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Motivation

® Suppose we wish to estimate VaR,, for a given portfolio.

® \We could use the empirical a-quantile, ¢,.

® But there are many potential problems with this approach
® there may not be enough data

® the empirical quantile will never exceed the maximum loss in the data-set

® time series dependence is ignored, i.e., we will be working with the
unconditional loss distribution.

® [Extreme value theory helps overcome these problems.
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Extreme Value Theory (EVT)

® Two principal parametric approaches to modeling the extremes of a
probability distribution:

1. The block maxima approach

2. The threshold exceedances approach.

® Threshold exceedances approach is more modern and usually the preferred
approach

® makes better use of available data.

® The Hill Estimator approach is also commonly used

® this is a non-parametric approach.

® EVT can be combined with time-series models to estimate conditional loss
distributions

® and therefore construct better estimates of VaR, ES, etc.
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The GEV Distributions

Definition: The CDF of the generalized extreme value (GEV) distribution

satisfies P
—(1+€2)7! 0
€ ’
He(z) = e gf
e , £E=0.

where 1 4+ &z > 0.

® A three-parameter family is given by He ,, o(z) := He((z — p) /o)
® 4 is the location parameter
® o is the scale parameter
® ¢ is the shape parameter.

® [ (-) defines the type of the distribution

® j.e. recall a type is a family of distributions specified up to location and scale.
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The GEV Distributions

Definition: The right endpoint, zg, of a distribution with CDF, F(-), is given by
zp:=sup{z € R : F(z) < 1}.

® When & > 0 obtain the Fréchet distribution

® has an infinite right endpoint.

® \When & = 0 obtain the Gumbel distribution

® has an infinite right endpoint

® tail decays much faster than tail of Fréchet distribution.

® When ¢ < 0 obtain the Weibull distribution

® a short-tailed distribution with finite right endpoint
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Convergence of Maxima

® Role of GEV distribution in the theory of extremes is analogous to role of
normal distribution in the Central Limit Theorem (CLT) for sums of random

variables.
® Recall the CLT: if X7, X5, ... are lID with a finite variance then

Snl: On | N(0,1) in distribution where

Sn = Z:l:l Xi
a, = nE[Xi]
by, = nVar(X1)
® let M, := max(Xj,...X,), i.e., the block maximum.

® The block maxima approach to EVT is concerned with the limiting
distribution of M,,.
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The Maximum Domain of Attraction

Definition: A CDF, F, is said to be in the maximum domain of attraction
(MDA) of H if there exist sequences of constants, ¢, and d,, with ¢, > 0 for all
n, such that

n—oo

lim P(M"C;d" gx> = H(z) (1)

for some non-degenerate CDF, H.

Note that (1) implies (why?)

lim F"(cpz+d,) = H(z). (2)

n—oo
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The Fisher-Tippett Theorem (1920’s)

Theorem: If F € MDA(H) for some non-degenerate CDF, H, then H must be a
distribution of type He, i.e., a GEV distribution.

® |f convergence of normalized maxima takes place, then the type of the
distribution is uniquely determined. The location, p, and scaling, o, depend
on the normalizing sequences, ¢, and d,.

e Essentially all the commonly used distributions of statistics are in MDA(Hg)
for some &.
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Example: The Exponential Distribution

® Suppose the X;'s are |ID Exp()) so that

for x >0 and X > 0.
Let ¢, :==1/X and d,, ;== In(n)/\.

e Can directly calculate the limiting distribution using (1).
® We obtain

1 n
F'(cpx+d,) = (1 - em) , x> —In(n)

so that -
lim F*"(c,z+d,) = e ¢

n—o0

Therefore obtain F' € MDA(H,).
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The Fréchet MDA

Definition:

(i) A positive function, L, on (0, 00) is slowly varying at oo if

(ii) A positive function, h, on (0,00) is regularly varying at co with index p € R

if
lim (tz) = ¢
z—00 h(g:)

>

, t>0.

e.g. The logarithmic function, log(z), is slowly varying.

10 (Section 2)



The Fréchet MDA

Theorem: For £ > 0,
F e MDA(H) < F(z) = 27 Y¢ L(x)

for some function, L, that is slowly varying at co and where F(z) := 1 — F(z).

® When F' € MDA(H), often refer to o := 1/& as the tail index of the
distribution.

® c.g. Fréchet, t, F and Pareto are all in Fréchet MDA.

e Can be shown that if ' € MDA(H) for £ > 0, then E[X¥] = oo for
k>1/¢=a.
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The Gumbel and Weibull MDA'’s

® The Gumbel and Weibull distributions aren’t as interesting from a finance
perspective

® but their MDA'’s can still be characterized.

® ¢ g. exponential, normal and log-normal are in Gumbel MDA

* E[X*] < oo for all k> 0 in this case.

® c.g. Beta distribution is in Weibull MDA.
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The Non-IID Case

® So far have dealt with only the 11D case.
® But in finance, data is rarely IID.

® Can be shown, however, that for most strictly stationary time series, our
results continue to hold

® e.g. our results hold for ARCH / GARCH models
® if it exists, the extremal index, 8 € (0, 1], of the time series is key!

- nf can be interpreted as the number of independent clusters of observation in
n observations.

® see Section 7.1.3 of McNeil, Frey and Embrechts for further details.
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The Block Maxima Method

® Assume we have observation Xi,..., X,
* 5o that the data can be split into m blocks with 1/; := max{;" block}

® each block contains n observations.

® \Would like both n and m to be large but there are tradeoffs

* would like n large so that convergence to the GEV has occurred

* would like m large so that we have more observations and hence lower
variances of MLE estimates.

® |n practice, if we are working with daily data and we have sufficiently many
observations, might take quarterly, semi-annual or annual block sizes.
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The Block Maxima Method

® Let he - be the log-density.
® Then log-likelihood for £ # 0 given by

l(f,,u,o; Mlv"'aM’m) = Zhﬁ,p,o’(Mi)
i=1
= —mln(o) — <1+2> ;hl (1+§ Miaﬂ)
< M; —p e
- §<1+5 ~ ) .

® We then maximize the log-likelihood over (&, i, o) subject to

® ¢0>0and
* 14+&(M;—p)/o > 0foralli=1,...,m.
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The Return Level and Return Period Problems

® The fitted GEV model can be used to analyze stress losses. In particular we
have the return level problem and the return period problem.

Definition: Let H denote the CDF of the true n-block maximum. Then the &

n-block return level is
Tn,k = q171/k(H)

i.e., the (1 — 1/k)-quantile of H.

® The k n-block return level can be interpreted as the level that is exceeded

once out of every k n-blocks on average.
—£
1
—In{1-- -1

® estimates of 7, should always (why?) be accompanied by confidence

intervals.

® Using our fitted model, we obtain

|

N - 1 .
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The Return Level and Return Period Problems

Definition: Let H denote the CDF of the true n-block maximum. The return
period of the event {M > u} is given by

bnw = 1/H(u)
where H(u) =1 — H(u).

® k. is the average number of blocks we must wait before we observe the
event {M > u}.

® Again, an estimate of &, ,, should always be accompanied by confidence
intervals.
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Threshold Exceedances

® The block maxima approach is inefficient as it ignores all but the maximum
observation in each block.

® The threshold exceedance approach does not suffer from this approach

® it uses all of the data above some threshold, w.

® The Generalized Pareto Distribution (GPD) plays the key role in the
threshold exceedance approach.
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The Generalized Pareto Distribution

Definition: The Generalized Pareto Distribution (GPD) is given by

_ -1/
ot - {17 Qg A

where 5 >0, and £ > 0 when £ >0, and 0 < z < —/3/¢ when £ < 0.
- £ is the shape parameter
- [ is the scale parameter.

® \When ¢ > 0 obtain the ordinary Pareto distribution.
® When & = 0 obtain the exponential distribution.

® When £ < 0 obtain the short-tailed Pareto distribution.

19 (Section 3)



Excess Distribution Over a Threshold

Definition: Let X be a random variable with CDF, F. Then the excess
distribution over the threshold v has CDF
F(z 4+ u) — F(u)
3
1— F(u) (3)

Fu(z) = PX—u<z|X>u) =

for 0 <z < Xy — u where zr < 00 is the right endpoint of F.

® |n survival analysis F, is known as the residual life CDF.

Definition: The mean excess function of a random variable, X, with finite mean
is given by
e(u) = E[X —u| X > u.
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Examples: Exponential and GPD Random Variables

® e.g. If X ~ Exp()), then can show that F\,(z) = F(z)

® reflects the memoryless property of exponential random variables.
® e.g. Suppose X ~ G¢ 3. Then (3) implies

Fu(z) = Gepy where

B(u) == B+Eu
0<z<o0ifé>0 and 0<z<—B/6—uifE<0

- so the excess CDF remains a GPD with the same shape parameter but with a
different scaling.

- can also show that the mean excess function satisfies

Blu) _ B+Eu
1-¢  1-¢

where 0 <u< o0 if0<E<1 and 0<u< —B/£ifE<0

e(u) =

- note that e(w) is linear in u for the GPD, a useful property!
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The GPD and MDA'’s

Theorem: We can find a positive function, 8(u), such that

lim sup ‘Fu(x) — Gg,ﬁ(u)(x)‘ =0 (4)

U=TF 0<z<Tp—u

if and only if F € MDA(H;), € € R.

® This theorem provides the link between the theories of block maxima and
threshold exceedances.

® Since essentially all commonly used distributions are in MDA(H) for some
&, we see that the GPD distribution is the canonical distribution for excess
distributions.

® Note that the shape parameter, £, does not depend on u.

® Can use (4) by taking u to be “large" and therefore assuming that
Fu(z) = Ge g(x) for 0 < z < zp — v and some £ and 3 > 0.
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Modeling Excess Losses

® let Xi,..., X, represent loss data from the distribution F.

® A random number N, will exceed the threshold, w.

® let Yi,..., Yy, be the values of the INV,, excess losses.

® We assume F,, = G¢ g and estimate £ and 3 using maximum likelihood.

e Obtain

Ny
l(§757 Yla"'a YNu) = Zlng&B(Y
i=1

= —N,In(8) — ( )Zl <1+§ )

which we maximize subject to 8 > 0 and 1+ ¢Y;/8 > 0 for all .

23 (Section 3)



When the Data is Not |ID

® So far have assumed the data is [ID

® but of course we know financial return data is not |ID!

® |f the extremal index, 6, equals 1 then no evidence of extremal clustering
® so fine to assume data is 1ID.
® |f § < 1 then there is evidence of extremal clustering
® situation not so satisfactory
® but can still use the MLE method to estimate the parameters
® technically this becomes quasi-MLE since the model is misspecified
® point estimates of the parameters should still be fine

® but standard errors might be too small in which case associated confidence
intervals would also be too narrow.
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Excesses Over Higher Thresholds

Lemma: Suppose F,(z) = Ge, g(z) for 0 < z < zp — u for some £ and § > 0.
Then F,(z) = G¢, g1¢(v—u)(x) for any higher threshold v > u.

® So excess distribution over higher thresholds remains a GPD with same
shape parameter, &, but with a scaling parameter that grows linearly in v.

e |f £ < 1, the mean excess function satisfies

_ prEv—u) _ & f-&u
A e gy (5)

where u <v<owif0<f{<landu<ov<u—pF/iIfE<O

e(v)

® linearity of (5) in v can be used as a diagnostic for choosing the appropriate
threshold, u

® this diagnostic tool is called the sample mean excess plot.

25 (Section 3)



Sample Mean Excess Plot

Definition: Given loss data X, ..., X, the sample mean excess function is the
empirical estimator of the mean excess function given by

Z?:l(Xi - ’U) 1{Xi>’U}
Z?=1 1~{)Q->v}

en(v) =

® Now can construct the mean excess plot {X(; ), €n(X(in)) : 2 <4< n}
where X(; ,) is the i order statistic.
® |f the data support a GPD model beyond a high threshold, then the plot
should become linear for higher values of v
® 3 positive slope indicates £ > 0
® a zero slope indicates £ =~ 0

® a negative slope indicates £ < 0.

® Since final few values are based on very few data points they are often
omitted from the plot.
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Tail Probabilities

® Again assuming that F,(z) = G, g(z) for 0 < z < zp — u we obtain for
z>u

1 —F(z) =F(z) = P(X>u)P(X>xz|X>u)

= Fluy P X—u>z—u|X >u)

= F(u) Fu(z — u)

— F(u) <1 +£’; “)Ug (6)

- so if we know F(u) we have a formula for the tail probabilities

- (6) can now be inverted to compute risk measures!

27 (Section 3)



Risk Measures

® For o > F(u) obtain

VaR, = ¢.(F) = u+§ <<1F(uc))c>’E _ 1>.

e |f £ <1, then

® Also obtain
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Estimation in Practice

® Can use the sample mean excess plot to choose an appropriate threshold, u.

® MLE methods then used to estimate £ and 3 as well as their standard errors.

® We can use the empirical estimator, N,,/n, to estimate F(u).

® Then have

~1/€
2 N, AT — U
oy = 3 (146557 )
n B
as our tail probability estimator for z > u
® should also compute confidence intervals for (7)
- either using Monte-Carlo (how?) or by reparametrizing (how?).

® Should also study sensitivity of parameter estimates to the threshold, u

® results are not reliable if estimates remain sensitive for large w.
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Multivariate EVT

® Can also study extreme value theory for multivariate data

® |eads to multivariate EVT.

The marginal distributions are as in the univariate case

® e.g. GPD for the threshold exceedances method.

® So the main item of concern is the dependency structure

® |eads to extreme value copulas

® e.g. the Gumbel copula is a 2-dimensional EV copula.

Generally difficult to apply Multivariate EVT in high dimensions
® too many parameters to estimate.
® A common solution is to simply collapse the problem to the univariate case

by considering the entire portfolio value or return as a univariate random
variable.
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Example: Danish Fire Loss Data

® Dataset consists of 2,156 fire insurance losses over 1m Danish Kroner from
1980 to 1990

® representing combined loss for building and contents and sometimes, business
earnings

® losses are inflation adjusted to 1985 levels.
® Mean excess plot appears linear over entire range
® so GPD with £ > 0 could be fitted to entire dataset.
e We find £ ~ .52
® so fitted model is very heavy-tailed with infinite variance. Why?

- because E[X*] = co for any GPD distribution with k > 1/¢.

31 (Section 3)



The Hill Estimator

® The Hill method assumes F' € MDA(H;) for € > 0, i.e., the Fréchet MDA
* so F(z) = L(z) 2"/ where L is slowly varying.

® The estimator satisfies

ékHill _ 1

>~

v

k
Zhl(XVC,n) - hl(Xls:.n,)v, 2 S k § n
i=1

where X, ,, <.-- < Xj ,, are the order statistics.

® often a very good estimator of £ when the tail probability is well
approximated by a power function

® |t is common to plot the Hill estimator for different values of &
- obtain the Hill plot

® and to then choose a value of k from a region where the estimator is
relatively stable.
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Where Does the Hill Estimator Come From?

Consider the mean excess for function, e(-), for In(X). We obtain:

e(In(u))

Q

E[In(X) —In(u) | In(X) > In(u)]

‘ 33 (Section 4)



Conditional or Dynamic EVT for Financial Time Series

® So far, our applications of EVT lead to estimates of the unconditional loss
distribution.

® But we are usually (much) more interested in the conditional loss
distribution

® at least in the case of financial applications

® generally not true in the case of insurance applications. Why?

® Can apply EVT to obtain estimate of the conditional loss distribution using
time series models

® in particular, ARCH / GARCH models.
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Conditional or Dynamic EVT for Financial Time Series

® Suppose the negative log-returns (from date ¢ — 1 to date t) are generated
by a strictly stationary time series

Li = py + 042

® u: and oy are known at time ¢t — 1

® and the Z;'s are IID innovations with unknown CDF, G(-).

® The risk measures VaR!, and ES/, (at date ¢ — 1) satisfy

VaRl, = 14 + 0 ¢a(2)
ES!, = us + 0:ES.(Z2)

where ¢, is the a-quantile of Z.

® We can estimate VaR!, and ES!, by first fitting a GARCH model to the L;'s

® but we don’t know the distribution, G(-), of Z

® so we need to use quasi-maximum likelihood estimation (QMLE) instead of
the usual MLE.
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Conditional or Dynamic EVT for Financial Time Series

® The fitted GARCH model can be used to estimate u; and o;.
® \We want to apply EVT to the innovations, Z, but we don't observe the Z's.
® |nstead we take the GARCH residuals as our data for EVT.

We fit the GPD to the tails of the residuals and estimate the corresponding
risk measures to obtain

VaR, = ji + 61 ()
~ b

ES(\ = /7[ + (3'/, EAS“(Z)

See Section 3 of “Extreme Value Theory for Risk Managers" by McNeil or
Sections 7.2.6 and 2.3.6 of MFE

* note how well the dynamic EVT VaR method back-tests!

See also Risk Management and Time Series lecture notes.
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