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Abstract

Partially observed Markov decision processes (POMDPs) are an important class of control problems
that are ubiquitous in a wide range of fields. Unfortunately these problems are generally intractable
and so in general we must be satisfied with sub-optimal policies. But how do we evaluate the quality
of these policies? This question has been addressed in recent years in the Markov decision process
(MDP) literature through the use of information relaxation based duality where the non-anticipativity
constraints are relaxed but a penalty is imposed for violations of these constraints. In this paper we
extend the information relaxation approach to POMDPs. It is of course well known that the belief-state
formulation of a POMDP is an MDP and so the previously developed results for MDPs also apply to
POMDPs. Under the belief-state formulation, we use recently developed change-of-measure arguments
to solve the so-called inner problems and we use standard filtering arguments to identify the appropriate
Radon-Nikodym derivatives. We also show, however, that dual bounds can also be constructed without
resorting to the belief-state formulation. In this case, change-of-measure arguments are required for
the evaluation of so-called dual feasible penalties rather than for the solution of the inner problems.
We compare dual bounds for both formulations and argue that in general the belief-state formulation
provides tighter bounds. The second main contribution of this paper is to show that several value
function approximations for POMDPs are in fact supersolutions. This is of interest because it can be
particularly advantageous to construct penalties from supersolutions since absolute continuity (of the
change-of-measure) is no longer required and so significant variance reduction can be achieved when
estimating the duality gap directly. Dual bounds constructed from supersolution based penalties are also
guaranteed to provide tighter bounds than the bounds provided by the supersolutions themselves. We
use applications from robotic navigation and telecommunication to demonstrate our results.
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1. Introduction

Partially observed Markov decision processes (POMDPs) are an important class of control problems with

wide-ranging applications in fields as diverse as engineering, machine learning and economics. The resulting

problems are often very difficult to solve, however, due to the so-called curse of dimensionality. In general

then, these problems are intractable and so we must make do with constructing sub-optimal policies that

are (hopefully) close to optimal. But how can we evaluate a given sub-optimal policy? We can of course

simulate it many times and obtain a primal bound, i.e. a lower (upper) bound in the case of a maximization

(minimization) problem, on the true optimal value function. But absent a dual bound, i.e. an upper (lower)

bound, there is no easy way in general to conclude that the policy is close to optimal.

In the case of Markov decision processes (MDPs), we can construct such dual bounds using the information

relaxation approach that was developed independently by Brown, Smith and Sun [10] (hereafter BSS) and

Rogers [32]. The information relaxation approach proceeds in two steps: (i) relax the non-anticipativity

constraints that any feasible policy must satisfy and (ii) include a penalty that punishes violations of these

constraints. In a finite horizon setting BSS showed how to construct a general class of dual feasible penalties

and proved versions of weak and strong duality. In particular, they showed that if the dual feasible penalties

were constructed using the optimal value function, then the resulting dual bound would be tight, i.e. it

would equal the optimal value function. In practice of course, the optimal value function is unknown but

the strong duality result suggests that a penalty constructed from a good approximate value function (AVF)

should lead to a good dual bound. If a good primal bound is also available, e.g. possibly by simulating the

policy that is greedy with respect to the AVF, then the primal and dual bounds will be close and therefore

yield a “certificate” of near-optimality for the policy.

The main goal of this work is to extend the information relaxation approach to POMDPs. It is well

known of course that POMDPs can be formulated as MDPs by working with the belief-state formulation

of the POMDP and so the results established for MDPs therefore also apply to POMDPs. Under the

belief-state formulation, we use the recently developed change-of-measure arguments of Brown and Haugh

[8] (hereafter BH) to solve the so-called inner problems and we use standard filtering arguments to identify

the appropriate Radon-Nikodym derivatives. We also show that information relaxation bounds can also

be constructed without resorting to the belief-state formulation of the POMDP. In particular, we can still

construct these bounds if we work with the non-belief-state formulation of the POMDP, i.e. with the explicit

dynamics for the hidden state transitions and observations. If we work with the non-belief-state formulation,

however, then the evaluation of so-called dual feasible penalties requires the evaluation of expectations that

in general are not available explicitly and are strongly action-dependent. Indeed we need to be able to

calculate these expectations efficiently for all possible action histories at each time point on each of the

simulated inner problems (see (21)). We show that this obstacle can be overcome by again using a change-

of-measure argument that limits dramatically the number of expectations that must be computed. The

expectations that are required can then be computed using standard filtering techniques and so we can

proceed to compute the corresponding dual bounds in the usual manner.

Regardless then of the formulation of the POMDP that we choose to work with, we can use change-of-

measure arguments to ensure that dual bounds can be computed efficiently. It is perhaps worth emphasizing,

however, that the motivation for using a change-of-measure depends on the POMDP formulation that we

work with. With the belief-state formulation evaluating the dual penalties is easy but solving the inner
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problems is hard. In contrast, when we work with the explicit dynamics for the hidden state transitions and

observations, then evaluating the dual penalties is hard but solving the inner problems is easy.

We compare the perfect-information (PI) relaxation bounds that arise from the belief-state and non-belief-

state formulation of the POMDP. We argue that the two bounds will be identical under the same absolutely

continuous change-of-measure. In practice, however, we never use the same change-of-measure for the PI and

BSPI bounds although they will be closely related. In particular, when calculating the belief-state bound

we can use a filtered version of the change-of-measure that we used for the non-belief-state formulation. In

that case we argue that the resulting information relaxation bound for the belief-state formulation should

be tighter than the information relaxation bound for the non-belief-state formulation.

The second main contribution of this paper is to show that several standard value function approximations

for POMDPs are in fact supersolutions. Supersolutions are feasible solutions for the linear programming

formulation of an MDP and are therefore upper bounds (in the case of a maximization problem) on the

unknown optimal value function. Desai, Farias and Moallemi [15] and BH showed information relaxation

bounds constructed from supersolution based penalties are also guaranteed to provide tighter bounds than

the bounds provided by the supersolutions themselves. A further advantage of constructing penalties from

supersolutions is that absolute continuity (of the change-of-measure) is no longer required and so significant

variance reduction can be achieved when estimating the duality gap directly. These advantages were identified

by BH although perhaps not emphasized sufficiently. We therefore believe that the information relaxation

approach is particularly valuable in the context of POMDPs. One of the standard AVFs we consider is the

so-called fast informed bound update AVF [21]. We extend this approach in a natural way to construct what

we call the Lag-2 AVF. We show the Lag-2 AVF is a supersolution and prove that it is a tighter upper bound

than that provided by the fast informed bound update AVF.

We demonstrate our results in applications from robotic navigation and telecommunications. The robotic

navigation application requires controlling the movements of a robot in a maze with the goal of reaching

a desired state within a finite number of time-steps. Our telecommunications application concerns packet

transmissions in a multi-access communication setting that uses the slotted aloha protocol. In both cases

we use the aforementioned supersolutions to construct penalties for the dual bounds. We also use them to

construct primal bounds by simulating the policies that are greedy with respect to them. We demonstrate the

bound improvement results of BH and also show that tight duality gaps can be achieved in these applications.

In particular, the duality gap can be as much as 85% smaller than the gap given by the primal bound and the

corresponding supersolution. (This reduction in duality gap under-estimates the upper bound improvement

since the duality gap includes the gap from the primal lower bound to the unknown optimal value function.)

In our robotic navigation application, for example, we will see that the tightest duality gap, i.e. the gap

between our best lower bound and our best information relaxation-based upper bound, is obtained using the

Lag-2 AVF. Moreover, the duality gap is so small that we could argue that we have essentially succeeded in

solving the problem.

A further contribution of this work is the implication that the information relaxation approach can be

extended to other non-Markovian settings beyond POMDPs. The basic underlying probability structure of

a POMDP is a (controlled) hidden Markov model (HMM) where the filtered probability distributions that

we need can be computed efficiently. It should be clear from this work that other structures, specifically

controlled hidden singly-connected graphical models, would also be amenable to the information relaxation

approach since filtered probability distributions for these models can also be computed very quickly. More
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generally, it should be possible to tackle control problems where the controlled hidden states form a multiply-

connected graphical model as is often the case with influence diagrams in the decision sciences literature. In

this latter case, we suspect that the non-belief-state formulation is the more natural approach to take.

1.1. Literature Review and Paper Outline

The work of BSS and [32] follows earlier work by [18] and [31] on the pricing of high-dimensional American

options. Other related work on American option pricing includes [14] and [2]. The pricing of swing options

with multiple exercise opportunities is an important problem in energy markets and the information relax-

ation approach was soon extended to this problem via the work of [29], [33], [1], [5] and [13] among others.

BSS were the the first to extend the information relaxation approach to general MDPs and demonstrate

the tractability of the approach on large-scale problems. Other notable developments include work by [11]

and [9] on the structure of dual feasible penalties, extensions by BH and [35] to infinite horizon settings,

the bound improvement guarantees of BH who also use change-of-measure arguments (building in part on

Rogers [32]) to solve intractable inner problems. The approach has also been extended to continuous-time

stochastic control by [34], and dynamic zero sum-games by [20] and [6]. Recently [4] and [3] have shown how

information relaxations can be used to construct analytical bounds on the suboptimality of heuristic policies

for problems including the stochastic knapsack and scheduling.

The information relaxation methodology has now become well established in the operations research

and quantitative finance community with applications in revenue management, inventory control, portfolio

optimization, multi-class queuing control among others. Other interesting applications and developments

include [27], [15], [24], [17], [19], [16] and [36].

Finally, we note that POMDPs are a well-established and important class of problems and doing justice

to the enormous literature on POMDPs is beyond the scope of this paper. Instead we refer the interested

reader to the recent text [26] for a detailed introduction to the topic as well as an extensive list of references.

The remainder of this paper is organized as follows. In Section 2 we formulate our discrete-time, discrete-

state POMDP and also discuss its belief-state formulation there. In Section 3 we review information relax-

ations and the change-of-measure approach of BH for solving the difficult inner problems that arise in the

belief-state formulation of POMDPs. In Section 4 we consider information relaxations for the non-belief-

state formulation and then compare information relaxation bounds from the belief-state and non-belief state

formulations in Section 5. We construct several standard value function approximations for POMDPs in

Section 6. We also introduce our Lag-2 AVF there and prove that all of these AVFs are in fact supersolu-

tions. We describe our applications to robotic navigation and multiaccess communication in Sections 7 and

8, respectively. We conclude in Section 9. Derivations, proofs and various technical details including how to

extend our approach to the infinite horizon setting are relegated to the appendices.

2. Discrete-Time POMDPs

We begin with the standard POMDP formulation where we explicitly model the hidden state transitions and

observations. We consider a discrete-time setting with a finite horizon T and time indexed by t ∈ {0,1, . . . , T}.

At each time t there is a hidden state, ht ∈ H, as well as a noisy observation, ot ∈ O, of ht. After observing ot

at time t > 0, the decision maker (DM) chooses an action at ∈ A. We also assume a known prior distribution,

π0, on the initial hidden state, h0, and the initial action a0 is based on π0. For ease of exposition we assume
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that H, O and A are all finite. It is standard to describe the dynamics1 for t = 1, . . . , T via the following:

� A ∣H∣ × ∣H∣ matrix, P (a), of transition probabilities for each action a ∈ A with

Pij(a) ∶= P(ht = j ∣ ht−1 = i, at−1 = a), i, j ∈ H. (1)

� A ∣H∣ × ∣O∣ matrix, B(a), of observation probabilities for each action a ∈ A with

Bij(a) ∶= P(ot = j ∣ ht = i, at−1 = a), i ∈ H, j ∈ O. (2)

Our POMDP formulation is therefore time-homogeneous but there is no difficulty extending our results to

the time-inhomogeneous setting where P and B may also depend on t. Rather than always using (1) and

(2), however, we will sometimes find it more convenient to use the following alternative, but equivalent,

dynamics. In particular, we assume the hidden state and observation dynamics satisfy

ht+1 = fh(ht, at,wt+1), (3)

ot+1 = fo(ht+1, at, vt+1) (4)

for t = 0,1, . . . , T − 1 and where the vt’s and wt’s are IID U(0,1) random variables for t = 1, . . . , T . We

can interpret the vt’s and wt’s as being the IID uniform random variables that are required by the inverse

transform approach to generate the state transitions and observations of (1) and (2), respectively. At each

time t, we assume the DM obtains a reward, rt(ht, at), which is a function of the hidden state, ht, and the

action, at. As rewards depend directly on hidden states, but not the observations, the DM does not have

perfect knowledge of the rewards obtained. We will assume, however, that the final observation satisfies

oT = hT so that rT (hT ) = rT (oT ). This is without loss of generality since the DM cannot act at time T and

so there is no benefit to receiving any information at time T .

A policy µ = (µ0, µ1, . . . , µT ) is non-anticipative if it only depends on past and current observations (as

well as on the initial distribution, π0, over h0). For such a policy we can therefore write the time t action at

as at = µt(o1∶t) where o1∶t ∶= (o1, . . . , ot) and where we have omitted the implicit dependence on π0. We define

a filtration F = (F0, . . . ,FT ) to be the filtration generated by the observations so that Ft is the σ-algebra

generated by o1∶t. A non-anticipative policy is therefore F-adapted. We also define F ∶= FT . We denote the

class of all non-anticipative policies by UF. The objective of the DM is to find an F-adapted policy, µ∗, that

maximizes the expected total reward. The POMDP problem is therefore to solve for

V ∗
0 (π0) = max

µ∈UF
E{

T

∑
t=0
rt(ht, µt) ∣F0} (5)

and where we acknowledge2 a slight abuse of notation in (5) since there is no time T action µT .

1It may be the case that an initial observation, o0, is also available and this presents no difficulty as long as its distribution
conditional on h0 is known.

2This abuse is also found elsewhere in this article but we can resolve it by simply assuming the existence of a dummy action
at time T which has no impact on the time T reward.
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2.1. The Belief State Formulation of the POMDP

Rather than use the hidden state and observation dynamics of (3) and (4), we can instead define the POMDP

state dynamics in terms of the belief state process, πt, which lies in the ∣H∣-dimensional simplex. Specifically

we can equivalently write the POMDP dynamics as

πt+1 = fπ(πt, at, ut+1), t = 0,1, . . . , T − 1 (6)

where the ut’s are IID U(0,1) random variables and fπ is the state transition function which is only defined

implicitly via the filtering3 algorithm. We now define the filtration F
π

= (F
π

0 , . . . ,F
π

T ) where F
π

t is the

σ-algebra generated by π0∶t. We note that the filtrations F and F
π

are not identical although they are of

course related. We can also write the time t reward as a function of the belief state by setting4 r(πt, at) ∶=

E[r(ht, at) ∣ F
π

t ]. The analog of (5) under the belief-state formulation is then

V ∗
0 (π0) = max

µ∈UFπ
E{

T

∑
t=0
rt(πt, µt) ∣F

π

0 } (7)

where we use UFπ to denote the class of F
π

-adapted policies. The advantage of formulating the POMDP via

the belief-state is that the problem becomes an MDP albeit a potentially high-dimensional one.

3. A Review of Information Relaxations

We now briefly describe the information relaxation approach for obtaining dual bounds. Because this theory

has been developed for MDPs, we will focus on the belief-state formulation of (7). Solving (7) is generally

an intractable problem so the best we can hope for is to construct a good sub-optimal policy. In order to

evaluate the quality of such a policy, however, we need to know how far its value is from the (unknown)

optimal value function, V ∗
0 (π0). If we could somehow bound V ∗

0 (π0) with a lower bound, V lower

0 , and an

upper bound, V upper

0 , satisfying V lower

0 ≤ V ∗
0 (π0) ≤ V

upper

0 with V lower

0 ≈ V upper

0 then we can answer this question

by simulating the policy in question and comparing its value to V upper

0 . In practice, we take V lower

0 to be the

value of our best F
π

-adapted policy which can typically be estimated to any required accuracy via Monte-

Carlo. The goal then is to construct V upper

0 and if it is sufficiently close to V lower

0 then we have a “certificate”

of near-optimality for the policy in question.

Towards this end we will use the concept of information relaxations and our development will follow

that of BSS which can be consulted for additional details and proofs. An information relaxation G
π

of the

filtration F
π

is a filtration G
π

= (G
π

0 ,G
π

1 , . . . ,G
π

T ), where F
π

t ⊆ G
π

t for each t. We denote by UGπ the set

of G
π

-adapted policies. Then, UFπ ⊆ UGπ . Note that a G
π

-adapted policy is generally not feasible for the

original primal problem in (7) as such a policy can take advantage of information that is not available to an

F
π

-adapted policy.

Before proceeding we also need the concept of dual penalties. Penalties, like rewards, depend on states

3The filtering algorithm takes πt, at and ot+1 (which is a function of πt, at and ut+1) as inputs and outputs πt+1. It
might therefore seem more natural to write πt+1 = fπ(πt, at, ot+1) in (6) but the information relaxation approach requires the
uncertainty to be exogenous, e.g. via a sequence of IID U(0,1) random variables ut, rather than endogenous which would be the
case if we took the ot’s to be the basic source of uncertainty. There is no loss of generality in working with the ut’s, however,
since we can then generate each ot+1 from ut+1 (given πt and at) via the inverse transform approach.

4Indeed, when simulating a policy to compute a primal bound using the original POMDP formulation of Section 2, we can
use rt(πt, at) instead of rt(ht, at) to compute the rewards. Using rt(πt, at) instead of rt(ht, at) to estimate a primal bound
amounts to performing a conditional Monte-Carlo which is a standard variance reduction technique.
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and actions and are incurred in each period. Specifically, for each t, we define a dual penalty, ct, according

to

ct ∶= E[ϑt+1(πt+1) ∣ F
π

t ] −E[ϑt+1(πt+1) ∣ G
π

t ] (8)

where ϑt+1(πt+1) is5 a bounded real-valued function of the time t + 1 state πt+1. In practice we will take

ϑt+1(πt+1) to be an approximation to the time t+1 optimal value function, i.e. an AVF. It is straightforward

to see that E[ct ∣ F
π

t ] = 0 for all t and any F
π

-adapted policy. (In general this is not the case for a G
π

-adapted

policy.) This in turn implies E[∑
T
t=0 ct ∣ F

π

0 ] = 0 for any F
π

-adapted policy. Beginning with (7) we now obtain

V ∗
0 (π0) = max

µ∈UFπ
E [

T

∑
t=0
rt(πt, µt) ∣F

π

0 ] = max
µ∈UFπ

E [
T

∑
t=0
rt(πt, µt) + ct ∣ F

π

0 ]

≤ max
µ∈UGπ

E [
T

∑
t=0
rt(πt, µt) + ct ∣ F

π

0 ] . (9)

BSS also showed that strong duality holds. Specifically, if we could take ϑt+1(πt+1) = V ∗
t+1(πt+1), i.e. use

the (unknown) optimal value function as our generating function in (8), then we would have equality in (9).

Indeed a simple inductive proof that works backwards from time T establishes strong duality and also shows

that equality holds in (9) almost surely. That is, if we could use the optimal value function V ∗
t to construct

the dual penalties then the optimal value of the expression inside the expectation on the r.h.s. of (9) would

equal V ∗
0 (π0) almost surely. This result has two implications when we have a good approximation, Ṽt, to

V ∗
t and we take ϑt+1(πt+1) = Ṽt+1(πt+1). First it suggests that (9) should yield a good upper bound on V ∗

0

and second, the almost sure property of the preceding paragraph suggests that relatively few sample paths

should be needed to estimate V upper

0 to any given accuracy.

We can use (9) to construct upper bounds on V ∗
0 (π0) for general information relaxations G

π

but it is

perhaps easier to understand how to do this when we use the perfect information relaxation, which is the

most common choice in applications. We will actually refer to this relaxation as the belief-state perfect

information relaxation (BSPI) as it is the perfect information relaxation for the belief-state formulation of

the problem.

3.1. The BSPI Relaxation

The BSPI information relaxation is given by the filtration Bπ ∶= (Bπ0 , . . . ,B
π
T ) where Bπ0 = Bπ1 = ⋯ = BπT ∶=

σ(u1∶T ) where the ut’s are as in (6). The DM therefore gets to observe u1∶T at time 0 under the BSPI

relaxation. Moreover, knowledge of u1∶T implies knowledge of the belief states π0∶T corresponding to all

possible action sequences, which implies that F
π

t ⊆ Bπt for all t so that Bπ is indeed a relaxation of F
π

. The

upper bound of (9) now yields

V ∗
0 (π0) ≤ E [max

a0∶T−1

T

∑
t=0
r(πt, at) + ct ∣ F

π

0 ] (10)

where ct now takes the form

ct ∶= E[ϑt+1(πt+1) ∣ F
π

t ] − ϑt+1(πt+1). (11)

5We note that dual feasible penalties are essentially action-dependent control variates, a standard variance reduction tech-
nique in the simulation literature. Recall also that πt+1 is a function of the actions a0∶t as well as exogenous noise as described
in (6).
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In principle we can evaluate the right-hand-side of (10) by simulating J sample paths, (u
(j)
1∶T ), for j = 1, . . . , J ,

and solving the deterministic maximization problem inside the expectation in (10) (the inner problem) for

each path. If we let V (j) denote the optimal value of the jth inner problem, then ∑j V
(j)/J provides an

unbiased estimator of an upper bound, V upper

0 , on the optimal value function, V ∗
0 (π0). Moreover standard

methods can be used to construct approximate confidence intervals for V upper

0 .

In the BSPI setting, however, the state space is the ∣H∣-dimensional simplex. As a result, solving the

inner problem in (10) amounts to solving a deterministic DP with a ∣H∣ − 1-dimensional state space. For all

but the smallest problems, these deterministic DPs will in generally be intractable.

3.2. The Uncontrolled Formulation

Building on ideas from Rogers [32], BH showed how this problem could be solved using a change-of-measure

approach. In particular they reformulated the primal problem of (7) using an equivalent probability measure

under which the chosen actions do not influence the state transition dynamics. Instead, the actions are

accounted for by the Radon-Nikodym (RN) derivatives which adjust for the change-of-probability measure.

BH called this an uncontrolled formulation and showed that the weak and strong duality results continued

to hold under such a formulation. In this case the analog of (10), i.e. weak duality under the uncontrolled

BSPI relaxation, is given by

V ∗
0 (π0) ≤ Ẽ [max

a0∶T−1

T

∑
t=0

Φπt [rt(πt, at) + ct] ∣F
π

0 ] (12)

where

ct ∶= E[ϑt+1(πt+1) ∣ F
π

t ] − φ(πt, πt+1, at)ϑt+1(πt+1) (13)

Φπt (π0∶t, a0∶t−1) ∶=
t−1
∏
s=0

φ(πs, πs+1, as) (14)

and where Ẽ[⋅] denotes an expectation under the new probability6 measure, P̃. In general, the measure P is

required to be absolutely continuous with respect to P̃ but we will see later why we do not need to impose

this due to our choice of ϑt’s. The φ(πt, πt+1, at) terms in (13) and (14) are one-step RN derivative terms

and they will take the form

φ(π,π′, a) ∶=
∑i,j,k π(i)Pij(a)Bjk(a)1{π′=f(π,a,k)}
∑i,j,k π(i)QijEjk1{π′=f̃(π,k)}

(15)

where:

� Qij and Ejk are action-independent transition and emission matrices, respectively. Specifically, we

define a ∣H∣ × ∣H∣ matrix, Q, of transition probabilities, with

Qij ∶= P(ht = j ∣ ht−1 = i), i, j ∈ H (16)

6Throughout the paper we will use P to denote the probability measure for the original controlled POMDP formulation
such as (6) or (3) and (4). We will use P̃ to denote the probability measure for any uncontrolled POMDP formulation. The
particular controlled or uncontrolled formulation should be clear from the context.
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and a ∣H∣ × ∣O∣ matrix, E, of observation probabilities with

Eij ∶= P(ot = j ∣ ht = i), i ∈ H, j ∈ O. (17)

The change-of-measure P̃ is determined by these matrices.

� f(π, a, k) lies in the ∣H∣-dimensional simplex and is the new filtered belief-state that results under

P from taking action a and observing k when the current belief-state is π. Specifically, if we use

f(j;π, a, k) to denote the jth component of f(π, a, k) then

f(j;π, a, k) =
∑i π(i)Pij(a)Bjk(a)

∑i,l π(i)Pil(a)Blk(a)
. (18)

� f̃(π, k) lies in the ∣H∣-dimensional simplex and is the new filtered belief-state that results under P̃

after observing k when the current belief-state is π. Specifically, if we use f̃(j;π, k) to denote the jth

component of f̃(π, k) then

f̃(j;π;k) =
∑i π(i)QijEjk

∑i,l π(i)QilElk
. (19)

Note that both Q and E are action independent and in general they will depend on time t so we often write

Qtij ,E
t
ij , ft(π, a, k), f̃t(j;π;k), φt, etc. Further details are provided and justified in Appendix A.2.

Using an uncontrolled formulation results in a dramatic reduction of the state space that needs to be

considered in solving the inner problem in (12). In particular, when we solve the inner problem as a

deterministic dynamic program, we do not need to solve this DP for all possible states πt in the ∣H∣-

dimensional simplex. This is because the sequence of states π0, . . . , πT is fixed inside the inner problem of

(12) due to the uncontrolled nature of the formulation where the history of actions does not influence the

state transition dynamics. As such, the deterministic DP that solves the inner problem only needs to be

solved along the state path π0, . . . , πT . Of course this state path will vary across inner problem instances.

The deterministic DP that is the inner problem in (12) can be solved recursively according to

V Bπ
t = max

a
{rt(πt, a) + ct + φ(πt, πt+1, a)V Bπ

t+1} (20)

for t = 0, . . . , T − 1 where ct is given by (13) and π0∶T is the sequence of belief states that were generated for

that specific inner problem. We also have the terminal condition V Bπ
T = rT (hT ) since hT is assumed to be

observed at time T and since cT = 0 as each ϑT+1 can be assumed to be identically zero.

4. Information Relaxations for the Non-Belief-State Formulation

Until now we have followed the approach of BSS and BH to outline how information relaxation dual bounds

can be computed for POMDPs using the belief-state (and hence MDP) formulation of these problems. In

this section we will show that information relaxation bounds for POMDPs can also be obtained using the

non-belief-state formulation of the problem as described in the first part of Section 2. This leads to a very

different form of inner problem which in principle is much simpler to solve. We will still need to use an
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uncontrolled formulation, however, in order to evaluate the dual penalties. This is in contrast to the inner

problems of the BSPI relaxation where, as discussed in Section 3.2, an uncontrolled formulation was required

to reduce the effective dimension of the inner problem.

In Section 5 we will argue that the information relaxation bounds provided by a certain version of the

non-belief state formulation of this section will coincide with the corresponding bounds provided by the

belief-state formulation of Section 3.2. This will no longer hold, however, when different changes-of-measure

are used to construct the two bounds and (for the measure changes we propose), we will generally expect

the BSPI approach to yield tighter bounds than the PI approach. Nonetheless, we believe the non-belief

state formulation (and the resulting PI relaxation) may be potentially useful for other non-Markovian control

problems where a belief-state formulation doesn’t arise as naturally as it does in the case of POMDPs. Influ-

ence diagrams, for example, is one such class of problems. See [23] or Chapter 23 of [25] for an introduction

to influence diagrams.

4.1. The Perfect Information Relaxation

We now assume that the POMDP is formulated using the hidden state and observation dynamics of (3) and

(4). We recall that the filtration F = (F0, . . . ,FT ) is the filtration generated by the observations so that Ft is

the σ-algebra generated by o1∶t and π0. The perfect information (PI) relaxation corresponds to the filtration

I = (I0,I1, . . . ,IT ), with It = σ(h0,w1∶T , v1∶T ) for all t. In particular, the DM gets to observe all of the wt’s,

vt’s and h0 at time 0 under I. It is worth noting that knowledge of the wt’s, vt’s and h0 implies knowledge

of the observations o1∶T corresponding to all possible action sequences. It therefore follows that Ft ⊆ It for

all t so that I is indeed a relaxation of F. Under the PI relaxation, the equivalent of (10), i.e. weak duality

for the non-belief-state formulation, corresponds to

V ∗
0 (π0) ≤ E [max

a0∶T−1

T

∑
t=0
rt(ht, at) + ct ∣ F0] (21)

where the ct’s now take the form

ct ∶= E[ϑt+1(o1∶t+1) ∣ Ft] − ϑt+1(o1∶t+1). (22)

We note that the same ϑt+1’s that we use in (11) can also be used in (22). This follows because πt+1 is in

fact a function of o1∶t+1 and so it is perfectly fine to write ϑt+1(o1∶t+1) instead of ϑt+1(πt+1).

In principle we can again compute an unbiased estimate of the right-hand-side of (21) by first simulating

J sample paths, (h
(j)
0 ,w

(j)
1∶T , v

(j)
1∶T ), for j = 1, . . . , J . We solve the inner problem inside the expectation in (21)

for each such path and then average the corresponding optimal objective functions.

4.2. Solving the Inner Problem in (21)

We would therefore like to use the PI relaxation to construct an upper bound on V ∗
0 by solving the inner

problem in (21) as a deterministic dynamic program. The main obstacle we will encounter under the PI

relaxation, however, is computing the ct’s as defined in (22). We can see this most clearly if we consider the

zero-penalty case where we set ϑt+1 ≡ 0. In that case ct ≡ 0 for all t and the inner problem in (21) is a simple

deterministic DP with just ∣H∣ states. In contrast, when ct ≡ 0 in (10), we see that the inner problem in (10)

is still a deterministic DP but now the state space lies in the ∣H∣-dimensional simplex. The inner problems in
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(10) for the BSPI relaxation are therefore in principle considerably more challenging than the inner problems

in (21) and this is why the uncontrolled formulation of (12) was required for the BSPI relaxation.

Unfortunately, if we want to use a non-zero ϑt+1 (as is typically the case), then evaluating the term

E[ϑt+1(o1∶t+1) ∣ Ft] in (22) is challenging. With the PI relaxation of the non-belief-state formulation of (3) and

(4), however, this is not possible because the probability distribution required to compute E[ϑt+1(o1∶t+1) ∣ Ft]

depends on the entire history of actions, a0∶t, up to time t. Moreover, this probability distribution is not

available explicitly and must be calculated via a filtering algorithm. This means that in solving the inner

problem in (21) as a deterministic dynamic program, we would need to compute E[ϑt+1(o1∶t+1) ∣ Ft] at each

time t for all possible action histories, a0∶t. In fact this is also true for the second term in (22), ϑt+1(o1∶t+1).

Evaluating the penalties ct for all possible action histories is therefore clearly impractical for any realistic

application. Once again, however, we can use an uncontrolled formulation to resolve this problem.

Before proceeding to the uncontrolled formulation, however, it is worth emphasizing why the calculation

of these penalty terms is straightforward for the BSPI relaxation. Consider the term E[ϑt+1(πt+1) ∣ F
π

t ]

that arises in the calculation of the penalty in (11) in the case of the BSPI relaxation. Because we are

conditioning on F
π

t the calculation of E[ϑt+1(πt+1) ∣ F
π

t ] depends on πt (which is known given F
π

t ) and the

time t action at. In particular, it does not depend on the action history a0∶t−1 which is in contrast to the term

E[ϑt+1(o1∶t+1) ∣ Ft] that arises in the PI penalty of (22). Therefore under the BSPI relaxation the penalties

are easy to calculate for any state πt. Of course, what is really happening here is that the complexity of

evaluating penalties for the inner problems of the PI relaxation is transferred to the complexity of working

with a much higher dimensional state-space when solving inner problems for the BSPI relaxation. Either

way then, we must use an uncontrolled formulation.

4.3. The Uncontrolled Formulation

In order to define an action-independent change-of-probability-measure, we simply define a hidden Markov

model (HMM) on the same hidden state and observation spaces as our POMDP. Specifically, we simply

define action-independent transition and emission matrices Q and E as in (16) and (17), respectively. In

general Q and E will depend on time t in which case we might prefer to write Qtij and Etij , and7 we will also

require them to satisfy the following absolute continuity conditions:

(i) Qij > 0 for any i, j ∈ H for which there exists an action a ∈ A such that Pij(a) > 0

(ii) Eij > 0 for any i ∈ H and j ∈ O for which there exists an action a ∈ A such that Bij(a) > 0.

A trivial way to ensure these conditions is to have Qij > 0 and Eik > 0 for all i, j ∈ H and k ∈ O. As mentioned

earlier, we let P̃ denote the probability measure induced by Q and E with Ẽ denoting expectations under

P̃. We now proceed by reformulating our POMDP under P̃ and adjusting rewards (and penalties) with

appropriate Radon-Nikodym (RN) derivatives. In Appendix A.1 we show that these RN derivatives are of

7We will see later in Section 6.2 that we can ignore these absolutely continuity conditions when we take the ϑt’s to be
supersolutions. This also applies to the P̃ discussed in Section 3.2 for the belief-state formulation. Indeed this is the approach
we will take for the numerical experiments of Sections 7 and 8.
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the form dP/dP̃ = ΦT (h0∶T , o1∶T , a0∶T−1) with

φ(i, j, k, a) ∶=
Pij(a)

Qij
⋅
Bjk(a)

Ejk
(23)

Φt(h0∶t, o1∶t, a0∶t−1) ∶=
t−1
∏
s=0

φ(hs, hs+1, os+1, as). (24)

It is then straightforward to see that

V ∗
0 (π0) = max

µ∈UF
E [

T

∑
t=0
rt(ht, µt) ∣F0] = max

µ∈UF
Ẽ [

T

∑
t=0

Φtrt(ht, µt) ∣F0] . (25)

We refer to (25) as an uncontrolled formulation of the non-belief-state POMDP formulation. The “uncon-

trolled” terminology reflects the fact that the policy, µ, does not influence the dynamics of the system which

are now determined by the action independent transition and observation distributions in Q and E, respec-

tively. The impact of the policy instead manifests itself via the Φt’s. With this uncontrolled formulation the

analog of (21), i.e. weak duality for the PI relaxation, is given by

V ∗
0 (π0) ≤ Ẽ [max

a0∶T−1

T

∑
t=0

Φt[rt(ht, at) + ct] ∣F0] (26)

with

ct ∶= E[ϑt+1(o1∶t+1) ∣ Ft] − φ(ht, ht+1, ot+1, at)ϑt+1(o1∶t+1). (27)

Returning to the penalty in (22) we recall that we need to compute E [ϑt+1(o1∶t+1) ∣ Ft] but note that we no

longer need to compute it for all possible action histories a0∶t when solving an inner problem in (26). This is

because the action histories under P̃ influence neither the dynamics of the hidden states nor the observations.

This means we only need to compute E [ϑt+1(o1∶t+1) ∣ Ft] once for each time t in each inner problem. This

is a straightforward calculation and the expectation can be computed as

E [ϑt+1(o1∶t+1) ∣ Ft] = ∑
o∈O;h,h′∈H

πt(h)Phh′(at)Bh′o(at)ϑt+1(o1∶t, o) (28)

where πt(h) ∶= P̃(ht = h ∣ o1∶t) can be calculated efficiently using standard HMM filtering methods. As

discussed in Section 4.1, we can now calculate an unbiased upper bound on V ∗
0 by solving J instances of

the inner problems in (26) and averaging their optimal objective values. Note that an inner problem can be

solved recursively according to

V I
t = max

a
{rt(ht, a) + ct + φ(ht, ht+1, ot+1, a)V I

t+1} (29)

for t = 0, . . . , T − 1 and where h0∶T and o1∶T are the hidden states and observations that were generated for

that specific inner problem. We also have the terminal condition V I
T = rT (hT ) since cT = 0 as each ϑT+1

can be assumed to be identically zero. Each of these J inner problem instances should be independently

generated via P̃ and they can be solved as deterministic dynamic programs. Strong duality suggests that if

ϑt is a “good” approximation to the optimal value function, V ∗
t , then we should obtain tight upper bounds

11



on V ∗
0 . We will see that this is indeed the case in the robotic navigation and multi-access communication

applications of Sections 7 and 8, respectively.

5. Comparing the BSPI and PI Dual Bounds

Consider now the primal problems in (5) and (7) corresponding to the non-belief-state and belief-state

formulations, respectively. In (5) the rewards are rt(ht, at) and the optimization is over F-adapted policies.

In contrast, the rewards are rt(πt, at) and the optimization is over F
π

-adapted policies in (7). Of course the

two objectives are equal since r(πt, at) ∶= E[r(ht, at) ∣ F
π

t ] and because Ft contains no relevant information

beyond what is in F
π

t (even though F
π

t ⊂ Ft). Consider now a third equivalent formulation where the rewards

are r(πt, at) but the optimization is over F-adapted policies. In this case we have

V ∗
0 (π0) = max

µ∈UF
E{

T

∑
t=0
rt(πt, µt) ∣F

π

0 } (30)

where we note the only difference between (7) and (30) is that the optimization is over µ ∈ UFπ in the

former and over µ ∈ UF in the latter. Despite the presence of rt(πt, µt) in (30), this is also a non-belief-state

formulation of the problem because F = (F0, . . . ,FT ) where Ft is the σ-algebra generated by o1∶t (and π0).

5.1. Which Non-Belief-State Formulation Leads to Tighter Dual Bounds?

We therefore have two non-belief-state formulations of the problem – the original with rewards rt(ht, at)

and the new one with rewards rt(πt, at). Each of these formulations has a corresponding PI dual bound but

it should not be at all surprising that the latter one (with rewards rt(πt, at)) leads to tighter dual bounds.

The following simple example should suffice to see why this is the case.

Example 1. Consider a POMDP with just two periods, t = 0 and t = 1. There are two possible hidden states

hgood and hbad and the initial belief-state distribution π0 puts equal probability on each of them. The only possible

actions are astay and aswitch. If the chosen action at time t = 0 is astay then at time t = 1 you will stay in the

same hidden state that you were in at time t = 0. If the chosen action is aswitch at time t = 0 then at time t = 1

you will move to the other hidden state. So for example, if h0 = hbad and you choose action aswitch then w.p.1

h1 = hgood. A reward of 1 is realised at t = 1 if h1 = hgood and this is the only possible reward. The observations

in this POMDP are completely uninformative.

Consider now a PI inner problem in the non-belief-state formulation with rewards rt(ht, at) and zero penalties.

In this case the DM is guaranteed to get a reward of 1 since she will see h0. In particular, she will know which of

astay and aswitch she should choose to guarantee she is in state hgood at time t = 1 and therefore earn the reward of

1. For the PI inner problem in the non-belief-state formulation with rewards rt(πt, at) (and again zero penalties),

the DM can again guarantee that h1 = hgood. This time, however, the reward is r1(π1, a1) = 1/2 because the

observations are non-informative and so π1 puts equal weight on the two possible hidden states at time t = 1. So

even though the PI decision-maker knows what the true state is at t = 1 she only receives a reward of 1/2 for this.

More generally, suppose that the observations were informative although in general still noisy. With rewards

rt(ht, at) the DM can always guarantee a reward of 1 at time t = 1 in the PI relaxation. In contrast, with rewards

rt(πt, at), the DM would receive a reward of rt(πt, at) ∈ (1/2,1] at time t = 1 if she ensured h1 = hgood since π1

would then put more weight on h1 = hgood given that the observations are informative.

It seems clear then that the averaging that results in rt(πt, at) leads to tighter dual PI bounds than those
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we’d obtain if we persisted with the use of rt(ht, at). For this reason, whenever we refer to PI bounds in

the sequel we will be referring (unless otherwise stated) to PI bounds where the rewards are the rt(πt, at)’s.

In particular, the PI bounds of Sections 7 and 8 use the rt(πt, at) form of the rewards. We now show that

the PI and BSPI bounds (both of which are now based on rewards rt(πt, at)) are identical when there is no

change-of-measure involved.

5.2. When Are the PI and BSPI Bounds Are Equal?

The PI relaxation bound corresponding to formulation (30) is given by

E[V I
0 ] ∶= E [max

a0∶T−1

T

∑
t=0
rt(πt, at) + ct ∣ F

π

0 ]

= Eh0∶T ,o1∶T [max
a0∶T−1

T

∑
t=0

[rt(πt, at) +E[ϑt+1(o1∶t+1) ∣ Ft] − ϑt+1(o1∶t+1)] ∣F
π

0 ] (31)

where we have substituted for ct using (22) and where we have used Ex to denote an expectation taken w.r.t.

the random vector x. As we shall see in Section 6 all our AVFs ϑ(o1∶t) can be written equivalently as ϑ(πt).

Together with the fact that Ft contains no relevant information beyond what is in F
π

t , this implies we can

write (31) as

E[V I
0 ] = Eh0∶T ,o1∶T [max

a0∶T−1

T

∑
t=0

[rt(πt, at) +E[ϑt+1(πt+1) ∣ F
π

t ] − ϑt+1(πt+1)] ∣F
π

0 ]

= Eo1∶T [Eh0∶T
[max
a0∶T−1

T

∑
t=0

[rt(πt, at) +E[ϑt+1(πt+1) ∣ F
π

t ] − ϑt+1(πt+1)] ∣ o1∶T ,F
π

0 ] ∣F
π

0 ] (32)

where the second equality follows from the tower property of conditional expectations. Note that the πt’s

appearing inside the inner expectation in (32) are deterministic functions of π0, o1∶t and a0∶t−1 and as such,

are independent of h0∶T , given π0, o1∶T and a0∶T . It therefore follows that (32) becomes

E[V I
0 ] = Eo1∶T [max

a0∶T−1

T

∑
t=0

[rt(πt, at) +E[ϑt+1(πt+1) ∣ F
π

t ] − ϑt+1(πt+1)] ∣F
π

0 ] (33)

= Eπ1∶T
[max
a0∶T−1

T

∑
t=0

[rt(πt, at) +E[ϑt+1(πt+1) ∣ F
π

t ] − ϑt+1(πt+1)] ∣F
π

0 ] (34)

= E[V Bπ
0 ] (35)

where we recognize the right-hand-side of (34) as the BSPI relaxation bound in (10) with penalties given by

(11) and we use V Bπ
0 to denote the optimal value of a BSPI inner problem. We therefore have the following

result.

Proposition 5.1. Given penalties constructed from the same AVF, the BSPI information relaxation bound

is equal to the PI information relaxation bound with rewards rt(πt, at).

Remark 5.1. One direction of Proposition 5.1 is quite obvious and follows immediately from BSS. In partic-

ular we note that the BSPI relaxation is weaker than the PI relaxation, i.e. Bπt ⊆ It for all t. This follows

because knowledge of (v1∶T ,w1∶T ) together with π0 and the action history a0∶T−1 is sufficient to determine

the πt’s. That the BSPI bound is at least as good as the PI bound (with rewards rt(πt, at)) now follows
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immediately from Prop. 2.3(i) of BSS since the rewards are identical in both formulations.

It’s clear that Proposition 5.1 continues to hold under the same absolutely continuous change-of-measure.

In particular, such a measure change will preserve equality in (33) to (35). That said, we never use the same

change-of-measure for the PI and BSPI bounds. In general, it is difficult to compare bounds constructed

via different changes-of-measure since (see Rogers [32] and BH) the dual bound depends8 on the specific

change-of-measure. In our POMDP setting, however, the change-of-measures that we propose to use for the

PI and BSPI bounds will be closely related. In particular, in our numerical experiments of Sections 7 and 8

the change-of-measure we use for the PI and BSPI bounds will be the measure-change induced by following

some feasible strategy, µ say. The change-of-measure for the uncontrolled BSPI formulation, however, will

require a layer of filtering so that the corresponding RN derivatives will be a function of belief-states. In

contrast, the RN derivatives for the uncontrolled PI formulation will be a function of the hidden states. This

is best understood by comparing the RN derivative terms in (15) and (23). In our numerical experiments the

Qij ’s and Ejk’s that appear in both (15) and (23) will coincide and equal Pij(aµ) and Bjk(aµ), respectively,

where aµ is the action induced by following µ (which of course will depend on the belief-state at that time).

The RN derivative term in (15) can therefore be loosely viewed as a filtered version of the RN derivative

term in (23). Moreover, a similar argument to that presented in Example 1 suggests that the BSPI bound

should be tighter than the corresponding PI bound. We discuss in further detail the relationship between

these two measure changes in Appendix A.3.

6. Approximate Value Functions and Supersolutions

We now discuss several standard approaches for obtaining approximations to the optimal value function in

our POMDP setting. In general we can use each such approximation, Ṽt, to:

(i) Construct a lower bound, V lower

0 , on V ∗
0 , by simulating the policy that is greedy9 with respect to Ṽt.

Towards this end, we can generate J independent sample paths (h
(j)
0 ,w

(j)
1∶T , v

(j)
1∶T ), for j = 1, . . . , J , where

we recall the w’s and v’s are used for generating the hidden and observation states in equations (3)

and (4) in Section 2. For each sample path j we calculate at time t the corresponding belief state πt

using standard filtering techniques, and take the action at that obtains the maximum in the chosen

AVF from each of (39), (41) or (43) below. If we denote by V
(j)
lower the reward obtained from following

one of these policies on the jth sample path, then an unbiased estimator of a lower bound on the true

optimal value function is given by ∑j V
(j)
lower/J .

(ii) Construct an upper bound, V upper

0 , via our BSPI and PI uncontrolled information relaxations by setting

ϑt = Ṽt in (13) and (27). This of course is motivated by the strong duality result of BSS which states

that if we take ϑt = V
∗
t then the dual bound will be tight and coincide with V ∗

0 .

If our best lower bound is close to our best upper bound then we will have a certificate of near-optimality for

the policy that yielded the best lower bound. Later in Section 6.1 we will discuss the concept of supersolutions

8Unless a perfect penalty is used in which case strong duality implies both bounds will coincide with the optimal value
function.

9Recall that a policy is said to be greedy with respect to Ṽt if the action, at, chosen by the policy at time t is an action that
maximizes the current time t reward plus the expected value of Ṽt+1, i.e. at = argmaxa{rt(πt, a) + E[Ṽt+1(πt+1) ∣ F

π

t ]}.
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and state a proposition asserting that the approximate-value functions that we define below are indeed

supersolutions. The significance of supersolutions will then be discussed in Sections 6.1 and 6.2.

We now describe the MDP, QMDP and Fast Informed (Lag-1) value function approximations together

with the Lag-2 approximation which we propose as a natural extension of the Lag-1 approximation. More

generally, we could define a Lag-d approximation but the computational requirements for calculating it scale

exponentially in the number of lags d. Other approximate solution approaches can be found, for example,

in [26]. Before proceeding further, we note that the optimal value function V ∗
T (πT ) is known at time T and

satisfies V ∗
T (πT ) = rT (oT ) because of our earlier w.l.o.g. assumption that oT = hT . This means that each of

our AVFs can also be assumed to satisfy ṼT (πT ) = rT (oT ).

The MDP Approximate Value Function

The MDP AVF is constructed from V MDP

t (h), the optimal value function from the corresponding fully

observable MDP formulation where the hidden state, ht, is actually observed at each time t. It is generally

easy to solve for V MDP

t in typical POMDP settings and we can use it to construct an AVF according to

Ṽ MDP

t (πt) ∶= E[V MDP

t (ht) ∣ F
π

t ] = ∑
h∈H

πt(h)V
MDP

t (h) (36)

where V MDP

T (h) ∶= rT (h) and for t ∈ {0, . . . , T − 1} we define

V MDP

t (h) ∶= max
at∈A

{rt(h, at) +E[V MDP

t+1 (ht+1) ∣ ht = h]}. (37)

The QMDP Approximate Value Function

The QMDP AVF is constructed using the Q-values [28] which are defined as

V Q

t (h, a) ∶= rt(h, a) + ∑
h′∈H

Phh′(a)V
MDP

t+1 (h′) (38)

for t ∈ {0, . . . , T − 1}. The QMDP AVF is then defined according to

Ṽ Q

t (πt) ∶= max
at
∑
h∈H

πt(h)V
Q

t (h, at). (39)

Note that by exchanging the order of the expectation and max operators in (39) and then applying Jensen’s

inequality, we easily obtain that the QMDP value function is less than or equal to the MDP value function

in (36).

The Lag-1 Approximate Value Function

The Lag-1 approximation was first proposed in [21] as the fast informed bound update. This approximation

uses the optimal value function, V L1
t (ht−1, at−1, ot), from the corresponding lag-1 formulation of the POMDP

where the hidden state, ht−1, is observed before deciding on the time t action at for all t < T . We can calculate

V L1
t recursively via

V L1
t (ht−1, at−1, ot) = max

at
E[rt(ht, at) + V

L1

t+1(ht, at, ot+1) ∣ ht−1, ot] (40)
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for t ∈ {1, . . . , T − 1} and with terminal condition V L1

T (hT−1, aT−1, oT ) ∶= rT (hT ) (since oT = hT ). The

corresponding AVF is then defined according to

Ṽ L1
t (πt) ∶= max

at
E[rt(ht, at) + V

L1

t+1(ht, at, ot+1) ∣ F
π

t ] (41)

where the expectation is taken with respect to ot+1 and ht, given the current belief state, πt. Further details

on calculating V L1
t can be found in Appendix B.

The Lag-2 Approximate Value Function

The Lag-2 approximation is derived by first constructing the optimal value function V L2
t (ht−2, at−2∶t−1, ot−1∶t)

corresponding to the MDP where the hidden state, ht−2, is observed before taking the decision at at time t

for all t < T . Again the terminal value function is V L2

T (hT−2, aT−2∶T−1, oT−1∶T ) ∶= rT (oT ) = rT (hT ) and the

optimal value function, V L2
t , at earlier times is computed iteratively according to

V L2
t (ht−2, at−2∶t−1, ot−1∶t) ∶= max

at
E[rt(ht, at) + V

L2

t+1(ht−1, at−1∶t, ot∶t+1) ∣ ht−2, ot−1∶t] (42)

for t ∈ {2, . . . , T − 1}. When t = 0 or 1 we must adjust (42) appropriately so that we only condition on o0

and o0∶1, respectively. The calculation of V L2
t is clearly more demanding than the calculation of V L1

t since

its state space is larger and since the expectation in (42) over (ht−1, ht, ot+1) is more demanding to compute

than the expectation in (40) which is over (ht, ot+1). We define the corresponding Lag-2 AVF according to

Ṽ L2
t (πt) ∶= max

at
E[max

at+1
E[rt(ht, at) + rt+1(ht+1, at+1) + V L2

t+2(ht, at∶t+1, ot+1∶t+2) ∣ F
π

t , ot+1] ∣ F
π

t ] (43)

for t ∈ {0, . . . , T − 2}, with the understanding that when t = T − 1, the Lag-2 approximation is equal to the

Lag-1 approximation, as there is only one time period remaining at that point. While more demanding to

compute, we show in Appendix B.3 that the Lag-2 AVF is superior to the Lag-1 AVF in that V ∗
t (πt) ≤

Ṽ L2
t (πt) ≤ Ṽ

L1
t (πt). (The first inequality follows from the supersolution property of the AVFs as discussed in

Section 6.1 below.) Before proceeding we mention that an alternative and perhaps more natural definition

of the Lag-2 AVF is

Ṽ Alt2
t (πt) ∶= max

at
E[rt(ht, at) + V

L2

t+1(ht−1, at−1∶t, ot∶t+1) ∣ F
π

t ]. (44)

However, it is straightforward to show that Ṽ L2
t (πt) ≤ Ṽ Alt2

t (πt) and so we prefer to use Ṽ L2
t (πt) as our

generalization of the Lag-1 AVF.

6.1. Supersolutions and Bound Guarantees

We begin by defining the concept of a supersolution.

Definition 6.1. Let ϑt be any AVF that satisfies

ϑt(πt) ≥ max
at∈A

{rt(πt, at) +E[ϑt+1(πt+1) ∣ F
π

t ]} (45)

for all belief states πt, and all t ∈ {0, . . . , T}. Then we say that ϑt is a supersolution.
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It is well-known10 that a supersolution ϑt is an upper bound on the optimal value function V ∗
t (πt). Indeed

the condition (45) is simply the feasibility condition for the linear programming formulation of the belief-

state MDP. The supersolution property is particularly important in the context of information relaxations

and there are two reasons for this, the first of which is Proposition 6.1 below from BH. A slightly less general

version of this result was shown earlier by Desai et al. [15].

Proposition 6.1. (Prop 4.1 in Brown & Haugh, 2017) An information relaxation upper bound based on a

penalty constructed from a supersolution is guaranteed to be at least as good as the upper bound provided by

the supersolution itself.

We now state the main result of this section. The result itself is not surprising and a proof can be found in

Appendix C.

Proposition 6.2. The MDP, QMDP, Lag-1 and Lag-2 AVFs are all supersolutions.

Propositions 6.1 and 6.2 imply that a dual upper bound (as given by (12)) based on a penalty constructed

from a supersolution is guaranteed to be no worse than the original upper bound provided by the super-

solution itself. We will see this result in action in the numerical results of Sections 7 and 8 when we see

that the information relaxation upper bound is typically significantly better than the bound provided by the

supersolution.

6.2. Using Supersolutions to Estimate the Duality Gap Directly

A second advantage of working with a supersolution AVF is that when the dual penalties are constructed

using a supersolution then the requirement that P ≪ P̃ can be ignored. This was shown by BH who then

exploited11 this fact by directly estimating the duality gap V upper

0 − V lower

0 . We describe their approach here

and defer to Appendix D an explanation for why the absolute continuity condition, i.e. P ≪ P̃, can be

ignored when the dual penalties are constructed using a supersolution.

Specifically, suppose we have a good candidate F
π

-adapted policy, µ, and let P̃ be the probability measure

induced by following this policy. If we set V lower

0 to be the expected value of this policy, we then have

V lower

0 = E[
T

∑
t=0

(rt(πt, µt) + ct) ∣ F
π

0 ]

= Ẽ[
T

∑
t=0

Φt(µ)(rt(πt, µt) + ct) ∣ F
π

0 ] (46)

where the ct’s now play the role of (action-dependent) control variates and where Φt = Φt(µ) = 1 for all t in

(46) because P and P̃ coincide when the policy µ is followed. We can use this same P̃ to estimate an upper

bound

V upper

0 = Ẽ[ max
a0∶T−1

T

∑
t=0

Φt(a0∶t−1;µ)(rt(πt, µt) + ct) ∣ F
π

0 ] (47)

as long as ϑt is constructed from a supersolution and where (47) now explicitly recognizes the dependence

of the Φt’s on a0∶t−1 and µ. Since both lower and upper bounds (46) and (47) are simulated using the

10A proof can be found in standard dynamic programming texts and is based on the linear-programming formulation of the
Bellman equation.

11BH discussed this in their Section 4.3.1 but perhaps under-emphasized this practically important aspect of working with
supersolutions.
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same measure, P̃, we may as well use the same set of paths to estimate each bound. This has an obvious

computational advantage since the rt(πt, µt)’s and ct’s that were computed along each sample path for

estimating (46) can now be re-used on the corresponding inner problem in (47).

There is a further benefit to this proposal, however. Because the actions of the policy, µ, are feasible for

the inner problem in (47), it is clear the term inside the expectation in (46) will be less than or equal to the

optimal objective of the inner problem in (47) along each simulated path. In fact the difference, D, between

the two terms satisfies

0 ≤ D ∶= max
a0∶T−1

T

∑
t=0

Φt(a0∶t−1;µ)(rt(πt, µt) + ct) −
T

∑
t=0

(rt(πt, µt) + ct) P̃ a.s. (48)

and provides an unbiased estimate of the duality gap, V upper

0 −V lower

0 . Finally, we expect that the variance of

the random variable, D, should be very small due to a strong positive correlation between each of the terms

in (48). As a result, we anticipate that very few sample paths should be required to estimate the duality

gap to a given desired accuracy as long as µ is sufficiently close to optimal. This approach to evaluating a

strategy, i.e. by estimating the duality gap, requires very little work over and beyond the work required to

estimate V lower

0 . And because the variance of D is often extremely small, we generally only need to estimate

the duality gap and solve the inner problem on a small subset of the paths that may have been used to

estimate V lower

0 directly.

Propositions 6.1 and 6.2 together with the ability to focus directly on the duality gap in (48) highlight the

importance of super-solutions in constructing bounds on the unknown optimal value function for POMDPs.

The overall approach that we propose is:

1. Use a supersolution AVF ϑt+1(πt+1) to construct the penalties as in (11) / (13) for BSPI bounds or

(22) / (27) for PI bounds.

2. Use the change-of-measure induced by following the best available feasible policy.

3. Use the penalties as control variates for the primal bound and therefore estimate the duality gap

directly as in (48).

This is the approach we take in our numerical examples of Sections 7 and 8.

7. An Application to Robotic Navigation

We now apply our results to a well-known robotic navigation application and our problem formulation follows

[28, 22, 30]. A robot is placed randomly in one of the 22 white squares (excluding the goal state) inside

the maze depicted in Figure 1. The robot must navigate the maze, one space at a time, with the objective

of reaching the goal state in 10 movements and only traversal along white squares is possible. The exact

position within the maze is not directly known to the robot. Sensors placed on the robot provide noisy

information on whether or not a wall (depicted as grey squares and edges of the maze) is present on the

neighboring space for each of the four compass directions. After taking these readings, the robot must choose

one of five possible actions: (attempt to) move north, east, south or west, or stay in the current position.

The sensors have a noise factor of α ∈ [0,1]. This factor represents two types of errors: a wall will fail to

be recognized with probability α when a wall exists, and a wall is incorrectly observed with probability α/2

when it does not exist. A second source of uncertainty results from the imperfect movements of the robot.
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Figure 1: Maze representation for the robot navigation problem. The white spaces indicate the possible hidden states
where the robot can be located. The star indicates the goal state.

Specifically, after a decision to move has been made, the robot will move in the opposite direction with

probability 0.001, the +90 degree direction with probability 0.01, the -90 degree direction with probability

0.01 and it will fail to move at all with probability 0.089. The robot therefore succeeds in moving in the

desired direction with probability 0.89. These movement probabilities are normalized in the event that a

particular direction is not possible due to the presence of a wall. The robot may also choose to stay in its

current location and such a decision is successful with probability 1.

We formulate the control problem as a POMDP with horizon T = 10 periods, 23 hidden states including

the goal state hgoal, five actions and 16 possible observations. The hidden state ht at time t is the current

position of the robot and is 1 of the 23 white squares in the maze. The observation at time t < T is

a 4 × 1 binary vector of sensor readings indicating whether or not a wall was observed in each compass

direction. The possible actions are the direction of desired movement or the decision to stay. Note the

observation probabilities are action-independent conditional on the current hidden state. That is, Bij in (2)

(or equivalently fo in (4)) does not depend on the current action a given the current hidden state h. At time

t = 0 the robot is allowed to take an initial sensor reading o0, with the distribution of o0 as described above.

Prior to this initial observation, the robot has a prior distribution over the initial hidden state h0 that is

uniform over the 22 non-goal states.

There is a reward function at time T which is defined as rT (hT ) = 1 if hT = hgoal, and zero otherwise.

All intermediate rewards are zero. Finally, we define oT ≡ hT so that we know for certain whether or not the

terminal reward was earned or not at the end of the horizon.

7.1. The Uncontrolled Formulation

Because all of our AVFs are supersolutions we were able to ignore the absolute continuity requirement when

defining the change-of-measures for the uncontrolled formulations. Specifically we used the policies that were

greedy w.r.t the QMDP, Lag-1 and Lag-2 AVFs to define uncontrolled-measure changes for the PI and BSPI

bounds, respectively. The specific details for these uncontrolled measure changes and their RN derivatives

are provided in Appendices A.1 and A.2. They are also described in slightly more general terms at the end

of Section 5. The inner problems in (12) and (26) are solved as simple deterministic dynamic programs

(see (20) and (29)) with terminal value VT (o0∶T ) ∶= 1{hT =hgoal}. We can then calculate an unbiased upper

bound on V ∗
0 by generating J inner problem instances and averaging their optimal values for the PI and
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BSPI relaxations, respectively. Moreover, since our penalties are constructed from supersolutions we are

guaranteed to obtain dual upper bounds that improve on the upper bounds provided by the supersolutions

themselves. Furthermore, we can use these penalties as control-variates for the primal problem and therefore

estimate the duality gap directly as explained in Section 6.2.

7.2. Numerical Results

Figures 2 and 3 display numerical results from our experiments. Specifically, Figure 2 displays12 the MDP,

QMDP, Lag-1 and Lag-2 AVFs at time t = 0. Since these approximations are supersolutions we know they

are also valid upper bounds on the true unknown optimal value function. We also display the dual upper

bounds obtained from the uncontrolled PI and BSPI relaxations when the penalties were constructed from

the Lag-1 and Lag-2 AVFs, respectively. All of these bounds are displayed as a function of α with the time

horizon fixed at T = 10 periods. The best lower bound was obtained by simulating the policy that is greedy

w.r.t the Lag-2 AVF.

Figure 2: Comparison of upper bounds as a function of the noise factor α. The thick dotted lines correspond to the
MDP, QMDP, Lag-1 and Lag-2 approximations. The solid (thin dotted) red and blue lines correspond to the dual
PI (BSPI) relaxation upper bounds resulting from penalties constructed using the Lag-1 and Lag-2 approximations,
respectively. The solid black line displays the best lower bound which in this case is obtained by simulating the policy
that is greedy w.r.t. the Lag-2 AVF.

Several observations are in order. We see that each of the dual upper bounds improves upon the respective

supersolution that was used to construct the dual penalty in each case. We also see from Figure 2 that the

duality gap decreases as α decreases and this of course is to be expected. Indeed when α = 0 all of the bounds

coincide and the duality gap is zero. This is because at that point the robot has enough accuracy and time

12The figures actually report E[Ṽ MDP
0 (o0) ∣ π0], E[Ṽ Q

0 (o0) ∣ π0] etc. All of the numerical results in this section and the next
were obtained using MATLAB release 2016b on a MacOS Sierra with a 1.3 GHz Intel Core i5 processor and 4 GB of RAM.
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to be able to infer its position in the maze, essentially collapsing the POMDP into the MDP version of the

problem where the hidden state, ht, is correctly observed at each time t.

(a) (b)

Figure 3: (a) Lower and upper bounds corresponding to each of the four AVFs. The supersolution upper bound is
plotted together with the corresponding dual upper bounds obtained from the perfect information (PI) and belief
state perfect information (BSPI) relaxations. Approximate 95% confidence intervals are also provided via error bars.
The model parameters were α = 0.10 and T = 10. (b) Duality gap estimates and confidence intervals for the value
function approximations from Figure 3a. Details on how the duality gap can be estimated directly are provided in
Appendix D.

Figure 3a displays lower and upper bounds corresponding to each of the four AVFs with α = 0.10 and

T = 10 while Figure 3b focuses directly on the corresponding duality gaps. Approximate 95% confidence

intervals are also provided and so we see that the various bounds are computed to a high degree of accuracy.

Several observations are again in order. First, we note the lower and upper bounds improve as we go

from the MDP approximation to the QMDP approximation to the Lag-1 and Lag-2 approximations. This

is not surprising since each of these approximations uses successively less information regarding the true

hidden state at each time t. Second, we again see that each of the dual upper bounds improves upon its

corresponding supersolution. We also observe that regardless of the AVF (that we used to construct the

penalties and resulting change-of-measure), the BSPI bound is always superior to the corresponding PI

bound.

We also note that the best duality gap (approximately 92.06% − 91.96% = 0.10%) is approximately

an 85% relative improvement over the gap between the Lag-2 supersolution and the best lower bound

(which is given by the policy that is greedy w.r.t the Lag-2 supersolution). While these numbers may not
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Table 1: Numerical results for the maze application with α = 0.10. We used 50,000 sample paths to estimate the lower
bounds and their corresponding dual upper bounds and duality gaps (DG). All numbers are expressed as percentages.
Run-times for control variate / penalty calculations were allocated to the lower bound run times.

Approx. MDP QMDP Lag-1 Lag-2

LB∗ DG LB DG LB DG LB DG

PI results

Mean - 1.15 91.73 0.82 91.84 0.43 91.96 0.12

Std. dev. - 0.016 0.039 0.009 0.038 0.007 0.038 0.002

Run time (in minutes) - 0.26 6.56 0.49 6.97 0.55 233 1.04

Supersolution UB 94.08 93.82 93.04 92.64

DG reduction 51% 61% 64% 82%

BSPI results

Mean - 0.97 91.73 0.69 91.84 0.38 91.96 0.10

Std. dev. - 0.015 0.039 0.008 0.038 0.007 0.038 0.002

Run time (in minutes) - 0.41 6.58 0.77 6.89 0.81 235 1.59

Supersolution UB 94.08 93.82 93.04 92.64

DG reduction 59% 67% 68% 85%

*There is no greedy policy w.r.t. the MDP AVF.

appear very significant13 on an absolute (rather than relative) basis, in many applications these differences

can be significant at the margin. Moreover, there are undoubtedly applications where the best available

supersolution will not be close to its corresponding lower bound in which case the improvement provided by

the best information relaxation dual bound could be very significant.

The number of simulated paths that we used to generate the various PI and BSPI bounds and duality

gaps are reported in Table 1 together with corresponding run-times and mean standard errors. All of the

numbers are reported as percentages so for example, the BSPI Lag-2 duality gap is a mere 0.10%. The most

obvious feature of the tables is how little time was required to compute the dual bounds in comparison to

the lower bounds. This comparison is a somewhat misleading, however. In particular, the lower bounds

were constructed using the penalties as (action-dependent) control variates, a standard variance reduction

technique. Once these control variates were calculated on each simulated path, they could then be re-used as

penalties when solving the inner problem along the same path. These control variates were quite expensive

to compute, however, and in Table 1 this cost has been allocated to the run times for the lower bound. It

is therefore fairer to add the run-times for the LB and DG columns and interpret that as the overall time

required to compute the lower bounds and duality gap. We do note, however, that the reported standard

errors are very small and so we could have used significantly fewer sample paths to still obtain sufficiently

accurate estimates of the lower bounds and duality gaps.

8. An Application to Multiaccess Communication

Our second application is a well-known14 multiaccess communication problem in which multiple remote users

share a common channel. Users with information packets wish to transmit them through the channel and

13In addition, these improvements in the upper bound are conservative because the duality gaps include the difference between
the best lower bound and the unknown optimal value function.

14See, for example, Chapter 4 of [7] for an overview of the problem.
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this can only be done at integer times. Users only submit at most one packet per time slot. If only one user

submits a packet through the channel in a given time slot then the packet will be successfully transmitted

in that slot. If more than one user submits a packet, however, then the packets will collide, transmission

fails and the packets are returned to their respective users to be sent at a later time slot. If no packet was

sent during a time slot, then the system is said to be idle in that slot. Users cannot communicate with each

other and therefore do not know the action histories of other users.

The total number of packets waiting to be delivered at time t is called the backlog and is denoted by ht.

While the backlog is not directly observed by the users, they do know the history of the channel activity via

observations of collisions (ot = 2), successful transmissions (ot = 1) and idle time slots (ot = 0). In addition,

new packets arrive randomly to the backlog at the end of period t. The number of arrivals, denoted by zt ≥ 0,

are assumed to follow some discrete probability distribution independent of prior arrivals, and they can be

first scheduled for transmission beginning in period t + 1. The backlog therefore evolves according to

ht+1 =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ht + zt − 1, if ot = 1

ht + zt, otherwise.
(49)

The slotted Aloha scheduling strategy prescribes each packet in the backlog to be scheduled for transmission

with probability at ∈ A ∶= [0,1]. This probability is common to all waiting packets and transmission attempts

are independent across packages. It is therefore easy to see that the probability of a transmission (ot = 1)

during slot t is htat(1 − at)
ht−1. We assume a reward of rt(ht) is obtained at time t where rt(⋅) is a

monotonically decreasing function of the backlog. The objective is to choose a transmission probability at

to maintain a small backlog or equivalently, to maximize the probability of a transmission. In the fully-

observable case where ht is observed by the DM, it is straightforward to see that the maximum transmission

probability is attained at at = 1/ht when ht ≥ 1. However, in the POMDP setting where ht is not directly

observable computing an optimal policy is generally intractable.

In order to adapt this problem to our finite state and action framework, we restrict the maximum number

of packets in the backlog to be Mh = 30, so that ht ∈ H = {0,1, . . . ,Mh}. We assume that arrivals zt follow

a Poisson distribution with mean λ, but truncate this distribution so that, if the current backlog is ht, then

the maximum number of arrivals is limited to Mh − ht. This is easily accomplished by taking

Pz(k ∣ ht) ∶= P (zt = k ∣ ht) =
f(k;λ)

F (Mh − ht;λ)
, for k = 0, . . . ,Mh − ht (50)

where f(⋅;λ) and F (⋅;λ) denote the PMF and CDF, respectively, of the Poisson distribution with parameter

λ. To deal with the continuous action space, we must discretize [0,1]. Following [12], and recalling that

at = 1/ht maximizes the transmission probability for a given known state ht, we set the discrete action set

to be

A ∶= {
1

m
∶m = 1, . . . ,Mh} (51)

As stated earlier, observations ot of the channel history satisfy ot ∈ O = {0,1,2}. The observation
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probabilities depend on the current backlog ht and decision at, and satisfy

Bho(a) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − a)h, if o = 0

ha(1 − a)h−1, if o = 1

1 − (1 − a)h − ha(1 − a)h−1, if o = 2

(52)

where Bho(a) ∶= P(ot = o ∣ ht = h, at = a). The state transmission probabilities implied by (49) satisfy for

h,h′ ∈ {0,1, . . . ,Mh}

Phh′(o) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if h′ < h − 1,

Pz(h
′ − h + 1 ∣ h) if o = 1 and h′ ≥ h − 1,

Pz(h
′ − h ∣ h) if o ∈ {0,2} and h′ ≥ h

(53)

where Phh′(o) ∶= P(ht+1 = h′ ∣ ht = h, ot = o) and where Pz(k ∣ h) corresponds to the probability mass function

of the truncated Poisson arrivals given in (50).

A couple of observations are in order. First, we note that in contrast to our earlier description of the

POMDP framework, we assume here that the observation ot is a function of the current action at rather than

the previous action at−1. This results in a slightly different but equally straightforward filtering algorithm

to compute the belief-state any point in time. It also means that conditional on the observation ot, the

hidden-state dynamics are action-independent. This means that in defining an action-independent change-

of-measure it will only be necessary to change the observation probabilities Bho(a).

8.1. Value Function Approximations

To simplify matters we only consider the MDP and QMDP AVFs in this application. They satisfy

Ṽ MDP

t (πt) ∶= ∑
h∈H

πt(h)max
at∈A

V Q

t (h, at) (54)

Ṽ Q

t (πt) ∶= max
at
∑
h∈H

πt(h)V
Q

t (h, at) (55)

where

V Q

t (h, a) ∶= rt(h) + ∑
h′∈H

∑
o∈O

Phh′(o)Bho(a)V
MDP

t+1 (h′)

V MDP

t (h) ∶= max
at∈A

V Q

t (h, at)

for t ∈ {0, . . . , T} with terminal condition V MDP

T+1 ∶= 0. Note that because the time t observation ot is now

a function of at, the belief state πt is a function of the observation and action histories o0∶t−1 and a0∶t−1,

respectively, rather than o1∶t and a0∶t−1.
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8.2. The Uncontrolled Formulation

Since the MDP and QMDP AVFs are15 supersolutions, we can ignore the absolute continuity requirement

and define an uncontrolled emission probability matrix according to

Etij ≡ Bij(argmax
a∈A

V Q

t (i, a)), (56)

That is, we use the emission probability matrix induced by following a policy that is greedy w.r.t the QMDP

value function approximation. Because the hidden-state transitions are already action-independent (given

the current observation) we leave those dynamics unchanged under P̃. As previously mentioned, the POMDP

dynamics here are different to the baseline case as defined in Section 2 because of the timing of observations

and actions whereby the the observation ot is a function of at rather than at−1. This results in slightly

different filtering updates and RN derivative calculations and we give them explicitly in Appendix E.

8.3. Numerical Results

We consider a system with T = 30 periods and initial belief-state π0 = [1,0, . . . ,0] so that the system is

initially empty w.p. 1. We assume a linear function rt(ht) ∶= Mh − ht so that the reward is maximal (and

equal to Mh) when the backlog is zero and minimal (and equal to zero) when the backlog is at its maximum.

We used 1,000 sample paths to estimate the dual upper bounds and duality gaps for the PI and BSPI

relaxations.

Figure 4a displays the lower and upper bounds corresponding to each of the two AVFs used for various

values of λ. We display the dual bounds in that figure for the BSPI relaxation but we remark that the

PI dual bounds lie between the supersolution upper bound (the yellow curve) and the BSPI upper bound

with penalties constructed using the MDP AVF (the red curve). We also note that the MDP and QMDP

supersolution upper bounds are equal because by assumption the system is empty initially so that the left-

hand-sides of (54) and (55) are equal at time t = 0. Figure 4b illustrates the duality gaps that we estimated

directly for both value function approximations and for both relaxations.

A few additional observations are in order. First, we note the dual bounds for the QMDP approximation

outperform the corresponding dual bounds for the MDP approximation. This is not surprising since the

QMDP AVF should be a better approximation to the unknown optimal value function than the MDP ap-

proximation. Second, we observe from Figure 4a that both dual bounds obtained from the MDP and QMDP

approximations improve upon the supersolution upper bound. (This was also true for the PI relaxation

dual bounds.) Finally, we observe that the dual gaps increase in λ up to values of λ ≈ 0.7, and decrease in

λ thereafter. This non-monotonicity in λ can be explained by the fact that as λ ↗ 1 the system becomes

rapidly saturated in which case the DM can infer with a higher degree of confidence (than he would be able

to at intermediate values of λ) that the time t backlog is likely to be close to the system cap Mh. As a result

we expect the duality gap to decrease as λ↗ 1. Likewise when λ↘ 0, we expect the best duality gap to also

converge to 0 since the system will generally be empty and the DM will be able to infer this with increasing

confidence as fewer and fewer collisions (ot = 2) occur.

When we used the MDP AVF to construct the penalties, the total running time (to calculate the lower

bound and duality gap for each value of λ) was 45.9 seconds and 52.3 seconds for the PI and BSPI relax-

15It is easy to adapt the proofs of Appendix C (to handle the fact that the observation ot is a function of at rather than at−1)
to show that the MDP and QMDP AVFs are supersolutions.
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(a) (b)

Figure 4: (a) Upper bounds for the slotted Aloha system as a function of the arrival parameter λ. The lower bound
is obtained by simulating the policy that is greedy w.r.t. the QMDP AVF. The dual bounds are generated using the
BSPI relaxation. (b) Duality gap estimates for the BSPI and PI relaxations as a function of the arrival parameter λ.
The widths of the (non-displayed) 95% confidence intervals varied between approximately 0.2 for lower values of λ,
to 1 for higher values of λ. The supersolution bound is the supersolution given by the MDP and Q-value functions
which are coincide at time t = 0.

ations, respectively. Using the QMDP approximation, the corresponding times were 53.6 and 58.9 seconds,

respectively.

9. Conclusions and Further Research

We have shown how change of measure arguments and an uncontrolled problem formulation can be used

to extend the information relaxation approach to POMDP settings where the calculation of dual penalties

would otherwise be impossible except in the smallest of problem instances. We have exploited the structure

of POMDPs to construct various value function approximations and show that they are supersolutions.

Numerical applications to robotic control and multiaccess communications have demonstrated that significant

bound improvements can be obtained using information relaxations when the penalties are constructed from

supersolutions. We also used the supersolution property to estimate the duality gap directly and take

advantage of the significant variance reduction that follows from this approach.

There are several possible directions for future research. One direction would be to extend the approach to

other non-Markovian control problems where the difficulty associated with calculating dual feasible penalties

would also be problematic. A particularly interesting application would be to dynamic zero-sum games

(ZSG’s) where the players have asymmetric information. Following [20], dual bounds on the optimal value

of the game can be computed by fixing one player’s strategy and bounding the other player’s best response.

In the case of asymmetric information (which was not considered by [20]), bounding the other player’s best

response amounts to finding a dual bound on a POMDP and so the techniques developed in this paper

also apply in that setting. Moreover, due to Shapley’s seminal results strong duality continues to hold in

the ZSG framework so the dual bounds can be used to construct a certificate of near-optimality when each
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player has close-to-optimal strategies. Another interesting non-Markovian setting is the influence diagram

[23] framework which is popular in the decision science literature.

A third direction would be to explore the relationship between the quality of the dual bound and the

action-independent transition and observation distributions. While the primal, i.e. lower bound, does not

depend on the action-independent distributions of the uncontrolled problem formulation, this is not true for

the dual bound. Indeed as pointed out in BH, the specific value of the dual bound will depend on the quality

of the penalties and the action-independent distributions. It would therefore be of interest to explore this

dependence further. Moreover, because of the abundance of supersolutions in the POMDP setting, absolute

continuity of the action-independent distributions is not a requirement and so, as discussed in Appendix

D, we would be free to explore dual bounds when the action-independent distributions are defined by good

feasible policies.
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A. Change-of-Measures and RN Derivative Calculations

We now present the RN derivative calculations for the non-belief-state and belief-state formulations and

we also provide explicit calculations for the robotic navigation application. The details for the multiaccess

communication application are deferred to Appendix E since that model had a slightly different dependence

structure for which the filtering equations must also be updated.

A.1. The Uncontrolled Non-Belief-State POMDP Formulation

While the belief-state formulation and corresponding BSPI bound are the main focus of the paper, it is

convenient to begin with the non-belief-state formulation. We first recall the RN derivatives of (23) and (24)

which we repeat here for the sake of convenience:

φ(i, j, k, a) ∶=
Pij(a)

Qij
⋅
Bjk(a)

Ejk
(57)

Φt(h0∶t, o1∶t, a0∶t−1) ∶=
t−1
∏
s=0

φ(hs, hs+1, os+1, as). (58)

To show that the general RN derivatives in (57) and (58) are correct under the PI relaxation framework, it

suffices to prove that

E [rt(ht, at) ∣F0] = Ẽ [Φtrt(ht, at) ∣F0] (59)

for all t ∈ {0, . . . , T}, where we recall that E and Ẽ correspond to expectations under P and P̃, respectively.

We first write the expectation on the r.h.s. of (59) explicitly to obtain

∑
o1∶t,h0∶t

Φt(h0∶t, o1∶t, a0∶t−1)rt(ht, at)P̃(o1∶t, h0∶t ∣ π0) (60)

where π0 is the initial hidden state distribution. From (57) and (58) we have

Φt(⋅) =
t−1
∏
s=0

Phshs+1(as)Bhs+1os+1(as)

Qhshs+1Ehs+1os+1
≡
t−1
∏
s=0

Pas(hs+1 ∣ hs)Pas(os+1 ∣ hs+1)
P̃(hs+1 ∣ hs)P̃(os+1 ∣ hs+1)

=
Pa0∶t−1(o1∶t, h1∶t ∣ h0)π0(h0)

P̃(o1∶t, h1∶t ∣ h0)π0(h0)

=
Pa0∶t−1(o1∶t, h0∶t ∣ π0)

P̃(o1∶t, h0∶t ∣ π0)
(61)

where Pa0∶t−1 and Pas explicitly recognize the dependence of the given probabilities on a0∶t−1 and as, respec-

tively. If we substitute (61) into (60) we obtain

∑
o1∶t,h0∶t

rt(ht, at)Pa0∶t−1(o1∶t, h0∶t ∣ π0) = E [rt(ht, at) ∣F0] (62)

which establishes the correctness of (57) and (58).
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The Robotic Navigation Application

In the numerical experiments of Sections 7 and 8 we constructed the penalties using supersolutions and, as

explained in Appendix D, the absolute continuity of P w.r.t. P̃ is not required to construct dual bounds.

We therefore defined P̃ to be the measure induced by following the policy that was greedy with respect to

the AVF under consideration, i.e. the QMDP, Lag-1 or Lag-2 AVF. In the case of the robotic navigation

application, the action-independent transition probabilities induced by following the policy that is greedy

with respect to the QMDP AVF were defined according to

Qtij ≡ Pij(argmax
a∈A

V Qt (i, a)) (63)

for t ∈ {0, . . . , T − 1}. Similarly, the action-independent transition probabilities induced by following the

policy that is greedy with respect to the Lag-1 AVF (41) were defined according to

Qtij ∶= Pij (argmax
a∈A

E [rt(ht, a) + V
L1

t+1(ht, a, ot+1) ∣ ht = i]) (64)

and for the Lag-2 AVF (43) we defined

Qtij ≡ Pij (argmax
a∈A

E [max
at+1

E [rt(ht, a) + rt+1(ht+1, at+1) + V L2

t+2(ht, at∶t+1, ot+1∶t+2) ∣ ht = i, ot+1] ∣ ht = i]) . (65)

Regardless of the AVF, we defined Ejk ∶= Bjk since the emission matrix B under P was already action-

independent. The RN derivatives for the uncontrolled PI formulation are then given by

Φt(h0∶t, a0∶t−1) ∶=
t−1
∏
s=0

φs(hs, hs+1, as)

φs(i, j, a) ∶=
Pij(a)

Qsij
. (66)

where Qsij is given by (63), (64) or (65), depending on the AVF under consideration.

A.2. The Uncontrolled Belief-State POMDP Formulation

We only consider uncontrolled measure changes P̃ that are Markovian in that P̃(π1∶t) = ∏t−1s=0 P̃(πs+1 ∣ πs) for

some P̃(πs+1 ∣ πs) that we must define. The corresponding RN derivatives then take the form

dP
dP̃

=∶ ΦπT (π0∶T , a0∶T−1) ∶=
T−1
∏
s=0

φ(πs, πs+1, as) (67)

φ(πs, πs+1, as) ∶=
∑i,j,k π(i)Pij(as)Bjk(as)1{πs+1=f(πs,as,k)}

P̃(πs+1 ∣ πs)
(68)

where π0∶T ∶= {π0, π1, . . . , πT } and f(π, a, k) is as defined in (18) and is the new filtered belief-state that

results under P from taking action a and observing k when the current belief-state is π. In order to justify

(67) and (68) we must show

E [rt(πt, at) ∣F
π

0 ] = Ẽ [ΦπT rt(πt, at) ∣F
π

0 ] = Ẽ [Φπt rt(πt, at) ∣F
π

0 ]
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where the second equality follows from a standard conditioning argument. Writing the expectations explicitly,

we must have

∑
π1∶t

rt(πt, at)Pa0∶t−1(π1∶t) = ∑
π1∶t

Φπt rt(πt, at)P̃(π1∶t)

where Pa0∶t−1 explicitly recognizes the dependence of the given probabilities on a0∶t−1. It is clear then that

the RN derivatives must satisfy

Φπt ∶=
Pa0∶t−1(π1∶t)

P̃(π1∶t)
. (69)

We can compute the numerator of (69) as

Pa0∶t−1(π1∶t) =
t−1
∏
s=0

Pas(πs+1 ∣ πs) =
t−1
∏
s=0
∑
os+1

Pas(os+1 ∣ πs)Pas(πs+1 ∣ os+1, πs)

=
t−1
∏
s=0

∑
h,h′,os+1

πs(h)Pas(h
′
∣ h)Pas(os+1 ∣ h′)1{πs+1=f(πs,as,os+1)}

=
t−1
∏
s=0
∑
h,h′,o

πs(h)Phh′(as)Bh′o(as)1{πs+1=f(πs,as,o)}. (70)

Substituting P̃(π1∶t) = ∏t−1s=0 P̃(πs+1 ∣ πs) and (70) into (69) then establishes that (67) and (68) are correct.

The Robotic Navigation Application

In the specific applications considered in this paper, we don’t need to concern ourselves with the absolute

continuity of the measure change because of the use of supersolutions to construct penalties. We can therefore

utilize the same measure-changes described in Appendix A.1 for the non-belief-state formulation but with a

layer of filtering included. Specifically, we define

P̃(πs+1 ∣ πs) ∶= ∑
h,h′,o

πs(h)Q
s
hh′Bh′o1{πs+1=f̃s(πs,o)} (71)

where Qshh′ is given by either (63), (64) or (65), depending on the AVF under consideration, and where the

jth component of f̃s(πs; o) in the ∣H∣-dimensional simplex is defined according to

f̃s(j;πs;k) =
∑i πs(i)Q

s
ijBjk

∑i,l πs(i)Q
s
ilBlk

. (72)

The RN derivatives for the BSPI relaxation are then given by (67) with the denominator in (68) given by

(71).

A.3. Relating the RN Derivatives for the Uncontrolled PI and BSPI Formulations

It is interesting to compare the one-step RN derivatives given by (57) and (68) for the PI and BSPI uncon-

trolled formulations, respectively. As discussed at the end of Section 5.2, the PI and BSPI change-of-measures

are closely related when both are constructed from the same action-independent transition and emission ma-

trices Qt and Et. In particular, we argued that the RN derivative term in (68) (or equivalently (15)) could
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be loosely viewed as a filtered version of the RN derivative term in (57) (or equivalently (23)). To understand

this relationship more clearly, we compute the P̃-expectation of the PI one-step RN derivative conditional

on πs and πs+1. Omitting the dependence of f̃s, φs, Q
s, Es on s, we obtain

Ẽ[φ(hs, hs+1, os+1, as) ∣ πs+1, πs] = ∑
hs,hs+1,os+1

φ(hs, hs+1, os+1, as)P̃(hs, hs+1, os+1 ∣ πs+1, πs)

= ∑
hs,hs+1,os+1

φ(hs, hs+1, os+1, as)
P̃(hs, hs+1, os+1, πs+1 ∣ πs)

P̃(πs+1 ∣ πs)
(73)

where the second equality was obtained by a standard conditioning argument. The probability in the

numerator in the r.h.s. of (73) can be written as

P̃(hs, hs+1, os+1, πs+1 ∣ πs)
(a)
= P̃(πs+1 ∣ hs, hs+1, os+1, πs)P̃(os+1 ∣ hs, hs+1, πs)P̃(hs+1 ∣ hs, πs)πs(hs)

(b)
= P̃(πs+1 ∣ os+1, πs)P̃(os+1 ∣ hs+1)P̃(hs+1 ∣ hs)πs(hs)

(c)
= 1{πs+1=f̃(πs,os+1)}P̃(os+1 ∣ hs+1)P̃(hs+1 ∣ hs)πs(hs) (74)

where (a) is obtained by a sequence of conditioning arguments and noting that P̃(hs ∣ πs) = πs(hs) (b) comes

from noting that πs+1 is independent of hs and hs+1 given os+1 and πs, that os+1 is independent of hs and

πs conditional on hs+1, and that hs+1 is independent of πs conditional on hs. Finally, (c) follows by noting

that P̃(πs+1 ∣ os+1, πs) = 1{πs+1=f̃(πs,os+1)} where the components of f̃ are given by the filtering expression

(72). Substituting (74) and the expression for φ(⋅) given in (57) into (73), we obtain

Ẽ[φ(hs, hs+1, os+1, as) ∣ πs+1, πs]

= ∑
hs,hs+1,os+1

Phs,hs+1(as)

Qhs,hs+1

Bhs+1,os+1(as)

Ehs+1,os+1

1{πs+1=f̃(πs,os+1)}P̃(os+1 ∣ hs+1)P̃(hs+1 ∣ hs)πs(hs)

P̃(πs+1 ∣ πs)

= ∑
hs,hs+1,os+1

πs(hs)Phs,hs+1(as)Bhs+1,os+1(as)1{πs+1=f̃(πs,os+1)}
P̃(πs+1 ∣ πs)

(75)

where the second equality follows because Qhs,hs+1 ≡ P̃(hs+1 ∣ hs) and Ehs+1,os+1 ≡ P̃(os+1 ∣ hs+1).

We can now compare the definition of the RN derivative given in (68) for the BSPI relaxation with the

r.h.s. of (75). The only difference between the two expressions are the indicator functions 1{π′=f(π,a,k)} and

1{πs+1=f̃(πs,os+1)} appearing in the numerators of (68) and (75), respectively. We recall that f(π, a, k) is the

P-filtering update function whereas f̃(πs, os+1) is the action-independent P̃-filtering update function and so

it’s not surprising that 1{πs+1=f̃(πs,os+1)} appears in the numerator of (75) as it’s a P̃ conditional expectation

that led to it. If P̃ is obtained by taking Q = P (a′) and E = B(a′) for some fixed action a′, however, then

it’s not hard to see that both (68) and (75) collapse to the value 1 when as = a
′. This is to be expected of

course since if P̃ is the action-independent measure induced by following some feasible policy, then the RN

derivatives (for both uncontrolled formulations) should collapse to 1 when the action a coincides with the

action chosen by the policy.
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A.4. Defining a Belief-State Measure Change Where P is Absolutely Continuous W.R.T. P̃
In some circumstances it may be desirable to use penalties constructed from AVFs that are not supersolutions.

In that case, it will be necessary to ensure that the measure change P̃ will be such that P will be absolutely

continuous w.r.t P̃. An obvious approach to defining uncontrolled belief-state dynamics for πt would be to

use (16) and (17) to generate uncontrolled hidden state / observation sequences and then simply use the

generated observations to update the belief state appropriately, beginning with π0. This is precisely what

we did in (14) and (15). The only problem with this is that P will not be absolutely continuous w.r.t P̃ even

if Q and E as defined in (16) and (17) do satisfy their absolute continuity conditions as discussed at the

beginning of Section 4.3. To see this note that the belief state updates under P are computed according to

πt+1(j;a, k) =
∑i πt(i)Pij(a)Bjk(a)

∑i,l πt(i)Pil(a)Blk(a)
(76)

where we explicitly recognize the P-dependence of πt+1 on at = a and ot+1 = k. In contrast, the belief state

updates under P̃ are computed according to

π̃t+1(j;k) =
∑i πt(i)QijEjk

∑i,l πt(i)QilElk
. (77)

Even if Q and E satisfy their absolute continuity conditions, there will in general be πt+1(⋅ ; a, k)’s that

satisfy P (πt+1(⋅ ; a, k) ∣ πt) > 0 and P̃ (πt+1(⋅ ; a, k) ∣ πt) = 0. As such, P will not be absolutely continuous

w.r.t. P̃.

There are many ways to resolve this issue and we now describe one such approach. Specifically, we

assume that under P̃ the current belief state π transitions with strictly positive probability to any16 belief

state π′ which is feasible for some available action a ∈ A given π. We then define the belief-state transition

probability

P̃(π′ ∣ π) ∶=
1

∣A∣ × ∣O∣
∑

(a,o)∈A×O
1{π′=f(π;a,o)} (78)

where f(π;a, o) lies in the ∣H∣-dimensional simplex and is defined in (18). In this case all π′’s which have

strictly positive probability (conditional on π) under P become equally likely under P̃ (conditional on π).

It is of course possible to define other P̃’s and still guarantee that P is absolutely continuous w.r.t. P̃.

For example, we could define P̃ so that at each time t every feasible action a ∈ A is chosen with strictly

positive probability. Then any π′ that has strictly positive probability under P will also have strictly positive

probability under P̃.

B. The Lag-1 and Lag-2 Approximate Value Functions

B.1. Computing the Optimal Value Function for the Lag-1 MDP

The Lag-1 formulation corresponds to the relaxed problem in which the time t DM knows the true state ht−1
that prevailed at time t− 1, the observation history o0∶t and the action history a0∶t−1. Given the dependence

structure of the hidden states and observations in the POMDP, it follows that the Lag-1 optimal value

function V L1
t only depends on (ht−1, at−1, ot). The terminal value function satisfies V L1

T (hT−1, aT−1, oT ) ∶=

16Note that while there are infinitely many points in the ∣H∣-dimensional simplex only a finite number of these points will
have a strictly positive probability under P conditional on π0. These points with strictly positive P-probability arise from the
various possible combinations of action / observation sequences which are finite in number by assumption.
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rT (oT ) = rT (hT ) with

V L1
t (ht−1, at−1, ot) ∶= max

at
E[rt(ht, at) + V

L1

t+1(ht, at, ot+1) ∣ ht−1, ot]

= max
at

∑
ht,ot+1

Pat−1∶t(ht, ot+1 ∣ ht−1, ot)[rt(ht, at) + V L1

t+1(ht, at, ot+1)]

for t ∈ {1, . . . , T − 1} and where Pat−1∶t recognizes the dependence of the conditional PMF on the actions

at−1∶t. These probabilities can be calculated explicitly using standard manipulations. In particular, we have

Pat−1∶t(ht, ot+1 ∣ ht−1, ot) =
Pat−1∶t(ht, ot, ot+1 ∣ ht−1)

Pat−1∶t(ot ∣ ht−1)

=
∑ht+1 Pat−1∶t(ht, ot, ht+1, ot+1 ∣ ht−1)

∑ht Pat−1∶t(ht, ot ∣ ht−1)

=
Pht−1htBhtot ∑ht+1 Phtht+1Bht+1ot+1

∑ht Pht−1htBhtot
(79)

where for ease of exposition we have suppressed17 the dependence of the various quantities in (79) on the

various actions. We can calculate V L1

0 in a similar fashion by noting that

V L1

0 (o0) ∶= max
a0

E[r0(h0, a0) + V
L1

1 (h0, a0, o1) ∣ o0]

= max
a0
∑
h0,o1

Pa0(h0, o1 ∣ o0)[r0(h0, a0) + V
L1

1 (h0, a0, o1)]

where Pa0(h0, o1 ∣ o0) can be calculated as in (79) but with Pht−1ht(at−1) replaced by P (h0).

B.2. The Lag-2 Approximate Value Function

We must first show how the optimal value function for the Lag-2 MDP can be calculated.

Computing the Optimal Value Function for the Lag-2 MDP

The Lag-2 formulation corresponds to the relaxed problem in which the time t DM knows the true state ht−2
that prevailed at time t − 2, the observation history o0∶t and the action history a0∶t−1. The terminal value

function satisfies V L2

T (hT−2, aT−2∶T−1, oT−1∶T ) ∶= rT (oT ) = rT (hT ) with

V L2
t (ht−2, at−2∶t−1, ot−1∶t) ∶= max

at
E[rt(ht, at) + V

L2

t+1(ht−1, at−1∶t, ot∶t+1) ∣ ht−2, ot−1∶t] (80)

= max
at

∑
ht−1∶t,ot+1

Pat−2∶t(ht−1∶t, ot+1 ∣ ht−2, ot−1∶t)[rt(ht, at) + V L2

t+1(ht−1, at−1∶t, ot∶t+1)]

17In these appendices we will often suppress the dependence of the various transition and observation probabilities on the
chosen actions. For example, it should be clear in (79) that Pht−1ht depends on at−1 while Bht+1ot+1 depend on at.
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for t ∈ {2, . . . , T − 1} and where we use Pat−2∶t to denote a probability that depends on at−2∶t. We note it is

straightforward to calculate Pat−2∶t(⋅ ∣ ⋅) using standard arguments. Specifically, we have

Pat−2∶t(ht−1∶t, ot+1 ∣ ht−2, ot−1∶t) =
Pat−2∶t(ht−1∶t, ot−1∶t+1 ∣ ht−2)

Pat−2∶t(ot−1∶t ∣ ht−2)

=
∑ht+1 Pat−2∶t(ht−1∶t+1, ot−1∶t+1 ∣ ht−2)

∑ht−1∶t Pat−2∶t(ht−1∶t, ot−1∶t ∣ ht−2)

=
PBt−2PBt−1∑ht+1 PBt
∑ht−1,ht PBt−2PBt−1

(81)

where we use PBt to denote Phtht+1Bht+1ot+1 and again we have suppressed the action dependence of the

various terms. A slightly different calculation is required for each of V L2

0 and V L2

1 as there is no hidden state

information available at times t = 0 and t = 1. For t = 1 we have

V L2

1 (o0∶1, a0) ∶= max
a1

E[r1(h1, a1) + V
L2

2 (h0, a0∶1, o1∶2) ∣ o0∶1]

= max
a1
∑
h0,o2

Pa0∶1(h0∶1, o1 ∣ o0∶1)[r1(h1, a1) + V L2

2 (h0, a0∶1, o1∶2)]

where Pa0∶1(h0∶1, o1 ∣ o0∶1) is calculated as in (81) but where we replace Pht−2ht−1(at−2) in PBt−2 with the

initial distribution P (h0). Similarly, at t = 0 we have

V L2

0 (o0) ∶= max
a0

E[r0(h0, a0) + V
L2

1 (o0∶1, a0) ∣ o0]

= max
a0
∑
o1

Pa0(h0, o1 ∣ o0)[r0(h0, a0) + V
L2

1 (o0∶1, a0)]

and where

Pa0(h0, o1∣o0) =
P (h0)Bh0o0 ∑h1

PB0

∑h0
P (h0)Bh0o0

.

Computing the Lag-2 Approximate Value Function for the POMDP

Following (43) we can write the Lag-2 AVF as

Ṽ L2
t (πt) = max

at
E[rt(ht, at) +max

at+1
E[rt+1(ht+1, at+1) + V L2

t+2(ht, at∶t+1, ot+1∶t+2) ∣ F
π

t , ot+1] ∣ F
π

t ]. (82)

The inner expectation in (82) can be calculated according to

∑
ht∶t+1,ot+2

Pat∶t+1(ht∶t+1, ot+2 ∣ πt, ot+1)[rt+1(ht+1, at+1) + V L2

t+2(ht, at∶t+1, ot+1∶t+2)]. (83)

The probability in (83) can then be computed using standard arguments. In particular, we have

Pat∶t+1(ht∶t+1, ot+2 ∣ πt, ot+1) =
Pat∶t+1(ht∶t+1, ot+1∶t+2 ∣ πt)

Pat(ot+1 ∣ πt)

=
∑ht+2 Pat∶t+1(ht∶t+2, ot+1∶t+2 ∣ πt)

∑ht∶t+1 Pat(ht∶t+1, ot+1 ∣ πt)

=
πt(ht)PBt∑ht+2 PBt+1
∑ht,ht+1 πt(ht)PBt

(84)
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where we once again denote by PBt ≡ Phtht+1(at)Bht+1ot+1(at).

Remark B.1. We note that if T = 2, then we recover the optimal value V ∗
0 (π0) of the POMDP. In particular,

Ṽ L2

0 (π0) = max
a0

E[max
a1

E[r0(h0, a0) + r1(h1, a1) + V
L2

2 (h0, a0∶1, o1∶2) ∣ F
π

0 , o1] ∣ F
π

0 ]

= max
a0

E[r0(h0, a0) +max
a1

E[r1(h1, a1) + r2(h2) ∣ F
π

0 , o1] ∣ F
π

0 ] = V ∗
0 (π0)

where the second equality follows from the tower property of conditional expectations.

B.3. Comparing the Lag-1 and Lag-2 Approximate Value Functions

We begin by proving the unsurprising result that the Lag-2 AVF is tighter than the Lag-1 AVF.

Proposition B.1. For all t we have V ∗
t (πt) ≤ Ṽ

L2
t (πt) ≤ Ṽ

L1
t (πt).

Proof. We show in Appendix C that Ṽ L2
t (πt) is a supersolution and so it follows that V ∗

t (πt) ≤ Ṽ
L2
t (πt). To

prove the second inequality we begin with the definition of Ṽ L1
t (πt) in (41) for t = 0, . . . , T − 2. (We recall

that at t = T − 1 and t = T we have that Ṽ L2
t (πt) = Ṽ

L1
t (πt) for all πt.) We obtain

Ṽ L1
t (πt) ∶= max

at
E [rt(ht, at) + V

L1

t+1(ht, at, ot+1) ∣ F
π

t ]

(a)
= max

at
Eht,ot+1 [rt(ht, at) +max

at+1
Eht+1,ot+2 [rt+1(ht+1, at+1) + V

L1

t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ F
π

t ]

(b)
= max

at
Eht,ot+1 [max

at+1
rt(ht, at) +Eht+1,ot+2 [rt+1(ht+1, at+1) + V

L1

t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ F
π

t ]

(c)
≥ max

at
Eot+1 [max

at+1
Eht [rt(ht, at) +Eht+1,ot+2 [rt+1(ht+1, at+1) + V

L1

t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ F
π

t , ot+1] ∣ F
π

t ]

(d)
= max

at
Eot+1 [max

at+1
Eht∶t+1,ot+2 [rt(ht, at) + rt+1(ht+1, at+1) + V

L1

t+2(ht+1, at+1, ot+2) ∣ F
π

t , ot+1] ∣ F
π

t ]

(e)
= max

at
Eot+1 [max

at+1
Eht∶t+1,ot+2 [rt(ht, at) + rt+1(ht+1, at+1) + V

L2

t+2(ht+1, at∶t+1, ot+1∶t+2) ∣ F
π

t , ot+1] ∣ F
π

t ]

= Ṽ L2
t (πt)

where (a) results from using the definition of V L1

t+1 and (b) follows by simply moving rt(ht, at) inside the

maximization of at+1. Inequality (c) results from applying Jensen’s inequality when exchanging the order of

the expectation w.r.t. ht and the maximization of at+1. Equality (d) results from the tower property and

noting that the argument inside the inner expectation, conditional on ht, is independent of F
π

t . Inequality

(e) follows by replacing V L1

t+2 with V L2

t+2 and then using Lemma B.1 below. Finally, the last equality follows

from the definition of Ṽ L2
t (πt) in (43).

Lemma B.1. E[V L1

t+2(ht+1, at+1, ot+2) ∣ F
π

t , ot+1] ≥ E[V L2

t+2(ht, at∶t+1, ot+1∶t+2) ∣ F
π

t , ot+1] for all t = 0, . . . , T − 2.

Proof. To begin we note that it suffices to prove that

E[V L1

t+2(ht+1, at+1, ot+2) ∣ ht, ot+1∶t+2] ≥ V L2

t+2(ht, at∶t+1, ot+1∶t+2) (85)

since taking expectation E[⋅ ∣ F
π

t , ot+1] on both sides of (85) and applying the tower property yields18 the

18Note that the term inside the expectation on the left-hand-side of (85), conditional on ht, is independent of F
π

t , and so the
tower property indeed yields the result.
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desired result. We now prove (85) by induction for t = 0, . . . , T − 2. The base case follows immediately since

V L1

T = V L2

T = rT (hT ) and so E[V L1

T ∣ hT−2, oT−1∶T ] = rT (hT ) = V L2

T where we recall that oT ≡ hT . We now

assume the result is true for time t + 3 so that E[V L1

t+3 ∣ ht+1, ot+2∶t+3] ≥ V L2

t+3. An application of the tower

property then implies

E[V L1

t+3(ht+2, at+2, ot+3) ∣ ht+1, ot+2] ≥ E[V L2

t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht+1, ot+2]. (86)

It then follows that

E [V L1

t+2(ht+1, at+1, ot+2) ∣ ht, ot+1∶t+2]
(a)
= E [max

at+2
E [rt+2(ht+2, at+2) + V L1

t+3(ht+2, at+2, ot+3) ∣ ht+1, ot+2] ∣ ht, ot+1∶t+2]

(b)
≥ max

at+2
E [E [rt+2(ht+2, at+2) + V L1

t+3(ht+2, at+2, ot+3) ∣ ht+1, ot+2] ∣ ht, ot+1∶t+2]

(c)
≥ max

at+2
E [E [rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht+1, ot+2] ∣ ht, ot+1∶t+2]

(d)
= max

at+2
E [E [rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht∶t+1, ot+1∶t+2] ∣ ht, ot+1∶t+2]

(e)
= max

at+2
E [rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2]

= V L2

t+2(ht, at∶t+1, ot+1∶t+2)

where we use the definition of V L1

t+2 in (a). Inequality (b) follows from Jensen’s inequality after exchanging the

outer expectation with maxat+2 . We obtain (c) from the induction hypothesis and inequality (86). Equality

(d) follows by noting that the argument inside the inner expectation, conditional on ht+1, is independent

of ht and ot+1. Equality (e) then follows from the tower property and the final equality results from the

definition of V L2

t+2. We have therefore shown the desired result for time t+2 and so the proof is complete.

C. Proving that the Approximate Value Functions Are Supersolutions

We now prove Proposition 6.2 which states that all of our AVFs are supersolutions. These results are not

surprising and the proof for each AVF is quite straightforward but we include them for completeness. Recall

that a supersolution is an AVF ϑ that for all possible time t belief states πt satisfies

ϑt(πt) ≥ max
at∈A

{rt(πt, at) +E [ϑt+1(πt) ∣ F
π

t ]} . (87)

Before proceeding we note that given the current belief state πt and the next observation ot+1, the belief

state πt+1 can be computed according to

πt+1(h′) =
∑h πt(h)Phh′Bh′o

σ(o, πt)
(88)

where19 σ(o, πt) ∶= P (ot+1 ∣ πt) = ∑h,h′ πt(h)Phh′Bh′o for t ∈ {0, . . . , T − 1}.

19As before, we will often suppress the dependence of the various transmission and emission probabilities on the actions.
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Proof that the MDP Approximation is a Supersolution

Following (36) and (37) we have

Ṽ MDP

t (πt) = ∑
h

πt(h)max
at

{rt(h, at) +∑
h′
Phh′(at)V

MDP

t+1 (h′)}

(a)
≥ max

at
∑
h

πt(h){rt(h, at) +∑
h′
Phh′(at)V

MDP

t+1 (h′)}

(b)
= max

at

⎧⎪⎪
⎨
⎪⎪⎩

rt(πt, at) + ∑
h′,ot+1

[∑
h

πt(h)Phh′(at)Bh′ot+1(at)]V
MDP

t+1 (h′)
⎫⎪⎪
⎬
⎪⎪⎭

(c)
= max

at

⎧⎪⎪
⎨
⎪⎪⎩

rt(πt, at) + ∑
h′,ot+1

P (ot+1 ∣ πt)πt+1(h′)V MDP

t+1 (h′)
⎫⎪⎪
⎬
⎪⎪⎭

(d)
= max

at
{rt(πt, at) + ∑

ot+1

P (ot+1 ∣ πt)Ṽ
MDP

t+1 (πt+1)}

≡ max
at

{rt(πt, at) +E [Ṽ MDP

t+1 (πt+1) ∣ F
π

t ]}

where (a) results from Jensen’s inequality and (b) follows from including the factor ∑ot+1 Bh′ot+1 = 1 and

then a simple re-ordering of the terms. Equality (c) follows from (88) while we have used the definition of

Ṽ MDP

t+1 (πt+1) to obtain (d).

Proof that the QMDP Approximation is a Supersolution

The proof for the QMDP approximation follows a similar argument. From (38) and (39) we have

Ṽ Q

t (πt) = max
at
∑
h

πt(h){rt(h, at) +∑
h′
Phh′(at)V

MDP

t+1 (h′)}

(a)
= max

at

⎧⎪⎪
⎨
⎪⎪⎩

rt(πt, at) + ∑
h′,ot+1

P (ot+1 ∣ πt)πt+1(h′)V MDP

t+1 (h′)
⎫⎪⎪
⎬
⎪⎪⎭

(b)
= max

at

⎧⎪⎪
⎨
⎪⎪⎩

rt(πt, at) + ∑
h′,ot+1

P (ot+1 ∣ πt)πt+1(h′)max
a′

V Qt+1(h
′, a′)

⎫⎪⎪
⎬
⎪⎪⎭

(c)
≥ max

at
{rt(πt, at) + ∑

ot+1

P (ot+1 ∣ πt)max
a′
∑
h′
πt+1(h′)V Q

t+1(h
′, a′)}

(d)
= max

at
{rt(πt, at) + ∑

ot+1

P (ot+1 ∣ πt)Ṽ
Q

t+1(πt+1)}

≡ max
at

{rt(πt, at) +E [Ṽ Q

t+1(πt+1) ∣ F
π

t ]}

where (a) follows from following steps (b) to (d) of the MDP proof above and (b) then follows from the

definition of both V MDP

t+1 and V Q

t+1. Inequality (c) follows from Jensen’s inequality after changing the order of

maxa′ and the marginalization of h′. Finally (d) follows from the definition of Ṽ Q

t+1(πt+1).

Proof that the Lag-1 Approximation is a Supersolution

Because of the many terms involved, throughout the proof we will write the relevant quantities as expectations
and we will use EX to denote an expectation taken over the random variable X. Following its definition in
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(41), the Lag-1 AVF satisfies

Ṽ L1
t (πt)

(a)= max
at

Eht,ot+1 [rt(ht, at) +max
at+1

Eht+1,ot+2 [rt+1(ht+1, at+1) + V L1
t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ F

π

t ]

(b)= max
at

{rt(πt, at) + Eht,ot+1 [max
at+1

Eht+1,ot+2 [rt+1(ht+1, at+1) + V L1
t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ F

π

t ]}

(c)= max
at

{rt(πt, at) + Eot+1 [Eht [max
at+1

Eht+1,ot+2 [rt+1(ht+1, at+1) + V L1
t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ ot+1,F

π

t ] ∣ F
π

t ]}

(d)
≥ max

at
{rt(πt, at) + Eot+1[max

at+1
Eht[Eht+1,ot+2 [rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) ∣ ht, ot+1] ∣ ot+1,F
π

t ] ∣ F
π

t ]}

(e)= max
at

{rt(πt, at) + Eot+1[max
at+1

Eht[Eht+1,ot+2 [rt+1(ht+1, at+1) + V L1
t+2(ht+1, at+1, ot+2) ∣ ht, ot+1,F

π

t ] ∣ ot+1,F
π

t ] ∣ F
π

t }

(f)= max
at

{rt(πt, at) + Eot+1[max
at+1

Eht+1,ot+2[rt+1(ht+1, at+1) + V
L1
t+2(ht+1, at+1, ot+2) ∣ ot+1,F

π

t ] ∣ F
π

t ]}

(g)= max
at

{rt(πt, at) + E [Ṽ L1
t+1(πt+1) ∣ F

π

t ]}

where (a) follows from the definition of V L1

t+1 in (40) and (b) follows from noting that the expectation of

rt(ht, at) conditional on F
π

t is rt(πt, at). Equality (c) follows from the tower property while (d) follows from

Jensen’s inequality after changing the order of maxat+1 and the expectation over ht. Equality (e) follows since

the function inside the expectation E[⋅ ∣ ht, ot+1] is independent of F
π

t after conditioning on ht. Equality (f)

follows from applying the tower property to the nested expectations. Finally (g) follows from the definition

of Ṽ L1

t+1(πt+1) and where we note that πt+1 is completely determined given πt, ot+1 and at.

Proof that the Lag-2 Approximation is a Supersolution

Proving that the Lag-2 AVF is a supersolution is similar to proving that the Lag-1 AVF is a supersolution

but the details are a little more involved. From (43) we have

Ṽ L2
t (πt) ∶= max

at
Eot+1 [max

at+1
Eht∶t+1,ot+2 [rt(ht, at) + rt+1(ht+1, at+1) + V L2

t+2(ht, at∶t+1, ot+1∶t+2) ∣ F
π

t , ot+1] ∣ F
π

t ]

(a)= max
at

Eot+1[max
at+1

Eht∶t+1,ot+2[rt(ht, at) + rt+1(ht+1, at+1)+

max
at+2

Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2] ∣ F

π

t , ot+1] ∣ F
π

t ]

(b)= max
at

{rt(πt, at) + Eot+1[max
at+1

Eht∶t+1,ot+2[rt+1(ht+1, at+1)+

max
at+2

Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2] ∣ F

π

t , ot+1] ∣ F
π

t ]}

(c)= max
at

{rt(πt, at) + Eot+1[max
at+1

Eht∶t+1,ot+2[max
at+2

{rt+1(ht+1, at+1)+

Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2]} ∣ F

π

t , ot+1] ∣ F
π

t ]}
(89)

where (a) follows from the definition of V L2

t+2 in (80). We obtain (b) by taking the expectation of rt(ht, at)

outside the maximization of at+1 (which is fine since at+1 has no bearing on rt(ht, at)) and then using the tower

property with the outer expectation to obtain rt(πt, at). Equality (c) follows from taking rt+1(ht+1, at+1)
inside the maximization of at+2 which is again fine since at+2 has no bearing on rt+1(ht+1, at+1). We focus
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now on the term inside the outermost expectation Eot+1[⋅ ∣ F
π

t ] of (89). It satisfies

max
at+1

Eht∶t+1,ot+2[max
at+2

{rt+1(ht+1, at+1) + Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2]} ∣ F

π

t , ot+1]

(d)= max
at+1

Eot+2[Eht∶t+1[max
at+2

{rt+1(ht+1, at+1)+

Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2]} ∣ F

π

t , ot+1∶t+2] ∣ F
π

t , ot+1]

(e)
≥ max

at+1
Eot+2[max

at+2
{Eht∶t+1[rt+1(ht+1, at+1)+

Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2] ∣ F

π

t , ot+1∶t+2]} ∣ F
π

t , ot+1]

(f)= max
at+1

Eot+2[max
at+2

{Eht+1[rt+1(ht+1, at+1) ∣ F
π

t , ot+1∶t+2]+

Eht[Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ ht, ot+1∶t+2] ∣ F

π

t , ot+1∶t+2]} ∣ F
π

t , ot+1]

(g)= max
at+1

Eot+2[max
at+2

{Eht+1[rt+1(ht+1, at+1) ∣ F
π

t , ot+1∶t+2]+

Eht+1∶t+2,ot+3[rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ F

π

t , ot+1∶t+2]} ∣ F
π

t , ot+1]

(h)= max
at+1

Eot+2[max
at+2

Eht+1∶t+2,ot+3[rt+1(ht+1, at+1) + rt+2(ht+2, at+2) + V
L2
t+3(ht+1, at+1∶t+2, ot+2∶t+3) ∣ F

π

t , ot+1∶t+2] ∣ F
π

t , ot+1]

(i)= Ṽ L2
t+1(πt+1)

where (d) follows from the tower property so that Eht∶t+1,ot+2 [⋅ ∣ F
π

t , ot+1] = Eot+2[Eht∶t+1 [⋅ ∣ F
π

t , ot+1∶t+2] ∣

F
π

t , ot+1] and (e) follows from Jensen’s inequality after changing the order of the maxat+2 operator and the

marginalization of ht and ht+1. We obtain (f) by simply writing the conditional expectation of a sum as

the sum of conditional expectations. Equality (g) follows from applying the tower property to the nested

expectations while (h) follows from grouping together the two conditional expectations E[⋅ ∣ F
π

t , ot+1∶t+2].

Finally, (i) follows from the definition of the Ṽ L2

t+1(πt+1) and where we note again that πt+1 is completely

determined given πt, ot+1 and at.

The overall result now follows by substituting Ṽ L2

t+1(πt+1) in for the conditional expectation Eot+1[⋅ ∣ F
π

t ]

in (89) with the equality there replaced by a greater-than-or-equal to inequality.

D. Dropping the Requirement that P≪ P̃
We explain here why we do not require P, the probability measure for the controlled formulation, to be

absolutely continuous w.r.t P̃ (the probability measure for the original uncontrolled formulation), when the

penalties in (22) are constructed from supersolutions. This result was originally shown by BH in [8] but

we outline the details here in the finite horizon case for the sake of completeness. We will work with the

PI relaxation of belief-state POMDP formulation, i.e. the BSPI relaxation, but it should be clear that the

result is general and holds for general information relaxations.

We therefore assume the penalty function, ct ∶= E[ϑt+1(πt+1) ∣ F
π

t ] − ϑt+1(πt+1), is such that ϑt is a

supersolution satisfying20 ϑT+1 ≡ 0. From Definition 6.1, it follows that for each t ∈ {0, . . . , T} and πt we

20There is no difficulty in assuming ϑT+1 ≡ 0 since ϑt(πt) represents an AVF and all of our AVFs naturally satisfy this
assumption.
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have

ϑt(πt) ≥ rt(πt, at) +E[ϑt+1(πt+1) ∣ F
π

t ] ∀at ∈ A. (90)

Subtracting ϑt(πt) from both sides of (90), summing over t and recalling that ϑT+1 ≡ 0, we obtain

0 ≥
T

∑
t=0

{rt(πt, at) +E[ϑt+1(π0∶t+1) ∣ F
π

t ] − ϑt(πt)}

=
T

∑
t=0

{rt(πt, at) + ct} − ϑ0(π0). (91)

We now obtain

V ∗
0 − ϑ0 = max

µ∈UFπ
V µ0 − ϑ0

(a)
= max

µ∈UFπ
E[

T

∑
t=0

(rt + ct) − ϑ0 ∣ F
π

0 ] (92)

(b)
≤ max

µ∈UFπ
Ẽ[

T

∑
t=0

Φt(rt + ct) − ϑ0 ∣ F
π

0 ]

(c)
≤ Ẽ[ max

a0∶T−1

T

∑
t=0

Φt(rt + ct) ∣ F
π

0 ] − ϑ0. (93)

where we have omitted the arguments of rt and ϑ0 for the sake of clarity. Equality (a) follows since E[∑
T
t=0 ct ∣

F
π

0 ] = 0 for any F
π

-adapted policy and since ϑ0(π0) is F
π

0 -adapted. In order to establish inequality (b),

we first note that (91) implies the random quantity inside the expectation in (92) is non-positive w.p. 1.

The inequality then follows21 for any probability measure, P̃, regardless of whether or not P is absolutely

continuous w.r.t P̃. Inequality (c) follows from the usual weak duality argument. We also note that Φ0 ≡ 1

which explains why there is no RN term multiplying ϑ0(π0).

We can now add ϑ0(π0) across both sides of (93) to establish the result, i.e. weak duality continues

to hold even if the probability measure, P, is not absolutely continuous w.r.t P̃ as long as the penalty is

constructed from a supersolution. It is also interesting to note that inequality (b) will in fact be an equality

if P̃ is the measure induced by following an optimal policy for the primal problem since in that case P and P̃
will coincide. Strong duality will then also continue to hold. In particular, (c) will then also be an equality

if ϑt coincides with the optimal value function, V ∗
t , which is itself a supersolution.

E. Further Details for the Multiaccess Communication Application

The main difference between the multiaccess communication application and the POMDP framework as

defined in Section 2 is the timing of observations. Specifically, in the multiaccess communication application

an observation occurs immediately after an action is taken and is therefore a function of the current hidden

state and the current action. In contrast, in the usual POMDP setting, an observation is a function of

the current hidden state and the action from the previous period. Therefore the filtering algorithm for the

21This result was stated as Lemma A.1 in [8] and we state it here for the sake of completeness. Consider a measurable space
(Ω,Σ) and two probability measures P and Q. Let φ represent the Radon-Nikodym derivative of the absolutely continuous
component of P with respect to Q. If Y = Y (ω) is a bounded random variable such that Y (ω) ≤ 0 for all ω /∈ ΩQ ∶= {ω ∈ Ω ∶
Q(ω) > 0}, then EP [Y ] ≤ EQ[φY ].
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belief-state update is different than the standard update as given in (88) (where the action dependence was

suppressed). The belief update for the slotted Aloha dynamics satisfies

πt+1(h′) =
∑h πt(h)Bhot(at)Phh′(ot)

∑h πt(h)Bhot(at)
(94)

for t ∈ {0, . . . , T −1} and where we recognize the denominator in (94) as Pat(ot ∣ πt). It is worth emphasizing

that the belief state for time t + 1 is a function of the time t action and observation. Moreover, the hidden-

state transition probabilities under P are action-independent given the current observation. As a result we

assume the hidden state transitions probabilities are unchanged when we go from P to P̃.

RN Derivatives for the Belief-State Formulation

These alternative dynamics also impact the calculations of the RN derivatives. In the case of the belief-

state formulation, the arguments in Appendix A.2 that led to (69) still apply. However, in the multiaccess

communication application the numerator of (69) now satisfies

Pa0∶t−1(π1∶t) =
t−1
∏
s=0

Pas(πs+1 ∣ πs)

=
t−1
∏
s=0
∑
os

Pas(os ∣ πs)Pas(πs+1 ∣ os, πs)

=
t−1
∏
s=0

∑
h,h′,os

πs(h)Pas(os ∣ h)P(h′ ∣ h, os)1{πs+1=f(πs,as,os)}

=
t−1
∏
s=0
∑
h,o

πs(h)Bho(as)1{πs+1=f(πs,as,o)} (95)

where f(πs, as, os) lies in the ∣H∣-dimensional simplex with each of its components defined according to

f(h′;πs, as, os) ∶=
∑h πs(h)Bho(as)Phh′(o)

∑h πs(h)Bho(as)
.

Using similar arguments, we see that the denominator of (69) satisfies

P̃(π1∶t) =
t−1
∏
s=0
∑
h,o

πs(h)E
s
ho1{πs+1=f̃s(πs;o)} (96)

where Esho is the uncontrolled emission matrix defined in (56) and where f̃s(πs; o) lies in the ∣H∣-dimensional

simplex with each of its components defined according to

f̃s(h
′;πs; o) ∶=

∑h πs(h)E
s
hoPhh′(o)

∑h πs(h)E
s
ho

.

The RN derivatives are now given by (67) but using (95) and (96) we see that each φ is now given by

φ(πs, πs+1, as) ∶=
∑h,o πs(h)Bho(as)1{πs+1=f(πs,as,o)}
∑h,o πs(h)E

s
ho1{πs+1=f̃s(πs;o)}

. (97)
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RN Derivatives for the Non-Belief-State Formulation

In the case of the non-belief-state formulation of the problem, the RN derivatives satisfy

Φt ∶=
Pa0∶t−1(o0∶t−1, h0∶t)

P̃(o0∶t−1, h0∶t)
(98)

where

Pa0∶t−1(o0∶t−1, h0∶t) = π0(h0)
t−1
∏
s=0

Pas(os ∣ hs)P(hs+1 ∣ hs, os) (99)

P̃(o0∶t−1, h0∶t) = π0(h0)
t−1
∏
s=0

P̃(os ∣ hs)P(hs+1 ∣ hs, os). (100)

It immediately follows from (99) and (100) that the RN derivatives for the uncontrolled non-belief-state

formulation satisfy

φt(i, k, a) ∶=
Bik(a)

Etik

Φt(h0∶t, o0∶t−1, a0∶t−1) ∶=
t−1
∏
s=0

φs(hs, os, as).

F. Extension to Infinite Horizon Problems

We can extend these techniques to the infinite horizon class of POMDPs with discounted rewards following

the approach of BH and [35]. Let the discount factor be denoted by δ ∈ [0,1), indicating that rewards

received at a later time contribute less than rewards received earlier. The corresponding infinite-horizon

POMDP can be stated as solving the following optimization problem

V ∗
0 ∶= max

µ∈UFπ
E [

∞
∑
t=0
δtr(πt, µt) ∣F

π

0 ] (101)

In order to solve the dual problem using a BSPI relaxation, we would have to simulate an infinite sequence of

random variables {ut}t≥0, which is not possible in practice. An equivalent formulation, however, is to replace

the discounting by a costless, absorbing state πa which can be reached from every belief-state and feasible

action with probability 1 − δ, at each t. The state transition distribution remains as in (6), conditional on

not reaching the absorbing state. The equivalent absorbing state formulation is then given by

V ∗
0 ∶= max

µ∈UFπ
E [

τ

∑
t=0
r(πt, µt) ∣F

π

0 ] (102)

where τ = inf{t ∶ πt = π
a} is the absorption time, distributed as a geometric random variable with parameter

1 − δ. In (102) the expected value is calculated over the modified state transition function that accounts

for the presence of the absorbing state. In the dual problem formulation, knowledge of the absorption time

should be included in the relevant information relaxation. For example, under the BSPI relaxation, the dual

upper bound can be expressed as

V ∗
0 (π0) ≤ Ẽ [max

a0∶τ−1

τ

∑
t=0

Φt[rt(πt, at) + ct] ∣F
π

0 ] . (103)
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An inner problem inside the expectation on the r.h.s of (103) can be generated by first simulating the

absorption time τ ∼ Geom(1 − δ), and then generating the belief states πt using some action-independent

change of measure. A lower bound can be obtained of course by simply simulating many paths of some

feasible policy.

One concern with the bound of (103) is that the optimal objective of the inner problem in (103) might

have an infinite variance. This was not a concern in the finite horizon setting with finite state and action

spaces. It is a concern, however, in the infinite horizon setting where τ is now random and the presence of

the RN derivative terms Φt might now cause the variance to explode. BH resolved this issue through the

use of supersolutions to construct dual penalties. In that case their bound improvement result22 and other

considerations allowed them to conclude that the variance of the upper bound estimator in (103) would

remain bounded.

Of course an alternative approach to guarantee finite variance estimators is to truncate the infinite horizon

to some large fixed value, T , and then add δT r̄/(1−δ) as a terminal reward where r̄ ∶= maxπ,a r(π, a). Because

the terminal reward is an upper bound on the total discounted remaining reward after time T in the infinite

horizon problem, we are guaranteed that a dual upper bound for the truncated problem will also be a valid

upper bound on the infinite horizon problem. By choosing T suitably large we can minimize the effect of

truncation on the quality of the dual bound for the infinite horizon problem.

22See also the discussion immediately following our Proposition 6.2.
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