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The Euler Scheme for Diffusions
Have an SDE of the form

dXt = µ(t,Xt) dt + σ(t,Xt) dWt . (1)

Wish to simulate values of XT but we don’t know its distribution.

So simulate a discretized version of the SDE {X̂0, X̂h, X̂2h, . . . , X̂mh} where:

m is the number of time steps
h is a constant step-size
and m = bT/hc.

The simplest and most commonly used scheme is the Euler scheme:

X̂kh = X̂(k−1)h + µ
(

(k − 1)h, X̂(k−1)h

)
h + σ

(
(k − 1)h, X̂(k−1)h

)√
hZk (2)

where the Zk ’s are IID N (0, 1).
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The Euler Scheme for Diffusions
Note that even though we only care about XT , we still need to generate
intermediate values, Xih, if we are to minimize the discretization error

- so simulating SDEs is computationally intensive
- because of discretization error, θ̂n is no longer an unbiased estimator of θ.

If we wished to estimate θ = E[f (Xt1 , . . . ,Xtp)] then in general we would need to
keep track of (Xt1 , . . . ,Xtp).

Question: Can you think of a derivative where the payoff depends on
(Xt1 , . . . ,Xtp), but where it would not be necessary to keep track of
(Xt1 , . . . ,Xtp) on each sample path?
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The Euler Scheme for Multidimensional Diffusions
In the multidimensional case, Xt ∈ Rd , Wt ∈ Rp and µ(t,Xt) ∈ Rd are now
vectors, and σ(t,Xt) ∈ Rd×p is a matrix.

Multidimensional case often occurs in applications:
1. Modeling the evolution of multiple stocks.
2. Modeling the evolution of a single stock in a stochastic volatility model.
3. Modeling the evolution of interest rates in short rate, HJM and LIBOR

market models.

If the Brownian motions, Wt , are correlated then can use the Cholesky
decomposition.

But often the case that Wt is standard (and therefore has independent
components)

- any correlations between components of Xt then induced through σ(t,Xt).
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Weak and Strong Convergence of Discretization Schemes

Two approaches for measuring the error in a discretization scheme:
1. A strong error criterion might take the form

E
[
||X̂mh −XT ||

]
(3)

E
[

sup
0≤t≤T

||X̂bt/hch −Xt ||
]

2. A weak error criterion takes the form∣∣∣E[f (X̂mh)]− E[f (XT)]
∣∣∣ (4)

where f ranges over “smooth” functions from Rd to R.

With a weak error criterion, only the distribution of X̂mh matters.

In finance applications we generally care about derivatives prices and so the weak
criterion of (4) is more appropriate.

Given an error criterion, can assess the performance of the Euler scheme (and
others) via its order of convergence.
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Weak and Strong Convergence of Discretization Schemes

Definition. We say the discretization X̂ has a strong order of convergence of
β > 0 if

E
[
||X̂mh −XT ||

]
≤ chβ (5)

for some constant c and all sufficiently small h.

Definition. We say the discretization X̂ has a weak order of convergence of
β > 0 if ∣∣∣E[f (X̂mh)]− E[f (XT)]

∣∣∣ ≤ chβ (6)

for some constant c (possibly depending on f ), all sufficiently small h, and all
sufficiently smooth f .
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Weak and Strong Convergence of Discretization Schemes

Note that a larger value of β in (5) and (6) is better.

In practice, often the case that a given discretization scheme will have a smaller
strong order of convergence than its weak order of convergence.
e.g. The Euler scheme has a strong order of β = 1/2 but its weak order is β = 1

- but these orders of convergence require additional smoothness conditions on
µ(t,Xt) and σ.

Also worth noting that the conditions on f in weak order definition often not met
in practice.
e.g. If f represents the payoff of a simple European call option, then f will not
be differentiable and so f not sufficiently smooth.

Technical conditions on µ(t,Xt) and σ are also sometimes violated in practice.

As a result, experimentation is often required to understand which schemes
perform better for a given payoff f and / or SDE Xt .

8 (Section 1)



The Milstein Scheme
A scalar SDE

dXt = µ(Xt)dt + σ(Xt)dWt

has Euler scheme

X̂kh = X̂(k−1)h + µ(X̂(k−1)h)h + σ(X̂(k−1)h)
√

hZk .

Can apply Itô’s Lemma to σ(Xt) to construct a superior approximation for the
diffusion term over the interval [(k − 1)h, kh].

This leads to “the” Milstein scheme

X̂kh = X̂(k−1)h +µ(X̂(k−1)h) h +σ(X̂(k−1)h)
√

h Zk + 1
2σ
′(X̂(k−1)h)σ(X̂(k−1)h)h(Z 2

k − 1).
(7)

Approximation in (7) means that both drift and diffusion terms have both been
expanded to O(h).

Under various smoothness conditions (which again often do not hold in practice)
it can be shown that the Milstein scheme has a weak and strong order of
convergence of β = 1.

9 (Section 2)



The Euler Scheme With Richardson Extrapolation
An alternative to second order schemes is the Euler scheme with Richardson
extrapolation:

- it is easy to implement
- and often has superior performance to second order schemes, especially in

high dimensions.

Euler scheme with Richardson extrapolation therefore often considered a
benchmark scheme for reducing discretization error.

To simplify notation, we write X̂h
T for X̂bT/hch.

First recall the Euler (often) has weak order 1 so that∣∣∣E[f (X̂h
T)]− E[f (XT)]

∣∣∣ ≤ Ch. (8)

Can sometimes strengthen (8) so that

E[f (X̂h
T)] = E[f (XT)] + ch + o(h) (9)

where c depends on f .
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The Euler Scheme With Richardson Extrapolation
Then can apply (9) with discretization step 2h to obtain

E[f (X̂2h
T )] = E[f (XT)] + 2ch + o(h). (10)

Can then combine estimators in (9) and (10) to eliminate the leading O(h) term:

2E[f (X̂h
T)]− E[f (X̂2h

T )] = E[f (XT)] + o(h). (11)

Suggests an obvious improvement to the basic Euler scheme:

1. Simulate with time step h to estimate E[f (X̂h
T)]

2. Simulate with time step 2h to estimate E[f (X̂2h
T )]

3. Double first estimate and subtract second to obtain an estimate of E[f (XT)]
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The Euler Scheme With Richardson Extrapolation
Should use consistent Brownian increments in simulating paths of X̂h and X̂2h

- will typically result in an often substantial reduction in variance.

So if we use
√

hZ1,
√

hZ2, . . . as Brownian increments for X̂h then can use√
h(Z1 + Z2),

√
h(Z3 + Z4), . . . as Brownian increments for X̂2h.

Using such a construction amounts to rewriting (11) as

E[2f (X̂h
T)− f (X̂2h

T )] = E[f (XT)] + o(h). (12)

and then computing 2f (X̂h
T)− f (X̂2h

T ) along each sample path.

Variance of this estimator is

Var
(

2f (X̂h
T)− f (X̂2h

T )
)

= 4Var
(

f (X̂h
T)
)

+Var
(

f (X̂2h
T )
)
−4Cov

(
f (X̂h

T), f (X̂2h
T

)
.

A variance reduction will therefore be obtained if the covariance term is positive
- not always the case but can be guaranteed under monotonicity conditions.
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Example: Option Pricing Under GBM
Consider pricing of a European call option in the Black-Scholes framework by
simulating the SDE

dSt = rStdt + σStdWt

with parameters S0 = K = 100, T = .5 years, r = .01 and σ = 0.4.

Of course can price such an option using the Black-Scholes formula but it is of
interest to see how well our discretization schemes perform.

Results were obtained by simulating 16 million sample paths.

See that the absolute pricing error generally decreases as h decreases.

But occasionally see the error increase and this can largely be explained by the
(unreported) statistical error

- even with 16m samples, approx. 95% CIs had a width of approx. 2 cents.

Also see superior performance of the Euler scheme with Richardson extrapolation
kick in at about 500 time steps

- but due to the statistical noise this superiority may not be so clear on a
different set of simulated paths.
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Example: Option Pricing Under Heston
Consider Heston’s stochastic volatility model:

dSt = rStdt +
√

VtStdW (1)
t (13)

dVt = κ (θ −Vt) dt + σ
√

VtdW (2)
t . (14)

with dW (1)
t × dW (2)

t = ρ dt.

Again wish to price a European call option on the stock and we use the same
parameters as those in Example 6.2.2 of Glasserman.

An explicit formula for the call option price is not available but can price it very
accurately using Fourier inversion methods

- we find it’s price to be 10.3009.

Can use this price to compare the absolute error of various discretization schemes
as a function of the number of time steps.

Results are plotted in next figure with each point based on 8 million sample paths.
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Example: Option Pricing Under Heston
Again see the general decrease in the mean absolute error of all three schemes as
the number of time steps increases.

The various conditions (on both the option payoff and the SDE) that are required
to guarantee a given order of convergence of the schemes are not satisfied here.

Moreover, even if the conditions were satisfied it may be the case that a very
small value of the time-step h would be necessary before the stated order of
convergence actually became apparent.

These observations and the (unreported) statistical error help explain the
somewhat erratic convergence of the schemes and the apparently superior
performance of the Euler scheme when 500 time-steps are employed.

This apparent “superior” performance can easily switch to an “inferior”
performance with an alternative set of simulated sample paths.
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Example: Option Pricing Under Heston
Also worth noting that the Euler scheme can perform extremely poorly in
practice with Heston’s stochastic volatility model.

e.g. Andersen considered pricing an ATM 10-year call option with r = q = 0,
S0 = K = 100, κ = .5, V0 = θ = .04, σ = .1 and ρ = −0.9

- the true option price is 23.69.

He used 1m sample paths and ia “sticky zero” or “reflection” assumption.

Time Steps Sticky Zero Reflection
100 28.3 45.1
200 27.1 41.3
500 25.6 37.1
1000 24.8 34.6

Euler scheme with reflection assumption converges very slowly!
Therefore need to be very careful when applying an Euler scheme to this SDE.
But common sense and some care should alert you to these problems and help
resolve them!

18 (Section 3)



Change of Variables
Given a discretization scheme, have considerable flexibility in choosing what
process we apply it to.

More specifically, we can apply our scheme to Xt ∈ Rd or to Yt := g(Xt) where
g : Rd 7→ Rd is a smooth invertible function.

If we apply it to Yt then X̂kh := g−1(Ŷkh) is the corresponding discretized
scheme for Xt .

Often the case that a particular transformation seems intuitively appealing.

e.g If Xt represent a stock price then it makes sense (why?) to apply the scheme
to Yt := log(Xt) with g−1(Ŷkh) = exp(Ŷkh).
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Change of Variables
Question: Characterize the discretization error that results from applying an
Euler scheme to log(St) when St ∼ GBM.

Question: Suppose we wish to simulate the known dynamics of a zero-coupon
bond. How would you ensure that the simulated process satisfies 0 < ZT

t < 1 ?

An important advantage of this flexibility in that we can seek a g with a view to
minimizing discretization error.

A common strategy is to choose a g (if possible) so that the dynamics of
Yt := g(Xt) have a constant volatility coefficient.
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Simulating Jump-Diffusion Processes
Consider a jump-diffusion process of the form

dXt = µ(t,Xt)dt + σ(t,Xt)dWt + c(Xt−,YNt−+1)dNt (15)

where:
Nt is a Poisson process (independent of Wt) with parameter λ

The Yi ’s are IID random variables independent of the Brownian motion Wt .

Note Xt− := limu↑t Xu so if t is a jump time then Xt− is the value of the
process immediately before t.

If the nth jump in the Poisson process occurs at time t, then

Xt −Xt− = c(Xt−,Yn)

If a jump does not occur at time t then Xt− = Xt .
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Simulating Jump-Diffusion Processes
An obvious approach to simulating a discretized version of (15) on the interval
[0,T ] is:

1. First simulate the arrival times in the Poisson process up to time T .
2. Use a pure diffusion discretization between the jump times.
3. At the nth jump time τn, simulate the jump size c(X̂τn−,Yn) conditional on

the value of the discretized process, X̂τn−, immediately before τn.

Question: Suppose the process Nt in (15) is a more general jump process with
stochastic intensity λ(Xt).

If the intensity is bounded above by some constant λ̄, how would you extend the
scheme outlined above to this new process?
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The Brownian Bridge and Stratified Sampling
Consider a short rate model of the form

drt = µ(t, rt)dt + σ(t, rt)dWt .

When pricing a derivative that matures at time T using an Euler scheme it is
necessary to generate the path (Wh,W2h, . . . ,Wmh = WT).

Will often be the case, however, that value of WT will be particularly significant
in determining the payoff.

Might want to stratify using WT . This is easy since:

1. WT ∼ N(0,T ) so can easily generate a sample of WT

and

2. Can easily generate (Wh,W2h, . . . ,WT−h | WT).
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The Brownian Bridge and Stratified Sampling
To see this note that for s < t < v

(Wt | Ws = x,Wv = y) ∼ N
(

(v − t)x + (t − s)y
v − s ,

(v − t)(t − s)
v − s

)
(16)

and can use this result to generate (Wh|W0,WT).

More generally, can use (16) to successively simulate
(Wh|W0,WT), (W2h|Wh,WT), . . . , (WT−h|WT−2h,WT).

Can in fact simulate the points on the sample path in any order we like.

In particular, to simulate Wv we use (16) and condition on the two closest
sample points before and after v, respectively, that have already been sampled.

This method of pinning the beginning and end points of the Brownian motion is
known as a Brownian bridge construction.
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Allocation of Computational Resources
Question: How should we choose n = # of sample paths and m = # of
discretization points given a fixed computational budget?

A smaller value of m will result in greater bias and numerical error
A smaller value of n will result in greater statistical error.

Suppose then
dXt = µ(t,Xt)dt + σ(t,Xt)dWt

and we wish to estimate θ := E[f (XT)] using a scheme with weak order β.

Bias then satisfies
Bias ≈ am−β .

Suppose we have a fixed computational budget, C , and that each simulation step
costs c – must therefore have n = C/mc.

Would like to choose optimal values of m (and therefore n) as a function of C .

Do this by minimizing the mean squared error (MSE), i.e. sum of the bias
squared and the variance v/n.
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Allocation of Computational Resources
We have

MSE ≈ a2

m2β + v
n (17)

for sufficiently large m.

Substituting for n in (17), easy to see that’s optimal to take

m ∝ C 1/(2β+1) (18)
n ∝ C 2β/(2β+1) (19)

with the optimal MSE ≈ C−
2β

2β+1 .

Note that the RMSE ≈ C−
β

2β+1 → C−1/2 as β →∞, which is (why?) as
expected.
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Allocation of Computational Resources
When it comes to estimating θ, (18) and (19) provide guidance as follows.

Suppose we are using an Euler scheme with β = 1.

Begin by using n0 paths and m0 points per path to compute initial estimate, θ̂0.

If we then compute a new estimate, θ̂1, by setting m1 = 2m0, then (18) and (19)
suggest we should set n1 = 4n0.

May then continue to compute new estimates, θ̂i , in this manner until the
estimates and their associated CI’s converge.

In general, if we increase m by a factor of 2 then should increase n by a factor of
4.

Although estimating θ in this way requires additional computational resources, it
is not usually necessary to perform more than two or three iterations, provided we
begin with sufficiently large values of m0 and n0.
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Extremes and Barrier Crossings
Suppose Xt is a standard Brownian motion and let Mt := max0≤u≤t Xt denote
the running maximum.

Then maximum of corresponding Euler process given by

M̂ h
m := max

{
X0, X̂h, X̂2h, . . . , X̂mh

}
. (20)

Can be shown that the weak order of convergence of this discretization scheme
for Mt cannot be better than 1/2

- even though the Euler scheme for Xt is exact
- and has a weak order of convergence equal to 1.

Can resolve this by simulating MT directly for any value of T . We do this by:
1. Simulating XT ∼ N(0,T )
2. Simulating MT |XT . This can be done because it is known that

MT |XT ∼
XT +

√
X2

T − 2T log U
2 (21)

where U ∼ U(0, 1) (independent of XT).
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Extremes and Barrier Crossings
This procedure can easily be adapted to handle more general processes.

Let X̂kh for k = 0, 1, . . . be a discretization scheme for Xt satisfying

dXt = µ(t,Xt)dt + σ(t,Xt)dWt (22)

We interpolate over each interval [kh, (k + 1)h] by using a Brownian bridge with
fixed parameters µ(kh, X̂kh) and σk := σ(kh, X̂kh).

So given endpoints X̂kh and X̂(k+1)h, the max of the process on [kh, (k + 1)h]
can be simulated as

M̂k =
X̂(k+1)h + X̂kh +

√(
X̂(k+1)h − X̂kh

)2
− 2hσ2

k log Ui

2 (23)

where the Ui ’s are IID U(0, 1) random variables.

The maximum of X over [0,T ] can then approximated using

max
{

M̂0, M̂h, M̂2, . . . , M̂m−1

}
.
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Extremes and Barrier Crossings
Same ideas can be immediately applied to the pricing of barrier options.

e.g. Suppose we wish to price a knock-out put option with time T payoff
(K −XT)+1{τ>T}

where τ = inf{t ≥ 0 : Xt > B} and with X0 < B.

Simplest approach would be to approximate τ with τ̂ where
τ̂ := inf{k : X̂kh > B}.

But can do much better by using the construction in (23).

We note that barrier is crossed in the interval [kh, (k + 1)h] if the maximum of
the process in that interval exceeds B.

Can thus approximate the option payoff with

(K − X̂mh)+
m−1∏
k=0

1{M̂k≤B} (24)

with M̂k generated as in (23) and mh = T .
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Extremes and Barrier Crossings
Question: Can simplify approximation of survival indicator 1{τ>T} in (24) with

m−1∏
k=0

1{Uk≤p̂k}. (25)

Provide an expression for p̂k in terms of B, X̂kh and X̂(k+1)h.

Question: Explain how this leads to a superior estimator of the form

(K − X̂mh)+
m−1∏
k=0

p̂k .

In what sense is this estimator superior to the estimator in (24)?
Is there any sense in which the estimator might be inferior?
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Multilevel Monte-Carlo
Multilevel Monte-Carlo is a recently developed approach that optimizes the
allocation of computational resources to minimize the estimator’s MSE.

Can motivate the technique by considering the Paley-Wiener representation of
Brownian motion on the interval [0, 2π]:

Wt = Z0
t√
2π

+ 2√
π

∞∑
n=1

Zn
sin
(nt

2
)

n (26)

where the Zi ’s are IID N(0, 1).

This representation suggests an obvious approximation to Wt :

W (m)
t = Z0

t√
2π

+ 2√
π

m∑
n=1

Zn
sin
(nt

2
)

n (27)
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Multilevel Monte-Carlo
Should be clear that earlier terms in the series determine the overall shape of the
Brownian path while the later terms add the finer details and improve the
resolution of the approximation.

Typically the case that earlier terms are more important for determining the
quantity of interest, e.g. the payoff of an option.

Hence makes sense that we could construct a superior estimator by focusing more
effort on simulating the Zi ’s for small values of i rather than large values of i

- essentially the insight used by the multilevel method.
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