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Motivation
Suppose we wish to estimate VaRα for a given portfolio.

We could use the empirical α-quantile, qα.
But there are many potential problems with this approach

there may not be enough data
the empirical quantile will never exceed the maximum loss in the data-set
time series dependence is ignored, i.e., we will be working with the
unconditional loss distribution.

Extreme value theory helps overcome these problems.
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Extreme Value Theory (EVT)
Two principal parametric approaches to modeling the extremes of a
probability distribution:

1. The block maxima approach
2. The threshold exceedances approach.

Threshold exceedances approach is more modern and usually the preferred
approach

makes better use of available data.

The Hill Estimator approach is also commonly used
this is a non-parametric approach.

EVT can be combined with time-series models to estimate conditional loss
distributions

and therefore construct better estimates of VaR, ES, etc.

3 (Section 1)



The GEV Distributions
Definition: The CDF of the generalized extreme value (GEV) distribution
satisfies

Hξ(x) =
{

e−(1+ξx)−1/ξ
, ξ 6= 0

e−e−x
, ξ = 0.

where 1 + ξx > 0.

A three-parameter family is given by Hξ,µ,σ(x) := Hξ((x − µ)/σ)
µ is the location parameter
σ is the scale parameter
ξ is the shape parameter.

Hξ(·) defines the type of the distribution
i.e. recall a type is a family of distributions specified up to location and scale.
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The GEV Distributions
Definition: The right endpoint, xF , of a distribution with CDF, F(·), is given by
xF := sup{x ∈ R : F(x) < 1}.

When ξ > 0 obtain the Fréchet distribution
has an infinite right endpoint.

When ξ = 0 obtain the Gumbel distribution
has an infinite right endpoint
tail decays much faster than tail of Fréchet distribution.

When ξ < 0 obtain the Weibull distribution
a short-tailed distribution with finite right endpoint
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Convergence of Maxima
Role of GEV distribution in the theory of extremes is analogous to role of
normal distribution in the Central Limit Theorem (CLT) for sums of random
variables.

Recall the CLT: if X1,X2, . . . are IID with a finite variance then

Sn − an

bn
−→ N(0, 1) in distribution where

Sn :=
∑n

i=1 Xi

an := n E[X1]
bn :=

√
nVar(X1)

Let Mn := max(X1, . . .Xn), i.e., the block maximum.

The block maxima approach to EVT is concerned with the limiting
distribution of Mn.
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The Maximum Domain of Attraction
Definition: A CDF, F , is said to be in the maximum domain of attraction
(MDA) of H if there exist sequences of constants, cn and dn with cn > 0 for all
n, such that

lim
n→∞

P
(

Mn − dn

cn
≤ x

)
= H (x) (1)

for some non-degenerate CDF, H .

Note that (1) implies (why?)

lim
n→∞

Fn(cnx + dn) = H (x). (2)
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The Fisher-Tippett Theorem (1920’s)
Theorem: If F ∈ MDA(H ) for some non-degenerate CDF, H , then H must be a
distribution of type Hξ, i.e., a GEV distribution.

If convergence of normalized maxima takes place, then the type of the
distribution is uniquely determined. The location, µ, and scaling, σ, depend
on the normalizing sequences, cn and dn.

Essentially all the commonly used distributions of statistics are in MDA(Hξ)
for some ξ.
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Example: The Exponential Distribution
Suppose the Xi ’s are IID Exp(λ) so that

F(x) = 1 − e−λx

for x ≥ 0 and λ > 0.

Let cn := 1/λ and dn := ln(n)/λ.

Can directly calculate the limiting distribution using (1).

We obtain

Fn(cnx + dn) =
(

1− 1
n e−x

)n
, x ≥ − ln(n)

so that
lim

n→∞
Fn(cnx + dn) = e−e−x

.

Therefore obtain F ∈ MDA(H0).

9 (Section 2)



The Fréchet MDA
Definition:
(i) A positive function, L, on (0,∞) is slowly varying at ∞ if

lim
x→∞

L(tx)
L(x) = 1, t > 0.

(ii) A positive function, h, on (0,∞) is regularly varying at ∞ with index ρ ∈ R
if

lim
x→∞

h(tx)
h(x) = tρ, t > 0.

e.g. The logarithmic function, log(x), is slowly varying.
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The Fréchet MDA
Theorem: For ξ > 0,

F ∈ MDA(Hξ) ⇐⇒ F̄(x) = x−1/ξ L(x)

for some function, L, that is slowly varying at ∞ and where F̄(x) := 1− F(x).

When F ∈ MDA(Hξ), often refer to α := 1/ξ as the tail index of the
distribution.

e.g. Fréchet, t, F and Pareto are all in Fréchet MDA.

Can be shown that if F ∈ MDA(Hξ) for ξ > 0, then E[Xk ] =∞ for
k > 1/ξ = α.
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The Gumbel and Weibull MDA’s
The Gumbel and Weibull distributions aren’t as interesting from a finance
perspective

but their MDA’s can still be characterized.

e.g. exponential, normal and log-normal are in Gumbel MDA
E[Xk ] <∞ for all k > 0 in this case.

e.g. Beta distribution is in Weibull MDA.
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The Non-IID Case
So far have dealt with only the IID case.

But in finance, data is rarely IID.
Can be shown, however, that for most strictly stationary time series, our
results continue to hold

e.g. our results hold for ARCH / GARCH models
if it exists, the extremal index, θ ∈ (0, 1], of the time series is key!

- nθ can be interpreted as the number of independent clusters of observation in
n observations.

see Section 7.1.3 of McNeil, Frey and Embrechts for further details.
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The Block Maxima Method
Assume we have observation X1, . . . ,Xnm

so that the data can be split into m blocks with Mj := max{jth block}
each block contains n observations.

Would like both n and m to be large but there are tradeoffs
would like n large so that convergence to the GEV has occurred
would like m large so that we have more observations and hence lower
variances of MLE estimates.

In practice, if we are working with daily data and we have sufficiently many
observations, might take quarterly, semi-annual or annual block sizes.

14 (Section 2)



The Block Maxima Method
Let hξ,µ,σ be the log-density.

Then log-likelihood for ξ 6= 0 given by

l(ξ, µ, σ ; M1, . . . ,Mm) =
m∑

i=1
hξ,µ,σ(Mi)

= −m ln(σ) −
(

1 + 1
ξ

) m∑
i=1

ln
(

1 + ξ
Mi − µ
σ

)

−
m∑

i=1

(
1 + ξ

Mi − µ
σ

)−1/ξ
.

We then maximize the log-likelihood over (ξ, µ, σ) subject to
σ > 0 and
1 + ξ (Mi − µ)/σ > 0 for all i = 1, . . . ,m.
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The Return Level and Return Period Problems
The fitted GEV model can be used to analyze stress losses. In particular we
have the return level problem and the return period problem.

Definition: Let H denote the CDF of the true n-block maximum. Then the k
n-block return level is

rn,k := q1−1/k(H )

i.e., the (1− 1/k)-quantile of H .

The k n-block return level can be interpreted as the level that is exceeded
once out of every k n-blocks on average.
Using our fitted model, we obtain

r̂n,k = H−1
ξ̂,µ̂,σ̂

(
1− 1

k

)
= µ̂ + σ̂

ξ̂

((
− ln

(
1− 1

k

))−ξ̂
− 1

)

estimates of rn,k should always (why?) be accompanied by confidence
intervals.
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The Return Level and Return Period Problems
Definition: Let H denote the CDF of the true n-block maximum. The return
period of the event {M > u} is given by

kn,u := 1/H̄ (u)

where H̄ (u) = 1−H (u).

kn,u is the average number of blocks we must wait before we observe the
event {M > u}.

Again, an estimate of kn,u should always be accompanied by confidence
intervals.
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Threshold Exceedances
The block maxima approach is inefficient as it ignores all but the maximum
observation in each block.
The threshold exceedance approach does not suffer from this approach

it uses all of the data above some threshold, u.

The Generalized Pareto Distribution (GPD) plays the key role in the
threshold exceedance approach.
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The Generalized Pareto Distribution
Definition: The Generalized Pareto Distribution (GPD) is given by

Gξ,β(x) =
{

1 − (1 + ξx/β)−1/ξ, ξ 6= 0
1 − e−x/β , ξ = 0.

where β > 0, and x ≥ 0 when ξ ≥ 0, and 0 ≤ x ≤ −β/ξ when ξ < 0.

- ξ is the shape parameter

- β is the scale parameter.

When ξ > 0 obtain the ordinary Pareto distribution.

When ξ = 0 obtain the exponential distribution.

When ξ < 0 obtain the short-tailed Pareto distribution.
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Excess Distribution Over a Threshold
Definition: Let X be a random variable with CDF, F . Then the excess
distribution over the threshold u has CDF

Fu(x) = P(X − u ≤ x | X > u) = F(x + u)− F(u)
1− F(u) (3)

for 0 ≤ x < Xf − u where xF ≤ ∞ is the right endpoint of F .

In survival analysis Fu is known as the residual life CDF.

Definition: The mean excess function of a random variable, X , with finite mean
is given by

e(u) := E[X − u | X > u].
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Examples: Exponential and GPD Random Variables

e.g. If X ∼ Exp(λ), then can show that Fu(x) = F(x)
reflects the memoryless property of exponential random variables.

e.g. Suppose X ∼ Gξ,β . Then (3) implies

Fu(x) = Gξ,β(u) where

β(u) := β + ξu
0 ≤ x <∞ if ξ ≥ 0 and 0 ≤ x ≤ −β/ξ − u if ξ < 0

- so the excess CDF remains a GPD with the same shape parameter but with a
different scaling.

- can also show that the mean excess function satisfies

e(u) = β(u)
1− ξ = β + ξu

1− ξ

where 0 ≤ u <∞ if 0 ≤ ξ < 1 and 0 ≤ u ≤ −β/ξ if ξ < 0
- note that e(u) is linear in u for the GPD, a useful property!
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The GPD and MDA’s
Theorem: We can find a positive function, β(u), such that

lim
u→xF

sup
0≤x<xF−u

∣∣Fu(x) − Gξ,β(u)(x)
∣∣ = 0 (4)

if and only if F ∈ MDA(Hξ), ξ ∈ R.

This theorem provides the link between the theories of block maxima and
threshold exceedances.

Since essentially all commonly used distributions are in MDA(Hξ) for some
ξ, we see that the GPD distribution is the canonical distribution for excess
distributions.

Note that the shape parameter, ξ, does not depend on u.

Can use (4) by taking u to be “large" and therefore assuming that
Fu(x) = Gξ,β(x) for 0 ≤ x < xF − u and some ξ and β > 0.
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Modeling Excess Losses
Let X1, . . . ,Xn represent loss data from the distribution F .

A random number Nu will exceed the threshold, u.

Let Y1, . . . ,YNu be the values of the Nu excess losses.

We assume Fu = Gξ,β and estimate ξ and β using maximum likelihood.

Obtain

l(ξ, β ; Y1, . . . ,YNu ) =
Nu∑
i=1

ln gξ,β(Yi)

= −Nu ln(β) −
(

1 + 1
ξ

) Nu∑
i=1

ln
(

1 + ξ
Yi

β

)
which we maximize subject to β > 0 and 1 + ξYi/β > 0 for all i.
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When the Data is Not IID
So far have assumed the data is IID

but of course we know financial return data is not IID!

If the extremal index, θ, equals 1 then no evidence of extremal clustering
so fine to assume data is IID.

If θ < 1 then there is evidence of extremal clustering
situation not so satisfactory
but can still use the MLE method to estimate the parameters
technically this becomes quasi-MLE since the model is misspecified
point estimates of the parameters should still be fine
but standard errors might be too small in which case associated confidence
intervals would also be too narrow.
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Excesses Over Higher Thresholds
Lemma: Suppose Fu(x) = Gξ, β(x) for 0 ≤ x < xF − u for some ξ and β > 0.
Then Fv(x) = Gξ, β+ξ(v−u)(x) for any higher threshold v ≥ u.

So excess distribution over higher thresholds remains a GPD with same
shape parameter, ξ, but with a scaling parameter that grows linearly in v.

If ξ < 1, the mean excess function satisfies

e(v) = β + ξ(v − u)
1− ξ = ξv

1− ξ + β − ξu
1− ξ (5)

where u ≤ v <∞ if 0 ≤ ξ < 1 and u ≤ v ≤ u − β/ξ if ξ < 0

linearity of (5) in v can be used as a diagnostic for choosing the appropriate
threshold, u
this diagnostic tool is called the sample mean excess plot.
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Sample Mean Excess Plot
Definition: Given loss data X1, . . . ,Xn, the sample mean excess function is the
empirical estimator of the mean excess function given by

en(v) :=
∑n

i=1(Xi − v) 1{Xi>v}∑n
i=1 1{Xi>v}

Now can construct the mean excess plot {X(i,n), en(X(i,n)) : 2 ≤ i ≤ n}
where X(i,n) is the ith order statistic.
If the data support a GPD model beyond a high threshold, then the plot
should become linear for higher values of v

a positive slope indicates ξ > 0
a zero slope indicates ξ ≈ 0
a negative slope indicates ξ < 0.

Since final few values are based on very few data points they are often
omitted from the plot.
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Tail Probabilities
Again assuming that Fu(x) = Gξ, β(x) for 0 ≤ x < xF − u we obtain for
x > u

1− F(x) = F̄(x) = P(X > u) P(X > x | X > u)

= F̄(u) P(X − u > x − u | X > u)

= F̄(u) F̄u(x − u)

= F̄(u)
(

1 + ξ
x − u
β

)−1/ξ
(6)

- so if we know F̄(u) we have a formula for the tail probabilities
- (6) can now be inverted to compute risk measures!
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Risk Measures
For α ≥ F(u) obtain

VaRα = qα(F) = u + β

ξ

((
1− α
F̄(u)

)−ξ
− 1

)
.

If ξ < 1, then

ESα = 1
1− α

∫ 1

α

qx(F) dx = VaRα
1− ξ + β − ξu

1− ξ .

Also obtain
lim
α→1

ESα
VaRα

=
{

(1− ξ)−1, 1 > ξ ≥ 0
1, ξ < 0.
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Estimation in Practice
Can use the sample mean excess plot to choose an appropriate threshold, u.

MLE methods then used to estimate ξ and β as well as their standard errors.
We can use the empirical estimator, Nu/n, to estimate F̄(u).

Then have

ˆ̄F(x) = Nu

n

(
1 + ξ̂

x − u
β̂

)−1/ξ̂
(7)

as our tail probability estimator for x ≥ u
should also compute confidence intervals for (7)

- either using Monte-Carlo (how?) or by reparametrizing (how?).

Should also study sensitivity of parameter estimates to the threshold, u
results are not reliable if estimates remain sensitive for large u.
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Multivariate EVT
Can also study extreme value theory for multivariate data

leads to multivariate EVT.

The marginal distributions are as in the univariate case
e.g. GPD for the threshold exceedances method.

So the main item of concern is the dependency structure
leads to extreme value copulas
e.g. the Gumbel copula is a 2-dimensional EV copula.

Generally difficult to apply Multivariate EVT in high dimensions
too many parameters to estimate.

A common solution is to simply collapse the problem to the univariate case
by considering the entire portfolio value or return as a univariate random
variable.

30 (Section 3)



Example: Danish Fire Loss Data
Dataset consists of 2, 156 fire insurance losses over 1m Danish Kroner from
1980 to 1990

representing combined loss for building and contents and sometimes, business
earnings
losses are inflation adjusted to 1985 levels.

Mean excess plot appears linear over entire range
so GPD with ξ > 0 could be fitted to entire dataset.

We find ξ̂ ≈ .52
so fitted model is very heavy-tailed with infinite variance. Why?

- because E[Xk ] =∞ for any GPD distribution with k ≥ 1/ξ.
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The Hill Estimator
The Hill method assumes F ∈ MDA(Hξ) for ξ > 0, i.e., the Fréchet MDA

so F̄(x) = L(x) x−1/ξ where L is slowly varying.

The estimator satisfies

ξ̂ Hill
k = 1

k

k∑
i=1

ln(Xi,n) − ln(Xk,n), 2 ≤ k ≤ n

where Xn,n ≤ · · · ≤ X1,n are the order statistics.
often a very good estimator of ξ when the tail probability is well
approximated by a power function

It is common to plot the Hill estimator for different values of k
- obtain the Hill plot

and to then choose a value of k from a region where the estimator is
relatively stable.

32 (Section 4)



Where Does the Hill Estimator Come From?
Consider the mean excess for function, e(·), for ln(X). We obtain:

e(ln(u)) = E [ln(X)− ln(u) | ln(X) > ln(u)]

= 1
F̄(u)

∫ ∞
u

(ln(x)− ln(u)) dF(x)

= 1
F̄(u)

∫ ∞
u

F̄(x)
x dx (using integration by parts)

= 1
F̄(u)

∫ ∞
u

L(x)x−(1+1/ξ) dx

≈ L(u)
F̄(u)

∫ ∞
u

x−(1+1/ξ) dx (for u sufficiently large)

= L(u)u−1/ξξ

F̄(u)
= ξ. (8)
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Conditional or Dynamic EVT for Financial Time Series

So far, our applications of EVT lead to estimates of the unconditional loss
distribution.
But we are usually (much) more interested in the conditional loss
distribution

at least in the case of financial applications
generally not true in the case of insurance applications. Why?

Can apply EVT to obtain estimate of the conditional loss distribution using
time series models

in particular, ARCH / GARCH models.
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Conditional or Dynamic EVT for Financial Time Series

Suppose the negative log-returns (from date t − 1 to date t) are generated
by a strictly stationary time series

Lt = µt + σtZt

µt and σt are known at time t − 1
and the Zt ’s are IID innovations with unknown CDF, G(·).

The risk measures VaRt
α and ESt

α (at date t − 1) satisfy

VaRt
α = µt + σt qα(Z )

ESt
α = µt + σt ESα(Z )

where qα is the α-quantile of Z .
We can estimate VaRt

α and ESt
α by first fitting a GARCH model to the Lt ’s

but we don’t know the distribution, G(·), of Z
so we need to use quasi-maximum likelihood estimation (QMLE) instead of
the usual MLE.
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Conditional or Dynamic EVT for Financial Time Series

The fitted GARCH model can be used to estimate µt and σt .

We want to apply EVT to the innovations, Z , but we don’t observe the Z ’s.

Instead we take the GARCH residuals as our data for EVT.

We fit the GPD to the tails of the residuals and estimate the corresponding
risk measures to obtain

ˆVaR
t
α = µ̂t + σ̂t q̂α(Z )

ÊS
t
α = µ̂t + σ̂t ÊSα(Z )

See Section 3 of “Extreme Value Theory for Risk Managers" by McNeil or
Sections 7.2.6 and 2.3.6 of MFE

note how well the dynamic EVT VaR method back-tests!

See also Risk Management and Time Series lecture notes.
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