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Dynamic Portfolio Execution and Information Relaxations∗

Martin Haugh† and Chun Wang†

Abstract. We consider a portfolio execution problem where a possibly risk-averse agent needs to trade a fixed
number of shares in multiple stocks over a short time horizon. Our price dynamics can capture linear
but stochastic temporary and permanent price impacts as well as stochastic volatility. In general it
is not possible to solve even numerically for the optimal policy in this model, however, and so we
must instead search for good suboptimal policies. Our principal policy is a variant of an open-loop
feedback control (OLFC) policy, and we show how the corresponding OLFC value function may be
used to construct good primal and dual bounds on the optimal value function. The dual bound is
constructed using the recently developed duality methods based on information relaxations. One of
the contributions of this paper is the identification of sufficient conditions to guarantee convexity,
and hence tractability, of the associated dual problem instances. That said, we do not claim that
the only plausible models are those where all dual problem instances are convex. We also show that
it is straightforward to include a nonlinear temporary price impact as well as return predictability in
our model. We demonstrate numerically that good dual bounds can be computed quickly even when
nested Monte Carlo simulations are required to estimate the so-called dual penalties. These results
suggest that the dual methodology can be applied in many models where closed-form expressions
for the dual penalties cannot be computed.
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1. Introduction. Dynamic portfolio execution is one of the most important practical prob-
lems faced by institutional investors and brokerage firms today. This problem requires the
purchase or sale of a large number of shares in multiple stocks over a short time horizon.
The large number of shares and short time horizon can result in a very significant market
impact that can in turn greatly increase the cost of trading. This of course is in contrast to
traditional dynamic portfolio optimization problems, where trading is generally assumed to
be frictionless. Because of the potentially large trading costs, it is necessary to model market
impact explicitly when determining portfolio execution policies.

In this paper we consider the portfolio execution problem of a possibly risk-averse agent
who needs to account for temporary and permanent market impact costs, as well as other
market features such as stochastic liquidity and return predictability, among others. In general
it is not possible to solve for the optimal policy in a model that can capture these features, and
so we must instead search for good suboptimal policies. But how good are these suboptimal
policies? In this paper we demonstrate the use of duality methods based on information
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relaxations to evaluate how far from optimality these suboptimal policies can be. We also
recognize that even “realistic” models are still only an approximation to the true market
dynamics, and we therefore note how these dual methods can also be used to estimate how
robust a given policy is to departures from the assumed model.

Our principal model incorporates risk aversion, stochastic return covariances, and tem-
porary and permanent linear price impacts that are also stochastic and time-varying. We
propose a variant of an open-loop feedback control (OLFC) policy for solving the resulting
portfolio execution problem and use duality methods based on information relaxations to
demonstrate how well this policy performs, at least for the parameter settings that we con-
sider. We also show that it is straightforward to include a nonlinear temporary price impact as
well as return predictability. Our model therefore allows us to capture a much broader range
of market features than can be captured by those models that insist on explicit calculation
of the optimal policy. One of the contributions of this paper is the formulation and analysis
of the dual problem instances that arise from this model. We discuss the convexity of these
dual problem instances and provide some sufficient conditions that guarantee the convexity
of all such instances. That said, we also recognize that the economic case for guaranteeing
dual convexity of all problem instances is not clear, and so we should not necessarily limit
ourselves to model conditions that preclude the nonconvexity of some dual instances.

In order to apply the aforementioned duality methods it is necessary to use an approximate
value function to compute so-called penalties which penalize the decision-maker for violating
the nonanticipativity constraints. These penalties, however, require us to compute conditional
expectations of the approximate value function. Ideally we can compute these expectations
analytically, but in many circumstances this may not be possible. This does not limit the
applicability of the dual methodology, however, since it is known that being able to compute
an unbiased estimate of the conditional expectations is sufficient for computing valid dual
bounds. A further contribution of this paper is the use of suitably randomized low-discrepancy
sequences (LDS) to estimate these expectations efficiently. We show that using randomized
LDS to estimate these expectations can still yield tight dual bounds and at only a very modest
increase (approx 10%) in computational work.

The literature on controlling execution costs is extensive, and we can barely do justice
to it here. Most of the early work, beginning with Bertsimas and Lo [10] and Almgren and
Chriss [5], considered single-stock execution problems which they formulated as dynamic con-
trol problems. Other related work in this spirit includes, for example, Almgren [3], Huberman
and Stanzl [28], and Gatheral and Schied [23]. Generally these papers consider the macro
or scheduling component of the execution problem, that is, the problem of deciding how to
slice the order, when the execution algorithm should trade, and in what size. These models
might, for example, take a time horizon of 1 day and break this period up into 5-minute time
periods. Assuming a trading day of 6.5 hours duration, this yields a finite-horizon control
problem with 78 time periods.

More recently, the growth of electronic exchange markets has led to the modeling of limit
order book dynamics. These models, beginning with Obizhaeva and Wang [38], and extended
by Alfonsi, Fruth, and Schied [2] and Predoiu, Shaikhet, and Shreve [39], model the mar-
ket impact and the decay of market impact at the limit order book level. Often formulated
as continuous-time problems, the resulting stochastic control problems generally yield deter-
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ministic execution policies due to the assumption of relatively simple price dynamics. These
papers can also be viewed as considering the scheduling component of the execution policy,
although they are inspired by microfoundations in that they model the transient behavior of
the limit order book. They assume that trades are executed as market orders whose price
impact depends on the shape of the order book at the time of execution. In contrast, Cont and
Kukanov [17] and Huitema [30] consider the use of both limit and market orders. Other papers
related to execution in limit order books include, for example, Cont, Stoikov, and Talreja [18]
and Gatheral [22], while Tóth et al. [45] focus on market impact rather than execution.

More recently, so-called dark pools have grown in importance as an alternative form of
trading. There is no order book in dark pool venues, and buyers/sellers are matched electron-
ically without revealing any information. Trades in dark pools generally have a smaller price
impact, but order execution is uncertain. Recent works on optimal execution in these venues
include, for example, Kratz and Schoneborn [32] and Buti, Rindi, and Werner [14], both of
which consider the use of a classical exchange and dark pools for optimal execution.

While most research has focused on the single-stock execution problem, there has also
been some work on the portfolio execution problem. Early work in this direction, which again
focuses on the macrocomponent of the problem, includes Bertsimas, Hummel, and Lo [9]
and Almgren and Chriss [4]. More recent work includes Huberman and Stanzl [29], Schied,
Schoneborn, and Tehranci [42], and Lim and Wimonkittiwat [35]. Tsoukalas, Wang, and
Giesecke [46] consider the portfolio execution problem at the limit order book level and for-
mulate their control problem as an equivalent static convex optimization problem. In another
recent paper, Moallemi and Saǧlam [37] consider general dynamic portfolio optimization prob-
lems, including portfolio execution problems, and propose optimizing over linear rebalancing
rules in order to find good suboptimal policies. Their optimization problem is therefore static
in nature and amenable to standard convex optimization algorithms. Their paper is quite
similar in spirit to our paper in that they also focus on developing good suboptimal policies
and also use duality based on information relaxations to demonstrate the effectiveness of these
policies.

The use of dual methods based on information relaxations to construct good bounds for
dynamic control problems began independently with Haugh and Kogan [26] and Rogers [40]
in the context of optimal stopping problems and the pricing of American options. See also
Andersen and Broadie [6] and Jamshidian [31]. These techniques were then extended to mul-
tiple optimal stopping problems by Meinshausen and Hambly [36] and Schoenmakers [43].
Bender [7] and Bender, Schoenmakers, and Zhang [8] provide further extensions of this work.
A significant development came with Brown, Smith, and Sun [13] and Rogers [41], who in-
dependently extended these duality techniques to more general stochastic dynamic programs.
This has now become a very significant research area. More recent applications and develop-
ments can be found in Brown and Smith [12], Desai, Farias, and Moallemi [21], Lai, Margot,
and Secomandi [33], Lai et al. [34], Moallemi and Saǧlam [37], and Haugh and Lim [27]. The
latter paper makes the point that some of the ideas behind these dual techniques are actually
not so recent and date back to earlier work, including Davis and Karatzas [19] in the case of
American options and Davis and Zervos [20] for linear-quadratic control. Chandramouli and
Haugh [15] also showed that the earlier duality results for multiple optimal stopping problems
could easily be derived using the more general framework of Brown, Smith, and Sun [13].
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The remainder of this paper is organized as follows. We define the basic portfolio execution
problem and describe our model in section 2. We also describe there the suboptimal policies
that we will consider, focusing in particular on a variant of an OLFC policy. In section 3
we review the duality theory of Brown, Smith, and Sun [13] and show how it can be applied
in the context of our portfolio execution problem. We present numerical results in section
4 where we consider a portfolio of 50 stocks and 78 time periods, representing, as stated
earlier, a trading frequency of once every 5 minutes. In section 5 we consider how the dual
methodology can be extended to other portfolio execution problems, including the problem
where there is also a nonlinear temporary price impact. We also include numerical results
comparing the performance of the dual bound when the penalties are computed analytically
with the performance when the dual penalties are computed via an unbiased Monte Carlo
simulation. We conclude in section 6. Appendix A contains the various calculations and
derivations required for implementing the OLFC and other policies. Appendix B contains a
review of the duality theory based on information relaxations, while Appendix C analyzes the
particular dual problem arising from our portfolio execution application. Appendix E contains
additional calibration details for the numerical results of section 4.

In Appendix D we consider the model of Bertsimas, Hummel, and Lo [9] (BHL), where
the problem of an agent needing to purchase shares in multiple securities assuming a linear
temporary price impact and return predictability was considered. The presence of no-sales
constraints, which in general are binding due to return predictability, implies that it is hard
to solve for optimal policy even numerically. They proposed instead an OLFC policy and
conjectured that such a policy should be close to optimal. Using their calibrated model
parameters, we use the duality techniques to confirm that the OLFC policy is indeed very close
to optimal. While this appendix is stand-alone, we include it for two reasons: (i) it provides
another set of numerical experiments (in a portfolio execution context) demonstrating the use
of dual methods to confirm the conjecture that a suboptimal policy is close to optimal, and
(ii) it provides a simple demonstration of how duality can be used to determine in advance
whether or not a particular feature, in this case cross-price impacts, is worth accounting for
in a portfolio execution policy. We believe the duality methodology is particularly suited for
answering such need-to-model questions.

2. The portfolio execution problem and model description. We now describe the basic
portfolio execution problem of a possibly risk-averse agent who we assume needs to purchase
a fixed number of shares in a fixed number of assets. We note that we could just as easily
handle the problem where the agent needs to sell a portfolio of securities as well as the case
where the agents needs to purchase one subset of securities and sell another subset.

We assume time is discrete and runs from t = 0 to t = T for a total of T +1 time periods.
There are n different assets that are traded in the market, and the agent needs to purchase a
fixed number of shares in each of the n assets between t = 0 and t = T . At time t the agent

observes the nonimpact asset price vector p̃t = [p̃
(1)
t . . . p̃

(n)
t ]′, and then determines the decision

vector, st = [s
(1)
t . . . s

(n)
t ]′, where s(i)t is the number of shares of the ith asset purchased at time

t. We will also use su:v to denote the n(v − u+ 1)× 1 vector of decision variables, [s′u . . . s′v]′.
However, we will simply write s for s0:T . We use pt = [p

(1)
t . . . p

(n)
t ]′ to denote the time t vector

of transaction prices and note that in general, pt �= p̃t due to the market impact of trading.
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We let wt = [w
(1)
t . . . w

(n)
t ]′, where w(i)

t denotes the remaining number of shares in asset i that
must be purchased in periods t, . . . , T . We define the execution cost as the difference between
the actual cost,

∑T
t=0 p

′
tst, and the benchmark cost, p̃′

0w0, which would prevail if the agent
could purchase everything at time t = 0 without any market impact. The execution cost is
therefore given by

(1)

T∑
t=0

p′
tst − p̃′

0w0.

In order to model risk aversion we assume that the agent has an exponential utility func-
tion, with parameter γ. We assume that γ > 0 to reflect the fact that we are defining utility
over costs rather than wealth, as is usually the case in portfolio optimization problems. The
portfolio execution problem is then stated as

min
st∈Ft,t=0,...,T

E0

[
exp

(
γ

T∑
t=0

p′
tst

)]
(2)

subject to price and state variable dynamics,
T∑
t=0

st = w0,(3)

and any other constraints,(4)

where we use {Ft}t=0,...,T to denote the filtration generated by the price vectors as well as any
other state variables in the model. Note also that the objective function (2) does not include
p̃′
0w0 because it is a constant and therefore can be factored out. Several comments are in

order:

(i) Risk neutrality can easily be modeled by taking the limit in (2) as γ goes to 0.
(ii) Recall the CARA property of exponential utility which, in the context of a standard

dynamic portfolio optimization problem, implies that the optimal dollar value invested
in risky assets does not depend on the current level of wealth. This property is typically
viewed as a serious weakness of exponential utility. We see no problem with this
assumption in the context of portfolio execution problems, however, because such
problems often have a time horizon of just a few hours or at most just a few days.

(iii) Notwithstanding the previous point, we use only exponential utility as a mechanism
for trading off execution cost with execution risk. In particular, other utility functions
could also be used, although the solution approach of Appendices A.3 and A.4 would
no longer be applicable.

2.1. Basic model description. Our main model allows for stochastic and time-varying
price impacts as well as stochastic variance-covariance return dynamics. These are important
features in practice but are generally ignored in the academic literature. While we suspect that
superior or more sophisticated proprietary models may be used by some industry participants,
our model is sufficiently rich to demonstrate the broad applicability of the dual methodology
as outlined in section 3.
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We assume the nonimpact price, p̃t, follows a random walk where the dollar return, rt+1,
between times t and t + 1, is normally distributed with mean 0 and conditional covariance
matrix Σt. A trading volume of st incurs a permanent price impact of Atst and a temporary
price impact of Btst. This results in dynamics of the form

pt = p̃t +Atst +Btst,(5)

p̃t+1 = p̃t + rt+1 +Atst,(6)

rt+1 = Σ
1/2
t εt+1,(7)

wt+1 = wt − st(8)

for t = 0, . . . , T and with the understanding that wT+1 = 0. The εt’s in (7) are independent
and identically distributed (IID) standard normal random vectors.

In general we allow Σt, At, and Bt to be stochastic. This will allow us to model the
tendency for markets to be more liquid around the open and close and less liquid in between.
The assumption of a linear permanent price impact is commonly made in the academic litera-
ture, where it has been justified by no-arbitrage considerations; see Huberman and Stanzl [28]
and Gatheral [22]. Nonetheless we note that permanent price impact is generally assumed
to be better approximated by a square-root function in practice. We note that Guéant [25]
recently provided a justification for this without introducing arbitrage into the model. Later,
in section 5 we will show that a nonlinear temporary price impact can also be included in our
model.

When the agent chooses st at time t, we assume that he knowsAt, Bt, Σt, and p̃t. We note
that it would also be straightforward to model the possibly more realistic situation where the
agent is not assumed to know p̃t when choosing st. We will also assume that we can compute
Et[Aj ] and Et[Bj ] for all j ≥ t. In section 4 we will describe the specific dynamics for Σt, At,
and Bt that we used in our numerical experiments.

In practical applications the agent may also need to include various types of portfolio
constraints including no-sales constraints

(9) st ≥ 0 for t = 0, . . . , T

as well as sector-balance constraints. These constraints are linear and therefore, as we shall see
later, do not impact the convexity of the primal or dual problems that we consider. We do not
consider portfolio balance constraints in this paper but note that it is generally straightforward
to include them when attempting to construct good suboptimal policies. We also note that
the assumption of a risk-averse utility function implicitly incorporates some form of portfolio
balance constraints.

2.2. Suboptimal execution policies. In general it is not possible to find the optimal policy
for this portfolio execution problem, and so instead we seek good suboptimal policies. For the
particular model of section 2.1 we will consider three different policies.

The simple policy. Here the agent buys the same quantity of shares in each of the T + 1
time periods so that st = w0/(T + 1).

The risk-neutral policy. In this case the agent ignores the risk of the execution costs and
uses the trading policy which minimizes the expected execution cost. If the dynamics of At
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and Bt are sufficiently tractable, then this trading policy can be determined via dynamic
programming when there are no portfolio constraints. The details are in Appendix A.1. In
Appendix A.2 we also show that the simple and risk-neutral policies coincide if At and Bt are
martingales and if At and Bt are symmetric. We note that this condition is of course very
unlikely to hold in practice.

The OLFC policy. At each time t the agent assumes that Σt will remain constant there-
after, in which case he assumes the return series, {rj}Tj=t+1, is IID MVN (0,Σt). The agent
also assumes the price-impact matrices evolve deterministically and replaces Aj and Bj with
their time-t conditional expectations, Et[Aj ] and Et[Bj ], respectively, for j ≥ t. The OLFC
policy therefore solves the following problem at each time t = 0, . . . , T :

min
st:T∈Ft

Et

[
exp

(
γ

T∑
j=t

p′
jsj

)]
(10)

subject to pj = p̃j + Et[Aj]sj + Et[Bj ]sj for j = t, . . . , T,

p̃j+1 = p̃j + rj+1 + Et[Aj]sj for j = t, . . . , T,

rj = Σ
1/2
t εj for j = t+ 1, . . . , T,

T∑
j=t

sj = wt,

sj ≥ 0 for j = t, . . . , T.

Let V ol
t denote the optimal value of (10), and let sol,tt:T := [sol,t

′
t . . . sol,t

′
T ]′ denote the corre-

sponding optimal solution. The OLFC policy implements sol,tt at time t and ignores sol,tt+1, . . . ,

sol,tT . Further details on solving this problem are in Appendix A.3. We also note that if we
remove the constraint sj ≥ 0, then an analytic solution to the OLFC policy can be found very
quickly via dynamic programming. This analytic solution will form the basis for constructing
dual penalties as discussed in section 3. Details on this solution can be found in Appendix
A.4.

A risk-neutral OLFC policy. As mentioned above, depending on the dynamics of At and
Bt, the risk-neutral policy may not be computable. In this case we can compute the risk-
neutral OLFC policy by taking the limit of (10) as γ goes to 0. The details are in Appendix
A.3.

3. Evaluating suboptimal policies. Given a feasible suboptimal policy to the portfolio
execution problem in (2), we can construct an unbiased upper bound, Vub, to the optimal
value function, V ∗, by simulating multiple paths of the policy and taking the sample average
of the realized utility. We can also use dual methods to estimate a lower bound, Vlb. Appendix
B contains a review of these dual methods that were originally developed independently by
Brown, Smith, and Sun [13] and Rogers [41]. In this section we state the dual problem
formulation of (2) and briefly discuss the tractability of this dual problem and its implications
for modeling various features of the portfolio execution problem.

Let Ṽt(s0:t−1) be some approximation to the time t optimal value function of the portfolio
execution problem. While we typically consider a value function to be a function of the model’s
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state variables, in our duality context it is much more convenient to explicitly recognize the
dependence of Ṽt only on s0:t−1. As reviewed in Appendix B, weak duality implies that

(11) Vlb := E0

[
min
s∈S

{
exp

(
γ

T∑
t=0

p′
tst

)
+

T−1∑
t=0

(
Et[Ṽt+1(s0:t)]− Ṽt+1(s0:t)

)}]

yields a lower bound on V ∗, where S is the decision space defined by constraints (3) and (4).
Moreover, strong duality states that if we take Ṽ = V ∗, then Vlb = V ∗. This suggests that the
closer Ṽt(s0:t−1) is to the optimal value function the tighter the dual bound will be. Note that
it is the shape of Ṽ that is important rather than the absolute level of Ṽ because adding any
constant to Ṽ will have no impact on the dual bound since it will cancel out on the right-hand
side of (11). In general for a given Ṽt we cannot compute Vlb in closed form, but in principle,
an unbiased estimate of it can be computed via Monte Carlo: we simply simulate M paths of
the exogenously specified noise processes, and on each path we solve the minimization problem

inside the expectation in (11). If V
(i)
lb is the optimal solution of the problem on the ith path,

then
∑M

i=1 V
(i)
lb /M is an unbiased estimate of Vlb.

Two key issues arise in applying the duality methodology. First, while V
(i)
lb can be obtained

as the solution of a deterministic dynamic program (DP), solving this DP may, like the primal
problem, also be difficult. Instead we prefer to solve it as a static optimization problem, but
to do this we would generally prefer this optimization problem to be convex. Even if the
term exp

(
γ
∑T

t=0 p
′
tst
)
is convex in s, there is no guarantee that the objective function will

be convex because of the penalty term
∑T−1

t=0 (Et[Ṽt+1(s0:t)] − Ṽt+1(s0:t)). We can overcome
this problem, however, by using an approximation Ṽt+1 that is linear in st. It is important
to note that using such an approximation still yields a valid dual bound. This approach was
introduced by Brown and Smith [12], and further details are provided in section 3.1.

The second issue that arises is the possibility of not being able to compute an analytic
expression for Et[Ṽt+1(s0:t)]. Note that these conditional expectations are required to evaluate
the objective function inside the expectation in (11). As discussed in section 3.1, with our
choice of Ṽt in this paper, we were able to compute these conditional expectations analytically.
We will also see in section 5, however, that even if we cannot compute these expectations in
closed form, then we can instead use unbiased estimates of them and still obtain valid dual
bounds. In a series of numerical experiments we will see that the resulting dual bounds remain
very tight and that they are not much more expensive to compute than the bounds we obtain
when the conditional expectations are available in closed form. We conclude then that the
second issue can also often be overcome.

3.1. The dual problem formulation. Under the model assumptions of section 2.1, we see
from (11) that a dual problem instance takes the form

min
s∈S

exp

(
γ

T∑
t=0

p′
tst

)
+

T−1∑
t=0

(
Et[Ṽt+1(s0:t)]− Ṽt+1(s0:t)

)
(12)

subject to pt = p̃t +Atst +Btst,

p̃t+1 = p̃t + rt+1 +Atst,
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where the rt’s, At’s, and Bt’s have been simulated according to the true model dynamics and
are all known to the decision-maker, and S denotes the constraint region defined by (3) and
(9). We would like to take Ṽt to be a linearized version of V ol

t since we expect that the OLFC
policy will typically provide a good approximation to V ∗

t . In this case, however, it is difficult
to compute Et[Ṽt+1(s0:t)]. While we can overcome this problem using nested Monte Carlos as
discussed in section 5, we prefer instead to use a modified version of V ol

t which we denote by
V mol
t . The precise definition of V mol

t can be found in Appendix C.2, but we note in particular
that we can compute an analytic expression for Et[V

mol
t+1 (s0:t)].

In order to define the particular choice of Ṽt that we use in (12) we first define

(13)

V̂t+1(s0:t) := exp

(
γ

t∑
j=0

p′
jsj

)
V mol
t+1

= exp

(
γ

t∑
j=0

p′
jsj +

γ

2
w′

t+1G̃t+1wt+1 +
(
p̃t +Atst

)′
wt+1

)
exp

(
γr′t+1wt+1

)
,(14)

where we have used (C-40) to substitute for V mol
t+1 in (14) and then used (6) to obtain (14). We

note that the dependence of V̂t+1(·) on s0:t also appears via wt+1 since wt+1 = w0 −
∑t

j=0 sj .
Note also that we want to include the first term on the right-hand side of (14) since this term
is present in the value function (see also the remark at the end of Appendix B) of any policy,
but we omitted it from (10) since it had no impact on the OLFC policy at time t+ 1.

The difficulty with taking Ṽt+1(s0:t) = V̂t+1(s0:t) as given by (14) is that the resulting
objective function in (12) will not in general be convex, even if the first term in (12) is convex.
Instead we linearize V̂t+1. Recall that s0:t = [s′0 . . . s′t]′ denotes the n(t+1)×1 vector of decision
variables corresponding to the first t+1 time periods, and let s̃0:t be a fixed n(t+1)×1 vector.
We then take Ṽt+1(·) to be a first order Taylor expansion of V̂t+1(·) about s̃0:t. In particular,
we take

(15) Ṽt+1(s0:t) := V̂t+1(s̃0:t) +∇V̂t+1(s̃0:t)
′(s0:t − s̃0:t)

and then use this in (12), noting that the linearity of Ṽt+1 in s0:t will preserve convexity of
the objective function in (12) if the exponential term there itself is convex.

The question that now arises is how to choose s̃0:t. Intuitively we would like s̃0:t to be
as close as possible to the true optimal trade sequence. But of course we do not know the

optimal trade sequence, so instead we will take s̃0:t = [sol,0
′

0 . . . sol,t
′

t ]′, the trade sequence from
the unconstrained OLFC policy. This implies that s̃0:t is path-dependent so that each dual
problem instance will use a different s̃0:t to construct the Ṽt+1. This requires no additional
work, however, since the sol,tt ’s will have already been computed when simulating the OLFC
policy.

In order to compute Et[Ṽt+1(s0:t)] = Et[V̂t+1(s̃0:t)] + Et[∇V̂t+1(s̃0:t)
′](s0:t − s̃0:t) we need

Et[V̂t+1(s̃0:t)] and Et[∇V̂t+1(s̃0:t)
′] to solve the dual instance in (12). Using (14) we obtain

(16)

Et[V̂t+1(s̃0:t)] = exp

(
γ

t∑
j=0

p′
j s̃j+

γ

2
w̃′

t+1G̃t+1w̃t+1+
(
p̃t+Ats̃t

)′
w̃t+1

)
Et

[
exp

(
γr′t+1w̃t+1

)]
,
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where w̃t+1 = w0 −
∑t

j=0 s̃j . The first exponential term on the right-hand side of (16) is Ft-

measurable (since the OLFC policy is Ft-adapted and G̃t+1 is Ft-measurable) and conditional
on Ft, rt+1 is normally distributed with mean 0 and covariance matrix Σt. We can therefore
compute Et[V̂t+1(s̃0:t)] analytically and, while the calculations are somewhat tedious, also do
the same for Et[∇V̂t+1(s̃0:t)

′]. This means in particular that we can compute an analytic
expression for the dual penalty term, Et[Ṽt+1(s0:t)]−−Ṽt+1(s0:t).

3.2. Dual convexity? The exponential term in (12) is studied in Appendix C, where we
establish sufficient conditions on the At’s and Bt’s that guarantee its convexity for all dual
problem instances. For example, we show that ifAt = A, a constant matrix, and thatA+A′ is
positive definite and Bt+B′

t is positive semidefinite for all t, then every dual problem instance
will be convex. These conditions guarantee the positive definiteness of At + A′

t + Bt + B′
t,

which seems reasonable from an economic standpoint.

If the At’s are stochastic, however, then economic considerations may still be employed to
impose some structure on their dynamics. For example, it seems reasonable to assume that
there should always exists a solution to the OLFC problem. Otherwise the OLFC decision-
maker would believe (possibly incorrectly since admittedly he makes simplifying assumptions
on the model dynamics) that arbitrage opportunities exist. This seems very unlikely in prac-
tice, and so we could therefore insist on dynamics for the At’s that guarantee the positive
definiteness, of the QOLFC,t’s as defined in (A-19) of Appendix A.3.

More generally, however, it is not clear that we can use economic considerations to justify
the convexity of each dual problem instance when the At’s are stochastic. After all, consider
the example where there is no temporary price impact and the agent needs to purchase shares
in just one security over the course of a day. If the At’s are stochastic, it is possible on some
given realization of the model uncertainty over the course of a day that the price impact is very
large in the early periods and approximately zero in the later periods. In the corresponding
dual problem instance (with zero dual penalties, say) this could result in arbitrage profits since
the agent could drive up the stock price over the course of the day by purchasing many shares
when the price impact is large and then selling them all at the end of the day when the price
impact is small. The presence of such arbitrage profits would imply the nonconvexity of the
corresponding dual problem instance. The primal problem could still be well-posed, however,
since the decision-maker does not get to see the realization of the day’s uncertainty at time
t = 0 and therefore would not be in a position to profit from the aforementioned strategy.

In general, then, it seems possible for a plausible model to result in some dual problem
instances that are nonconvex. In that case we would need to bound the optimal objective
function of these particular dual problems in order to still obtain a valid dual bound. This
should be possible in the presence of portfolio constraints such as no-sales constraints since
in that case every dual problem would have a compact decision space and therefore have a
bounded optimal solution. Nonetheless, this would require more work since we would need to
check for convexity of each dual problem and then solve to optimality those problems that are
convex and bound the optimal solution to the nonconvex problems. In the numerical results
of section 4 we have limited ourselves to a model specification where convexity of all problem
instances is guaranteed. But we do acknowledge that this appears to be a strong assumption
in models with stochastic price impacts.
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3.3. Using the dual formulation to investigate more complex models. We mention at
this point just how useful the dual methodology can be. Suppose, for example, that we begin
with a simplified model where the nonimpact price, p̃t, follows a simple random walk. Suppose
also that we have established that all of the corresponding dual problems are convex and
therefore very tractable. Consider now adding the following features to this simplified model:
(i) we replace the random walk dynamics with stochastic variance-covariance dynamics, and
(ii) we introduce new state variables to model return predictability. Then the dual problem
instances of this more complex model will remain convex as long as the stochastic volatility and
state variable dynamics are not influenced by the decision variables. This follows immediately
once we recognize that these new model features affect only the distribution of dual problem
instances; in particular they do not change the convexity properties of the dual problem
instances. Another way to see this is to consider the dual problem instance in (12). We see
that rt+1 appears in the constraints for this problem but Σt does not. Similarly, if we had
a state vector, Zt, that induced predictability in the returns, then Zt would also not appear
in the dual problem formulation, and so it would not influence the convexity of the dual
problems. It would, however, influence the distribution of the dual problems and therefore
the actual value of the dual bound.

Note also that in this more complex model we are free to use the original Ṽt from the
simplified model in order to construct dual penalties and a dual bound. Similarly we are also
free to use a suboptimal policy for the simplified model to construct a primal bound for the
more complex model. If we then find that the resulting duality gap is small, then we know
that the new features (as currently calibrated) have little influence and can be safely ignored.
We would argue then that the dual methodology can also be employed to determine whether
or not certain features that are known to exist in the market are sufficiently important as to
require explicit modeling. We do precisely this in section 5.2, where we investigate whether
or not it is necessary to include a stochastic component in our temporary price-impact model.

4. Numerical results. In this section we analyze the performance of the primal and dual
bounds on a stylized example where the agent needs to purchase 100, 000 shares in each of
n = 50 securities over T + 1 = 78 time periods. The 78 time periods are intended to reflect
the fact that there are 78 5-minute periods in a trading day of 6.5 hours. We note that each
dual problem instance has a total of 50 × 78 = 3, 900 decision variables and that computing
the OLFC policy at each time t involves (T + 1 − t) × 50 decision variables. Of course in
practice, portfolio execution problems can involve several hundred assets and computing good
suboptimal policies in (almost) real time and evaluating these policies via duality can itself
be a significant challenge. If, for example, a portfolio execution problem has 500 assets, then
each dual problem instance will have 500× 78 = 39, 000 decision variables and solving a large
number of these dual problem instances would therefore be computationally demanding. We
note, however, that there is no need to compute dual bounds in real time since they are not
required to implement a given execution policy. There is therefore no problem with computing
dual bounds off-line.

Returning to our example, we take our 50 stocks to be the top 50 stocks by market
capitalization in the S&P 500 as of October 12, 2011. We take the initial price vector, p̃0,
to be the initial prices of these 50 stocks on that date. We consider 10 different values
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of the risk aversion parameter: γ = k × 10−7 for k = 1, . . . , 10. For each value of γ, we
simulate 5, 000 sample paths and implement the various suboptimal policies on each sample
path. We use only 100 sample paths to estimate the dual bounds since this smaller number
was found to estimate the dual bounds with an accuracy comparable to that of the primal
bounds. We also used control variates as a variance reduction technique, and the specific
details can be found in Appendix A.5. We note that obtaining the primal bound required
solving 5, 000× 78 optimization problems, whereas obtaining the dual bound required solving
just 100 optimization problems. The computational bottleneck was therefore in estimating
the primal bound.

4.1. The price-impact dynamics. We assume the price-impact coefficients of a stock
are inversely proportional to its average daily trading volume. In particular, we take the
permanent price-impact coefficient matrix At = A to be a constant diagonal matrix so that
there is no cross-price impact. The diagonal elements of A are obtained by assuming that the
purchase of 10% of the average daily volume of a stock will incur a permanent price impact of
10 basis points of the stock’s initial price. In the case of Apple Inc., for example, this implies
a permanent price impact coefficient of 1.7830 × 10−7. With an initial price of $407.33, we
therefore see that if all 100, 000 shares are purchased immediately, then the permanent price
impact will be 1.7830 × 10−7 × 105 = $0.01783 per share.

We assume that the temporary price-impact matrix Bt is driven by a single factor, xt,
according to

Bt = max(xt, 0)B,(17)

xt = xd,t + xs,t,(18)

xs,t = ρxs,t−1 + ηt,(19)

where B is a positive-definite matrix and the max operator in (17) ensures Bt is positive
semidefinite for all t. The state variable xt is composed of a deterministic component, xd,t,
and a stochastic component, xs,t. The xd,t’s are chosen to reflect the fact that the market
impact tends to be smaller nearer the open and the close of the trading day. We have assumed
xs,t is an AR(1) process so that ηt’s in (19) are IID normal random variables with mean 0 and
variance σ2

η . The AR(1) assumption allows us to capture mean-reverting and clustering effects
so that periods of low (high) liquidity tend to be followed by periods of low (high) liquidity.
We emphasize here, however, that this is a stylized example and in practice considerably more
care would be required to specify the dynamics of Bt.

We assume that B is also a diagonal matrix and represents a temporary price impact
of 50 basis points when xt = 1 and 1% of the average daily volume of a stock is purchased
immediately. Since A and B are both diagonal matrices, we have assumed here that there
are no cross-price impacts. We set xs,0 = 0, ρ = 0.6, and σ2

η = 0.252 × (1 − ρ2). If we ignore
the max operator in (17), then these parameter values correspond to a stationary distribution
of Bt where the diagonal elements have a standard deviation equivalent to a temporary price
impact of 12.5 basis points.

Figure 1(a) plots xd,t as a function of t, while Figure 1(b) shows the expected temporary
price impact of purchasing 1% of the average daily volume shares at time t as a function of
t and expressed in basis points. Because this is a stylized example we simply assumed that
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xd,t is a simple quadratic function since this is perhaps the simplest way to model the fact
that the price impact tends to be lower near the open and the close. Of course we could have
just as easily assumed an alternative and possibly more accurate function for xd,t. It is also
not necessary to restrict ourselves to a scalar process, xt, and we expect a higher-dimensional
process would be more realistic in practice.
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Figure 1. (a) The deterministic component xd,t is assumed to be quadratic in t. (b) The expected temporary
price impact of purchasing 1% of the average daily volume, expressed in basis points, is identical for each of the
n securities. The dashed line is the time-averaged temporary price impact.

Returning now to the case of Apple Inc., the purchase of all 100,000 shares at time t = 0
incurs a temporary price impact of 0.5×8.9150×10−6×105 = $0.4458 per share. Therefore the
total execution cost for this trade is approximately (0.01783 + 0.4458) × 100, 000 = $46, 358.
The assumption that A and B are diagonal matrices is made because of the difficulty of
calibrating cross-price impacts, but we do note that in some circumstances it may be worth-
while accounting for them. Table 5 in Appendix E.2 contains the initial prices, average daily
volume, and price-impact coefficients that we assumed for the 50 stocks.

Finally we note that dynamics of At and Bt assumed here satisfy conditions (i) and (ii)
of Appendix C.1. We are therefore guaranteed that all dual problem instances will be convex.

4.2. Variance-covariance dynamics. We assume that Σt follows an O-GARCH model as
in Alexander [1] so that

(20) Σt = FΩtF
′ +Υ,

where Ωt is a diagonal matrix, F is a matrix of factor loadings, and Υ is a diagonal matrix
of idiosyncratic variances. The diagonal elements in Ωt are assumed to follow independent
GARCH(1,1) processes. Further details on this model and its calibration can be found in
Appendix E.1.

4.3. Results. In our numerical results we report both the average execution cost of each
policy as well the certainty equivalent (CE) execution cost. Given an average utility, û,
calculated as the average utility across the simulated sample paths, the CE cost is defined
as the execution cost (in basis points), ce, which yields the same utility with certainty if all
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shares are purchased immediately. That is, ce solves

(21) û = exp(γp̃′
0w0(1 + ce/10, 000)).

The CE cost is much easier to interpret than the average utility, and so we prefer to report
the former together with the average execution cost. We note of course that the performance
of any given policy is measured by the CE cost and not the average execution cost, which we
would naturally expect to increase with the level of risk aversion, γ.

In Figure 2 we have plotted the CE costs for the simple, OLFC, and risk-neutral OLFC
policies. We have also plotted the CE cost for the dual bound constructed using the penalties
based on the modified OLFC policy as explained in section 3.1. In this case we see that there
is no discernible gap between the OLFC primal bound and the dual bound, which implies
that the OLFC policy is actually very close to optimal. For low levels of risk aversion the
simple and risk-neutral OLFC policies lose only around five basis points with respect to the
OLFC policy, but this number increases (as expected) to approximately 60 basis points as γ
increases.

We have also plotted the average execution cost as a function of γ in Figure 3(a). We see
that the risk-neutral OLFC policy has the lowest average cost, which is as expected since the
risk-neutral agent cares only about minimizing execution cost and is indifferent to execution
risk. Since the simple policy is deterministic and the risk-neutral OLFC policy does not depend
on γ, we see that their expected execution costs do not vary with γ. As γ increases the agent
becomes more risk averse and therefore prefers to buy more shares in earlier time periods.
This results in a higher price impact which is reflected by the higher average execution cost
for the OLFC policy.

In Figure 3(b) we have plotted the mean-standard deviation frontier corresponding to the
OLFC policy. As expected, we see that a higher average execution cost is accompanied by a
lower standard deviation. We also see that the simple policy and risk-neutral OLFC policy
have low average execution costs but high standard deviations.

5. Extensions and other portfolio execution problems. In this section we briefly describe
how our model can be extended to include a nonlinear temporary price impact as well as
predictable state variables with linear dynamics. We also discuss limit order book models
and explain how the dual technology can also handle these problems. We begin, however, by
considering the case where dual penalties cannot be calculated explicitly. We will see that we
can still quickly compute good dual bounds in that case using Monte Carlo methods. While
this is not a “model extension” it clearly broadens the range of penalties that can be used
when constructing dual bounds.

5.1. Computing dual bounds when penalties cannot be computed explicitly. We noted
in section 3.1 that we needed to compute terms of the form Et[V̂t+1(s̃0:t)] and Et[∇V̂t+1(s̃0:t)

′]
in order to solve a given dual problem instance as in (12). Brown, Smith, and Sun [13] showed
that if we could instead compute only unbiased (conditional on FT ) estimates of these terms,
then we would still obtain a valid, albeit more conservative, dual bound. The downside of this
approach is that we require Monte Carlo simulation to estimate these conditional expectations,
and so constructing the dual bound therefore requires nested Monte Carlos, which can be very
demanding from a computational standpoint.
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Figure 2. Certainty equivalent costs.
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Figure 3. Average cost and mean-standard deviation frontier.

In this section we will use suitably randomized low-discrepancy sequences (LDS)1 to per-
form the nested simulations, and we will compare the resulting dual bound to the dual bound

1See, for example, Chapter 5 of Glasserman [24] for an introduction to LDS and the randomization technique
we describe here.
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that we obtained when the conditional expectations are computed in closed form. We will see
that we can compute LDS-based dual bounds that are virtually indistinguishable from the
original dual bounds and that these new bounds require only 10% additional work.

We note that each of the two conditional expectations may be written in the form θ =
E[g(r)] for some function g(·) and where r is an n-dimensional multivariate normal random
vector with mean vector 0 and covariance matrix Σ. The precise form of g(·) is clear from
(16) in the case of Et[V̂t+1(s̃0:t)] and is also easy to determine in the case of Et[∇V̂t+1(s̃0:t)

′].
Using the inverse-transform approach to Monte Carlo we can then easily rewrite θ as

(22) θ = E[g(U)],

where U is an n-dimensional vector of independent U(0, 1) random variables. We could
perform the integration in (22) using LDS, which have very nice theoretical properties and
which often work particularly well for high-dimensional integrals. The problem with doing this
is that the resulting estimate of θ is deterministic and in particular will have some (although
presumably small) bias. As a result we could no longer conclude that our estimate of Vlb

would indeed be an unbiased lower bound. We can overcome this problem by randomizing
the LDS in the following manner. In particular, we set

(23) θ̂ :=
1

Mu

Mu∑
j=1

(
1

Ml

Ml∑
i=1

g
(
(li +Uj)mod 1

))
,

where (l1, . . . , lMl
) is a series of n-dimensional low discrepancy points, and (U1, . . . ,UMu) is a

series of independent n-dimensional uniform random vectors. Note also that the mod-operator
in (23) applies componentwise and that the inner summation in (23) uses the same uniform
vector, Uj , for all Ml samples. In practice, Mu can be very small, e.g., 5 or 10, whereas

Ml might be on the order of 104 or higher. That θ̂ is an unbiased estimator for θ follows
from the fact that if Uj is an independent n-dimensional uniform random vector, then so

too is (li +Uj)mod 1 for all i. If we set θ̂j = 1
Ml

∑Ml
i=1 g

(
(li +Uj)mod 1

)
, then we see that

θ̂ = 1
Mu

∑Mu
j=1 θ̂j is the mean of Mu IID random variables, and so confidence intervals can be

constructed in the usual way if so desired.

Numerical results. We considered the same portfolio execution problem that we studied
in section 4. In Figure 4 we plot the performance of the dual bound as estimated using our LDS
scheme for various values of Mu, Ml, and γ. Our LDS was an n-dimensional Sobol sequence
that we generated using the LDS functionality of MATLAB. We skipped the first 1000 points,
retained every 101st point thereafter, and also applied the so-called Matousek–Affine–Owen
scrambling scheme.

The dashed lines in Figure 4 represent the dual bound that was computed using the
analytic expressions for Et[V̂t+1(s̃0:t)] and Et[∇V̂t+1(s̃0:t)

′]. These dashed lines are therefore
the same bounds that we calculated in section 4. As expected, we see that the new LDS-based
dual bounds are conservative so that they are all at or below the corresponding dashed line.
It is also not surprising that as we increase Ml and Mu the bounds improve to the point that
with Ml = 10, 000 and Mu = 10 the bound is virtually indistinguishable from the dashed
lines. (In fact in a couple of cases, e.g., γ = 7× 10−7 and Mu = 2, the LDS-based bound was
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marginally higher than the dashed line, but the difference was well within the Monte Carlo
standard error. Recall that even the dashed line has some statistical error since it is computed
as the average over 100 dual problem instances. The LDS-based bounds use the same 100
dual paths, and so these bounds are also exposed to this error as well as the nested simulation
error of (23).)

The surprising feature of these results is how little additional work is required. For ex-
ample, it typically took approximately 150 seconds to solve a dual problem instance when we
used the analytic expressions for the dual penalties. When we used the LDS to estimate these
penalties with Ml = 10, 000 and Mu = 10 the running time increased by approximately 15
seconds for a relative increase of just 10%. This was possible because it is straightforward to
generate and store in advance all of the (li +Uj)mod 1 vectors. Moreover, the g(·) function
was easy to evaluate since it could be computed explicitly. Of course, the use of exponential
utility would force us to consider only those distributions that have a moment generating
function.
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(b) γ = 4× 10−7
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Figure 4. Dual bounds obtained using randomized LDS to estimate dual penalties.
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Other applications. The results of Figure 4 suggest that the randomized LDS approach
can be used efficiently to generate very good dual bounds. One possible application would be
for solving portfolio execution problems where we suspect that the random return vectors are
only approximately normally distributed. In particular, we may suspect that the true return
vectors have fatter tails. In that case we could, for example, use the same OLFC policy (which
assumed normal returns) as before, but in order to evaluate it using the dual formulation we
would need to estimate Et[V̂t+1(s̃0:t)] and Et[∇V̂t+1(s̃0:t)

′] using the true return distributions.
If these terms cannot be computed analytically, then we could use the approach outlined in this
section. If the resulting duality gap, i.e., the difference between the primal and dual bounds,
were sufficiently small, then we would know that we could safely ignore the nonnormality of
returns. Otherwise, we would need to adapt our policy to take this nonnormality into account.

5.2. Investigating the temporary price-impact model. In section 3.3 we discussed how
the dual methodology could be used to determine whether or not certain market features
require explicit modeling. We demonstrate this idea here by investigating the features of
our temporary price-impact model from section 4.1. Suppose the agent suspects that only
the time-varying feature of the temporary price impact is important and that the stochastic
component can be safely ignored by the execution policy. To investigate this conjecture we
consider two additional policies. The first policy, which we call the OLFC-TV policy, assumes
the temporary price impact is time-varying but deterministic. In particular the OLFC-TV
policy assumes the temporary price impact at time t is given by E0[Bt]. The second policy,
which we call the OLFC-C policy, assumes the temporary price-impact is constant and equal
to its time average across all time periods. Note that the “true” temporary price-impact
model remains as described by (17)–(19).

The performance of these policies is shown in Figure 5 together with the original OLFC
policy and our dual bound. Not surprisingly we see that the OLFC policy outperforms the
OLFC-TV policy, which in turn outperforms the OLFC-C policy. It is interesting to note
the degree of outperformance, however, particularly for higher levels of risk aversion where
the OLFC-TV policy performs almost as well as the OLFC policy and much better than the
OLFC-C. In this case we could argue that the agent’s conjecture was justified, although to
draw this conclusion more generally we would need a more careful specification and calibration
of the temporary price-impact model.

5.3. Including a nonlinear temporary price impact. In section 2, we introduced a model
with linear price impacts, but of course in practice the true price dynamics are generally
more complex. In this section we therefore investigate the case where the price dynamics
also include a temporary nonlinear price impact. (We cannot include a permanent nonlinear
price impact in our modeling framework since this will introduce the possibility of arbitrage;
see Huberman and Stanzl [28], for example.) We let ht(·) denote this nonlinear temporary
price-impact function at time t so that (5) is now replaced by

(24) pt = p̃t +Atst +Btst + ht(st).

The primal problem. If the agent ignores the nonlinear impact, he will implement a
portfolio execution policy that he perceives as being a good policy for the linear price-impact
model of section 2. The original OLFC policy of section 2 could play the role of this “good”



334 MARTIN HAUGH AND CHUN WANG

2 4 6 8 10

x 10
−7

2

3

4

5

6

7

8

9

10

Risk Aversion (γ)

C
E

 C
os

t (
B

as
is

 P
oi

nt
s)

 

 
OLFC−C
OLFC−TV
OLFC
dual

Figure 5. Certainty equivalent costs.

policy. Note that the dual methodology can be used to determine whether or not the nonlinear
price impact is significant and therefore needs to be accounted for in the policy. In particular,
if we find the OLFC policy is close to optimal even in the presence of the nonlinear price
impact, then the latter need not be modeled explicitly.

In practice, of course, we would expect the original OLFC policy to be far from optimal,
implying that the nonlinear price impact is significant. In that case the agent should explicitly
account for the nonlinear impact in constructing the OLFC policy. This would be quite
straightforward, and we could formulate the problem analogously to (A-18). We could also
find similar expressions to (26) and (27) below for the gradient and Hessian of the OLFC
objective function, and it would be reasonable to insist that this Hessian be positive definite
for all s in order to guarantee the convexity of the OLFC problem.

The dual problem. Calculating dual bounds for the nonlinear impact model proceeds
exactly as in section 3.1. Many dual problem instances are simulated, and each results in an
optimization problem of the form

min
s∈S

exp

(
γ

T∑
t=0

p′
tst

)
+

T−1∑
t=0

(
Et[Ṽt+1(s0:t)]− Ṽt+1(s0:t)

)
(25)

subject to pt = p̃t +Atst +Btst + ht(st),

p̃t+1 = p̃t + rt+1 +Atst,
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where Ṽt+1 is some suitably linearized approximate value function. The analogue to (C-35)
under the nonlinear temporary price-impact model is

f(s) := exp

(
γ

T∑
t=0

(
p̃0 +

t−1∑
i=0

Aisi +
t∑

i=1

ri +Atst +Btst + ht(st)

)′
st

)

= exp(γp̃′
0w0) exp

(
γ

(
1

2
s′Qs+ c′p,0s+ h̃(s)

))
.

The gradient vector and Hessian matrix of f are

∇f(s) = γf(s)(Qs+ cp,0 +∇h̃(s)),(26)

Hf(s) = γf(s)

(
Q +Hh̃(s) + γ(Qs+ cp,0 +∇h̃(s))(Qs + cp,0 +∇h̃(s))′

)
,(27)

where h̃(s) :=
∑T

t=0 h
′
t(st)st, ∇h̃(s) is the gradient of h̃, and Hh̃(s) is the Hessian matrix of

h̃. A sufficient condition to guarantee that Hf(s) is positive definite (so that f is therefore
convex) is that h̃ is convex and that Q is positive definite.

5.4. Predictable state dynamics. Some of the earlier papers such as Bertsimas and Lo [10]
and Bertsimas, Hummel, and Lo [9] (some details are available in Appendix D) allow for a
predictable component in the return dynamics. In particular, they assumed the price dynamics
depended on a state variable, Xt, which itself had linear dynamics. Assuming the agent is
risk-neutral, they were able to solve recursively for the optimal solution in the same manner
as the analysis of Appendix A.4.

We could include a similar state variable or vector in our model. Except for some specific
circumstances, we would not be able to solve for the optimal feedback control policy, but we
could still solve for the OLFC policy in that case. It should also be clear that we can again
use a modified version of the OLFC value function to compute dual penalties and therefore
obtain valid dual bounds. We do not pursue this any further since allowing for predictable
price dynamics is generally of less interest than the accurate modeling of price impact and
liquidity effects.

5.5. Limit order book models. Building on the earlier single-stock work of Obizhaeva and
Wang [38], Alfonsi, Fruth, and Scheid [2] and Predoiu, Shaikhet, and Shreve [39], Tsoukalas,
Wang, and Giesecke [46] formulate the portfolio execution problem at the limit order book
(LOB) level. Here we briefly discuss this model and note that the dual methodology may also
be applied in this context.

Their model assumes a two-sided block-shaped order book with infinite depth and time-
invariant density. The midprice is a random walk with zero drift. A buy (sell) order s+t
(s−t ) is executed as a market order against available inventory in the ask (bid) side of the
LOB, creating a linear temporary price impact that moves the best ask (bid) price away from
the midprice. The order also creates a linear permanent price by moving the midprice up
(down). Newly arriving limit orders replenish the inventory and cause the distance between
the best ask (bid) price and the midprice to decay exponentially. The execution problem is
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then formulated as

max
s+t ,s−t ∈Ft,t=0,...,T

E0

[
− exp

(
− γ

T∑
t=0

(
(pb

t −Bbs−t )
′s−t − (pa

t +Bas+t )
′s+t
))]

(28)

subject to pa
t = p̃0 +

t∑
j=1

rj +
1

2
δt +A

t−1∑
j=0

(s+j − s−j ) + da
t ,(29)

pb
t = p̃0 +

t∑
j=1

rj −
1

2
δt +A

t−1∑
j=0

(s+j − s−j ) + db
t ,(30)

da
t = (da

t−1 +Bas+t−1 −A(s+t−1 − s−t−1)) exp(−ρaΔt),(31)

db
t = (db

t−1 −Bbs−t−1 −A(s+t−1 − s−t−1)) exp(−ρbΔt),(32)

T∑
t=0

(s+t − s−t ) = w0 and s+t , s
−
t ≥ 0,(33)

where pa
t and pb

t are the best ask/bid prices in the LOB at time t, p̃0 is the initial midprice,
and δt is the bid-ask spread. A is the permanent price-impact coefficient matrix, while Ba and
Bb are the temporary price-impact coefficients for buy and sell orders, respectively. Each of
these matrices is assumed to be deterministic. In addition, Ba and Bb are diagonal matrices
with diagonal elements equal to the inverse of the order book density on the ask and bid
sides, respectively. da

t and db
t track the deviation of the current ask and bid prices from their

steady state levels, and they decay exponentially at constant speeds ρa and ρb due to order
book replenishment. Δt is the length of a time period. The only uncertainty comes from
the returns, rj, which are IID normally distributed with zero mean and a constant covariance
matrix. The objective is to maximize an exponential utility function over the terminal wealth
which is equivalent to minimizing the exponential utility function over cost in our model.

Tsoukalas, Wang, and Giesecke [46] show that the optimal execution policy is deterministic
and find an equivalent quadratic formulation for the problem. Such a result is quite standard
in the portfolio optimization literature, and indeed the equivalence of our formulations in
Appendices A.3 and A.4 are in the same spirit. But once we begin to relax some of the
assumptions in this model, then solving for the optimal policy even numerically becomes a
very challenging task and we again find ourselves in the situation of needing to construct
and evaluate good suboptimal policies. For example if we introduce a state vector, Zt, that
drives the dynamics of the rt’s and the temporary price-impact matrices, then a dual problem
instance will take the form
(34)

max
s

− exp

(
−γ

T∑
t=0

(
(pb

t −Bb
ts

−
t )

′s−t − (pa
t +Ba

t s
+
t )

′s+t
))

+

T−1∑
t=0

(
Et[Ṽt+1(s0:t)]− Ṽt+1(s0:t)

)

subject to (29) to (33) but with Ba and Bb replaced by Ba
j and Bb

j , where j = t or t− 1 as
appropriate. Note again that Zt does not appear explicitly in any dual problem instance, but
instead it changes the distribution of these instances. We see that the dual problem in (34) is
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similar to the dual problem of section 3 and that we could approach this problem in a similar
manner.

6. Conclusions and future research. Any realistic model of portfolio execution should be
able to handle features such as stochastic variance-covariance dynamics, return predictability,
time-of-day effects, and stochastic liquidity/price impacts, and possible risk aversion. Any
model which includes these features will not in general be analytically tractable, and so it
will be necessary instead to construct good suboptimal policies. It is important that these
suboptimal policies can be properly evaluated, and in this paper we have demonstrated the
use of duality methods to do this. In particular, our model is capable of capturing all of
the above effects and our OLFC policy appears to be capable of generating very good primal
bounds, while a variation of the associated OLFC value function also leads to very tight dual
bounds. (Of course we have shown this to actually be the case only for the parameter settings
we considered, but we suspect it to be true more generally for realistic parameter settings.)
While these dual methods have become quite standard in a relatively short period of time,
implementing them is not straightforward in general since the dual optimization problems can
be quite complex and establishing convexity or nonconvexity may also require some effort.

An additional contribution of this paper is that valid and tight dual bounds can still
be computed efficiently even when the dual penalties are not explicitly available and need
to be estimated via Monte Carlo. The numerical experiments of section 5.1 where we used
randomized LDS have demonstrated the validity of this broadly applicable approach.

We have also demonstrated some useful properties of the dual problem in the context of
portfolio execution problems. For example, we noted that the convexity of the dual problem
does not depend on variance-covariance dynamics or state variable dynamics as long as these
dynamics are not influenced by the execution policy. We have also noted how the duality
technology can be used to determine in advance whether a market feature, e.g., the cross price
impact of Appendix D or the nonlinear price impacts of section 5.3, need to be accounted for
by the portfolio execution policy.

There are several possible future research directions, and these include conducting a more
detailed calibration and empirical evaluation of the model we have proposed in this paper.
Another direction is to use duality to study the impact of using misspecified return distribu-
tions. For example, the assumption of (conditional) multivariate normality has been made
throughout this paper and throughout the literature on single-stock and portfolio execution.
This of course is due to the tractability of the normal distribution. In practice, however, we
might expect conditional returns to be only approximately normal. We could still construct
feasible execution policies in this case by pretending that everything was normally distributed,
after which we could use the true model to simulate sample paths to estimate valid primal
and dual bounds. Of course when computing the penalty terms we require expectations of the
linearized approximate value functions and these expectations must be evaluated under the
true model. If they are not available explicitly, then they can be estimated via nested Monte
Carlos as described in section 5.

Another potentially interesting direction is the problem of multiportfolio execution, where
firms need to solve the portfolio execution problem simultaneously for multiple portfolios
rather than just one portfolio. This raises the question as to how we should prioritize the



338 MARTIN HAUGH AND CHUN WANG

portfolios. We could, for example, solve each portfolio execution problem separately and
ignore all knowledge of the other portfolio trades that need to be executed. We would expect
this to be far from optimal in general, although it would be necessary to first define what
is meant by “optimal.” Towards this end, we would also need to determine how to allocate
the total execution costs fairly across each of the portfolios, which is difficult when impact
costs are nonlinear. The multiportfolio execution problem is nontrivial and, depending on the
solution technique, can draw on concepts from cooperative or noncooperative game theory.
It was first studied by O’Cinneide, Scherer, and Xu [16], who proposed optimizing the total
“social welfare” without accounting for fairness. Stubbs and Vandenbussche [44] study the
pros and cons of both the cooperative and noncooperative solution techniques in a static
rather than dynamic context. Once the multiportfolio execution problem has been properly
formulated, however, then it will be necessary to determine good execution policies. The
duality technology might be very useful in assessing the quality of these policies.

A final direction for future research is understanding just how plausible it is to impose
conditions that guarantee the convexity of all dual problem instances. There should be little
difficulty in justifying this assumption when the price impacts are assumed to be deterministic.
Huberman and Stanzl [28] provide such a justification in the single-stock case, for example.
When the price impacts are stochastic, however, insisting on the positive definiteness of the
matrix, Q, in (C-37) on all dual problem instances is not so easy to justify from an economic
standpoint. From an intuitive viewpoint it seems plausible to insist that Q should be positive
definite in some average sense (as implied by the positive definiteness of (A-19), for example),
but there is no reason to assume that all realizations of Q need to be positive definite to avoid
the absence of arbitrage.

If we were to consider models where dual convexity was not guaranteed, then it should
still be possible to obtain a valid dual bound. In particular, on each dual sample path we
first check whether Q is positive definite. If it is, then we solve this dual problem instance as
before. If Q is not positive definite, then the dual optimization problem is difficult to solve in
general. But we can still bound the optimal value of such a problem instance. For example,
the exponential term in (12) is bounded below by zero, and if the constraint set is a bounded
polyhedron (as will typically be the case in practice), then LP techniques could be used to
bound the second term in (12). If relatively few of the Q’s fail to be positive definite, then we
may still be able to obtain a good dual bound in this manner. Another possibility would be to
form the concave dual (see Boyd and Vanderberghe [11], for example) of the nonconvex dual
instance. The optimal solution (or indeed a good feasible solution) to this concave problem
will also provide a valid lower bound, although it may be difficult to compute.

Ultimately we believe the goal is to construct realistic models that can include the various
market effects that are found in practice, that can handle hundreds of securities or more, that
are straightforward to calibrate, and for which good suboptimal policies can easily be found.
Because it is impossible to ever know the true market dynamics, we believe these suboptimal
policies need to be robust to deviations from the assumed model and that duality based on
information relaxations can play a key role in assessing this robustness.

Appendix A. Solving for the suboptimal policies. Here we consider the approaches we
follow for obtaining the various policies outlined in section 2.2. In each of Appendices A.1,
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A.2, and A.4 we assume that no-short-sales constraints are not imposed. When we discuss
convexity and existence of solutions we restrict ourselves to positive definite matrices rather
than positive semidefinite matrices for ease of exposition.

A.1. The risk-neutral policy. Let Vt(·) denote the time t value function for the problem
faced by a risk-neutral agent. At time T the agent needs to buy all remaining shares so that
sT = wT . We also have

VT (p̃T ,wT ,AT ,BT ) = p′
T sT = (p̃T +ATwT +BTwT )

′wT

=
1

2
w′

T (AT +A′
T +BT +B′

T )wT + p̃′
TwT

=
1

2
w′

TGTwT + p̃′
TwT ,(A-1)

where GT := AT +A′
T +BT +B′

T . At time T − 1 we need to solve

VT−1(p̃T−1,wT−1,AT−1,BT−1) = min
sT−1

ET−1

[
p′
T−1sT−1 + VT (p̃T ,wT ,AT ,BT )

]
(A-2)

= min
sT−1

1

2
s′T−1Nss,T−1sT−1 − (Nws,T−1wT−1)

′sT−1

+
1

2
w′

T−1ET−1[GT ]wT−1 + p̃′
T−1wT−1,(A-3)

where we have used (A-1) to substitute for VT in (A-2) and then used the price dynamics of
section 2.1 and wT = wT−1 − sT−1 in obtaining (A-3) and where we have defined

Nss,T−1 := ET−1[GT ] +BT−1 +B′
T−1,(A-4)

Nws,T−1 := ET−1[GT ]−A′
T−1.(A-5)

Assuming Nss,T−1 is positive definite, then the objective function in (A-3) is convex and the
optimal solution to this problem is given by

(A-6) s∗T−1 = N−1
ss,T−1Nws,T−1wT−1

with the optimal value function satisfying

VT−1(p̃T−1,wT−1,AT−1,BT−1) =
1

2
w′

T−1GT−1wT−1 + p̃′
T−1wT−1,

where

(A-7) GT−1 := ET−1[GT ]−N′
ws,T−1N

−1
ss,T−1Nws,T−1.

Continuing in this manner we obtain, for t = T − 2, . . . , 0,

Vt(p̃t,wt,At,Bt) = min
st

Et

[
p′
tst + Vt+1(p̃t+1,wt+1,At+1,Bt+1)

]

= min
st

1

2
s′tNss,tst − (Nws,twt)

′st +
1

2
w′

tEt[Gt+1]wt + p̃′
twt,
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where

Nss,t := Et[Gt+1] +Bt +B′
t,(A-8)

Nws,t := Et[Gt+1]−A′
t.(A-9)

Again assuming Nss,t is positive definite, the optimal solution satisfies

(A-10) s∗t = N−1
ss,tNws,twt

and the optimal value function satisfies

(A-11) Vt(p̃t,wt,At,Bt) =
1

2
w′

tGtwt + p̃′
twt,

where

(A-12) Gt := Et[Gt+1]−N′
ws,tN

−1
ss,tNws,t.

We note that the optimal trading quantities, s∗t , depend on wt only, and not on the price
vector p̃t or the stochastic variance-covariance process. It is not path-independent, however,
due to its dependence on At and Bt, which are in general stochastic. Note that if any Nss,t

fails to be positive definite, then the agent’s time t objective function will be unbounded from
below (in the absence of constraints) and economic considerations alone would imply that
this possibility should be ruled out. One way to do this would be to first impose sufficient
structure on the dynamics of At and Bt so that Et[Gt+1] can be computed analytically. We
could then look to impose additional conditions that guarantee the positive definiteness of the
Nss,t’s.

Regardless, we can implement the policy given by (A-10) only if we can solve for the Gt’s
analytically. One situation where it is straightforward to determine the optimality of (A-10)
and actually implement the policy is when the the At’s and Bt’s are deterministic. Indeed if
we assume the At’s and Bt’s are constant across time, then it is possible to determine explicit
expressions for s∗t . In Appendix A.2 we also identify a particular case where the risk-neutral
and simple policies coincide.

In the numerical results of section 4 we assumed that the Bt’s were stochastic, and so we
were not able to implement the risk-neutral policy. Instead we implemented the risk-neutral
OLFC policy as discussed in section 2.2 and at the end of Appendix A.3.

A.2. When the simple and risk-neutral policies coincide. Suppose the following two
conditions both hold:

(i) At and Bt are martingales: Et[At+1] = At and Et[Bt+1] = Bt.
(ii) At and Bt are symmetric: At = A′

t and Bt = B′
t.

Then the simple and risk-neutral policies coincide, and we can show this by induction as
follows. At time T , we have GT = 2AT + 2BT and s∗T = wT . Under conditions (i) and (ii),
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(A-4) to (A-7) reduce to

Nss,T−1 = ET−1[GT ] +BT−1 +B′
T−1 = 2AT−1 + 4BT−1,

Nws,T−1 = ET−1[GT ]−A′
T−1 = AT−1 + 2BT−1,

s∗T−1 = N−1
ss,T−1Nws,T−1wT−1 =

1

2
wT−1,

GT−1 = ET−1[GT ]−N′
ws,T−1N

−1
ss,T−1Nws,T−1 =

(
1 +

1

2

)
AT−1 +

1

2
2BT−1

and in this case the simple and risk-neutral policies do indeed coincide. Suppose now that at
time t+ 1 we have

Gt+1 =

(
1 +

1

T − (t+ 1) + 1

)
At+1 +

1

T − (t+ 1) + 1
2Bt+1

and

s∗t+1 =
1

T − (t+ 1) + 1
wt+1.

Then (A-8), (A-9), (A-12), and (A-10) yield

Nss,t = Et[Gt+1] +Bt +B′
t =

(
1 +

1

T − t

)
At +

(
1 +

1

T − t

)
2Bt,

Nws,t = Et[Gt+1]−A′
t =

1

T − t
At +

1

T − t
2Bt,

Gt = Et[Gt+1]−N′
ws,tN

−1
ss,tNws,t =

(
1 +

1

T − t+ 1

)
At +

1

T − t+ 1
2Bt,

s∗t = N−1
ss,tNws,twt =

1

T − t+ 1
wt,(A-13)

and by (A-13) we see the inductive step is complete.

A.3. Computing the OLFC policy when sj ≥ 0 is imposed. We now consider calculation
of the OLFC when nonnegativity constraints on the sj ’s are imposed. It should be clear that
imposing additional convex constraints on the sj ’s would also be straightforward. We first
note that (5) and (6) imply

(A-14) pj = p̃t +

j−1∑
i=t

Aisi +

j∑
i=t+1

ri +Ajsj +Bjsj for j = t, . . . , T.

The OLFC policy assumes the price-impact matrices evolve deterministically by taking their
time-t conditional expectations. We therefore substitute (A-14) into the objective function in
(10) but with Aj and Bj replaced by Et[Aj ] and Et[Bj ], respectively. We then see the OLFC



342 MARTIN HAUGH AND CHUN WANG

problem can be formulated as

(A-15)

min
st:T≥0

Et

[
exp

(
γp̃′

twt + γ
T∑
j=t

(
j−1∑
i=t

Et[Ai]si + Et[Aj]sj + Et[Bj ]sj

)′
sj + γ

T∑
j=t+1

r′jwj

)]

(A-16)

≡ min
st:T≥0

exp

(
γ

T∑
j=t

(
j−1∑
i=t

Et[Ai]si + Et[Aj ]sj + Et[Bj ]sj

)′
sj

)
Et

[
exp

(
γ

T∑
j=t+1

r′jwj

)]
,

where we have used the fact that wj =
∑T

i=j si for j = t, . . . , T and switched the order of
summation to obtain the last term in (A-15). The OLFC policy also assumes the rj ’s are IID
normal with mean vector 0 and conditional covariance matrix Σj = Σt for j = t+ 1, . . . , T .
Under this assumption we have

Et

[
exp

(
γ

T∑
j=t+1

rjwj

)]
= exp

(
T∑

j=t+1

1

2
γ2w′

jΣtwj

)

so that (A-16) becomes

(A-17) min
st:T≥0

exp

(
γ

T∑
j=t

(
j−1∑
i=t

Et[Ai]si + Et[Aj ]sj + Et[Bj ]sj

)′
sj +

1

2
γ2

T∑
j=t+1

w′
jΣtwj

)
.

Because the exponential function is monotonic increasing, we can ignore it so that solving
(A-17) reduces to the following constrained quadratic programming problem:

min
st:T

1

2
[s′t . . . s

′
T ](QOLFC,t +QΣ,t)[s

′
t . . . s

′
T ]

′(A-18)

subject to

T∑
j=t

sj = wt,

sj ≥ 0 for j = t, . . . , T,

where

(A-19)

QOLFC,t :=

⎡
⎢⎣
Et[At +A′

t +Bt +B′
t] Et[A

′
t] . . . Et[A

′
t]

Et[At] Et[At+1 +A′
t+1 +Bt+1 +B′

t+1] . . . Et[A
′
t+1]

. . . . . . . . . . . .
Et[At] Et[At+1] . . . Et[AT +A′

T +BT +B′
T ]

⎤
⎥⎦ ,

and

QΣ,t := γ

⎡
⎢⎢⎢⎢⎣
O O O . . . O
O Σt Σt . . . Σt

O Σt 2Σt . . . 2Σt

. . . . . . . . . . . . . . .
O Σt 2Σt . . . (T − t)Σt

⎤
⎥⎥⎥⎥⎦ ,
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where O denotes the n × n zero matrix. We first note that QΣ,t may be expressed as a
positively weighted sum of positive semidefinite matrices according to

QΣ,t = γ

⎡
⎢⎢⎢⎢⎣
O O O . . . O
O Σt Σt . . . Σt

O Σt Σt . . . Σt

. . . . . . . . . . . . . . .
O Σt Σt . . . Σt

⎤
⎥⎥⎥⎥⎦+γ

⎡
⎢⎢⎢⎢⎣
O O O . . . O
O O O . . . O
O O Σt . . . Σt

. . . . . . . . . . . . . . .
O O Σt . . . Σt

⎤
⎥⎥⎥⎥⎦+· · ·+γ

⎡
⎢⎢⎢⎢⎣
O O O . . . O
O O O . . . O
O O O . . . O
. . . . . . . . . . . . . . .
O O O . . . Σt

⎤
⎥⎥⎥⎥⎦ ,

and so it follows that QΣ,t itself is positive semidefinite. As stated in section 3.1 it seems
appropriate to insist on the positive definiteness of QOLFC,t so that the OLFC decision-maker
does not perceive that there are arbitrage opportunities in the market. In Appendix C.1 we
will provide sufficient conditions to guarantee that QOLFC,t is indeed positive definite. If
these conditions are satisfied (as they are in the numerical experiments of section 4), then
QOLFC,t +QΣ,t will be positive definite so that the OLFC policy can be found by solving a
constrained convex quadratic optimization problem.

We also note that the risk-neutral OLFC policy can be obtained by taking γ = 0 and then
solving the optimization problem in (A-18). This results in an objective function of the form

min
st:T

1

2
[s′t . . . s

′
T ]QOLFC,t[s

′
t . . . s

′
T ]

′.

A.4. Computing the OLFC policy when sj ≥ 0 is not imposed. If we drop the non-
negativity constraints on the sj ’s, then at each time t the OLFC policy can be computed
analytically and very quickly using dynamic programming. Recall the agent assumes that
Σj = Σt for all j ≥ t so that he assumes

(A-20) Ej[exp(γr
′
j+1w)] = exp

(
1

2
γ2w′Σtw

)

for all j ≥ t and all constant vectors, w. We use V ol
j (·) for j ≥ t to denote the expected utility

of trading from time j onwards as perceived by the agent at time t. The dynamics of section
2.1, but now taking Σj = Σt and replacing the Aj ’s and Bj ’s by their time-t conditional
expectations for all j ≥ t, imply that

V ol
T (p̃T ,wT ) = exp

(
γ(p̃T + Et[AT ]wT + Et[BT ]wT )

′wT

)

= exp

(
γ

(
1

2
w′

TGTwT + p̃′
TwT

))
,

where GT := Et[AT +A′
T +BT +B′

T ]. At time T − 1 the agent needs to solve

V ol
T−1(p̃T−1,wT−1) = min

sT−1
ET−1[exp(γp

′
T−1sT−1)V

ol
T (p̃T , wT )],
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and using (A-20) this problem reduces to

min
sT−1

exp

(
γ

(
1

2
s′T−1Nss,T−1sT−1 − (Nws,T−1wT−1)

′sT−1

+
1

2
w′

T−1(GT + γΣt)wT−1 + p̃′
T−1wT−1

))

≡ min
sT−1

1

2
s′T−1Nss,T−1sT−1 − (Nws,T−1wT−1)

′sT−1

+
1

2
w′

T−1(GT + γΣt)wT−1 + p̃′
T−1wT−1,(A-21)

where

Nss,T−1 := GT + γΣt + Et[BT−1 +B′
T−1],

Nws,T−1 := GT + γΣt − Et[A
′
T−1].

Assuming Nss,T−1 is positive definite, then the optimal solution to (A-21) is

s∗T−1 = N−1
ss,T−1Nws,T−1wT−1

with corresponding value function

V ol
T−1(p̃T−1,wT−1) = exp

(
γ

(
1

2
w′

T−1GT−1wT−1 + p̃′
T−1wT−1

))
,

where

GT−1 := GT + γΣt −N′
ws,T−1N

−1
ss,T−1Nws,T−1.

Continuing backwards in this manner we find for j = T − 2, . . . , t that

V ol
j (p̃j ,wj) = min

sj
Ej[exp(γp

′
jsj)Vj+1(p̃j+1,wj+1)]

= min
sj

exp

(
γ

(
1

2
s′jNss,jsj − (Nws,jwj)

′sj +
1

2
w′

j(Gj+1 + γΣt)wj + p̃′
jwj

))

≡ min
sj

1

2
s′jNss,jsj − (Nws,jwj)

′sj +
1

2
w′

j(Gj+1 + γΣt)wj + p̃′
jwj,(A-22)

where

Nss,j := Gj+1 + γΣt + Et[Bj +B′
j ],

Nws,j := Gj+1 + γΣt − Et[A
′
j ].

Again assuming Nss,j is positive definite, the optimal value of sj in (A-22) is given by

s∗j = N−1
ss,jNws,jwj
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with corresponding value function

(A-23) V ol
j (p̃j ,wj) = exp

(
γ

(
1

2
w′

jGjwj + p̃′
jwj

))
,

where
Gj := Gj+1 + γΣt −N′

ws,jN
−1
ss,jNws,j.

The OLFC policy implements s∗t at time t, and we note that s∗t depends on wt only, and not
on the price, p̃t. The OLFC policy is path-dependent, however, because of the dependence of
Nss,t and Nws,t on Σt, At, and Bt, which in general are stochastic. As mentioned in section
5, it is also possible to model return predictability via linear state variable dynamics and still
compute the OLFC value function and policy analytically. This would induce an explicit path
dependence of s∗t on these state variables.

Note that the DP formulation here is equivalent to the static problem formulation in
Appendix A.3 if we drop the nonnegativity constraints on the s∗t ’s there. It follows then that
we can check the positive definiteness of theNss,j’s for j ≥ t by confirming thatQOLFC,t+QΣ,t

is positive definite. We can do the latter using, for example, the results of Appendix C.1.

A.5. Using control variates to estimate the primal bounds. In order to reduce the num-
ber of Monte Carlo paths that we used for estimating the primal bound, Vub, we considered
two possible control variates. First note that if a trading sequence s := [s′0 . . . s′T ]

′ is determin-
istic, then the expected execution cost can be computed analytically under the price-impact
model of section 2. In particular, it is easy to check that

E0

[ T∑
t=0

p′
tst

]
= E0

[
T∑
t=0

(
p̃0 +

t−1∑
i=0

Aisi +
t∑

i=1

ri +Atst +Btst

)′
st

]

=
1

2
s′E0[Q]s+ p̃′

0w0,(A-24)

where Q is as defined in Appendix C.1. If we can evaluate E0[Q], then by (A-24) we can
use

∑T
t=0 p

′
tst as a control variate. However, as the level of risk aversion (as measured by γ)

increases, the variance reduction that it achieves will not be as effective.
The expected utility of a deterministic trading sequence cannot be computed analytically

when there are stochastic variance-covariance dynamics and stochastic linear price-impact
dynamics. However, if we assume the volatility, Σ, is constant, and At and Bt evolve deter-
ministically according to their time t = 0 conditional expectations, E0[At] and E0[Bt], then
it is easy to check that

E0

[
exp

(
γ

T∑
t=0

p′
tst

)]
= E0

[
exp

(
γ

T∑
t=0

(
p̃0 +

t−1∑
i=0

E0[Ai]si +
t∑

i=1

ri

+E0[At]st + E0[Bt]st

)′
st

)]

= exp(γp̃′
0w0) exp

(
γ

2
s′(QOLFC,0 +QΣ,0)s

)
.(A-25)
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We can therefore use exp(γ
∑T

t=0 p
′
tst) and (A-25) as a control variate. Note that we can do

this even when each of Σt, At, and Bt evolves stochastically in the “true” model by simulating
in parallel the model with deterministic price impacts and variance-covariance dynamics that
yields (A-25). In our numerical experiments we took Σ = Σ0 and took s to be the optimal
(deterministic) policy as calculated in Appendix A.4 with t = 0. We generally find (A-25)
to be much more effective than (A-24), and it resulted in a variance reduction for the primal
bounds on the order of 75% to 95% depending on the value of γ.

It is worth mentioning that these control variates provided little benefit when estimating
the dual bounds. Since the calculation of the primal bound was the computational bottleneck,
however, there was no need to construct good control variates for the dual problem.

Appendix B. Review of duality based on information relaxations. We begin with a
general finite-horizon discrete-time DP with a probability space, (Ω,F ,P). Time is indexed
by the set T := {0, . . . , T}, and the evolution of information is described by the filtration
F = {F0, . . . ,FT } with F = FT . We make the usual assumption that F0 = {∅,Ω} so that the
decision-maker starts out with no information regarding the outcome of uncertainty. There is
a state vector, xt ∈ R

n, whose dynamics satisfy

(B-26) xt+1 = ft(xt, ut, wt+1), t = 0, . . . , T − 1,

where ut ∈ Ut(xt) ⊆ R
m is the control taken at time t, wt+1 is an Ft+1-measurable random

disturbance, and Ut(xt) is the feasible control set at time t. A feasible policy, u := (u0, . . . , uT )
is one where each individual action satisfies ut ∈ Ut(xt) for all t. We let U denote the set
of such policies. A feasible adapted policy is a feasible policy that is Ft-adapted. We let UF

denote the set of all such Ft-adapted policies. For example, in the context of the portfolio
execution problem of this paper, a feasible but not Ft-adapted strategy would be an execution
schedule that satisfies the nonnegativity constraints in all time periods but where the number
of shares purchased in a given period is allowed to depend on prices in later periods. The
objective is to select a feasible adapted policy, u, to minimize the total loss,

g(u) :=

T∑
t=0

gt(xt, ut),

where we assume without loss of generality that each gt(xt, ut) is Ft-measurable. In particular,
the decision-maker’s problem is then given by

V ∗
0 (x0) := inf

u∈UF

E0

[
T∑
t=0

gt(xt, ut)

]
,(B-27)

where the expectation in (B-27) is taken over the set of possible outcomes, w = (w1, . . . , wT ) ∈
Ω. Letting V ∗

t denote the time t value function for the problem (B-27), the associated dynamic
programming recursion is given by

V ∗
t (xt) := inf

ut∈Ut(xt)

{
gt(xt, ut) + Et

[
V ∗
t+1 (ft(xt, ut, wt+1)

]}
, t = 0, . . . , T,(B-28)
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with the understanding that V ∗
T+1 ≡ 0 (and therefore does not depend on wT+1, which is

undefined). In practice, of course, it is often too difficult or time-consuming to perform the
iteration in (B-28). This can occur, for example, if the state vector, xt, is high-dimensional
or if the constraints imposed on the controls are too complex or difficult to handle. In such
circumstances, we must be satisfied with suboptimal policies. These policies are generally easy
to simulate and can therefore be used to construct unbiased upper bounds on the optimal value
function, V ∗

0 (x0). Duality methods based on information relaxations can be used to construct
lower bounds on V ∗

0 (x0).
We will now briefly describe the theory behind these duality methods. Brown, Smith, and

Sun [13] should be consulted for further details. We omit most of the technical details, and
we will consider only perfect information relaxations since these relaxations are usually most
useful in practice and are all that we will require in this paper. Let S denote the space of
real-valued measurable functions that are defined on the state space R

n. We now define an
operator Δ that maps S to the space of real-valued measurable functions on R

n × R
n × R

m

according to

(ΔVt)(xt, xt−1, ut−1) := Vt(xt) − E [Vt(xt) |xt−1, ut−1] .(B-29)

Loosely speaking, Δ is an operator on (approximate) value functions. Note in particular that
E0 [(ΔVt)(xt, xt−1, ut−1)] = 0 for all integrable Vt. Let D be the space of real-valued functions
on R

n × T such that if V ∈ D, then Vt := V (·, t) is measurable and E0 [|Vt(xt)|] < ∞ for all
t ∈ T and all feasible policies u ∈ U . We now define an operator F : D → S according to
(B-30)

FV (x) := E0

[
inf
u∈U

{
g0(x0, u0) +

T∑
t=1

(gt(xt, ut) − (ΔVt)(xt, xt−1, ut−1))

} ∣∣∣∣∣ x0 = x

]
.

Note that the infimum in (B-30) is over the space U of feasible policies and not the space UF

of feasible adapted policies. Our first result is weak duality.
Theorem B.1 (weak duality). V ∗

0 (x0) ≥ FV (x0) for all V ∈ D.
Proof. Using the definition of V ∗

0 (x0) in (B-27) and the fact that the (ΔVt)’s have zero
mean we have

(B-31)

V ∗
0 (x) = inf

u∈UF

E0

[
T∑
t=0

gt(xt, ut) −
T∑
t=1

(ΔVt)(xt, xt−1, ut−1)

∣∣∣∣∣ x0 = x

]

= inf
u∈UF

E0

[
g0(x0, u0) +

T∑
t=1

(gt(xt, ut) − (ΔVt)(xt, xt−1, ut−1))

∣∣∣∣∣ x0 = x

]

≥ E0

[
inf
u∈U

{
g0(x0, u0) +

T∑
t=1

(gt(xt, ut) − (ΔVt)(xt, xt−1, ut−1))

} ∣∣∣∣∣ x0 = x

]

= FV (x0).(B-32)

Theorem B.1 suggests that we can compute a lower bound on V ∗
0 (x0) by evaluating FV (x0)

for any V ∈ D. It gives no guidance, however, on how to choose V so that the lower bound is
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as large as possible. In fact we can formulate the following dual problem:

(B-33) sup
V ∈D

FV (x0).

Theorem B.2 is a strong duality result which states that the dual problem is solved by taking
V = V ∗ and that there is no duality gap between the primal DP and the dual problem.

Theorem B.2 (strong duality). For all x, V ∗
0 (x) = FV ∗(x).

Proof. By weak duality we need only show that FV ∗(x) ≥ V ∗
0 (x). We have

FV ∗(x) = E0

[
inf
u∈U

{
g0(x0, u0) +

T∑
t=1

(gt(xt, ut) − (ΔV ∗
t )(xt, xt−1, ut−1))

}∣∣∣∣∣ x0 = x

]

= E0

[
inf
u∈U

{
V ∗
0 (x0) +

T−1∑
t=1

[
gt(xt, ut) + E

[
V ∗
t+1(xt+1) |xt, ut

]
− V ∗

t (xt)
]

+ gT (xT , uT )− V ∗
T (xT )

} ∣∣∣∣∣ x0 = x

]

≥ V ∗
0 (x),(B-34)

where the inequality in (B-34) follows because of (B-28) and since V ∗
T (xT ) = gT (xT , uT ).

Strong duality suggests that we might be able to obtain good dual bounds on the optimal
value function, V ∗

0 (x), if we can find V ≈ V ∗ and then compute FV (x). The numerical
experiments in this paper and in the literature cited in section 1 support this claim.

Remark 1. The portfolio execution problem that we consider in this paper has an objective
function of the form E0[exp(γ

∑T
t=0 p

′
tst)]. This is not in the form E0[

∑T
t=0 gt(xt, ut)] as

we assumed in (B-27), but this does not present any problems because we can introduce an
additional state variable, say zt, with dynamics zt+1 = zt + p′

t+1st+1 for t = 0, . . . , T − 1
with z0 := p′

0s0. We can then take g0 ≡ g1 ≡ · · · ≡ gT−1 ≡ 0 and gT := exp (γzT ). The
portfolio execution problem now has an objective function of the appropriate form. We also
note that given any policy, say θ, the corresponding time t + 1 value function, V θ

t+1, can be

written as V θ
t+1 = exp(γ

∑t
j=0 p

′
jsj)E

θ
t+1[exp(γ

∑T
j=t+1 p

′
jsj)], where the expectation E

θ
t+1[·]

is with respect to the probability measure induced by the policy θ. This also explains why we
want to include the first term on the right-hand side of (14).

Appendix C. The dual problem for the portfolio execution problem. We define f(s) :=
exp(γ

∑T
t=0 p

′
tst) from section 3.1. We can substitute for pt using (A-14) to obtain

f(s) = exp

(
γ

T∑
t=0

(
p̃0 +

t−1∑
i=0

Aisi +

t∑
i=1

ri +Atst +Btst

)′
st

)
(C-35)

= exp(γp̃′
0w0) exp

(
γ

(
1

2
s′Qs+ c′p,0s

))
,(C-36)
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where Q is an n(T + 1)× n(T + 1) symmetric matrix given by

(C-37) Q =

⎡
⎢⎢⎣
A0 +A′

0 +B0 +B′
0 A′

0 . . . A′
0

A0 A1 +A′
1 +B1 +B′

1 . . . A′
1

. . . . . . . . . . . .
A0 A1 . . . AT +A′

T +BT +B′
T

⎤
⎥⎥⎦

and cp,0 is a n(T + 1)× 1 vector given by

cp,0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
r1

r1 + r2
. . .

r1 + r2 + . . . + rt
. . .

r1 + r2 + . . . + rt + . . . + rT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using (C-36) we see that the gradient vector and Hessian matrix of f satisfy

∇f(s) = γf(s)(Qs+ cp,0),

Hf(s) = γf(s)

(
Q + γ(Qs+ cp,0)(Qs+ cp,0)

′
)
.

If Q is positive definite, then the Hessian matrix H(f(s)) is also positive definite and f(s) is
therefore convex. This follows because γ > 0, f(s) > 0 for all s and because (Qs+ cp,0)(Qs+
cp,0)

′, as the outerproduct of a column vector, is positive semidefinite for all s. It therefore
follows that if Q is positive definite, then all dual problem instances will be convex. In
Appendix C.1, we provide some sufficient conditions that ensure Q will be positive definite.

C.1. Conditions that guarantee the positive definiteness of Q and QOLFC,t. The
positive definiteness of Q depends on the dynamics of At and Bt. Here we provide two
sufficient conditions that guarantee this.

(i) The permanent price impact is constant over time At = A, and A + A′ is positive
definite.

(ii) Bt +B′
t are positive semidefinite.

Assuming that conditions (i) and (ii) hold we can then write (C-37) as

(C-38)

Q =

⎡
⎢⎢⎣

A+A′
2 A′ . . . A′

A A+A′
2 . . . A′

. . . . . . . . . . . .

A A . . . A+A′
2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

A+A′
2 +B0 +B′

0
A+A′

2 +B1 +B′
1

. . .
A+A′

2 +BT +B′
T

⎤
⎥⎥⎦ .

The second matrix on the right-hand side of (C-38) is positive definite since it is block diagonal
and each 1

2(A +A′) + Bt + B′
t is positive definite. The first matrix is positive semidefinite



350 MARTIN HAUGH AND CHUN WANG

since for any given vector z = [z1 . . . zT ]
′, where each zi is an n× 1 vector, we have

(C-39)

[z1 . . . zT ]
′

⎡
⎢⎢⎣

A+A′
2 A′ . . . A′

A A+A′
2 . . . A′

. . . . . . . . . . . .

A A . . . A+A′
2

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣
z1
z2
...
zT

⎤
⎥⎥⎥⎦ = (z1+z2+. . .+zT )

′A+A′

2
(z1+z2+· · ·+zT ),

which is nonnegative since A+A′
2 is positive definite. This implies Q is positive definite.

QOLFC,t in (A-19) has a similar structure to Q. Given that the At’s are constant we have
Et[Aj ] = A, and then

QOLFC,t =

⎡
⎢⎢⎣
A+A′ + Et[Bt +B′

t] A′ . . . A′

A A+A′ + Et[Bt+1 +B′
t+1] . . . A′

. . . . . . . . . . . .
A A . . . A+A′ + Et[BT +B′

T ]

⎤
⎥⎥⎦ .

If the dynamics of Bt ensure that Et[Bj+B′
j ] are positive semidefinite, QOLFC,t is guaranteed

to be positive definite by the same argument we used for (C-38).

C.2. Computing dual penalties. We saw in section 3.1 that we would like to take Ṽt

(required for (12)) to be a linearized version of an approximate value function, V̂t, as given by
(15). However, if we construct V̂t using the OLFC value function, V ol

t , and take V̂t+1(s0:t) =
exp(γ

∑t
j=0 p

′
jsj)V

ol
t+1, then we cannot compute Et[Ṽt+1(s0:t)] analytically. This is because

V ol
t+1 is calculated under the assumption that the conditional covariance matrix remains con-

stant at Σt+1 and that the price-impact matrices for all j ≥ t+1 are Et+1[Aj ]’s and Et+1[Bj ]’s.
None of these terms is adapted to Ft, and so computing Et[Ṽt+1(s0:t)] analytically is not pos-
sible in general. We could in theory use the Monte Carlo approach of section 5 to overcome
this problem, but in this particular case it would be prohibitively expensive to do so. This is
because we would need to solve an OLFC optimization problem at each simulated point at
time t+ 1.

Instead we simply modify the assumptions of the OLFC policy and assume that at time
t+1 the conditional covariance matrix remains constant at Σt (rather than Σt+1) and that the
price-impact matrices are given by Et[Aj ] and Et[Bj ] (rather than Et+1[Aj ] and Et+1[Bj ]) for
all j ≥ t+ 1. Using precisely the same DP approach of Appendix A.4 we obtain the modified
OLFC value function

(C-40) V mol
t+1 = exp

(
γ

(
1

2
w′

t+1G̃t+1wt+1 + p̃′
t+1wt+1

))
,

where the G̃t’s are the analogue of the Gt’s in Appendix A.4. The important feature of (C-40)
is that G̃t+1 ∈ Ft so that Et[V

mol
t+1 ] can be computed in closed form.

C.3. Solving dual problem instances. Recall that we define f(s) := exp(γ
∑T

t=0 p
′
tst).

From (12) and (15) it follows that each dual problem instance that we need to solve has an
objective function equal to f(s) plus a linear function of s. While all of the problem instances
in our numerical experiments will be convex, the exponential operator combined with the
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linear term can be a source of difficulty. In addition, the permanent price impact implies that
pt is a function of s0:t−1 so that we cannot reduce the problem to a separable convex problem
which is easily solved. Instead we solve each dual problem instance by using the following
algorithm:

1. Choose a starting point, ŝ.
2. Approximate f(s) with a second order Taylor expansion about ŝ to obtain

(C-41) f̂(s) := f(ŝ) +∇f(ŝ)′(s− ŝ) +
1

2
(s− ŝ)′Hf(ŝ)(s− ŝ),

where ∇f(ŝ) and Hf(ŝ) are, respectively, the gradient vector and Hessian matrix of f
evaluated at ŝ.

3. Solve

(C-42) min
s∈S

f̂(s) +

T−1∑
t=0

(
Et[Ṽt+1(s0:t)]− Ṽt+1(s0:t)

)
,

which is a constrained convex quadratic programming problem and therefore easy to
solve. Let sopt be the optimal solution.

4. Evaluate the objective value in (12) at sopt, and stop if we have converged to within a
given error tolerance. Otherwise set ŝ = sopt and return to step 2.

In our numerical experiments we use an absolute error tolerance of 10−5. Depending on the
level of risk aversion, γ, this corresponds to a relative error tolerance between 10−4 and 10−5.
Typically we find that convergence occurs after just two or three iterations.

Appendix D. The model of Bertsimas, Hummel, and Lo. Bertsimas, Hummel, and
Lo [9] (BHL) was one of the earliest papers to consider the portfolio execution problem. We
use the calibrated model parameters of BHL to (i) investigate their conjecture that an OLFC
policy should be close to optimal and (ii) provide a simple demonstration of how duality can
be used to determine in advance whether or not a particular market feature, in this case
cross-price impacts, is worth accounting for in a portfolio execution policy. In particular, by
considering how small the calibrated cross-price-impact parameters are in BHL, it is reasonable
to conjecture that simply following the optimal single stock execution policies should be close
to optimal. We confirm this by using the single-stock value functions to construct a dual
penalty which we then use to bound how far the single-stock policy is from optimality. This
example therefore serves as an illustration of how a policy and the dual penalty from a given
model can be used to determine in advance whether or not a more complicated model even
needs to be considered. Note that we claim only to show that cross-price-impact parameters
are insignificant within the model of BHL and do not make this claim more generally.

D.1. Model description. The linear percentage price-impact model of BHL has dynamics

pt = p̃t + δt,(D-43)

δt = P̃t(AP̃tst +Btxt),(D-44)

p̃t+1 = exp(Diag(εt+1))p̃t,(D-45)

xt+1 = Cxt + ηt+1,(D-46)

wt+1 = wt − st,(D-47)
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where P̃t := Diag[p̃t], a diagonal matrix with p̃t on the diagonal. The execution price pt is
the sum of the no-impact price, p̃t, and the price impact, δt. p̃t follows a vector-geometric
Brownian motion, where the εt’s are IID normal with mean vector με and covariance matrix
Σε. The price impact, δt, is temporary and assumes the percentage impact is a linear function
of the dollar values, P̃tst, and an information vector, xt, that represents market or private
information and is assumed to follow a vector autoregressive process with a one period time-
lag. The ηt’s are IID multivariate normal with mean 0 and covariance matrix Ση.

BHL’s objective was to minimize the expected execution cost, which leads to the problem
formulation

min
st∈Ft,t=1,...,T

E0

[
T∑
t=0

p′
tst

]

subject to
T∑
t=0

st = w0

and dynamics (D-43)–(D-47). This problem can be solved using dynamic programming and
explicit solutions for the optimal value function as well as the optimal trading quantities that
can be found in BHL. When nonnegativity constraints st ≥ 0 are imposed, however, then it
is not possible to solve this problem explicitly. Moreover, because of the return predictability
induced by xt, we expect the nonnegativity constraints to be binding in general.

D.2. Suboptimal policies. We consider several different suboptimal policies that can be
employed when nonnegativity constraints are imposed.

The simple policy. The agent buys the same quantity of shares in each of the T + 1 time
periods so that st = w0/(T + 1).

A one-step look-ahead policy. At each time t the agent solves

min
st∈Ft

Et[p
′
tst + Vt+1(p̃t+1,xt+1,wt+1)](D-48)

subject to 0 ≤ st ≤ wt

and implements the optimal solution, say sost . We take Vt+1 to be the value function for the
unconstrained problem which can be computed analytically via a matrix recursion. While the
calculations are somewhat tedious the expectation of Vt+1 conditional on Ft can be computed
in closed form.

A rolling OLFC policy. At each time t the agent first solves

min
st:T∈Ft

Et

⎡
⎣ T∑

j=t

p′
jsj

⎤
⎦(D-49)

subject to

T∑
j=t

sj = wt,

sj ≥ 0 for j = t, . . . , T.
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Let V ol
t denote the optimal value of (D-49), and let sol,tt:T := [sol,t

′
t . . . sol,t

′
T ]′ denote the

corresponding optimal solution. The OLFC policy implements sol,tt at time t and ignores

sol,tt+1, . . . , s
ol,t
T .

The single-stock execution policy. Here the agent simply assumes the cross-price impacts
are zero, in which case the problem decouples into n separate single-stock problems. The agent
solves each of these problems using a simple approximate dynamic programming algorithm
and implements the resulting policy. This policy was suggested by the fact that the diagonal
elements of the matrix A, as calibrated by BHL, were typically an order of magnitude larger
than the off-diagonal elements. This can be seen from Table 2 in Appendix D.4, where we
display a 10× 10 submatrix of the price-impact matrix, A. We therefore expected this policy
to perform well. Moreover, this case provides a clear example of where the duality technology
could be used to determine whether or not a given policy, i.e., the n single-stock policies,
should be adapted to account for a new feature, i.e., the cross-price-impact costs, that are
known to exist in the marketplace.

D.3. The dual problem. A dual problem instance is obtained by simulating paths of p̃t

and xt and then solving the resulting deterministic optimization problem with a dual-feasible
penalty that is obtained from some approximation to the value function. A dual problem
instance therefore takes the form

min
st∈S

T∑
t=0

p′
tst +

T−1∑
t=0

(
Et[Ṽt+1(s0:t)]− Ṽt+1(s0:t)

)
(D-50)

subject to pt = p̃t + P̃t(AtP̃tst +Btxt),

where the p̃t’s and xt’s have been simulated according to the true model dynamics and are
known to the decision-maker at time t = 0. We consider only Ṽt+1(s0:t)’s that are linear
in the actions, s0:t, and this can be achieved in the manner described in section 3.1. In
the numerical results below, we compute dual bounds using penalties constructed from (i)
the unconstrained value function, Vt, and (ii) the value function, V ss

t , obtained by summing
together the n single-stock value functions.

D.4. Numerical results. We use the same calibration for {A,B,C,με,Σε,Ση} as given
by BHL. The agent therefore needs to purchase 100, 000 shares in each of 25 securities. There
are T + 1 = 20 time periods. Primal bounds are computed on the basis of 10, 000 Monte
Carlo paths, while only 100 paths were required to estimate the dual bounds. Monte Carlo
results are displayed in Table 1. We use V s, V os, V ol, and V ss to denote the estimated
average execution cost of the simple one-step look-ahead OLFC and single-stock policies,
respectively. The mean and standard errors of the reported execution costs are cents per
share. We also report runtimes (in seconds) for each of the policies with the exception of
the simple policy, whose value can be determined analytically. Note that these runtimes are
for the entire 10,000 paths. We see that the OLFC policy yields the lowest execution cost
but that all policies provide very similar performance. We note, however, that computing the
OLFC policy is particularly time-consuming relative to the other policies.

Table 1 also reports two dual bounds, V unc
d and V ss

d , that were obtained by using the
unconstrained value function and the single-stock approximate dynamic programming value
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Table 1
Simulation results for the portfolio execution problem with nonnegativity constraints.

Suboptimal policy Dual bound

V s V os V ol V ss V0 V unc
d V ss

d

Mean 5.364 4.123 3.979 4.194 2.023 3.976 3.975
Std error 0 0.0523 0.0501 0.0542 0 0.00797 0.00404
Runtimes N/A 324 7465 13.81 N/A 14.51 14.54

Table 2
Price-impact coefficients for a 10 × 10 subset of the 25 stocks in BHL. All values have been multiplied by

1010.

AHP AN BLS CHV DD DIS DOW F FNM GE

AHP 12.40 −1.69 −1.99 1.04 −1.07 1.09 1.26 1.37 −1.97 −0.17
AN −1.32 10.10 −1.96 1.09 −1.63 −1.24 2.68 −2.03 −0.80 −0.30
BLS 3.49 0.83 14.40 2.26 −2.45 4.25 −1.02 −5.80 1.68 1.18
CHV 2.09 −0.17 2.34 21.20 2.84 1.62 −0.03 3.60 −3.35 0.91
DD −0.93 0.66 6.18 1.55 11.70 −1.17 1.00 0.67 1.92 2.24
DIS 1.98 2.73 −0.30 −2.59 0.92 19.30 2.22 0.13 8.27 2.37
DOW −0.79 0.18 −3.88 −0.23 −1.59 −0.93 7.21 −3.18 1.66 0.05
F −0.23 0.66 3.29 −0.65 4.24 1.74 3.15 21.90 2.12 0.65

FNM 0.01 −0.92 −0.43 3.27 0.39 −3.57 3.40 2.78 13.70 −0.88
GE 0.77 −0.45 0.53 0.03 −0.41 −0.26 −1.10 0.12 1.60 5.06

function, respectively, to construct dual penalties, Ṽt, in (D-50). We also report the uncon-
strained optimal value function, V0, which itself is a lower bound on the optimal execution
cost for the constrained problem. We see the two dual bounds generated are very similarly
and are very close indeed to the primal bounds.

Confirming the conjecture of BHL. These results allow us to confirm the conjecture of BHL,
namely that the OLFC policy should be close to optimal. Indeed the average cost-per-share
of the OLFC policy, 3.979 cents, is only .003 cents greater than the best dual bound.

Using the dual methodology to determine whether cross-price impacts need to be included.
We also note that if this problem were ever encountered in practice, then it would be possible
to “solve” it without constructing any of the more elaborate policies that explicitly account
for the cross-price impacts. To see this note that the average execution cost of the single-stock
policy is 4.194 cents per share and that the dual bound constructed by using the sum of the
single-stock value functions to construct dual penalties is 3.975 cents per share. This implies
that building a more elaborate execution policy that incorporates the cross-price impacts will
be worth at most 4.194− 3.975 = .219 cents per share. As such, we may decide that it is not
worth explicitly accounting for the cross-price impacts, at least in this model. This is one of
the principal benefits of the dual technology.

We also mention here that we performed additional numerical experiments that included
sector balance constraints in the problem formulation. We again found that the various policies
performed very well, at least using the calibrated parameters of BHL.
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Appendix E. Additional calibration details for section 4.

E.1. Variance-covariance dynamics. As stated in section 4.2 we assume that Σt follows
an O-GARCH model as in Alexander [1] so that

(E-51) Σt = FΩtF
′ +Υ,

where Ωt is a diagonal matrix, F is a matrix of factor loadings, and Υ is a diagonal matrix
of idiosyncratic variances. The diagonal elements in Ωt are assumed to follow independent
GARCH(1,1) processes.

Our calibration of the variance-covariance dynamics is very simple and is also based on
Alexander [1]. We first compute the variance-covariance matrix, Σ, of standardized 5-minute
returns, treating the observations for each security as IID. We then perform a principal com-
ponents analysis on Σ and then assume the first k principal components follow independent
GARCH(1, 1) models. We emphasize here that we do not claim that this is a particularly
good choice of model. Indeed we expect the proprietary models that are used in practice to
be much better than our model, which is intended only to help demonstrate how the duality
techniques can be used.

We use 5-minute return data on the 50 stocks between October 12 and October 25, 2011,
which corresponds to a total of d = 10 trading days. Ignoring time of day and other effects we
obtain a series of 10× 78 = 780 observations that we initially treat as IID. After normalizing
each time series by subtracting the mean return, we compute the covariance matrix, Σ, of the
n = 50 normalized observation series. We then perform a principal component analysis on Σ
and obtain

(E-52) Σ = ΓΛΓ′,

where Γ is the matrix of eigenvectors, say c1, . . . , cn, and Λ is the diagonal matrix of corre-
sponding eigenvalues, λ1, . . . , λn, arranged in decreasing order. We let F be the n× k matrix
containing the k eigenvectors, c1, . . . , ck, corresponding to the k largest eigenvalues. We now
approximate the covariance matrix with

(E-53) Σ ≈ FΩF′ +Υ,

where Ω = diag(λ1, . . . , λk) and Υ is a diagonal matrix chosen to ensure that the diagonal
terms on both sides of (E-53) agree. Note that λi is the variance of the ith principal component,
ci. The eigenvalue analysis is shown in Table 3, where we see that the first six principal
components explain more than 90% of the total variance in the 50 return series. We therefore
chose k = 6. The problem with (E-53) is that it provides a static description for the covariance
matrix, Σ. We can use it to create a dynamic model, however, by setting

(E-54) Σt ≈ FΩtF
′ +Υ,

where the diagonal elements of Ωt are assumed to follow independent GARCH(1, 1) pro-
cesses. In particular, let σi,t denote the value of the ith diagonal element of Ωt. Then the
GARCH(1, 1) model for σi,t assumes

(E-55) σ2
i,t+1 = ωi + αic

2
i,t + βiσ

2
i,t,
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Table 3
Eigenvalue analysis.

Component Eigenvalue
Cumulative

explained variance

c1 1.2879 0.5776
c2 0.3261 0.7239
c3 0.1801 0.8047
c4 0.1399 0.8674
c5 0.0491 0.8894
c6 0.0348 0.9051

Table 4
GARCH(1, 1) parameter estimates for the top six principal components.

ω α β
Coefficient t-stat Coefficient t-stat Coefficient t-stat

c1 0.1889 2.381 0.1563 3.988 0.7001 8.165
c2 0.1360 2.423 0.2519 4.198 0.3284 1.548
c3 0.0231 3.386 0.0885 3.822 0.7801 14.882
c4 0.0114 3.357 0.1671 5.02 0.7575 17.895
c5 0.0046 4.532 0.1845 4.971 0.7322 18.403
c6 0.0033 3.273 0.2052 5.471 0.7131 15.341

where ωi > 0 and αi, βi ≥ 0 are fixed parameters and ci,t is the value of the ith principal
component at time t. The parameters for the six GARCH models were fitted using standard
MLE techniques and are given in Table 4. We note that all t-statistics are significant.

E.2. Parameter values for top 50 stocks in the S&P.



DYNAMIC PORTFOLIO EXECUTION 357

Table 5
Parameter values for top 50 stocks in the S&P.

Security Initial Average daily Annual Permanent linear price- Temporary linear price-
ticker price volume (million) volatility impact coefficient ×109 impact coefficient ×106

AAPL 407.33 22.85 21.53% 178.3009 8.9150
ABT 52.47 24.65 21.55% 21.2826 1.0641
AIG 22.63 7.44 47.10% 30.4169 1.5208
AMGN 57.39 4.99 20.66% 114.9911 5.7496
AMZN 236.84 6.15 33.77% 385.3714 19.2686
AXP 45.93 10.36 31.70% 44.3491 2.2175
BAC 6.51 263.47 51.04% 0.2469 0.0123
BRK/B 74.03 6.44 24.55% 115.0245 5.7512
C 28.40 68.25 52.89% 4.1609 0.2080
CAT 81.80 10.63 37.09% 76.9853 3.8493
CMCSA 23.16 15.95 29.09% 14.5161 0.7258
COP 67.69 11.22 24.62% 60.3056 3.0153
CSCO 17.16 44.23 26.29% 3.8795 0.1940
CVS 34.44 8.04 19.53% 42.8311 2.1416
CVX 98.08 8.61 26.07% 113.9225 5.6961
DIS 32.95 10.10 25.96% 32.6170 1.6309
EMC 23.26 24.72 31.23% 9.4084 0.4704
GE 16.25 63.55 31.44% 2.5571 0.1279
GOOG 548.10 4.09 24.39% 1340.9765 67.0488
GS 98.05 7.83 41.66% 125.2213 6.2611
HD 34.92 10.67 24.01% 32.7156 1.6358
IBM 185.80 7.32 18.14% 253.9455 12.6973
INTC 23.00 84.04 24.81% 2.7367 0.1368
JNJ 64.10 11.39 18.39% 56.2684 2.8134
JPM 32.71 51.60 42.89% 6.3386 0.3169
KFT 34.67 8.23 16.83% 42.1164 2.1058
KO 67.22 16.75 16.81% 40.1212 2.0061
MCD 89.35 6.36 17.66% 140.5327 7.0266
MMM 76.77 5.19 28.50% 147.8743 7.3937
MO 27.89 11.77 19.24% 23.7031 1.1852
MRK 32.24 13.86 19.48% 23.2673 1.1634
MSFT 27.18 54.55 22.81% 4.9830 0.2491
ORCL 31.35 27.79 26.15% 11.2801 0.5640
OXY 81.25 4.72 35.25% 171.9937 8.5997
PEP 62.45 8.12 16.41% 76.9138 3.8457
PFE 18.85 36.61 23.23% 5.1491 0.2575
PG 64.71 9.26 13.87% 69.9185 3.4959
PM 65.82 8.40 19.55% 78.3178 3.9159
QCOM 52.29 13.83 28.01% 37.8144 1.8907
SLB 67.46 12.53 41.87% 53.8395 2.6920
T 28.83 24.74 16.46% 11.6527 0.5826
UNH 47.21 9.23 35.99% 51.1342 2.5567
UPS 68.32 4.67 23.28% 146.3456 7.3173
USB 24.15 18.35 37.35% 13.1607 0.6580
UTX 74.31 4.79 27.04% 155.0823 7.7541
V 90.99 3.97 25.88% 229.3355 11.4668
VZ 36.64 13.44 17.03% 27.2555 1.3628
WFC 26.38 48.78 39.73% 5.4085 0.2704
WMT 55.15 12.59 16.54% 43.8191 2.1910
XOM 76.87 21.67 20.25% 35.4807 1.7740
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