
IEOR E4703: Monte-Carlo Simulation
Output Analysis for Monte-Carlo

Martin Haugh
Department of Industrial Engineering and Operations Research

Columbia University
Email: martin.b.haugh@gmail.com

mailto:martin.b.haugh@gmail.com


Output Analysis
Recall our simulation framework for estimating θ := E[h(X)] where X ∈ Rn.

We first simulate X1, . . . ,Xn IID and then set

θ̂n = h(X1) + . . .+ h(Xn)
n .

The Strong Law of Large Numbers (SLLN) implies

θ̂n → θ as n →∞ w.p. 1.

But how large n should be so that we can have confidence in our estimator, θ̂n?

We can figure this out through the use of confidence intervals.
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Output Analysis
Suppose then that we wish to estimate θ and we have a random vector
Y = (Y1, . . . ,Yn) whose distribution depends on θ.

We seek L(Y) and U (Y) such that

P (L(Y) ≤ θ ≤ U (Y)) = 1− α

where 0 ≤ α ≤ 1 is a pre-specified number.

We then say that [L(Y),U (Y)] is a 100(1− α)% confidence interval for θ.

Note that [L(Y),U (Y)] is a random interval.

However, once we replace Y with a sample vector, y, then [L(y),U (y)] becomes
a real interval.

Question: How can we find L(Y) and U (Y)?
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The Chebyshev Inequality
Yi ’s are assumed IID so Var(θ̂n) = σ2/n where σ2 := Var(Y )

- clearly a small value of Var(θ̂n) implies a more accurate estimate of θ.

Indeed Chebyshev’s Inequality states that for any k > 0 we have

P
(
|θ̂n − θ| ≥ k

)
≤ Var(θ̂n)

k2 . (1)

Could easily use Chebyshev’s Inequality to construct (how?) confidence intervals
for θ but it is generally very conservative.

Question: Why does Chebyshev’s Inequality generally lead to conservative
confidence intervals?

Instead, will use the Central Limit Theorem (CLT) to obtain better estimates of
P
(
|θ̂n − θ| ≥ k

)
- and therefore narrower confidence intervals for θ.
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The Central Limit Theorem
Theorem. (Central Limit Theorem)
Suppose Y1, . . . ,Yn are IID and E[Y 2

i ] <∞. Then

θ̂n − θ
σ/
√

n
d−→ N(0, 1) as n →∞

where θ̂n =
∑n

i=1 Yi/n , θ := E[Yi ] and σ2 := Var(Yi). 2
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Using the CLT to Construct Confidence Intervals
Let z1−α/2 be the the (1− α/2) percentile point of the N(0, 1) distribution so
that

P(−z1−α/2 ≤ Z ≤ z1−α/2) = 1− α

when Z ∼ N(0, 1).

Suppose that we have simulated IID samples, Yi , for i = 1, . . . ,n.

Now want to construct a 100(1− α)% CI for θ = E[Y ]. That is, we want L(Y)
and U (Y) such that

P (L(Y) ≤ θ ≤ U (Y)) = 1− α.

The CLT implies
√

n
(
θ̂n − θ

)
/σ is approximately N(0, 1) for large n.

6 (Section 1)



Using the CLT to Construct Confidence Intervals
Therefore have

P
(
−z1−α/2 ≤

√
n(θ̂n − θ)

σ
≤ z1−α/2

)
≈ 1− α

⇒ P
(
−z1−α/2

σ√
n
≤ θ̂n − θ ≤ z1−α/2

σ√
n

)
≈ 1− α

⇒ P
(
θ̂n − z1−α/2

σ√
n
≤ θ ≤ θ̂n + z1−α/2

σ√
n

)
≈ 1− α.

Our approximate 100(1− α)% CI for θ is therefore given by

[L(Y), U (Y)] =
[
θ̂n − z1−α/2

σ√
n
, θ̂n + z1−α/2

σ√
n

]
. (2)

Recall that θ̂n = (Y1 + . . .+ Yn)/n, so L and U are indeed functions of Y.
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Using the CLT to Construct Confidence Intervals
There is still a problem, however, as we do not usually know σ2. We resolve this
issue by estimating σ2 with

σ̂2
n =

∑n
i=1(Yi − θ̂n)2

n − 1 .

Easy to show that σ̂2
n is an unbiased estimator of σ2 and that σ̂2

n → σ2 w.p. 1 as
n →∞.

So now replace σ with σ̂n in (2) to obtain

[L(Y), U (Y)] =
[
θ̂n − z1−α/2

σ̂n√
n
, θ̂n + z1−α/2

σ̂n√
n

]
(3)

as our approximate 100(1− α)% CI for θ when n is “large”.
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Using the CLT to Construct Confidence Intervals
When we obtain sample values y = (y1, . . . , yn), then [L(y), U (y)] becomes a
real interval.

Then can no longer say (why not?) that P (θ ∈ [L(y), U (y)]) = 1− α.

Instead, say that we are 100(1− α)% confident that [L(y), U (y)] contains θ.

The width of the confidence interval is given by

U − L =
2σ̂nz1−α/2√

n

and so the half-width is (U − L)/2.

For a fixed α, must increase n if we are to decrease the width of the CI.

U − L ∝ 1/
√

n so (for example) would need to increase n by a factor of four in
order to decrease the width of CI by only a factor of two.

9 (Section 1)



Run-Length Control
Up to this point we have selected n and then computed the approximate CI. The
width of the CI is then a measure of the error in our estimator.

Now will do the reverse by first choosing some error criterion that we want our
estimator to satisfy, and then choosing n so that this criterion is satisfied.

There are two types of error that we will consider:
1. Absolute error which is given by Ea := |θ̂n − θ|

2. Relative error which is given by Er :=
∣∣∣ θ̂n−θ

θ

∣∣∣.
We know that θ̂n → θ w.p. 1 as n →∞ so that Ea and Er both → 0 w.p.1 as
n →∞.

However, in practice n 6=∞ and so the errors will be non-zero. We specify the
following error criterion:

Error Criterion: Given 0 ≤ α ≤ 1 and ε ≥ 0, we want P(E ≤ ε) = 1− α where
E = Ea or E = Er .
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Run-Length Control
Goal then is to choose n so that error criterion is (approximately satisfied) and
this is easily done.

Suppose (for example) we want to control absolute error, Ea. Then

P
(
θ̂n − z1−α/2

σ√
n
≤ θ ≤ θ̂n + z1−α/2

σ√
n

)
≈ 1− α.

Therefore P
(
|θ̂n − θ| ≤ z1−α/2

σ√
n

)
≈ 1− α, i.e.

P
(

Ea ≤ z1−α/2
σ√
n

)
≈ 1− α.

If we then want P (Ea ≤ ε) ≈ 1− α, then clearly suffices to choose n such that

n = σ2z2
1−α/2/ε

2.

Similar argument implies that P (Er ≤ ε) ≈ 1− α if

n = σ2z2
1−α/2/θ

2ε2.
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Run-Length Control
There are still some problems, however:

1. When we are controlling Er , we need to know σ and θ in advance.

2. When we are controlling Ea, we need to know σ in advance.

Of course we do not usually know σ or θ in advance. In fact, θ is what we are
trying to estimate!

There are two methods we can use to overcome this problem: the two-stage
method and the sequential method.
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The Bootstrap Approach to Output Analysis
Can view output analysis problem as one of estimating

MSE(F) := EF

[
(g(Y1, . . . ,Yn)− θ(F))2

]
(4)

where θ(F) = EF [X ], g(Y1, . . . ,Yn) := Ȳ and F denotes the CDF of Y .

Saw earlier how we could use the CLT to construct approximate CI’s for θ.

But there are situations where the CLT cannot be easily used to obtain a CI.
e.g. If θ(F) = Var(Y ) or θ(F) = E [Y |Y ≥ α].

Need an alternative method of constructing a CI for θ in such situations.

The bootstrap method provides such an alternative.

To begin, recall the empirical distribution, Fe, is the CDF that places a weight of
1/n on each of the simulated values Y1, . . . ,Yn.
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The Bootstrap Approach to Output Analysis
The empirical CDF therefore satisfies

Fe(y) =
∑n

i=1 1{Yi≤y}

n .

For large n can be shown (and should be intuitively clear) that Fe should be a
good approximation to F .

Therefore, if θ sufficiently well-behaved function of F , then for sufficiently large
n should have

MSE(F) ≈ MSE(Fe) = EFe

[
(g(Y1, . . . ,Yn)− θ(Fe))2

]
. (5)

MSE(Fe) is known as the bootstrap approximation to MSE(F)
- easy to estimate via simulation.

But first will consider an example where MSE(Fe) can be computed exactly.
Indeed the bootstrap is not required in this case but nonetheless instructive to
see the explicit calculations.
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E.G. Applying the Bootstrap to the Sample Mean
We wish to estimate θ(F) = EF [Y ] via the estimator θ̂ = g(Y1, . . . ,Yn) := Ȳ .

As noted above, the bootstrap is not necessary in this case as we can apply the
CLT directly to obtain CI’s for θ̂.
Equivalently, we can estimate the MSE, E

[(
Ȳ − θ

)2] = σ2/n, with
σ̂2

n/n =
∑n

i=1(yi − ȳ)2/(n(n − 1)).

Let ȳ denote mean of simulated data-points y1, . . . , yn. Bootstrap estimator then
given by

MSE(Fe) = EFe

[(∑n
i=1 Yi

n − ȳ
)2]

= VarFe

(∑n
i=1 Yi

n

)
(6)

= VarFe (Y )
n (7)

=
∑n

i=1(yi − ȳ)2

n2 .
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The Bootstrap Algorithm
In general, however, cannot usually compute MSE(Fe) explicitly. But it’s an
expectation so can use Monte-Carlo!

Bootstrap Simulation Algorithm for Estimating MSE(F)

for i = 1 to B
generate Y1, . . . ,Yn IID from Fe

set θ̂b
i = g(Y1, . . . ,Yn)

set Z b
i =

[
θ̂b

i − θ(Fe)
]2

end for
set M̂SE(F) =

∑B
b=1 Z (b)/B

The Z b
i ’s (or equivalently the θ̂b

i ’s) are the bootstrap samples and a value of
B = 100 is often sufficient to obtain a sufficiently accurate estimate.

Next example applies bootstrap in a historical simulation context where we have
real data observations as opposed to simulated data

- have no control over n in historical simulations – a disadvantage!
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e.g. Estimating the Minimum Variance Portfolio
Wish to invest a fixed sum of money in two financial assets, X and Z say, that
yield random returns of Rx and Rz , respectively.

Let θ and 1− θ be fractions of our wealth invested in X and Z .

Goal is to choose θ to minimize the total variance

Var(θRx + (1− θ)Rz).

Easy to see the minimizing θ satisfies

θ = σ2
z − σxz

σ2
x + σ2

z − 2σxz
. (8)

In practice have to estimate σ2
z , σ2

x and σxz from historical return data
Y1, . . . ,Yn with Yi :=

(
R(i)

x ,R(i)
z

)
the joint return in period i.

Therefore obtain
θ̂ = σ̂2

z − σ̂xz

σ̂2
x + σ̂2

z − 2σ̂xz
. (9)

as our estimator.
17 (Section 3)



e.g. Estimating the Minimum Variance Portfolio
Would like to know how good an estimator θ̂ is. More specifically, what is
MSE

(
θ̂
)
?

Can answer this question using the bootstrap with θ(F) := θ and
g(Y1, . . . ,Yn) = θ̂.

Question: Provide pseudo-code for estimating MSE(θ̂) := MSE(F).
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Estimating Confidence Intervals Via the Bootstrap
Bootstrap also widely used to construct CI’s. Here we consider the so-called basic
bootstrap interval.

Consider the bootstrap samples θ̂b
1, . . . , θ̂

b
B and suppose we want a 1− α CI for

θ = θ(F).

Let ql and qu be the α/2 lower- and upper-sample quantiles, respectively, of
the bootstrap samples.

Fraction of bootstrap samples satisfying

ql ≤ θ̂b ≤ qu (10)

is 1− α. But (10) is equivalent to

θ̂ − qu ≤ θ̂ − θ̂b ≤ θ̂ − ql (11)

where θ̂ = g(y1, . . . , yn) is our estimate of θ computed using original data-set.
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Estimating Confidence Intervals Via the Bootstrap
This implies θ̂ − qu and θ̂ − ql are the lower and upper quantiles for θ̂ − θ̂b.

The basic bootstrap assumes they are also the quantiles for θ − θ̂
- makes sense intuitively – and can be justified mathematically as n →∞ and

if θ is a well-behaved function of F .

Therefore follows that
θ̂ − qu ≤ θ − θ̂ ≤ θ̂ − ql (12)

will occur in approximately in a fraction 1− α of samples.

Adding θ̂ across (12) yields an approximate (1− α)% CI for θ of

(2θ̂ − qu, 2θ̂ − ql).
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