Ṽt

Bt
+

t∑
j=1

EQj−1

[
Ṽj

Bj
− Ṽj−1

Bj−1

])]
. (21)

43 (Section 3)

	Capital Allocation in Risk Management
	An Application

	Quasi-Monte-Carlo
	Pricing Bermudan Options

