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Review: Mean-Variance without a Riskfree Asset
Have n risky securities with corresponding return vector, R, satisfying

R ∼ MVNn(µ,Σ).

Mean-variance portfolio optimization problem is formulated as:

min
w

1
2w>Σw (1)

subject to w>µ = p
and w>1 = 1.

(1) is a quadratic program (QP)
- can be solved via standard Lagrange multiplier methods.

Note that specific value of p will depend on investor’s level of risk aversion.
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Review: Mean-Variance without a Riskfree Asset
When we plot the mean portfolio return, p, against the corresponding
minimized portfolio volatility / standard deviation we obtain the so-called
portfolio frontier.

Can also identify the portfolio having minimal variance among all risky
portfolios: the minimum variance portfolio.
Let R̄mv denote expected return of minimum variance portfolio.

Points on portfolio frontier with expected returns greater than R̄mv are said
to lie on the efficient frontier.

Let w1 and w2 be mean-variance efficient portfolios corresponding to
expected returns p1 and p2, respectively, with p1 6= p2.

Can then be shown that all efficient portfolios can be obtained as linear
combinations of w1 and w2

- an example of a 2-fund theorem.
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Review: Mean-Variance with a Riskfree Asset
Assume that there is a risk-free security available with risk-free rate equal to rf .
Let w := (w1, . . . ,wn)> be the vector of portfolio weights on the n risky assets

- so 1−
∑n

i=1 wi is the weight on the risk-free security.

Investor’s portfolio optimization problem may then be formulated as

min
w

1
2w>Σw (2)

subject to
(

1−
n∑

i=1
wi

)
rf + w>µ = p.
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Review: Mean-Variance with a Riskfree Asset
Optimal solution to (2) given by

w = ξ Σ−1(µ− rf 1) (3)

where ξ := σ2
min/(p − rf ) and

σ2
min = (p − rf )2

(µ− rf 1)> Σ−1 (µ− rf 1) (4)

is the minimized variance.

While ξ (or p) depends on investor’s level of risk aversion it is often inferred from
the market portfolio.

Taking square roots across (4) we obtain

σmin(p) = (p − rf )√
(µ− rf 1)> Σ−1 (µ− rf 1)

(5)

– so the efficient frontier (σmin(p), p) is linear when we have a risk-free security:
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Review: Mean-Variance with a Riskfree Asset
In fact suppose rf < R̄mv.

Efficient frontier then becomes a straight line that is tangent to the risky
efficient frontier and with a y-intercept equal to the risk-free rate.

We also then have a 1-fund theorem:
Every investor will optimally choose to invest in a combination of the
risk-free security and the tangency portfolio.
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Review: Mean-Variance with a Riskfree Asset
Recall the optimal solution to mean-variance problem given by:

w = ξ Σ−1(µ− rf 1) (6)

where ξ := σ2
min/(p − rf ) and

σ2
min = (p − rf )2

(µ− rf 1)> Σ−1 (µ− rf 1) (7)

is the minimized variance.

The tangency portfolio, w∗, is given by (6) except that it must be scaled so that
its components sum to 1

- this scaling removes the dependency on p.

Question: Describe the efficient frontier if no-borrowing is allowed.
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Weaknesses of Traditional Mean-Variance Analysis

Traditional mean-variance analysis has many weaknesses when applied naively in
practice.

For example, it often produces extreme portfolios combining extreme shorts with
extreme longs

- portfolio managers generally do not trust these extreme weights as a result.

This problem is typically caused by estimation errors in the mean return vector
and covariance matrix.

Consider again the same efficient frontier of risky securities that we saw earlier:
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In practice, investors can never compute this frontier since they do not know the
true mean vector and covariance matrix of returns.
The best we can hope to do is to approximate it. But how might we do this?



Weaknesses of Traditional Mean-Variance Analysis

One approach would be to simply estimate the mean vector and covariance
matrix using historical data.

Each of dashed black curves in next figure is an estimated frontier that we
computed by:
(i) simulating m = 24 sample returns from the true distribution

- which, in this case, was assumed to be multivariate normal.

(ii) estimating the mean vector and covariance matrix from this simulated data

(iii) using these estimates to generate the (estimated) frontier.

The blue curve in the figure is the true frontier computed using the true mean
vector and covariance matrix.

First observation is that the estimated frontiers are random and can differ
greatly from the true frontier;

- an estimated frontier may lie below, above or may intersect the true frontier.
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Weaknesses of Traditional Mean-Variance Analysis

An investor who uses such an estimated frontier to make investment decisions
may end up choosing a poor portfolio.

But just how poor?

The dashed red curves in the figure are the realized frontiers
- the true mean - volatility tradeoff that results from making decisions based

on the estimated frontiers.

In contrast to the estimated frontiers, the realized frontiers must always (why?)
lie below the true frontier.

In the figure some of the realized frontiers lie very close to the true frontier and
so in these cases an investor would do very well.

But in other cases the realized frontier is far from the (unobtainable) true
efficient frontier.
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Weaknesses of Traditional Mean-Variance Analysis

As a result of these weaknesses, portfolio managers traditionally had little
confidence in mean-variance analysis and therefore applied it rarely in practice.

Efforts to overcome these problems include the use of better estimation
techniques such as the use of shrinkage estimators, robust estimators and
Bayesian techniques such as the Black-Litterman framework.

In addition to mitigating the problem of extreme portfolios, the Black-Litterman
framework allows users to specify their own subjective views on the market in a
consistent and tractable manner.
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– Figure displays a robustly estimated frontier.
It lies much closer to the true frontier

- this is also the case with the corresponding realized frontier.



Review: The Capital Asset Pricing Model (CAPM)

If every investor is a mean-variance optimizer then each of them will hold the
same tangency portfolio of risky securities in conjunction with a position in the
risk-free asset.

Because the tangency portfolio is held by all investors and because markets must
clear, we can identify this portfolio as the market portfolio.

The efficient frontier is then termed the capital market line (CML).
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Review: The Capital Asset Pricing Model (CAPM)

Now let Rm and R̄m denote the return and expected return, respectively, of the
market, i.e. tangency, portfolio.

Central insight of the Capital Asset-Pricing Model is that in equilibrium the
riskiness of an asset is not measured by the standard deviation (or variance) of its
return but by its beta:

β := Cov(R,Rm)
Var(Rm) .

In particular, there is a linear relationship between the expected return, R̄ = E[R],
of any security (or portfolio) and the expected return of the market portfolio:

R̄ = rf + β (R̄m − rf ). (8)
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Review: The Capital Asset Pricing Model (CAPM)

The CAPM is one of the most famous models in all of finance.

Even though it arises from a simple one-period model, it provides considerable
insight to the problem of asset-pricing.

For example, it is well-known that riskier securities should have higher expected
returns in order to compensate investors for holding them. But how do we
measure risk?

According to the CAPM, security risk is measured by its beta which is
proportional to its covariance with the market portfolio

- a very important insight.

This does not contradict the mean-variance formulation of Markowitz where
investors do care about return variance

- indeed, we derived the CAPM from mean-variance analysis!
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The Black-Litterman Framework
We now assume that the n × 1 vector of excess returns, X, is multivariate normal
conditional on knowing the mean excess return vector, µ.

In particular, we assume

X | µ ∼ MVNn(µ,Σ) (9)

where the n × n covariance matrix, Σ, is again assumed to be known.

In contrast to the mean-variance approach, we now assume that µ is also random
and satisfies

µ ∼ MVNn(π,C) (10)

where:
π is an n × 1 vector
C is an n × n matrix
Both π and C are assumed to be known.
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The Black-Litterman Framework
In practice, it is common to take

C = τΣ

where τ is a given subjective constant that quantifies our level of certainty
regarding the true value of µ.

In order to specify π, Black-Litterman invoked the CAPM and set

π = λΣ wm (11)

where:
wm is the observable market portfolio
And λ measures the average level of risk aversion in the market.

Note that (11) can be justified by identifying λ with 1/ξ in (3).

Worth emphasizing that we are free to choose π in any manner we choose
- but of course our choice of π should be reasonable!
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Subjective Views
Black-Litterman allows the user to express subjective views on the vector of mean
excess returns, µ.

This is achieved by specifying a k × n matrix P, a k × k covariance matrix Ω and
then defining

V := Pµ + ε

where ε ∼ MVNk(0,Ω) independently of µ.

Common in practice to set Ω = PΣP>/c for some scalar, c > 0
- c represents the level of confidence we have in our views.

Specific views are then expressed by conditioning on V = v where v is a given
k × 1 vector.

Note that we can only express linear views on the expected excess returns
- these views can be absolute or relative, however.
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Examples of Subjective Views
e.g. “the Italian index will rise by 10%"

- an absolute view.

e.g. “the U.S. will outperform Germany by 12%”
- a relative view.

Both of these views could be expressed by setting

P =
(

1 0 0 0 0 0
0 0 0 0 1 −1

)
and v = (10%, 12%)>.

If the ith view, vi , is more qualitative in nature, then could express it as

vi = Pi.π + η
√

(PΣP>)i,i

for some η ∈ {−β,−α, α, β} representing “very bearish", “bearish", “bullish" and
“very bullish", respectively.
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The Posterior Distribution
Goal now is to compute the conditional distribution of µ given the views, V = v.

Conceptually, we assume that V has been observed equal to v and we now want
to determine the distribution of µ conditional on these observations.

We have the following result which follows from Baye’s Theorem:

Proposition: The conditional distribution of µ given v is multivariate normal.
In particular, we have

µ | V = v ∼ MVNn(µbl ,Σbl)

where

µbl := π + C P> (PC P> + Ω)−1 (v−Pπ)
Σbl := C − C P>(PC P> + Ω)−1 PC.
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The Posterior Distribution
Of course what we really care about is the conditional distribution of X given
V = v.

Using results of previous Proposition it is easy to show that

X | v ∼ MVN(µbl ,Σx
bl)

where
Σx

bl := Σ + Σbl .

Once we have expressed our views, the posterior distribution can be computed
and then used in any asset allocation setting.
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The Posterior Distribution
Question: Suppose we choose π in accordance with (11) and then solve a
mean-variance portfolio optimization problem using the posterior distribution of
X.

Why are we much less likely in general to obtain the extreme corner solutions
that are often obtained in the traditional implementation of the mean-variance
framework (where historical returns are used to estimate expected returns and
covariances)?

Question: What happens to the posterior distribution of X as Ω→∞?
- Does this make sense?
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An Extension of Black-Litterman: Views on Risk Factors

In the Black-Litterman framework, views are expressed on µ, the vector of mean
excess returns.

May be more meaningful, however, to express views directly on the market
outcome, X.

e.g. More natural for a portfolio manager to express views regarding X rather
than µ.

Straightforward to model this situation
- in fact can view X more generally as a vector of (changes in) risk factors.

Can allow these risk factors to influence the portfolio return in either a linear or
non-linear manner.
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An Extension of Black-Litterman: Views on Risk Factors

No longer model µ as a random vector but instead assume µ ≡ π so that

X ∼ MVNn(π,Σ)

Express our linear views on the market via a matrix, P, and assume that

V|X ∼ MVNk(PX,Ω)

where again Ω represents our uncertainty in the views.

Letting v denote our realization of our view V, can compute the posterior
distribution of X.

Applying of Baye’s Theorem leads to

X|V = v ∼ MVNn(µmar ,Σmar)

where

µmar := π + Σ P> (PΣ P> + Ω)−1 (v−Pπ) (12)
Σmar := Σ − Σ P>(PΣ P> + Ω)−1 PΣ. (13)

Note that X|v→ MVNn(π,Σ), the reference model, as Ω→∞.
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Scenario Analysis
Scenario analysis corresponds to the situation where Ω→ 0

- the case in which the user has complete confidence in his view.

A better interpretation, however, is that the user simply wants to understand the
posterior distribution when she conditions on certain outcomes or scenarios.

In this case it is immediate from (12) and (13) that

X|V = v ∼ MVNn(µscen,Σscen)

µscen := π + Σ P> (PΣ P>)−1 (v−Pπ)
Σscen := Σ − Σ P>(PΣ P>)−1 PΣ.

Question: What happens to µscen and Σscen when P is the identity matrix?
- Is this what you would expect?
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Mean-VaR Portfolio Optimization
Consider the situation where an investor maximizes the expected return on her
portfolio subject to a constraint on the VaR of the portfolio.

Given the failure of VaR to be sub-additive, it is not surprising that such an
exercise could result in a very unbalanced and undesirable portfolio.

We demonstrate this using the setting of Example 2 of the Risk Measures, Risk
Aggregation and Capital Allocation lecture notes.

Consider an investor who has a budget of V that she can invest in n = 100
defaultable corporate bonds.
Probability of a default over the next year is identical for all bonds and is
equal to 2%.
We assume that defaults of different bonds are independent from one
another.
Current price of each bond is $100 and if there is no default, a bond will pay
$105 one year from now.
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Mean-VaR Portfolio Optimization
If the bond defaults then there is no repayment.

Let

ΛV := {λ ∈ Rn : λ ≥ 0,
100∑
i=1

100λi = V } (14)

denote the set of all possible portfolios with current value V .

Note that (14) implicitly rules out short-selling or borrowing additional cash.

Let L(λ) denote the loss on the portfolio one year from now and suppose
the objective is to solve

max
λ∈ΛV

E [−L(λ)] − β VaRα (L(λ)) (15)

where β > 0 is a measure of risk aversion.
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Mean-VaR Portfolio Optimization
This problem is easily solved: E [L(λ)] is identical for every λ ∈ ΛV since the
individual loss distributions are identical across all bonds.

Selecting the optimal portfolio therefore amounts to choosing the vector λ that
minimizes VaRα (L(λ)).

When α = .95 we have already seen that the optimal solution is to invest all
funds, i.e. V , into just one bond.

Clearly this is not a well diversified portfolio!

As MFE point out, problems of the form (15) occur frequently in practice
- particularly in the context of risk-adjusted performance measurement.
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Mean-VaR Portfolio Optimization
The following Proposition should not be too surprising given the subadditivity of
VaR with elliptically distributed risk factors.

Proposition: Suppose X ∼ En(µ,Σ, ψ) with Var(Xi) <∞ for all i and let
W := {w ∈ Rn :

∑n
i=1 wi = 1} denote the set of possible portfolio weights.

Let V be the current portfolio value so that L(w) = V
∑n

i=1 wiXi is the
(linearized) portfolio loss.

The subset of portfolios giving expected return m is given by

Θ := {w ∈ W : −w>µ = m}.

Then if % is any positive homogeneous and translation invariant risk measure that
depends only on the distribution of risk we have

argmin
w∈Θ

%(L(w)) = argmin
w∈Θ

Var(L(w))

where Var(·) denotes variance. 2
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Mean-CVaR Optimization
Now assume the decision maker needs to strike a balance between CVaR and
expected return.

Could be formulated as either minimizing CVaR subject to a constraint on
expected return.

Or as maximizing expected return subject to a constraint (or constraints) on
CVaR.
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Mean-CVaR Optimization: Notation
Suppose there are a total of N securities with initial price vector, p0, at time
t = 0.

Let p1 denote the random security price vector at date t = 1.
Let f denote the PDF of p1

- don’t need p1 to have a PDF as long as we can generate samples of p1.

Let w denote vector of portfolio holdings that are chosen at date t = 0.

The loss function then given by l(w,p1) = w> (p0 − p1).

Let Ψ(w, α) = probability that loss function does not exceed the threshold, α.

Recalling that VaRβ(w) is the β-quantile of the loss distribution, we see that

Ψ (w,VaRβ(w)) = β.
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Mean-CVaR Optimization
Also have familiar definition of CVaRβ as the expected portfolio loss conditional
on the portfolio loss exceeding VaRβ :

CVaRβ(w) = 1
1− β

∫
l(w,p1)>VaRβ(w)

l(w,p1) f (p1) dp1. (16)

Difficult to optimize CVaR using (16) due to the presence of VaRβ on the
right-hand-side.

Key contribution of Rockafeller and Uryasev (2000) was to define the simpler
function

Fβ(w, α) := α + 1
1− β

∫
l(w,p1)>α

(l(w,p1)− α) f (p1) dp1 (17)

- can be used instead of (16) to model CVaR due to following proposition:
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Mean-CVaR Optimization
Proposition: The function Fβ(w, α) is convex with respect to α. Moreover,

1. Minimizing Fβ(w, α) with respect to α gives CVaRβ(w) and

2. VaRβ(w) is a minimum point.
That is

CVaRβ(w) = Fβ (w,VaRβ(w)) = min
α

Fβ(w, α).

Proof: See Rockafeller and Uryasev (2000). 2

Can use this proposition to optimize CVaRβ over w and to simultaneously
calculate VaRβ .

This follows since

min
w∈W

CVaRβ(w) = min
w∈W,α

Fβ(w, α) (18)

where W is the subset of RN denoting the set of feasible portfolios.
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Mean-CVaR Optimization
Can therefore optimize CVaRβ and compute the corresponding VaRβ by
minimizing Fβ(w, α) with respect to both w ∈ W and α.

And because l(w,p1) is linear and therefore convex in w, it can be shown that
Fβ(w, α) is also convex with respect to w.

Therefore if the constraint set W is convex, we can minimize CVaRβ by solving a
smooth convex optimization problem

- very efficient numerical techniques are available for solving these problems.

Note that the problem formulation in (18) includes the problem where we
minimize CVaR subject to constraining the mean portfolio return.
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The Linear Programming Formulation
Suppose now the PDF f is not available to us or that it is simply difficult to work
with.

Suppose, however, that we can easily generate samples, p(1)
1 , . . . ,p(J)

1 from f
- typically values are J ≈ 10, 000 or J ≈ 50, 000
- but appropriate value depends on dimension n = # of securities

Can then approximate Fβ(w, α) with F̃β(w, α) defined as

F̃β(w, α) := α + v
J∑

j=1

(
l(w,p(j)

1 )− α
)+

.

where v := 1/((1− β)J ).

If constraint set W is convex, then minimizing CVaRβ amounts to solving a
non-smooth convex optimization problem.
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The Linear Programming Formulation
In our setting l(w,p(j)

1 ) is in fact linear so we can solve it using LP methods.

In fact we have the following formulation for minimizing CVaRβ subject to
w ∈ W:

min
α,w,z

α + v
J∑

j=1
zj

subject to

w ∈ W
l(w,p(j)

1 ) − α ≤ zj for j = 1, . . . , J
zj ≥ 0 for j = 1, . . . , J .

If the constraint set W is linear then we have an LP formulation and standard LP
methods can be used applied

- but there are much more efficient methods.
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Maximizing Expected Return Subject to CVaR Constraints

Suppose we want to maximize the expected return on the portfolio subject to m
different CVaR constraints.

This problem may be formulated as

max
w∈W

E [−l(w,p1)]

subject to
CVaRβi (w) ≤ Ci for i = 1, . . . ,m.

However, we can take advantage of the proposition to instead formulate the
problem as

max
α1,...,αm ,w∈W

E [−l(w,p1)]

subject to
Fβi (w, αi) ≤ Ci for i = 1, . . . ,m. (19)

Note also that if the ith CVaR constraint in (19) is binding then the optimal α∗i
is equal to VaRβi .
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Beware of the Bias!
Suppose we minimize CVaR subject to some portfolio constraints by generating J
scenarios and then solving the resulting discrete version of the problem.

Let w∗ and CVaR∗ denote the optimal portfolio holdings / weights and the
optimal objective function.

Suppose now we estimate the out-of-sample portfolio CVaR by running a
Monte-Carlo simulation to generate portfolio losses using w∗.

Let ĈVaR(w∗) be the estimated CVaR.

Question: How do you think ĈVaR(w∗) will compare with CVaR∗?

Answer: After some consideration(!) it should be clear that we would expect ...

This bias can be severe – therefore always prudent to estimate ĈVaR(w∗)!
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Parameter Estimation – Very Important!!!
The various methods we’ve described all require good estimators of means,
covariances etc. – without good estimators, the methodology is of no use!

Should be clear from mean-variance review that naive estimators typically
perform very poorly – generally due to insufficient data.

Much easier to estimate covariance matrices than mean return vectors.

Covariance matrices can be estimated using robust estimators, e.g. via Kendall’s
τ , or shrinkage estimators, e.g. arising from factor model or Bayesian estimators.

Depending on time horizon, it may be very necessary to use time series methods,
e.g. a multivariate GARCH factor model, to construct these estimators.

Very difficult to estimate mean returns and naive estimators based on historical
data should not be used!

Robust, shrinkage, and time series methods may again be useful together with
subjective views (imposed via a Bayesian framework) based on other analysis for
estimating mean vectors

- no easy way to get rich but common sense should help avoid catastrophes!
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