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Simulating Stochastic Differential Equations

In these lecture notes we discuss the simulation of stochastic differential equations (SDEs), focusing mainly on
the Euler scheme and some simple improvements to it. We discuss the concepts of weak and strong convergence
and note that in financial applications it is typically only weak convergence that is required. We also briefly
discuss variance reduction for SDE’s, the simulation of SDE’s for jump-diffusion processes, and the optimal
allocation of a fixed computational budget to minimize the mean-squared error of discretized SDE estimators.
Most of the development in these notes follows Chapter 6 of Glasserman (2004) and this reference can be
consulted for further details. Finally, in Appendix 6 we present a brief overview of multilevel Monte-Carlo, a new
and recent technique that also focuses on the optimal allocation of computational resources.

1 The Euler Scheme for Diffusions

Suppose we have an SDE of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (1)

and that we wish to simulate values of XT without knowing1 its distribution. In this event we can simulate a
discretized version of the SDE. In particular, we simulate a discretized process, {X̂0, X̂h, X̂2h, . . . , X̂mh},
where m is the number of time steps, h is a constant and m = bT/hc. The smaller the value of h, the closer our
discretized path will be to the continuous-time path of (1) that we wish to simulate. Of course this will be at
the expense of greater computational effort. While there are a number of discretization schemes available, the
simplest and most common scheme is the Euler scheme. This scheme is intuitive, easy to implement and satisfies

X̂kh = X̂(k−1)h + µ
(

(k − 1)h, X̂(k−1)h

)
h+ σ

(
(k − 1)h, X̂(k−1)h

)√
hZk (2)

where the Zk’s are IID N(0, 1). If we want to estimate θ := E[f(XT )] using the Euler scheme, then for a fixed
number of paths, n, and discretization interval, h, we have the following algorithm.

Using the Euler Scheme to Estimate θ = E[f(XT )] When Xt Follows a 1-Dimensional SDE

for j = 1 to n

t = 0; X̂ = X0

for k = 1 to bT/hc =: m

generate Z ∼ N(0, 1)

set X̂ = X̂ + µ(t, X̂)h+ σ(t, X̂)
√
h Z

set t = t+ h
end for
set fj = f(X̂)

end for
set θ̂n = (f1 + . . .+ fn))/n

set σ̂2
n =

∑n
j=1(fj − θ̂n)2/(n− 1)

set approx. 100(1− α) % CI = θ̂n ± z1−α/2 σ̂n√n
1This could be due to the fact that we cannot solve (1) to obtain an explicit solution for XT , or because we simply cannot

determine the distribution of XT even though we do know how to solve (1).
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Remark 1 Observe that even though we only care about XT , we still need to generate intermediate values,
Xih, if we are to minimize the discretization error. Because of this discretization error, θ̂n is no longer an
unbiased estimator of θ.

Remark 2 If we wished to estimate θ = E[f(Xt1 , . . . , Xtp)] then in general we would need to keep track of
(Xt1 , . . . , Xtp) inside the inner for-loop of the algorithm.

Exercise 1 Can you think of a derivative where the payoff depends on (Xt1 , . . . , Xtp), but where it would not
be necessary to keep track of (Xt1 , . . . , Xtp) on each sample path?

1.1 The Euler Scheme for Multidimensional Diffusions

In the multidimensional case, Xt ∈ Rd, Wt ∈ Rp and µ(t,Xt) ∈ Rd in (1) are now vectors, and
σ(t,Xt) ∈ Rd×p is a matrix. This situation arises when we have a series of SDE’s in our model. This could
occur in a number of financial engineering contexts. Some examples include:

(1) Modeling the evolution of multiple stocks. This might be necessary if we are trying to price
derivatives whose values depend on multiple stocks or state variables, or if we are studying the properties
of some portfolio strategy with multiple assets.

(2) Modeling the evolution of a single stock where we assume that the volatility of the stock is itself
stochastic. Such a model is termed a stochastic volatility model.

(3) Modeling the evolution of interest rates. For example, if we assume that the short rate, rt, is
driven by a number of factors which themselves are stochastic and satisfy SDE’s, then simulating rt
amounts to simulating the SDE’s that drive the factors. Examples include the multi-factor Gaussian
and CIR models. Such models also occur in HJM and LIBOR market models.

In all of these cases, whether or not we will have to simulate the SDE’s will depend on the model in question
and on the particular quantity that we wish to compute. If we do need to discretize the SDE’s and simulate
their discretized versions, then it is very straightforward. If there are p correlated Brownian motions, Wt, driving
the SDE’s, then at each time step, ti, we must generate p IID N(0, 1) random variables. We would then use the
Cholesky Decomposition to generate Xti+1

. This is exactly analogous to our method of generating correlated
geometric Brownian motions. In the context of simulating multidimensional SDE’s, however, it is more common
to use independent Brownian motions as any correlations between components of the vector, Xt, can be
induced through the matrix, σ(t,Xt).

1.2 Weak and Strong Convergence of Discretization Schemes

There are two approaches for measuring the error in a discretization scheme {X̂0, X̂h, X̂2h, . . . , X̂mh} with
m = bT/hc. A strong error criterion might take the form

E
[
||X̂mh −XT ||q

]
(3)

E

[
sup

0≤t≤T
||X̂bt/hch −Xt||

]
for some vector norm || · || and with q = 1 or q = 2 in (3). In contrast, a weak error criterion takes the form∣∣∣E[f(X̂mh)]− E[f(XT )]

∣∣∣ (4)

where f ranges over “smooth” functions from Rd to R. Note that with a weak error criterion, all that matters is
the distribution of X̂mh and how it compares to the distribution of XT and so it’s possible to have a very small
weak error even if X̂mh and XT live on different probability spaces. In finance applications we generally care
about derivatives prices which are (risk-neutral) expectations and so the weak criterion of (4) is more
appropriate. Given an error criterion, we can assess the performance of the Euler scheme (and others) via its
order of convergence. We have the following definitions.
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Definition 1 We say the discretization X̂ has a strong order of convergence of β > 0 if

E
[
||X̂mh −XT ||

]
≤ chβ (5)

for some constant c and all sufficiently small h.

Definition 2 We say the discretization X̂ has a weak order of convergence of β > 0 if∣∣∣E[f(X̂mh)]− E[f(XT )]
∣∣∣ ≤ chβ (6)

for some constant c (possibly depending on f), all sufficiently small h, and all f ∈ C2β+2
P where C2β+2

P consists
of functions whose derivatives of all orders up to 2β + 2 are polynomially2 bounded.

We note that a larger value of β in (5) and (6) is better in that it implies a faster convergence of the
discretization error to 0. In practice, it is often the case that a given discretization scheme will have a smaller
strong order of convergence than its weak order of convergence. The Euler scheme, for example, has a strong
order of β = 1/2 whereas3 its weak order is β = 1.

It is also worth noting that the conditions on f in Definition 2 are often not met in practice. For example, if f
represents the payoff of a simple European call option, then f will not be differentiable and certainly we will not
have f ∈ C2β+2

P . Similarly, technical conditions on µ(t,Xt) and σ are also sometimes violated in practice. This
means, for example, that if we are using an Euler scheme for such an SDE then there is no theoretical guarantee
that it will have a weak order of convergence of β = 1. As a result, experimentation is often required to
understand which schemes perform better, i.e. have a superior order (of weak) convergence for a given payoff f
and / or SDE Xt.

2 Other Discretization Schemes

There are several other discretization schemes that (typically) improve on the Euler scheme. We briefly discuss
them here.

2.1 The Milstein Scheme

Consider a scalar SDE of the form dXt = µ(Xt)dt+ σ(Xt)dWt with corresponding Euler scheme

X̂kh = X̂(k−1)h + µ(X̂(k−1)h)h+ σ(X̂(k−1)h)
√
hZk.

Without going into the specific details, we can apply Itô’s Lemma to σ(Xt) to construct a superior
approximation for the diffusion term over the interval [(k − 1)h, kh]. This leads to “the” Milstein scheme

X̂kh = X̂(k−1)h + µ(X̂(k−1)h)h+ σ(X̂(k−1)h)
√
hZk +

1

2
σ′(X̂(k−1)h)σ(X̂(k−1)h)h(Z2

k − 1) (7)

where σ′(x) denotes the derivative of σ w.r.t. to x. The approximation in (7) means that both the drift and
diffusion terms have both been expanded to O(h). In contrast, the Euler scheme expands the drift to O(h) but
only the diffusion term to O(

√
h). Under various smoothness conditions (which again often do not hold in

practice) it can be shown that the Milstein scheme has a weak and strong order of convergence of β = 1. While
the Milstein scheme is easy to implement for scalar diffusions it is much more challenging in the multidimensional
case because the O(h) approximation to the diffusion term results in “off-diagonal” terms of the form∫ t+h

t

[W (k)
u −W (k)

t ] dW (j)
u

for k 6= j and simulating such terms is difficult. As a result, the Milstein scheme is typically only ever applied in
the scalar case.

2A function g : Rd 7→ R is polynomially bounded if there exists constants k and q such that g(x) ≤ k(1 + ||x||q) for all
x ∈ Rd.

3These orders of convergence for the Euler scheme require additional smoothness conditions on the coefficients µ(t,Xt) and
σ. See Section 6.1.2 of Glasserman for further details.
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2.2 Second Order Schemes

It is possible to refine the Euler scheme beyond the Milstein refinement of (7) to obtain schemes of weak order
2. Again, these schemes are generally only applicable in the scalar case but under certain “commutativity”
conditions they can be implemented in the multi-dimensional case. See Section 6.2 of Glasserman for further
details.

2.3 The Euler Scheme With Richardson Extrapolation

An alternative to second order schemes is the Euler scheme with Richardson extrapolation. This is easy to
implement and often has superior performance to second order schemes, especially in high dimensions. As a
result, the Euler scheme with Richardson extrapolation is often considered to be a benchmark scheme for
reducing discretization error. In order to simplify notation, we will write X̂h

T for X̂bT/hch with the superscript h

in X̂h
T used to explicitly denote the length of the time step in the scheme.

We now recall that the Euler (often) scheme has weak order 1 so that∣∣∣E[f(X̂h
T )]− E[f(XT )]

∣∣∣ ≤ Ch (8)

for some constant C, all sufficiently small h and suitably smooth f . Talay and various colleagues have shown
that (8) can sometimes be strengthened to

E[f(X̂h
T )] = E[f(XT )] + ch+ o(h) (9)

where c depends on f . In this case we can apply (9) with discretization step 2h to obtain

E[f(X̂2h
T )] = E[f(XT )] + 2ch+ o(h). (10)

We can then combine the two estimators in (9) and (10) to eliminate the leading O(h) error term. Specifically,
we have

2E[f(X̂h
T )]− E[f(X̂2h

T )] = E[f(XT )] + o(h). (11)

This suggests an obvious improvement to the basic Euler scheme (and alternative to second order schemes):

1. Simulate with time step h to estimate E[f(X̂h
T )]

2. Simulate with time step 2h to estimate E[f(X̂2h
T )]

3. Double the first estimate and subtract the second to obtain an estimate of E[f(XT )]

In a similar spirit to the use of common random numbers4, it makes sense to use consistent Brownian
increments in simulating the paths of X̂h and X̂2h as doing so will typically result in an often substantial
reduction in variance. More specifically, each Brownian increment driving X̂h is the sum of two of the
increments driving X̂2h. This means that if we use

√
hZ1,

√
hZ2, . . . as the Brownian increments for X̂h then

we can use
√
h(Z1 + Z2),

√
h(Z3 + Z4), . . . as the Brownian increments for X̂2h. Using such a construction

amounts to rewriting (11) as

E[2f(X̂h
T )− f(X̂2h

T )] = E[f(XT )] + o(h). (12)

and then computing 2f(X̂h
T )− f(X̂2h

T ) along each sample path. The variance of this estimator is

Var
(

2f(X̂h
T )− f(X̂2h

T )
)

= 4Var
(
f(X̂h

T )
)

+ Var
(
f(X̂2h

T )
)
− 4Cov

(
f(X̂h

T ), f(X̂2h
T

)
.

A variance reduction will therefore be obtained if the covariance term is positive. This is not always the case but
can be guaranteed under certain monotonicity conditions.

4We will discuss them when we study Monte-Carlo methods for estimating the Greeks.
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3 Some Examples From Finance

Example 1 (Option Pricing Under GBM)
We consider the pricing of a European call option in the Black-Scholes framework by simulating the SDE

dSt = rStdt+ σStdWt

with parameters S0 = K = 100, T = .5 years, r = .01 and σ = .4. Of course we can price such an option using
the Black-Scholes formula (and obtain a value of 11.469) but it is of interest to see how well our discretization
schemes perform here. In Figure 1 we have plotted the mean absolute error of the Euler scheme with and
without Richardson extrapolation as a function of the number of time steps. The results were obtained by
simulating 16 million sample paths. We see that the absolute pricing error generally decreases as h decreases
(which corresponds to the number of time steps increasing). But occasionally we see the error increase and this
can largely be explained by the (unreported) statistical error. Even with 16 million samples, the approximate
95% confidence intervals had a width of approximately 2 cents (for both schemes and all step sizes) so this
statistical error can sometimes dominate the discretization error and cause the mean error to increase
occasionally. But the general trend in the error is clear and as we expect. Moreover, we also see the superior
performance of the Euler scheme with Richardson extrapolation kick in at about 500 time steps but due to the
statistical noise this superiority may not be so clear on a different set of simulated paths.
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Figure 1: Convergence of the Euler scheme with and without Richardson extrapolation for pricing a European
call option under geometric Brownian motion. Both axes are on a log-scale.

Example 2 (Option Pricing Under Heston’s Stochastic Volatility Model)
Consider Heston’s stochastic volatility model where the evolution of the stock price, St, under the risk-neutral
probability measure satisfies

dSt = rStdt+
√
VtStdW

(1)
t (13)

dVt = κ (θ − Vt) dt+ σ
√
VtdW

(2)
t . (14)

with dW
(1)
t × dW (2)

t = ρ dt. We again wish to price a European call option on the stock and use the same
parameters as those in Example 6.2.2 of Glasserman. We therefore take T = 1, S0 = K = 100 and r = 0.5 for
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the call option parameters. Our process parameters are V0 = 0.04, κ = 1.2, θ = 0.04, ρ = −0.5 and σ = 0.3.
While an explicit formula for the call option price is not available, we can price it extremely accurately using
Fourier inversion methods and we find it’s price to be 10.3009. We can use this price to compare the absolute
error of various discretization schemes as a function of the number of time steps. As in Example 1, we consider
the Euler scheme with and without Richardson extrapolation and also consider a second order scheme whose
details we do not provide here. Results are plotted in Figure 2 with each point based on 8 million sample paths.

100 101 102 103

Number of Steps

10-4

10-3

10-2

10-1

100

A
bs

ol
ut

e 
E

rr
or

Euler
Euler-Richardson
Second Order

Figure 2: Convergence of various schemes for pricing a European call option under Heston’s stochastic
volatility model. Both axes are on a log-scale.

We again see the general decrease in the mean absolute error of all three schemes as the number of time steps
increases. As discussed at the end of Section 1.2, the various conditions (on both the option payoff and the
SDE) that are required to guarantee a given order of convergence of the schemes are often not satisfied in
financial applications and that is also the case here. Moreover, even if the conditions were satisfied it may be
the case that a very small value of the time-step h would be necessary before the stated order of convergence
actually became apparent. These observations and in particular the (unreported) statistical error help explain
the somewhat erratic convergence of the schemes and the apparently superior performance of the Euler scheme
when 500 time-steps are employed. This apparent ”superior” performance can easily switch to an “inferior”
performance with an alternative set of simulated sample paths.

It is also worth noting that the Euler scheme (which is often the default scheme for practitioners) can perform
extremely poorly in practice with Heston’s stochastic volatility model. For example, Andersen reports the
following results for pricing an at-the-money 10-year call option when r = q = 0. He takes κ = .5, V0 = θ = .04,
σ = .1, S0 = K = 100 and ρ = −0.9. Using one million sample paths and a “sticky zero” or “reflection”
assumption5, he obtains the estimates displayed in Table 2 for the option price as a function of m, the number
of discretization points. Note that the true price (calculated via Fourier inversion) is 23.69 and so it’s clear that
the Euler scheme with the reflection assumption converges very slowly and that using as many as 1,000 time
steps results in an estimated option price that is off by more than 40%. One therefore needs to be very careful
when applying an Euler scheme to this SDE. Note that these convergence problems would be easily identified if
we followed the procedure outlined immediately following (21) in Section 4.4. But for this particular process,
one should use a better scheme such as that proposed by Andersen (2007) or perhaps the second-order or Euler
with Richardson extrapolation schemes. In general then, experimentation with step size, sample size and

5The sticky zero assumption simply means that anytime the variance process, Vt, goes negative in the Monte-Carlo it is
replaced by 0. The reflection assumption replaces Vt with |Vt|. In the limit as m→∞, the variance will stay non-negative with
probability 1 so both assumptions are unnecessary in the limit.
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Table 1: Call Option Price Estimates Using Euler Scheme in Heston’s Stochastic Volatility Model

Time Steps Sticky Zero Reflection
100 28.3 45.1
200 27.1 41.3
500 25.6 37.1
1000 24.8 34.6

discretization scheme is often required for a given application.

Example 3 (The CIR Model with Time-Dependent Parameters)
Consider a generalized CIR model for the short-rate, rt. We assume its risk-neutral dynamics satisfy

drt = α[µ(t)− rt] dt + σ
√
rt dWt (15)

where µ(t) is a deterministic function of time. This CIR model is used when we want to fit a CIR-type model to
the initial term-structure. Suppose now that we wish to price a derivative security maturing at time T with
payoff CT (rT ). Then its time 0 price, C0, is given by

C0 = E0

[
e−

∫ T
0
rs ds CT (rT )

]
. (16)

The distribution of rt is not available in an easy-to-use closed form so perhaps the easiest way to estimate C0 is
by simulating the dynamics of rt. Towards this end, we could either use (15) and simulate rt directly or
alternatively, we could simulate Xt := f(rt) where f(·) is an invertible transformation. Note that because of the
discount factor in (16), it is also necessary to simulate the process, Yt, given by

Yt = exp

(
−
∫ t

0

rs ds

)
.

Exercise 2 Describe in detail how you would you would estimate C0 in Example 3. Note that there are
alternative ways to do this. What way do you prefer?

Exercise 3 Have you ever implemented a discrete-time delta hedging strategy in the Black-Schole framework.
If so, what discretization scheme did you use?

4 Improvements and Extensions

4.1 Change of Variables

Once we have fixed a discretization scheme, we still have considerable flexibility6 in choosing what process we
apply it to. More specifically, if we wish to simulate a discretized version of Xt ∈ Rd then we can apply our
scheme to Xt or to Yt := g(Xt) where g : Rd 7→ Rd is a smooth invertible function. If we choose to apply it to

Yt then X̂kh := g−1(Ŷkh) is the corresponding discretized scheme for Xt.

It is often the case that a particular transformation seems intuitively appealing. In financial applications, for
example, the SDE often describes security price dynamics and so it is desirable for the discretized scheme to
maintain the property of non-negative prices. This can be accomplished by applying the scheme to
Yt := log(Xt) with g−1(Ŷkh) = exp(Ŷkh) which is always non-negative.

6Note that this flexibility is what we had in mind in Exercise 2 above when we mentioned “alternative ways” to estimate
C0.
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Exercise 4 Characterize the discretization error that results from applying an Euler scheme to log(St) when St
follows a geometric Brownian motion.

Exercise 5 Suppose we wish to simulate the known dynamics of a zero-coupon bond. How would you ensure
that the simulated process satisfies 0 < ZTt < 1 ?

An important advantage of this flexibility in that we can seek a g with a view to minimizing discretization error.
A common strategy is to choose a g (if possible) so that the dynamics of Yt := g(Xt) have a constant volatility
coefficient. (This is what we do when we take Yt := log(Xt) when Xt ∼ GBM.)

4.2 Simulating Jump-Diffusion Processes

Consider a jump-diffusion process of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt + c(Xt−, YNt−+1)dNt (17)

where Nt is a Poisson process (independent of Wt) with parameter λ and the Yi’s are IID random variables
independent of the Brownian motion Wt. The notation Xt− refers to limu↑tXu, i.e. the limit of Xu as u→ t
from the left. If t is a jump time then Xt− is the value of the process immediately before t. Note that if the nth

jump in the Poisson process occurs at time t, then

Xt −Xt− = c(Xt−, Yn)

If a jump does not occur at time t then Xt− = Xt. An obvious approach to simulating a discretized version of
(17) on the interval [0, T ] is:

1. First simulate the arrival times in the Poisson process up to time T .

2. Use a pure diffusion discretization between the jump times.

3. At the nth jump time τn, simulate the jump size c(X̂τn−, Yn) conditional on the value of the discretized

process, X̂τn−, immediately before τn.

Exercise 6 Suppose the process Nt in (17) is a more general jump process with stochastic intensity λ(Xt). If
the intensity is bounded above by some constant λ̄, how would you extend the scheme outlined above to this
new process?

4.3 Variance Reduction Techniques for Simulating SDE’s

Simulating SDE’s is a computationally intensive task as we need to do a lot of work for each sample that we
generate. Naturally, variance reduction techniques can be very useful in such contexts. We give one example
based on stratified sampling and the Brownian bridge. Note that these ideas could be applied very generally to
many different models. A further example will be discussed in Exercise 9 of Section 5.1.

Example 4 (The Brownian Bridge and Stratified Sampling)
Consider a short rate model of the form

drt = µ(t, rt)dt+ σ(t, rt)dWt.

When pricing a derivative that matures at time T using an Euler scheme it is necessary to generate the path
(Wh,W2h, . . . ,Wmh = WT ). It will often be the case, however, that the value of WT will be particularly
significant in determining the payoff. As a result, we might want to stratify using the random variable, WT .
This is easy to do for the following two reasons.

(i) WT ∼ N(0, T ) so we can easily generate a sample of WT and
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(ii) We can easily generate (Wh,W2h, . . . ,WT−h | WT ) by computing the relevant conditional distributions
and then simulating from them. For example, it is straightforward to see that

(Wt | Ws = x,Wv = y) ∼ N

(
(v − t)x+ (t− s)y

v − s
,

(v − t)(t− s)
v − s

)
for s < t < v (18)

and we can use this result to generate (Wh|W0,WT ). More generally, we can use (18) to successively
simulate (Wh|W0,WT ), (W2h|Wh,WT ), . . . , (WT−h|WT−2h,WT ).

We can in fact simulate the points on the sample path in any order we like. In particular, to simulate Wv we use
(18) and condition on the two closest sample points before and after v, respectively, that have already been
sampled. This method of pinning the beginning and end points of the Brownian motion is known as a Brownian
bridge construction.

Exercise 7 If we are working with a multi-dimensional correlated Brownian motion, Wt, (e.g. in the context of
a multi-factor model of the short rate) is it still easy to use the Brownian bridge construction where we first
generate the random vector, WT ?

4.4 Allocation of Computational Resources

An important issue that arises when simulating SDE’s is the allocation of computational resources. In particular,
we need to determine how many sample paths, n, to generate and how many time steps, m, to simulate on each
sample path. A smaller value of m will result in greater bias and numerical error, whereas a smaller value of n
will result in greater statistical noise. Indeed numerical and statistical error were both discussed in Examples 1
and 2 but we did not discuss the optimal tradeoff between the two in those examples. That is the problem we
now discuss: how to choose n and m in an optimal manner given a fixed computational budget.

Suppose then dXt = µ(t,Xt)dt+ σ(t,Xt)dWt and that we wish to estimate θ := E[f(XT )] using a
discretization scheme with weak order β. The bias then satisfies

Bias ≈ am−β

for some constant a and all sufficiently large m.

Suppose now that we have a fixed computational budget, C, and that each simulation step costs c. We must
therefore have n = C/mc. We would like to choose the optimal values of m (and therefore n) as a function of
C. We do this by minimizing the mean squared error (MSE), which is the sum of the bias squared and the
variance, v/n. In particular, we have

MSE ≈ a2

m2β
+
v

n
(19)

for sufficiently large m. Substituting for n in (19), it is easy to see that it is optimal (for sufficiently large C) to
take

m ∝ C1/(2β+1) (20)

n ∝ C2β/(2β+1) (21)

with the optimal MSE ≈ C−
2β

2β+1 . Note that the RMSE (=
√

MSE ≈ C−
β

2β+1 ) approaches C−1/2 as β →∞,
which is (why?) as expected.

When it comes to estimating θ, (20) and (21) provide guidance as follows. Suppose we are using an Euler
scheme with β = 1. We begin by using n0 paths and m0 discretization points per path to compute an initial
estimate, θ̂0, of θ. If we then compute a new estimate, θ̂1, by setting m1 = 2m0, then (20) and (21) suggest we

should set n1 = 4n0. We may then continue to compute new estimates, θ̂i, in this manner until the estimates
and their associated confidence intervals converge. In general, if we increase m by a factor of 2 then we should
increase n by a factor of 4. Although estimating θ in this way requires additional computational resources, it is
not usually necessary to perform more than two or three iterations, provided we begin with sufficiently large
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values of m0 and n0. Note that Multilevel Monte-Carlo (which is discussed in Appendix 6) is a more recently
developed technique and sophisticated approach to determining an optimal allocation of computational
resources.

5 Extremes and Barrier Crossings

Example 3 showed how certain forms of path dependence can be handled by including additional state variables.
But other types of dependence can be more problematic, even when the inclusion of additional state variables is
appropriate. We begin by handling the extremes of a process.

5.1 Extremes

Suppose Xt is a standard Brownian motion and let Mt := max0≤u≤tXt denote the running maximum of the
process with

M̂h
m := max

{
X0, X̂h, X̂2h, . . . , X̂mh

}
(22)

denoting the maximum of the corresponding Euler process up to time T = mh. It can be shown that the weak
order of convergence of this discretization scheme for Mt cannot be better than 1/2. Note that the Euler
scheme for Xt is exact (since it’s a Brownian motion) and has a weak order of convergence equal to 1. The
apparent discrepancy between the two orders of convergence is that the max process Mt is singular – note we
can’t use Itô’s Lemma to write dynamics for Mt and therefore don’t have a direct Euler scheme for Mt. The
upshot of this is that simulating discretized schemes for the extremes of a process is inherently more difficult.

There are ways around this problem, however. Again in the case where Xt is a Brownian motion we can
simulate MT directly for any value of T . We do this by:

1. Simulating XT ∼ N(0, T )

2. Simulating MT |XT . This amounts to simulating from the maximum of a Brownian bridge with its
endpoints fixed at X0 = 0 and XT fixed at its simulated value in step 1. This can be done because it is
known that

MT |XT ∼
XT +

√
X2
T − 2T logU

2
(23)

where U ∼ U(0, 1) (independent of XT ).

This procedure can easily be adapted to handle more general processes like Xt defined by (1). As before we use

a discretization scheme to obtain X̂kh for k = 0, 1, . . .. Rather than using (22) (which amounts to using a

piecewise linear interpolation of the X̂kh’s to approximate Xt for any t), we can instead interpolate over each

interval [kh, (k + 1)h] by using a Brownian bridge with fixed parameters µ(kh, X̂kh) and σk := σ(kh, X̂kh).

That is given the endpoints X̂kh and X̂(k+1)h the maximum of the process on [kh, (k+ 1)h] can be simulated as

M̂k =
X̂(k+1)h + X̂kh +

√(
X̂(k+1)h − X̂kh

)2
− 2hσ2

k logUk

2
(24)

where the Uk’s are IID U(0, 1) random variables. The maximum of X over [0, T ] can then approximated using

max
{
M̂0, M̂h, M̂2, . . . , M̂m−1

}
and this scheme can be very effective.
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5.2 Barrier Crossings

The same technology we discussed for extremes in Section 5.1 can be immediately applied to the pricing of
barrier options when we have to simulate an SDE. Suppose, for example, that we wish to price a knock-out put
option with time T payoff of the form

(K −XT )+1{τ>T}

where τ = inf{t ≥ 0 : Xt > B} and with X0 < B. The simplest approach, analogous to (22), would be to
approximate τ with τ̂ where

τ̂ := inf{k : X̂kh > B}.

But we can do much better by using the construction in (24). We note that barrier is crossed in the interval
[kh, (k + 1)h] if the maximum of the process in that interval exceeds B. We can thus approximate the option
payoff with

(K − X̂mh)+
m−1∏
k=0

1{M̂k≤B} (25)

with M̂k generated as in (24) and nh = T .

Exercise 8 We can simplify the approximation of the survival indicator 1{τ>T} in (25) with

m−1∏
k=0

1{Uk≤p̂k} (26)

where the Uk’s are as defined in (24). Provide an expression for p̂k in terms of B, X̂kh and X̂(k+1)h.

Exercise 9 Following on from the previous exercise, explain how this leads to a superior estimator (of the
option payoff) of the form

(K − X̂mh)+
m−1∏
k=0

p̂k.

In what sense is this estimator superior to the estimator in (25)? Is there any sense in which the estimator might
be inferior?

6 Appendix: Multilevel Monte-Carlo

Multilevel Monte-Carlo is a recently developed7 approach that looks to optimize the allocation of computational
resources in the simulation of the SDE with the goal of minimizing the estimator’s MSE. We can motivate the
technique by considering the Paley-Wiener representation of Brownian motion on the interval [0, 2π]. This
representation has the form

Wt = Z0
t√
2π

+
2√
π

∞∑
n=1

Zn
sin
(
nt
2

)
n

(27)

where the Zi’s are IID N(0, 1). This representation suggests an obvious approximation to Wt based on
truncating the infinite sum in (27). Specifically we can take

W
(m)
t = Z0

t√
2π

+
2√
π

m∑
n=1

Zn
sin
(
nt
2

)
n

(28)

as an approximation to Wt and it should be clear that the approximations becomes increasingly accurate as we
increase m. In Figure 3 we have plotted these approximations for a series of m values on a given Brownian path.

7The multilevel approach was developed by Giles (2008, Operations Research) but our approach here follows an expository
paper by Higham (2015, International Journal of Computer Mathematics). This latter paper should be consulted for further
details on the approach.
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Figure 3: Paley-Wiener Representation of Brownian Motion

It should be clear that earlier terms in the series determine the overall shape of the Brownian path while the
later terms add the finer details and improve the resolution of the approximation. Since it is typically the case
that the earlier terms (which determine the overall shape of the path) are more important for determining the
quantity of interest, e.g. the payoff of an option, it makes sense that we could construct a superior estimator by
focusing more effort on simulating the Zi’s for small values of i rather than large values of i. This is essentially
the insight used by the multilevel method.

The multilevel approach for simulating an SDE and estimating E [h(XT )] uses a range of step-sizes. In
particular it uses step-sizes of the form

hl :=
T

M l
, l = 0, . . . , L (29)

where M > 1 is a fixed quantity (that is often set equal to 2) and

L :=
log ε−1

logM
.

Note that when l = L in (29) we have hl = O(ε), the step-size needed by an Euler scheme to achieve a weak
error of O(ε). The multilevel scheme works by applying an Euler scheme to the SDE in (1) for each step-size hl.

If we let P̂l to denote the estimate of h(XT ) on the discretized path with step-size hl then we have

E
[
P̂L

]
= E

[
P̂0

]
+

L∑
l=1

E
[
P̂l − P̂l−1

]
(30)

We estimate E
[
P̂L

]
by estimating each of the terms on the right-hand-side of (30) with each such term

estimated independently of the other terms. However, it is important that P̂l and P̂l−1 in (30) are computed on
the same (discretized) paths (as is the case with Richardson extrapolation). Let N0 and Nl be the number of

paths used to estimate E
[
P̂0

]
and E

[
P̂l − P̂l−1

]
, respectively for l = 1, . . . , L. For a fixed computational

budget, the multilevel approach optimizes over the Nl’s with the objective of minimizing the mean-squared error
of the estimator in (30). Subject to technical conditions on h and the coefficients of the SDE, the multilevel
algorithm achieves a weak error of O(ε) (as with the Euler scheme) but with a computational speedup of almost
O(ε−1). This means, for example, that when an accuracy of 2 decimal places is required, i.e. ε = .01, the
computations using the multilevel approach will run approximately 1/.01 = 100 times faster than the regular
Euler scheme.


