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Simulation Efficiency and an Introduction to
Variance Reduction Methods

In these notes we discuss the efficiency of a Monte-Carlo estimator. This naturally leads to the search for more
efficient estimators and towards this end we describe some simple variance reduction techniques. In particular,
we describe control variates, antithetic variates and conditional Monte-Carlo, all of which are designed to reduce
the variance of our Monte-Carlo estimators. We will defer a discussion of other variance reduction techniques
such as common random numbers, stratified sampling and importance sampling until later.

1 Simulation Efficiency

Suppose as usual that we wish to estimate θ := E[h(X)]. Then the standard simulation algorithm is:

1. Generate X1, . . . ,Xn

2. Estimate θ with θ̂n =
∑n
j=1 Yj/n where Yj := h(Xj).

3. Approximate 100(1− α)% confidence intervals are then given by[
θ̂n − z1−α/2

σ̂n√
n
, θ̂n + z1−α/2

σ̂n√
n

]
where σ̂n is the usual estimate of Var(Y ) based on Y1, . . . , Yn.

One way to measure the quality of the estimator, θ̂n, is by the half-width, HW , of the confidence interval. For a
fixed α, we have

HW = z1−α/2

√
Var(Y )

n
.

We would like HW to be small, but sometimes this is difficult to achieve. This may be because Var(Y ) is too
large, or too much computational effort is required to simulate each Yj so that n is necessarily small, or some
combination of the two. As a result, it is often imperative to address the issue of simulation efficiency. There
are a number of things we can do:

1. Develop a good simulation algorithm.

2. Program carefully to minimize storage requirements. For example we do not need to store all the Yj ’s: we

only need to keep track of
∑
Yj and

∑
Y 2
j to compute θ̂n and approximate CI’s.

3. Program carefully to minimize execution time.

4. Decrease the variability of the simulation output that we use to estimate θ. The techniques used to do
this are usually called variance reduction techniques.

We will now study some of the simplest variance reduction techniques, and assume that we are doing items (1)
to (3) as well as possible. Before proceeding to study these techniques, however, we should first describe a
measure of simulation efficiency.
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1.1 Measuring Simulation Efficiency

Suppose there are two random variables, W and Y , such that E[W ] = E[Y ] = θ. Then we could choose to
either simulate W1, . . . ,Wn or Y1, . . . , Yn in order to estimate θ. Let Mw denote the method of estimating θ by
simulating the Wi’s. My is similarly defined. Which method is more efficient, Mw or My? To answer this, let
nw and ny be the number of samples of W and Y , respectively, that are needed to achieve a half-width, HW .
Then we know that

nw =
(z1−α/2
HW

)2
Var(W )

ny =
(z1−α/2
HW

)2
Var(Y ).

Let Ew and Ey denote the amount of computational effort required to produce one sample of W and Y ,
respectively. Then the total effort expended by Mw and My, respectively, to achieve a half width HW are

TEw =
(z1−α/2
HW

)2
Var(W ) Ew

TEy =
(z1−α/2
HW

)2
Var(Y ) Ey.

We then say that Mw is more efficient than My if TEw < TEy. Note that TEw < TEy if and only if

Var(W )Ew < Var(Y )Ey. (1)

We will use the quantity Var(W )Ew as a measure of the efficiency of the simulator, Mw. Note that (1) implies
we cannot conclude that one simulation algorithm, Mw, is better than another, My, simply because
Var(W ) < Var(Y ); we also need to take Ew and Ey into consideration. However, it is often the case that we
have two simulators available to us, Mw and My, where Ew ≈ Ey and Var(W ) << Var(Y ). In such cases it is
clear that using Mw provides a substantial improvement over using My.

2 Control Variates

Suppose you wish to determine the mean midday temperature, θ, in Grassland and that your data consists of

{(Ti, Ri) : i = 1, . . . n}

where Ti and Ri are the midday temperature and daily rainfall, respectively, on some random day, Di. Then
θ = E[T ] is the mean midday temperature.If the Di’s are drawn uniformly from {1, . . . , 365}, then an obvious
estimator for θ is

θ̂n =

∑n
i=1 Ti
n

and we then know that E[θ̂n] = θ. Suppose, however, that we also know:

1. E[R], the mean daily rainfall in Grassland

2. Ri and Ti are dependent; in particular, it tends to rain more in the cold season

Is there any way we can exploit this information to obtain a better estimate of θ? The answer of course, is yes.

Let Rn :=
∑n
i=1Ri/n and now suppose Rn > E[R]. Then this implies that the Di’s over-represent the rainy

season in comparison to the dry season. But since the rainy season tends to coincide with the cold season, it
also means that the Di’s over-represent the cold season in comparison to the warm season. As a result, we
expect θ̂n < θ. Therefore, to improve our estimate, we should increase θ̂n. Similarly, if Rn < E[R], we should

decrease θ̂n.

In this example, rainfall is the control variate since it enables us to better control our estimate of θ. The
principle idea behind many variance reduction techniques (including control variates) is to “use what you know”
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about the system. In this example, the system is Grassland’s climate, and what we know is E[R], the average
daily rainfall. We will now study control variates more formally, and in particular, we will determine by how
much we should increase or decrease θ̂n.

2.1 The Control Variate Method

Suppose again that we wish to estimate θ := E[Y ] where Y = h(X) is the output of a simulation experiment.
Suppose that Z is also an output of the simulation or that we can easily output it if we wish. Finally, we assume
that we know E[Z]. Then we can construct many unbiased estimators of θ:

1. θ̂ = Y , our usual estimator

2. θ̂c := Y + c(Z − E[Z])

for any c ∈ R. The variance of θ̂c satisfies

Var(θ̂c) = Var(Y ) + c2Var(Z) + 2c Cov(Y,Z). (2)

and we can choose c to minimize this quantity. Simple calculus then implies the optimal value of c is given by

c∗ = −Cov(Y, Z)

Var(Z)

and that the minimized variance satisfies

Var(θ̂c∗) = Var(Y )− Cov(Y,Z)2

Var(Z)

= Var(θ̂)− Cov(Y,Z)2

Var(Z)
.

In order to achieve a variance reduction it is therefore only necessary that Cov(Y,Z) 6= 0. The new resulting
Monte Carlo algorithm proceeds by generating n samples of Y and Z and then setting

θ̂c∗ =

∑n
i=1 (Yi + c∗(Zi − E[Z]))

n
.

There is a problem with this, however, as we usually do not know Cov(Y, Z). We overcome this problem by
doing p pilot simulations and setting

Ĉov(Y,Z) =

∑p
j=1(Yj − Y p)(Zj − E[Z])

p− 1
.

If it is also the case that Var(Z) is unknown, then we also estimate it with

V̂ar(Z) =

∑p
j=1(Zj − E[Z])2

p− 1

and finally set

ĉ∗ = − Ĉov(Y,Z)

V̂ar(Z)
.

Assuming we can find a control variate, our control variate simulation algorithm is as follows. Note that the Vi’s
are IID, so we can compute approximate confidence intervals as before.
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Control Variate Simulation Algorithm for Estimating E[Y ]

/∗Do pilot simulation first ∗/
for i = 1 to p

generate (Yi, Zi)
end for
compute ĉ∗

/∗Now do main simulation ∗/
for i = 1 to n

generate (Yi, Zi)
set Vi = Yi + ĉ∗(Zi − E[Z])

end for
set θ̂ĉ∗ = V n =

∑n
i=1 Vi/n

set σ̂2
n,v =

∑
(Vi − θ̂ĉ∗)2/(n− 1)

set 100(1− α) % CI =
[
θ̂ĉ∗ − z1−α/2

σ̂n,v√
n
, θ̂ĉ∗ + z1−α/2

σ̂n,v√
n

]

Example 1
Suppose we wish to estimate θ = E[e(U+W )2 ] where U,W ∼ U(0, 1) and IID. In our notation we then have

Y := e(U+W )2 . The usual approach is:

1. Generate U1, . . . , Un and W1, . . . ,Wn, all IID ∼ U(0, 1)

2. Compute Y1 = e(U1+W1)
2

, . . . , Yn = e(Un+Wn)
2

3. Construct the estimator θ̂n,y =
∑n
j=1 Yj/n

4. Build confidence intervals θ̂n,y ± z1−α/2 σ̂n,y/
√
n where σ̂2

n,y is the usual estimate of Var(Y ).

Now consider using the control variate technique. First we have to choose an appropriate control variate, Z.
There are many possibilities including

Z1 := U +W

Z2 := (U +W )2

Z3 := eU+W

Note that we can easily compute E[Zi] for i = 1, 2, 3 and that it’s also clear that Cov(Y,Zi) 6= 0. In a simple
experiment we used Z3, estimating ĉ∗ on the basis of a pilot simulation with 100 samples. We reduced the
variance by approximately a factor of 4. In general, a good rule of thumb is that we should not be satisfied unless
we have a variance reduction on the order of a factor of 5 to 10, though often we will achieve much more.

Example 2 (Pricing an Asian Call Option)
Recall that the payoff of an Asian call option is given by

h(X) := max

(
0,

∑m
i=1 SiT/m

m
−K

)
where X := {SiT/m : i = 1, . . . ,m}, K is the strike price and T is the expiration date. The price of the option
is then given by

Ca = EQ0 [e−rTh(X)]
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where r is the risk-free interest rate and Q is the risk-neutral probability measure. We will assume as usual that
St ∼ GBM(r, σ) under Q. The usual simulation method for estimating Ca is to generate n independent
samples of the payoff, Yi := e−rTh(Xi), for i = 1, . . . , n, and to set

Ĉa =

∑n
i=1 Yi
n

.

But we could also estimate Ca using control variates and there are many possible choices that we could use:

1. Z1 = ST

2. Z2 = e−rt max(0, ST −K)

3. Z3 =
∑m
j=1 SiT/m/m

In each of the three cases, it is easy to compute E[Z]. Indeed, E[Z2] is the well-studied Black-Scholes option
price. We would also expect Z1, Z2 and Z3 to have a positive covariance with Y , so that each one would be a
suitable candidate for use as a control variate. Which one would lead to the greatest variance reduction?

Exercise 1 Referring to Example 2, explain why you could also use the value of the option with payoff

g(X) := max

0,

(
m∏
i=1

SiT/m

)1/m

−K


as a control variate. Do you think it would result in a substantial variance reduction?

Example 3 (The Barbershop)
Many application of variance reduction techniques can be found in the study of queuing, communications or
inventory systems. As a simple example of a queuing system, consider the case of a barbershop where the barber
opens for business every day at 9am and closes at 6pm. He is the only barber in the shop and he’s considering
hiring another barber to share the workload. First, however, he would like to estimate the mean total time that
customers spend waiting each day.

Assume customers arrive at the barbershop according to a non-homogeneous Poisson process, N(t), with
intensity λ(t), and let Wi denote the waiting time of the ith customer. Then, noting that the barber closes the
shop after T = 9 hours (but still serves any customers who have arrived before then) the quantity that he wants
to estimate is θ := E[Y ] where

Y :=

N(T )∑
j=1

Wj .

Assume also that the service times of customers are IID with CDF, F (.), and that they are also independent of
the arrival process, N(t). The usual simulation method for estimating θ would be to simulate n days of
operation in the barbershop, thereby obtaining n samples, Y1, . . . , Yn, and then setting

θ̂n =

∑n
j=1 Yj

n
.

However, a better estimate could be obtained by using a control variate. In particular, let Z denote the total
time customers on a given day spend in service so that

Z :=

N(T )∑
j=1

Sj

where Sj is the service time of the jth customer. Then, since services times are IID and independent of the
arrival process, it is easy to see that

E[Z] = E[S]E[N(T )]

which should be easily computable. Intuition suggests that Z should be positively correlated with Y and
therefore it would also be a good candidate to use as a control variate.
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2.2 Multiple Control Variates

Until now we have only considered the possibility of using one control variate but there is no reason why we
should not use more than one. Towards this end, suppose again that we wish to estimate θ := E[Y ] where Y is
the output of a simulation experiment. We also suppose that for i = 1, . . . ,m, Zi is an output or that we can
easily output it if we wish, and that E[Zi] is known for each i. We can then construct unbiased estimators of θ
by defining

θ̂c := Y + c1(Z1 − E[Z1]) + . . . + cm(Zm − E[Zm])

where ci ∈ R. The variance of θ̂c satisfies

Var(θ̂c) = Var(Y ) + 2

m∑
i=1

ciCov(Y,Zi) +

m∑
i=1

m∑
i=1

cicjCov(Zi, Zj) (3)

and we could easily minimize this quantity w.r.t the ci’s. As before, however, the optimal solutions c∗i will
involve unknown covariances (and possibly variances of the Zi’s) that will need to be estimated using a pilot
simulation.

A convenient way of doing this is to observe that ĉ∗i = −bi where the bi’s are the (least squares) solution to the
following linear regression:

Y = a+ b1Z1 + . . .+ bmZm + ε (4)

where ε is an error term. Note that you must include the intercept, a, in (4). The simulation algorithm with
multiple control variates is exactly analogous to the simulation algorithm with just a single control variate.

Multiple Control Variate Simulation Algorithm for Estimating E[Y ]

/∗Do pilot simulation first ∗/
for i = 1 to p

generate (Yi, Z1,i, . . . , Zm,i)
end for
compute ĉ∗j , j = 1, . . . ,m

/∗Now do main simulation ∗/
for i = 1 to n

generate (Yi, Z1,i, . . . , Zm,i)
set Vi = Yi +

∑m
j=1 ĉ

∗
j (Zj,i − E[Zj ])

end for
set θ̂c∗ = V n =

∑n
i=1 Vi/n

set σ̂2
n,v =

∑
(Vi − θ̂c∗)2/(n− 1)

set 100(1− α) % CI =
[
θ̂c∗ − z1−α/2

σ̂n,v√
n
, θ̂c∗ + z1−α/2

σ̂n,v√
n

]
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3 Antithetic Variates

As usual we would like to estimate θ = E[h(X)] = E[Y ], and suppose we have generated two samples, Y1 and

Y2. Then an unbiased estimate of θ is given by θ̂ = (Y1 + Y2)/2 with

Var(θ̂) =
Var(Y1) + Var(Y2) + 2Cov(Y1, Y2)

4
.

If Y1 and Y2 are IID, then Var(θ̂) = Var(Y )/2. However, we could reduce Var(θ̂) if we could arrange it so that
Cov(Y1, Y2) < 0. We now describe the method of antithetic variates for doing this. We will begin with the case
where Y is a function of IID U(0, 1) random variables so that θ = E[h(U)] where U = (U1, . . . , Um) and the
Ui’s are IID ∼ U(0, 1). The usual Monte Carlo algorithm, assuming we use 2n samples, is shown below.

Usual Simulation Algorithm for Estimating θ

for i = 1 to 2n

generate Ui

set Yi = h(Ui)
end for
set θ̂2n = Y 2n =

∑2n
i=1 Yi/2n

set σ̂2
2n =

∑2n
i=1(Yi − Y 2n)2/(2n− 1)

set approx. 100(1− α) % CI = θ̂2n ± z1−α/2 σ̂2n√
2n

In the above algorithm, however, we could also have used the 1− Ui’s to generate sample Y values, since if
Ui ∼ U(0, 1), then so too is 1− Ui. We can use this fact to construct another estimator of θ as follows. As

before, we set Yi = h(Ui), where Ui = (U
(i)
1 , . . . , U

(i)
m ). We now also set Ỹi = h(1−Ui), where we use

1−Ui to denote (1− U (i)
1 , . . . , 1− U (i)

m ). Note that E[Yi] = E[Ỹi] = θ so that in particular, if

Zi :=
Yi + Ỹi

2
,

then E[Zi] = θ so that Zi is an also unbiased estimator of θ. If the Ui’s are IID, then so too are the Zi’s and we
can use them as usual to compute approximate confidence intervals for θ. We say that Ui and 1− Ui are
antithetic variates and we then have the following antithetic variate simulation algorithm.

Antithetic Variate Simulation Algorithm for Estimating θ

for i = 1 to n

generate Ui

set Yi = h(Ui) and Ỹi = h(1−Ui)
set Zi = (Yi + Ỹi)/2

end for
set θ̂n,a = Zn =

∑n
i=1 Zi/n

set σ̂2
n,a =

∑n
i=1(Zi − Zn)2/(n− 1)

set approx. 100(1− α) % CI = θ̂a,n ± z1−α/2
σ̂n,a√
n
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As usual, θ̂a,n is an unbiased estimator of θ and the Strong Law of Large Numbers implies θ̂n,a → θ almost
surely as n→∞. Each of the two algorithms we have described above uses 2n samples so the question naturally
arises as to which algorithm is better. Note that both algorithms require approximately the same amount of
effort so that comparing the two algorithms amounts to computing which estimator has a smaller variance.

3.1 Comparing Estimator Variances

It is easy to see that

Var(θ̂2n) = Var

(∑2n
i=1 Yi
2n

)
=

Var(Y )

2n

and

Var(θ̂n,a) = Var

(∑n
i=1 Zi
n

)
=

Var(Z)

n

=
Var(Y + Ỹ )

4n
=

Var(Y )

2n
+

Cov(Y, Ỹ )

2n

= Var(θ̂2n) +
Cov(Y, Ỹ )

2n
.

Therefore Var(θ̂n,a) < Var(θ̂2n) if and only Cov(Y, Ỹ ) < 0. Recalling that Y = h(U) and Ỹ = h(1−U), this
means that

Var(θ̂n,a) < Var(θ̂2n)⇐⇒ Cov (h(U), h(1−U)) < 0.

We will soon discuss conditions that are sufficient to guarantee that Cov(h(U), h(1−U)) < 0, but first let’s
consider an example.

Example 4 (Monte Carlo Integration)
Consider the problem of estimating

θ =

∫ 1

0

ex
2

dx.

As usual, we may then write θ = E[eU
2

] where U ∼ U(0, 1). We can compare the usual raw simulation
algorithm with the simulation algorithm that uses antithetic variates. Using antithetic variates in this case
results in a variance reduction of approximately 75%.

We now discuss the circumstances under which a variance reduction can be guaranteed. Consider first the case
where U is a uniform random variable so that m = 1, U = U and θ = E[h(U)]. Suppose now that h(.) is a
non-decreasing function of u over [0, 1]. Then if U is large, h(U) will also tend to be large while 1− U and
h(1− U) will tend to be small. That is, Cov(h(U), h(1− U)) < 0. We can similarly conclude that if h(.) is a
non-increasing function of u then once again, Cov(h(U), h(1− U)) < 0. So for the case where m = 1, a
sufficient condition to guarantee a variance reduction is for h(.) to be a monotonic function of u on [0, 1].

Let us now consider the more general case where m > 1, U = (U1, . . . , Um) and θ = E[h(U)]. We say
h(u1, . . . , um) is a monotonic function of each of its m arguments if, in each of its arguments, it is
non-increasing or non-decreasing. We have the following theorem which generalizes the m = 1 case above.

Theorem 1 If h(u1, . . . , um) is a monotonic function of each of its arguments on [0, 1]m, then for a set
U := (U1, . . . , Um) of IID U(0, 1) random variables

Cov(h(U), h(1−U)) < 0

where Cov(h(U), h(1−U)) := Cov(h(U1, . . . , Um), h(1− U1, . . . , 1− Um)).
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Proof See Sheldon M. Ross’s Simulation. �

Note that the theorem specifies sufficient conditions for a variance reduction, but not necessary conditions. This
means that it is still possible to obtain a variance reduction even if the conditions of the theorem are not
satisfied. For example, if h(.) is “mostly ” monotonic, then a variance reduction might be still be obtained.

3.2 Non-Uniform Antithetic Variates

So far we have only considered problems where θ = E[h(U)], for U a vector of IID U(0, 1) random variables. Of
course in practice, it is often the case that θ = E[Y ] where Y = h(X1, . . . , Xm), and where (X1, . . . , Xm) is a
vector of independent random variables. We can still use the antithetic variable method for such problems if we
can use the inverse transform method to generate the Xi’s.

To see this, suppose Fi(.) is the CDF of Xi. If Ui ∼ U(0, 1) then F−1i (Ui) has the same distribution as Xi.
This implies that we can generate a sample of Y by generating U1, . . . , Um ∼ IID U(0, 1) and setting

Z = h
(
F−11 (U1), . . . , F−1m (Um)

)
.

Since the CDF of any random variable is non-decreasing, it follows that the inverse CDFs, F−1i (.), are also
non-decreasing. This means that if h(x1, . . . , xm) is a monotonic function of each of its arguments, then
h(F−11 (U1), . . . , F−1m (Um)) is also a monotonic function of the Ui’s. Theorem 1 therefore applies.

Antithetic variables are often very useful when studying queueing systems and we briefly describe why by
revisiting Example 3.

Example 5 (The Barbershop Revisited)
Consider again our barbershop example and suppose that the barber now wants to estimate the average total
waiting time, θ, of the first 100 customers. Then θ = E[Y ] where

Y =

100∑
j=1

Wj

and where Wj is the waiting time of the jth customer. Now for each customer, j, there is an inter-arrival time,
Ij , which is the time between the (j− 1)th and jth arrivals. There is also a service time, Sj , which is the amount
of time the barber spends cutting the jth customer’s hair. It is therefore the case that Y may be written as

Y = h(I1, . . . , I100, S1, . . . , S100)

for some function, h(.). Now for many queueing systems, h(.) will be a monotonic function of its arguments
since we would typically expect Y to increase as service times increase, and decrease as inter-arrival times
increase. As a result, it might be advantageous to use antithetic variates to estimate θ. (We are implicitly
assuming here that the Ij ’s and Sj ’s can be generated using the inverse transform method.)

3.3 Normal Antithetic Variates

We can also generate antithetic normal random variates without using the inverse transform technique. For if
X ∼ N(µ, σ2) then X̃ ∼ N(µ, σ2) also, where X̃ := 2µ−X. Clearly X and X̃ are negatively correlated. So if
θ = E[h(X1, . . . , Xm)] where the Xi’s are IID N(µ, σ2) and h(.) is monotonic in its arguments, then we can
again achieve a variance reduction by using antithetic variates.

Example 6 (Normal Antithetic Variates)
Suppose we want to estimate θ = E[X2] where X ∼ N(2, 1). Then it is easy to see that θ = 5, but we can also
estimate it using antithetic variates. We have the following questions:

1. Is a variance reduction guaranteed? Why or why not?

2. What would you expect if Z ∼ N(10, 1)?
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3. What would you expect if Z ∼ N(0.5, 1)?

Example 7 (Estimating the Price of a Knock-In Option)
Suppose we wish to price a knock-in option where the payoff is given by

h(ST ) = max(0, ST −K)I{ST>B}

where B is some fixed constant. We assume that r is the risk-free interest rate, St ∼ GBM(r, σ2) under the
risk-neutral measure, Q, and that S0 is the initial stock price. Then the option price may be written as

C0 = EQ0 [e−rT max(0, ST −K)I{ST>B}]

so we can estimate it using simulation. Since we can write ST = S0e
(r−σ2/2)T+σ

√
TX where X ∼ N(0, 1) we

can use antithetic variates to estimate C0. Are we sure to get a variance reduction?

Example 8 We can also use antithetic variates to price Asian options. In this case, however, we need to be a
little careful generating the stock prices if we are to achieve a variance reduction. You might want to think
about this yourself.

It’s worth emphasizing at this point that in general, the variance reduction that can be achieved through the use
of antithetic variates is rarely (if ever!) dramatic. Other methods are capable of much greater variance reduction
in practice.

4 Conditional Monte Carlo

We now consider the conditional Monte Carlo variance reduction technique. The idea here is very simple. As
was the case with control variates, we use our knowledge about the system being studied to reduce the variance
of our estimator. As usual, we wish to estimate θ = E[h(X)] where X = (X1, . . . , Xm). If we could compute θ
analytically, then this would be equivalent to solving an m-dimensional integral. However, maybe it is possible
to evaluate part of the integral analytically. If so, then we might be able to use simulation to estimate the other
part and thereby obtain a variance reduction. In order to explore these ideas we must first review conditional
expectations and variances.

Conditional Expectations and Variances

Let X and Z be random vectors, and let Y = h(X) be a random variable. Suppose we set

V = E[Y |Z].

Then V is itself a random variable that depends on Z, so we may write V = g(Z) for some function, g(·). We
also know that

E[V ] = E[E[Y |Z]] = E[Y ]

so if we are trying to estimate θ = E[Y ], one possibility would be to simulate V instead of simulating Y . In
order to decide which would be a better estimator of θ, it is necessary to compare the variances of Y and
V = E[Y |Z]. To do this, recall the conditional variance formula:

Var(Y ) = E[Var(Y |Z)] + Var(E[Y |Z]). (5)

Now Var(Y |Z) is also a random variable that depends on Z, and since a variance is always non-negative, it
must follow that E[Var(Y |Z)] ≥ 0. But then (5) implies

Var(Y ) ≥ Var(E[Y |Z]) = Var(V )
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so we can conclude that V is a better1 estimator of θ than Y . To see this from another perspective, suppose
that to estimate θ we first have to simulate Z and then simulate Y given Z. If we can compute E[Y |Z] exactly,
then we can eliminate the additional noise that comes from simulating Y given Z, thereby obtaining a variance
reduction. Finally, we point out that in order for the conditional expectation method to be worthwhile, it must
be the case that Y and Z are dependent.

Exercise 2 Why must Y and Z be dependent for the conditional Monte Carlo method to be worthwhile?

4.1 The Conditional Monte Carlo Simulation Algorithm

Summarizing the previous discussion, we want to estimate θ := E[h(X)] = E[Y ] using conditional Monte Carlo.
To do so, we must have another variable or vector, Z, that satisfies the following requirements:

1. Z can be easily simulated

2. V := g(Z) := E[Y |Z] can be computed exactly.

This means that we can simulate a value of V by first simulating a value of Z and then setting2

V = g(Z) = E[Y |Z]. We therefore have the following algorithm for estimating θ.

Conditional Monte Carlo Algorithm for Estimating θ

for i = 1 to n

generate Zi
compute g(Zi) = E[Y |Zi]
set Vi = g(Zi)

end for
set θ̂n,cm = V n =

∑n
i=1 Vi/n

set σ̂2
n,cm =

∑n
i=1(Vi − V n)2/(n− 1)

set approx. 100(1− α) % CI = θ̂n,cm ± z1−α/2
σ̂n,cm√

n

It is also possible that other variance reduction methods could be used in conjunction with conditioning. For
example, it might be possible to use control variates, or if g(.) is a monotonic function of its arguments, then
antithetic variates might be useful.

Example 9 Suppose we wish to estimate θ := P(U + Z > 4) where U ∼ Exp(1) and Z ∼ Exp(1/2). If we set
Y := I{U+Z>4} then we see that θ = E[Y ]. Then the usual simulation method is:

1. Generate U1, . . . , Un, Z1, . . . , Zn all independent

2. Set Yi = I{Ui+Zi>4} for i = 1, . . . , n

3. Set θ̂n =
∑n
i=1 Yi/n

4. Compute approximate CI’s as usual .

1This assumes that the work required to generate V is not too much greater than the work required to generate Y . See the
discussion in Section 1.

2It may also be possible to identify the distribution of V = g(Z), so that we could then simulate V directly.
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However, we can also use the conditioning method, which works as follows. Set V = E[Y |Z]. Then

E[Y |Z = z] = P(U + Z > 4|Z = z) = P(U > 4− z) = 1− Fu(4− z)

where Fu(.) is the CDF of U which we know is Exp(1). Therefore

1− Fu(4− z) =

{
e−(4−z) if 0 ≤ z ≤ 4,
1 if z > 4.

which implies

V = E[Y |Z] =

{
e−(4−Z) if 0 ≤ Z ≤ 4,
1 if Z > 4.

Now the conditional Monte Carlo algorithm for estimating θ = E[V ] is:

1. Generate Z1, . . . , Zn all independent

2. Set Vi = E[Y |Zi] for i = 1, . . . , n

3. Set θ̂n,cm =
∑n
i=1 Vi/n

4. Compute approximate CI’s as usual using the Vi’s.

Note that we might also want to use other variance reduction methods in conjunction with conditioning when
we are finding θ̂n,cm.

Before proceed with another example, we first recall the Black-Scholes formula for the price of a European call
option on a non-dividend paying stock with time t price, St. Let r be the risk-free interest rate and suppose
St ∼ GBM(r, σ2) under the risk-neutral measure, Q. Then the price, C0, of a call option with strike K and
expiration T is given by

C0 = EQ0 [e−rT max(0, ST −K)]

= S0Φ(d1)−Ke−rTΦ(d2)

where Φ(.) is the CDF of a standard normal random variable and

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T .

We will also need the following definition for Example 10 below.

Definition 1 Let c(x, t,K, r, σ) be the Black-Scholes price of a European call option when the current stock
price is x, the time to maturity is t, the strike is K, the risk-free interest rate is r and the volatility is σ.

Example 10 (Pricing a Barrier Option)
Suppose we want to find the price of a European option that has payoff at expiration given by

h(X) =

{
max(0, ST −K1) if ST/2 ≤ L,
max(0, ST −K2) otherwise.

where X = (ST/2, ST ). We can write the price of the option as

C0 = EQ0
[
e−rT

(
max(0, ST −K1)I{ST/2≤L} + max(0, ST −K2)I{ST/2>L}

)]
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where as usual, we assume that St ∼ GBM(r, σ2).

Question 1: How would you estimate the price of this option using simulation and only one normal random
variable per sample payoff?

Question 2: Could you use antithetic variates as well? Would they be guaranteed to produce a variance
reduction?

Exercise 3 (Estimating Credit Risk; from Asmussen and Glynn’s Stochastic Simulation)
A bank has a portfolio of N = 100 loans to N companies and wants to evaluate its credit risk. Given that
company n defaults, the loss for the bank is a N(µ, σ2) random variable Xn where µ = 3, σ2 = 1. Defaults are
dependent and described by indicators D1, . . . , DN and a background random variable P (measuring, say,
general economic conditions), such that D1, . . . , DN are IID Bernouilli(p) given P = p, and P has a Beta(1, 19)
distribution, that is, density (1− p)18/19, 0 < p < 1.

Estimate P (L > x), where L =
∑N
n=1DnXn is the loss, using both crude Monte Carlo and conditional Monte

Carlo, where the conditioning is on
∑N
n=1Dn. For x, take

x = 3E[L] = 3N E[P ]E[X] = 3 · 100 · 0.05 · 3 = 45.


