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Output Analysis and Run-Length Control

In these notes we describe how the Central Limit Theorem can be used to construct approximate (1− α)%
confidence intervals for the quantity, θ, we are trying to estimate. We also describe methods to estimate the
number of samples that are required to achieve a given confidence level and we end with a discussion of the
bootstrap method for performing output analysis.

1 Output Analysis

Recall the simulation framework that we use when we want to estimate θ := E[h(X)] where X ∈ Rn. We first
simulate X1, . . . ,Xn IID and then set

θ̂n =
h(X1) + . . .+ h(Xn)

n

The Strong Law of Large Numbers (SLLN) then implies

θ̂n → θ as n→∞ w.p. 1.

But at this point we don’t know how large n should be so that we can have confidence in θ̂n as an estimator of
θ. Put another way, for a fixed value of n, what can we say about the quality of θ̂n? We will now answer this
question and to simplify our notation we will take Yi := h(Xi).

1.1 Confidence Intervals

One way to answer this question is to use a confidence interval. Suppose then that we want to estimate θ and
we have a random vector Y = (Y1, . . . , Yn) whose distribution depends on θ. Then we seek L(Y) and U(Y)
such that

P (L(Y) ≤ θ ≤ U(Y)) = 1− α
where 0 ≤ α ≤ 1 is a pre-specified number. We then say that [L(Y), U(Y)] is a 100(1− α)% confidence
interval for θ. Note that [L(Y), U(Y)] is a random interval. However, once we replace Y with a sample vector,
y, then [L(y), U(y)] becomes a real interval. We now discuss the Chebyshev Inequality and the Central Limit
Theorem, both of which can be used to construct confidence intervals.

The Chebyshev Inequality

Since the Yi’s are assumed to be IID we know the variance of θ̂n is given by Var(θ̂n) = σ2

n where σ2 := Var(Y ).

Clearly a small value of Var(θ̂n) implies a more accurate estimate of θ and this is indeed confirmed by
Chebyshev’s Inequality which for any k > 0 states that

P
(
|θ̂n − θ| ≥ k

)
≤ Var(θ̂n)

k2
. (1)

We can see from (1) that a smaller value of Var(θ̂n) therefore improves our confidence in θ̂n. We could easily
use Chebyshev’s Inequality to construct (how?) confidence intervals for θ but it is generally very conservative.

Exercise 1 Why does Chebyshev’s Inequality generally lead to conservative confidence intervals?

Instead, we will use the Central Limit Theorem to obtain better estimates of P
(
|θ̂n − θ| ≥ k

)
and as a result,

narrower confidence intervals for θ.
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The Central Limit Theorem

The Central Limit Theorem is among the most important theorems in probability theory and we state it here for

convenience with the symbol “
d−→” denoting convergence in distribution.

Theorem 1 (Central Limit Theorem)
Suppose Y1, . . . , Yn are IID and E[Y 2

i ] <∞. Then

θ̂n − θ
σ/
√
n

d−→ N(0, 1) as n→∞

where θ̂n =
∑n
i=1 Yi/n , θ := E[Yi] and σ2 := Var(Yi). �

Note that we assume nothing about the distribution of the Yi’s other than that E[Y 2
i ] <∞. If n is sufficiently

large in our simulations, then we can use the CLT to construct confidence intervals for θ := E[Y ]. We now
describe how to do this.

1.2 An Approximate 100(1− α)% Confidence Interval for θ

Let z1−α/2 be the the (1− α/2) percentile point of the N(0, 1) distribution so that

P(−z1−α/2 ≤ Z ≤ z1−α/2) = 1− α

when Z ∼ N(0, 1). Suppose now that we have simulated IID samples, Yi, for i = 1, . . . , n, and that we want to
construct a 100(1− α)% CI for θ = E[Y ]. That is, we want L(Y) and U(Y) such that

P (L(Y) ≤ θ ≤ U(Y)) = 1− α.

The CLT implies
√
n
(
θ̂n − θ

)
/σ is approximately N(0, 1) for large n so we have

P

(
−z1−α/2 ≤

√
n(θ̂n − θ)

σ
≤ z1−α/2

)
≈ 1− α

⇒ P

(
−z1−α/2

σ√
n
≤ θ̂n − θ ≤ z1−α/2

σ√
n

)
≈ 1− α

⇒ P

(
θ̂n − z1−α/2

σ√
n
≤ θ ≤ θ̂n + z1−α/2

σ√
n

)
≈ 1− α.

Our approximate 100(1− α)% CI for θ is therefore given by

[L(Y), U(Y)] =

[
θ̂n − z1−α/2

σ√
n
, θ̂n + z1−α/2

σ√
n

]
. (2)

Recall that θ̂n = (Y1 + . . .+ Yn)/n, so L and U are indeed functions of Y. There is still a problem, however, as
we do not usually know σ2. We resolve this issue by estimating σ2 with

σ̂2
n =

∑n
i=1(Yi − θ̂n)2

n− 1
.

It is easy to show that σ̂2
n is an unbiased estimator of σ2 and that σ̂2

n → σ2 w.p. 1 as n→∞. So now we
replace σ with σ̂n in (2) to obtain

[L(Y), U(Y)] =

[
θ̂n − z1−α/2

σ̂n√
n
, θ̂n + z1−α/2

σ̂n√
n

]
(3)

as our approximate 100(1− α)% CI for θ when n is large.
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Remark 1 Note that when we obtain sample values of y = (y1, . . . , yn), then [L(y), U(y)] becomes a real
interval. Then we can no longer say (why not?) that

P (θ ∈ [L(y), U(y)]) = 1− α.

Instead, we say that we are 100(1− α)% confident that [L(y), U(y)] contains θ. Furthermore, the smaller the
value of U(y)− L(y), the more confidence we will have in our estimate of θ.

Example 1 (Pricing a European Call Option)
Suppose we want to estimate the price, C0, of a call option on a stock whose price process, St, is a
GBM(µ, σ). The relevant parameters are r = .05, T = 0.5 years, S0 = $100, σ = 0.2 and strike K = $110.
Then we know that

C0 = EQ0 [e−rT max(ST −K, 0)]

where we can assume that St ∼ GBM(r, σ) under the risk-neutral probability measure, Q. That is, we assume
ST = S0 exp

(
(r − σ2/2)T + σZ

)
where Z ∼ N(0, T ). Though we can of course compute C0 exactly, we can

also estimate C0 using Monte Carlo with (3) yielding an approximate 100(1− α)% CI for C0 with

Yi := e−rT max(S
(i)
T −K, 0) denoting the ith discounted sample payoff of the option. Based on n = 100k

samples, we obtain [15.16, 15.32] as our approximate 95% CI for C0.

Properties of the Confidence Interval

The width of the confidence interval is given by

U − L =
2σ̂nz1−α/2√

n

and so the half-width then is (U − L)/2. The width clearly depends on α, σ̂n and n. However, σ̂n → σ almost
surely as n→∞, and σ is a constant. Therefore, for a fixed α, we need to increase n if we are to decrease the
width of the confidence interval. Indeed, since U − L ∝ 1√

n
, we can see for example that we would need to

increase n by a factor of four in order to decrease the width of the confidence interval by only a factor of two.

2 Run-Length Control

Up to this point we have selected n in advance and then computed the approximate CI. The width of the CI is
then a measure of the error in our estimator. Now we will do the reverse by first choosing some error criterion
that we want our estimator to satisfy, and then choosing n so that this criterion is satisfied.

There are two types of error that we will consider:

1. Absolute error, which is given by Ea := |θ̂n − θ| and

2. Relative error, which is given by Er :=
∣∣∣ θ̂n−θθ ∣∣∣.

Now we know that θ̂n → θ w.p. 1 as n→∞ so that Ea and Er both → 0 as n→∞. (If θ = 0 then Er is not
defined.) However, in practice n 6=∞ and so the errors will be non-zero. We specify the following error
criterion:

Error Criterion: Given 0 ≤ α ≤ 1 and ε ≥ 0, we want P(E ≤ ε) = 1− α. E is the error type we have
specified, i.e., relative or absolute.

The goal then is to choose n so that the error criterion is approximately satisfied and this is easily done.
Suppose, for example, that we want to control absolute error, Ea. Then, as we saw earlier,

P

(
θ̂n − z1−α/2

σ√
n
≤ θ ≤ θ̂n + z1−α/2

σ√
n

)
≈ 1− α.
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This then implies P
(
|θ̂n − θ| ≤ z1−α/2 σ√

n

)
≈ 1− α, so in terms of Ea we have

P

(
Ea ≤ z1−α/2

σ√
n

)
≈ 1− α.

If we then want P (Ea ≤ ε) ≈ 1− α, it clearly suffices to choose n such that

n =
σ2z21−α/2

ε2
.

If we are working with relative error, then a similar argument implies that P (Er ≤ ε) ≈ 1− α if

n =
σ2z21−α/2

θ2ε2
.

There are still some problems, however:

1. When we are controlling Er, we need to know σ and θ in advance.

2. When we are controlling Ea, we need to know σ in advance.

Of course we do not usually know σ or θ in advance. In fact, θ is what we are trying to estimate! There are two
methods we can use to overcome this problem: the two-stage method and the sequential method, both of which
we will now describe.

2.1 The Two-Stage Procedure

Suppose we want to satisfy the condition P(Ea ≤ ε) = 1− α so that we are trying to control the absolute error.
Then we saw earlier that we would like to set

n =
σ2z21−α/2

ε2
.

Unfortunately, we don’t know σ2 but we can solve this problem by first doing a pilot simulation to estimate it.
The idea is to do a small number, p, of initial runs to estimate σ2. We then use our estimate, σ̂2, to compute an
estimate, n̂, of n. Finally, we repeat the simulation, but now we use n̂ runs. We have the following algorithm.

Two-Stage Monte Carlo Simulation for Estimating E[h(X)]

/∗Do pilot simulation first ∗/
for i = 1 to p

generate Xi

end for
set θ̂ =

∑
h(Xi)/p

set σ̂2 =
∑

(h(Xi)− θ̂)2/(p− 1)

set n =
σ̂2z21−α/2

ε2

/∗Now do main simulation ∗/
for i = 1 to n

generate Xi

end for
set θ̂n =

∑
h(Xi)/n

set σ̂2
n =

∑
(h(Xi)− θ̂n)2/(n− 1)

set 100(1− α) % CI =
[
θ̂n − z1−α/2 σ̂n√n , θ̂n + z1−α/2

σ̂n√
n

]
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For this method to work, it is important that θ̂ and σ̂2 be sufficiently good estimates of θ and σ2. Therefore, it
is important to make p sufficiently large. In practice, we usually take p ≥ 50. We can use an analogous
two-stage procedure if we want to control the relative error and have P(Er ≤ ε) = 1− α.

2.2 The Sequential Procedure

Suppose again that we wish to satisfy the condition P(Ea ≤ ε) = 1− α. Then we saw earlier that we would like
to set

n =
σ2z21−α/2

ε2
.

In contrast to the pilot procedure, we do not precompute n during the sequential procedure. Instead, we
continue to generate samples until

σ̂nz1−α/2√
n

≤ ε

where σ̂n is again the estimate of σ based upon the first n samples. It is important that n be sufficiently large
so that θ̂n and σ̂2

n, are sufficiently good estimates of θ and σ2, respectively. As a result, we typically insist that
n ≥ 50 before we stop. Approximate confidence intervals are then computed as usual.

Question: Have we allowed any biases to creep in here?

We have the following algorithm:

Sequential Monte Carlo Simulation for Estimating E[h(X)]

set check = 0, n = 1
while (check = 0)

generate Xn

set θ̂n =
∑
h(Xi)/n

set σ̂2
n =

∑
(h(Xi)− θ̂n)2/(n− 1)

if (n ≥ p ) and
(
σ̂nz1−α/2√

n
≤ ε
)

check = 1
else

n = n+ 1
end if

end while
set 100(1− α) % CI =

[
θ̂n − z1−α/2 σ̂n√n , θ̂n + z1−α/2

σ̂n√
n

]

In practice we do not need to store every value, h(Xi) for i = 1, . . . , n , in order to update θ̂n and σ̂n. Indeed,

we can update θ̂n and σ̂n efficiently by observing that

θ̂n = θ̂n−1 +
h(Xn)− θ̂n−1

n
and

σ̂2
n =

(
n− 2

n− 1

)
σ̂2
n−1 + n

(
θ̂n − θ̂n−1

)2
.

If we want to control the relative error and have P(Er ≤ ε) = 1− α, then we would simulate samples until

σ̂n(z1−α/2)

θ̂n
√
n

≤ ε.
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3 Output Analysis Using the Bootstrap

We can view1 our output analysis problem as one of estimating

MSE(F ) := EF
[
(g(Y1, . . . , Yn)− θ(F ))

2
]

(4)

where θ(F ) = EF [X], g(Y1, . . . , Yn) := Ȳ and F denotes the CDF of Y . In that case, we saw in Section 1 how
we could use the CLT to construct approximate confidence intervals for θ. While this is certainly the most
common context in which we encounter (4), other situations arise where the CLT cannot be easily used to obtain
a confidence interval for θ(F ). For example, if θ(F ) = Var(Y ) or θ(F ) = E [Y |Y ≥ α], then an alternative
method of constructing a confidence interval for θ will be required. The bootstrap method provides such an
alternative and in order to describe the method we will assume our problem is to estimate MSE(F ) as in (4).

To begin with, recall that the empirical distribution, Fe, is defined to be the CDF of the distribution that places
a weight of 1/n on each of the simulated values Y1, . . . , Yn. The empirical CDF therefore satisfies

Fe(y) =

∑n
i=1 1{Yi≤y}

n

and for large n it can be shown (and should be intuitively clear) that Fe should be2 a good approximation to F .
Therefore, as long as θ is sufficiently well-behaved, i.e. a “continuous” function of F , then for sufficiently large
n we should have

MSE(F ) ≈ MSE(Fe) = EFe
[
(g(Y1, . . . , Yn)− θ(Fe))2

]
. (5)

The quantity MSE(Fe) is known as the bootstrap approximation to MSE(F ) and is easy to estimate via
simulation as we shall see below. But first, however, we will consider an example where MSE(Fe) can be
computed exactly. Indeed the bootstrap is not required in this case but it is nonetheless instructive to see the
calculations written out explicitly.

Example 2 (Applying the Bootstrap to the Sample Mean)

Suppose we wish to estimate θ(F ) = EF [Y ] via the estimator θ̂ = g(Y1, . . . , Yn) := Ȳ . As noted above, the
bootstrap is not necessary in this case as we can apply the CLT directly as in Section 1 to obtain confidence

intervals for θ̂ or equivalently, we can estimate the mean-squared error E
[(
Ȳ − θ

)2]
= σ2/n with

σ̂2
n/n =

∑n
i=1(yi − ȳ)2/(n(n− 1)).

Letting ȳ denote the mean of the observed, i.e. simulated, data-points y1, . . . , yn, we obtain that the bootstrap
estimator is given by

MSE(Fe) = EFe

[(∑n
i=1 Yi
n

− ȳ
)2
]

= VarFe

(∑n
i=1 Yi
n

)
(6)

=
VarFe (Y )

n
(7)

=

∑n
i=1(yi − ȳ)2

n2

where (6) follows since EFe [Y ] = ȳ, and (7) follows since the Yi’s are IID Fe. We therefore see that the
bootstrap approximation to the MSE is almost identical to our usual estimator, σ̂2

n/n.

1We follow Sheldon M. Ross’s Simulation in our development of the bootstrap here.
2Indeed it can be shown that Fe(y) converges to F (y) uniformly in y w.p. 1 as n → ∞.
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In contrast to Example 2, we cannot usually compute MSE(Fe) explicitly, but as it’s an expectation we can
easily use Monte-Carlo to estimate it. In this case we need to simulate from Fe which is easy to do and so we
obtain the following bootstrap algorithm for estimating MSE(F ).

Bootstrap Simulation Algorithm for Estimating MSE(F )

for i = 1 to B

generate Y1, . . . , Yn IID from Fe

set θ̂bi = g(Y1, . . . , Yn)

set Zbi =
[
θ̂bi − θ(Fe)

]2
end for

set M̂SE(F ) =
∑B
b=1 Z

(b)/B

The Zbi ’s (or equivalently the θ̂bi ’s) are the bootstrap samples and a value of B = 100 is often sufficient to
obtain a sufficiently accurate estimate. In the next example we apply the bootstrap approach in a historical
simulation context where we have real data observations as opposed to simulated data. (The disadvantage with
historical simulation is that we typically have no control over n.)

Example 3 (Estimating the Minimum Variance Portfolio)
Suppose we wish to invest a fixed sum of money in two financial assets, X and Z say, that yield random returns
of Rx and Rz, respectively. We invest a fraction θ of our wealth in X, and the remaining 1− θ in Z. The goal
is to choose θ to minimize the total variance, Var(θRx + (1− θ)Rz), of our investment return. It is easy to see
that the minimizing θ is given by

θ =
σ2
z − σxz

σ2
x + σ2

z − 2σxz
(8)

where σ2
x = Var(Rx), σ2

z = Var(Rz) and σxz = Cov(Rx, Rz). In practice, we do not know these quantities and
therefore have to estimate them from historical data. We therefore obtain

θ̂ =
σ̂2
z − σ̂xz

σ̂2
x + σ̂2

z − 2σ̂xz
. (9)

as our estimator of the minimum variance portfolio with σ̂2
x, σ̂2

z and σ̂xz estimated from historical return data

Y1, . . . , Yn with Yi :=
(
R

(i)
x , R

(i)
z

)
the joint return in period i.

We would like to know how good an estimator θ̂ is. More specifically, what is the (mean-squared) error when we

use θ̂? We can answer this question using the bootstrap with θ(F ) := θ and g(Y1, . . . , Yn) = θ̂ the estimator
given by (9).

Exercise 2 Provide pseudo-code for estimating MSE(θ̂) := MSE(F ), in Example 3.

Exercise 3 Consider the problem of estimating θ(F ) = E [Y |Y ≥ β] for some fixed constant, β. Explain how
you would use the bootstrap to estimate MSE(F ) in this case given n Monte-Carlo samples Y1, . . . , Yn.

3.1 Constructing Bootstrap Confidence Intervals

The bootstrap method is also widely used to construct confidence intervals and here we will consider the
so-called basic bootstrap interval. Consider our bootstrap samples θ̂b1, . . . , θ̂

b
B and suppose we want a 1− α

confidence interval for θ = θ(F ). Let ql and qu be the α/2 lower- and upper-sample quantiles, respectively, of
the bootstrap samples. Then the fraction of bootstrap samples satisfying

ql ≤ θ̂b ≤ qu (10)
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is 1− α. But (10) is equivalent to

θ̂ − qu ≤ θ̂ − θ̂b ≤ θ̂ − ql (11)

where θ̂ = g(y1, . . . , yn) is our estimate of θ computed using the original data-set. This implies θ̂ − qu and

θ̂ − ql are the lower and upper quantiles for θ̂ − θ̂b. The basic bootstrap assumes they are also the quantiles for
θ − θ̂. This makes sense intuitively – and can be justified mathematically as n→∞ and if θ is a “continuous”
function of F . It therefore follows that

θ̂ − qu ≤ θ − θ̂ ≤ θ̂ − ql (12)

will occur in approximately in a fraction 1− α of samples. Adding θ̂ across (12) yields an approximate (1− α)%
CI for θ of

(2θ̂ − qu, 2θ̂ − ql).


