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Just How Unlucky is a 25 Standard Deviation Return?

Suppose we wish to estimate θ := P(X ≥ 25) = E[I{X≥25}] where X ∼ N(0, 1).

Standard Monte-Carlo approach proceeds as follows:

1. Generate X1, . . . ,Xn IID N(0, 1)

2. Set Ij = I{Xj≥25} for j = 1, . . . ,n

3. Set θ̂n =
∑n

j=1 Ij/n

4. Compute approximate 95% CI as

θ̂n ± 1.96× σ̂n/
√

n.

Question: Why is this a bad idea?

Question: Beyond knowing that θ is very small, do we even care about
estimating θ accurately?
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The Importance Sampling Estimator
Suppose we wish to estimate θ = Ef [h(X)] where X has PDF f .

Let g be another PDF with the property that g(x) 6= 0 whenever f (x) 6= 0. Then

θ = Ef [h(X)] =
∫

h(x) f (x)
g(x)g(x) dx = Eg

[
h(X)f (X)

g(X)

]
- has very important implications for estimating θ.

Original simulation method generates n samples of X from f and sets
θ̂n =

∑
h(Xj)/n.

Alternative method is to generate n values of X from g and set

θ̂n,is =
n∑

j=1

h(Xj)f (Xj)
ng(Xj)

.
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The Importance Sampling Estimator
θ̂n,is is then an unbiased estimator of θ.

We often define
h∗(X) := h(X)f (X)

g(X)
– so that θ = Eg[h∗(X)].

We refer to f and g as the original and importance sampling densities,
respectively.

Also refer to f /g as the likelihood ratio.
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Just How Unlucky is a 25 Standard Deviation Return?

Recall we want to estimate θ = P(X ≥ 25) = E[I{X≥25}] when X ∼ N(0, 1).

We write

θ = E[I{X≥25}] =
∫ ∞
−∞

I{X≥25}
1√
2π

e− x2
2 dx

=
∫ ∞
−∞

I{X≥25}

 1√
2π e− x2

2

1√
2π e−

(x−µ)2
2

 1√
2π

e−
(x−µ)2

2 dx

= Eµ
[
I{X≥25}e−µX+µ2/2

]
and where now X ∼ N(µ, 1).

Leads to a much more efficient estimator if say we take µ ≈ 25.

Find an approx. 95% CI for θ is given by [3.053, 3.074]× 10−138.
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The General Formulation
Let X = (X1, . . . ,Xn) be a random vector with joint PDF f (x1, . . . , xn).

Suppose we wish to estimate θ = Ef [h(X)].

Let g(x1, . . . , xn) be another PDF such that g(x) 6= 0 whenever f (x) 6= 0. Then

θ = Ef [h(X)]
= Eg[h∗(X)]

where h∗(X) := h(X)f (X)/g(X).

7 (Section 1)



Obtaining a Variance Reduction
We wish to estimate θ = Ef [h(X)] where X is a random vector with joint PDF,
f .

We assume wlog (why?) that h(X) ≥ 0.

Now let g be another density with support equal to that of f .

Then we know
θ = Ef [h(X)] = Eg[h∗(X)]

and this gives rise to two estimators:

1. h(X) where X ∼ f

2. h∗(X) where X ∼ g
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Obtaining a Variance Reduction
The variance of importance sampling estimator is given by

Varg(h∗(X)) =
∫

h∗(x)2g(x) dx − θ2

=
∫ h(x)2f (x)

g(x) f (x) dx − θ2.

Variance of original estimator is given by

Varf (h(X)) =
∫

h(x)2f (x) dx − θ2.

So reduction in variance is

Varf (h(X))− Varg(h∗(X)) =
∫

h(x)2
(

1− f (x)
g(x)

)
f (x) dx.

– would like this reduction to be positive.
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Obtaining a Variance Reduction
For this to happen, we would like

1. f (x)/g(x) > 1 when h(x)2f (x) is small

2. f (x)/g(x) < 1 when h(x)2f (x) is large.

Could define important part of f to be that region, A say, in the support of f
where h(x)2f (x) is large.

But by the above observation, would like to choose g so that f (x)/g(x) is small
whenever x is in A

- that is, we would like a density, g, that puts more weight on A
- hence the term importance sampling.

When h involves a rare event so that h(x) = 0 over “most" of the state space, it
can then be particularly valuable to choose g so that we sample often from that
part of the state space where h(x) 6= 0.
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Obtaining a Variance Reduction
This is why importance sampling is most useful for simulating rare events.

Further guidance on how to choose g is obtained from the following observation:

Suppose we choose g(x) = h(x)f (x)/θ.
Then easy to see that

Varg(h∗(X)) = θ2 − θ2 = 0

so that we have a zero variance estimator!
Would only need one sample with this choice of g.

Of course this is not feasible in practice. Why?

But this observation can often guide us towards excellent choices of g that lead
to extremely large variance reductions.
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The Maximum Principle
Saw that if we could choose g(x) = h(x)f (x)/θ, then we would obtain the best
possible estimator of θ, i.e. a zero-variance estimator.

This suggests that if we could choose g ≈ hf , then might reasonably expect to
obtain a large variance reduction.

One possibility is to choose g so that it has a similar shape to hf .

In particular, could choose g so that g(x) and h(x)f (x) both take on their
maximum values at the same value, x∗, say

- when we choose g this way, we are applying the maximum principle.

Of course this only partially defines g as there are infinitely many density
functions that could take their maximum value at x∗.

Nevertheless, often enough to obtain a significant variance reduction.

In practice, often take g to be from the same family of distributions as f .
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The Maximum Principle
e.g. If f is multivariate normal, then might also take g to be multivariate normal
but with a different mean and / or variance-covariance matrix.

We wish to estimate θ = E[h(X)] = E[X4eX2/4I{X≥2}] where X ∼ N(0, 1).

If we sample from a PDF, g, that is also normal with variance 1 but mean µ,
then we know that g takes it maximum value at x = µ.

Therefore, a good choice of µ might be

µ = arg max
x

h(x)f (x) = arg max
x≥2

x4e−x2/4 =
√

8.

Then
θ = Eg[h∗(X)] = Eg[X4eX2/4e−

√
8X+4I{X≥2}]

where g(·) denotes the N(
√

8, 1) PDF.
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Pricing an Asian Option
e.g. St ∼ GBM (r , σ2), where St is the stock price at time t.

Want to price an Asian call option whose payoff at time T is given by

h(S) := max
(

0,
∑m

i=1 SiT/m

m −K
)

(1)

where S := {SiT/m : i = 1, . . . ,m} and K is the strike price.

The price of this option is then given by Ca = EQ
0 [e−rTh(S)].

Can write
SiT/m = S0e(r−σ2/2) iT

m +σ
√

T
m (X1+...+Xi)

where the Xi ’s are IID N(0, 1).

If f is the risk-neutral PDF of X = (X1, . . . ,Xm), then (with mild abuse of
notation) may write

Ca = Ef [h(X1, . . . ,Xn)].
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Pricing an Asian Option
If K very large relative to S0 then the option is deep out-of-the-money and using
simulation amounts to performing a rare event simulation.

As a result, estimating Ca using importance sampling will often result in a large
variance reduction.

To apply importance sampling, we need to choose the sampling density, g.

Could take g to be multivariate normal with variance-covariance matrix equal to
the identity, Im, and mean vector, µ∗

- that is we shift f (x) by µ∗.

As before, a good possible value of µ∗ might be µ∗ = arg maxx h(x)f (x)
- can be found using numerical methods.
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Potential Problems with the Maximum Principle
Sometimes applying the maximum principle to choose g is difficult.

For example, it may be the case that there are multiple or even infinitely many
solutions to µ∗ = arg maxx h(x)f (x).

Even when there is a unique solution, it may be the case that finding it is very
difficult.

In such circumstances, an alternative method for choosing g is to scale f .
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Difficulties with Importance Sampling
Most difficult aspect to importance sampling is in choosing a good sampling
density, g.

In general, need to be very careful for it is possible to choose g according to some
good heuristic such as the maximum principle, but to then find that g results in a
variance increase.

Possible in factto choose a g that results in an importance sampling estimator
that has an infinite variance!

This situation would typically occur when g puts too little weight relative to f on
the tails of the distribution.

In more sophisticated applications of importance sampling it is desirable to have
(or prove) some guarantee that the importance sampling variance will be finite.
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Tilted Densities
Suppose f is light-tailed so that it has a moment generating function (MGF).

Then a common way of generating the sampling density, g, from the original
density, f , is to use the MGF of f .

Let Mx(t) := E[etX ] denote the MGF.

Then for −∞ < t <∞, a tilted density of f is given by

ft(x) = etx f (x)
Mx(t) .

If we want to sample more often from region where X tends to be large (and
positive), then could use ft with t > 0 as our sampling density g.

Similarly, if we want to sample more often from the region where X tends to be
large (and negative), then could use ft with t < 0.
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An Example: Sums of Independent Random Variables

Suppose X1, . . . ,Xn are independent r. vars, where Xi has density fi(·).

Let Sn :=
∑n

i=1 Xi and want to estimate θ := P(Sn ≥ a) for some constant, a.

If a is large then can use importance sampling.

Since Sn is large when Xi ’s are large it makes sense to sample each Xi from its
tilted density function, fi,t(·) for some value of t > 0.

May then write

θ = E[I{Sn≥a}] = Et

[
I{Sn≥a}

n∏
i=1

fi(Xi)
fi,t(Xi)

]

= Et

[
I{Sn≥a}

( n∏
i=1

Mi(t)
)

e−tSn

]

where Et [.] denotes expectation with respect to the Xi ’s under the tilted
densities, fi,t(·), and Mi(t) is the moment generating function of Xi .
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An Example: Sums of Independent Random Variables

If we write M (t) :=
∏n

i=1 Mi(t), then easy to see the importance sampling
estimator, θ̂n,i , satisfies

θ̂n,i ≤ M (t)e−ta. (2)

Therefore a good choice of t would be that value that minimizes the bound in (2)

- why is this?

Can minimize the bound by minimizing log(M (t)e−ta) = log(M (t))− ta.

Straightforward to check that minimizing value of t satisfies µt = a where
µt := Et [Sn].
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Applications From Insurance: Estimating Ruin Probabilities

Define the stopping time τa := min{n ≥ 0 : Sn ≥ a}.

Then P(τa <∞) is the probability that Sn ever exceeds a.

If E[X1] > 0 and the Xi ’s are IID with MGF, MX(t), then P(τa <∞) = 1.

The case of interest is then when E[X1] ≤ 0. We obtain

θ = E[I{τa<∞}] = E
[ ∞∑

n=1
1{τa=n}

]
=

∞∑
n=1

E
[
1{τa=n}

]
=

∞∑
n=1

Et
[
1{τa=n} (MX(t))n e−tSn

]
=

∞∑
n=1

Et
[
1{τa=n} (MX(t))τa e−tSτa

]
= Et

[
I{τa<∞}e

−tSτa +τaψ(t)
]

where ψ(t) := log(MX(t)) is the cumulant generating function.
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Estimating Ruin Probabilities
Note that if Et [X1] > 0 then τa <∞ almost surely and so we obtain

θ = Et

[
e−tSτa +τaψ(t)

]
.

In fact, importance sampling this way ensures the simulation stops almost surely!

Question: How can we use ψ(·) to choose a good value of t?

This problem has direct applications to the estimation of ruin probabilities in the
context of insurance risk.
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Estimating Ruin Probabilities
e.g. Suppose Xi := Yi − cTi where:

Yi is the size of the ith claim

Ti is the inter-arrival time between claims

c is the premium received per unit time

and a is the initial reserve.

Then θ is the probability that the insurance company ever goes bankrupt.

Only in very simple models is it possible to calculate θ analytically
- in general, Monte-Carlo approaches are required.
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Estimating Conditional Expectations
Importance sampling also very useful for computing conditional expectations
when the event being conditioned upon is a rare event.

e.g. Suppose we wish to estimate θ = E[h(X)|X ∈ A] where A is a rare event
and X is a random vector with PDF, f .

Then the density of X, given that X ∈ A, is

f (x|x ∈ A) = f (x)
P(X ∈ A) , for x ∈ A

so
θ =

E[h(X)I{X∈A}]
E[I{X∈A}]

.

Since A is a rare event we would be better off using a sampling density, g, that
makes A more likely to occur.

Then we would have

θ =
Eg[h(X)I{X∈A}f (X)/g(X)]

Eg[I{X∈A}f (X)/g(X)] .
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Estimating Conditional Expectations
To estimate θ using importance sampling, we generate X1, . . . ,Xn with density
g, and set

θ̂n,i =
∑n

i=1 h(Xi)I{Xi∈A}f (Xi)/g(Xi)∑n
i=1 I{Xi∈A}f (Xi)/g(Xi)

.

In contrast to our usual estimators, θ̂n,i is no longer an average of n IID random
variables but instead, it is the ratio of two such averages

- has implications for computing approximate confidence intervals for θ
- in particular, confidence intervals should now be estimated using bootstrap

techniques.

An obvious application of this methodology in risk management is the estimation
of quantities similar to ES or CVaR.
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Bernoulli Mixture Models
Definition: Let p < m and let Ψ = (Ψ1, . . . ,Ψp)> be a p-dimensional random
vector.
Then we say the random vector Y = (Y1, . . . ,Ym)> follows a Bernoulli mixture
model with factor vector Ψ if there are functions

pi : Rp → [0, 1], 1 ≤ i ≤ m,

such that conditional on Ψ the components of Y are independent Bernoulli
random variables satisfying

P(Yi = 1 | Ψ = ψ) = pi(ψ).
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An Application to Portfolio Credit Risk
We consider a portfolio loss of the form L =

∑m
i=1 eiYi

ei is the deterministic and positive exposure to the ith credit

Yi is the default indicator with corresponding default probability, pi .

Assume also that Y follows a Bernoulli mixture model.

Want to estimate θ := P(L ≥ c) where c >> E[L].

Note that a good importance sampling distribution for θ should also work well for
estimating risk measures associated with the α-tail of the loss distribution where
qα(L) ≈ c.

We begin with the case where the default indicators are independent ...
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Case 1: Independent Default Indicators
Define Ω to be the state space of Y so that Ω = {0, 1}m.

Then

P({y}) =
m∏

i=1
pyi

i (1− pi)1−yi , y ∈ Ω

so that

ML(t) = Ef [etL] =
m∏

i=1
E[eteiYi ] =

m∏
i=1

(
pietei + 1− pi

)
.

Let Qt be the corresponding tilted probability measure so that

Qt({y}) = et
∑m

i=1
eiyi

ML(t) P({y}) =
m∏

i=1

eteiyi

(pietei + 1− pi)
pyi

i (1− pi)1−yi

=
m∏

i=1
qyi

t,i(1− qt,i)1−yi

where qt,i := pietei/(pietei + 1− pi) is the Qt probability of the ith credit
defaulting.
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Case 1: Independent Default Indicators
Note that the default indicators remain independent Bernoulli random variables
under Qt .

Since qt,i → 1 as t →∞ and qt,i → 0 as t → −∞ it is clear that we can shift
the mean of L to any value in (0,

∑m
i=1 ei).

The same argument that was used in the partial sum example suggests that we
should take t equal to that value that solves

Et [L] =
m∑

i=1
qi,tei = c.

This value can be found easily using numerical methods.
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Case 2: Dependent Default Indicators
Suppose now that there is a p-dimensional factor vector, Ψ.

We assume the default indicators are independent with default probabilities pi(ψ)
conditional on Ψ = ψ.

Suppose also that Ψ ∼ MVNp(0,Σ).

The Monte-Carlo scheme for estimating θ is to first simulate Ψ and to then
simulate Y conditional on Ψ.

Can apply importance sampling to the second step using our discussion of
independent default indicators.

However, can also apply importance sampling to the first step, i.e. the simulation
of Ψ.
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Case 2: Dependent Default Indicators
A natural way to do this is to simulate Ψ form the MVNp(µ,Σ) distribution for
some µ ∈ Rp.

Corresponding likelihood ratio, rµ(Ψ), is given by ratio of the two multivariate
normal densities.

It satisfies

rµ(Ψ) =
exp

(
− 1

2 Ψ>Σ−1Ψ
)

exp
(
− 1

2 (Ψ− µ)>Σ−1(Ψ− µ)
)

= exp(−µ>Σ−1Ψ + 1
2µ>Σ−1µ).
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Case 2: How Do We Choose µ?
Recall the quantity of interest is θ := P(L ≥ c) = E[P(L ≥ c | Ψ)].

Know from earlier discussion that we’d like to choose importance sampling
density, g∗(Ψ), so that

g∗(Ψ) ∝ P(L ≥ c | Ψ) exp(−1
2Ψ>Σ−1Ψ). (3)

Of course this is not possible since we do not know P(L ≥ c | Ψ), the very
quantity that we wish to estimate.

Maximum principle applied to the MVNp(µ,Σ) distribution would then suggest
taking µ equal to the value of Ψ which maximizes the rhs of (3).

Not possible to solve this problem exactly as we do not know P(L ≥ c | Ψ)
- but numerical methods can be used to find good approximate solutions
- See Glasserman and Li (2005) for further details.
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The Algorithm for Estimating θ = P(L ≥ c)
1. Generate Ψ1, . . . ,Ψn independently from the MVNp(µ,Σ) distribution.

2. For each Ψi estimate P(L ≥ c | Ψ = Ψi) using the importance sampling
distribution that we described in our discussion of independent default
indicators.

Let θ̂IS
n1

(Ψi) be the corresponding estimator based on n1 samples.

3. Full importance sampling estimator then given by

θ̂IS
n = 1

n

n∑
i=1

rµ(Ψi) θ̂IS
n1

(Ψi).
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Stratified Sampling: A Motivating Example
Consider a game show where contestants first pick a ball at random from an urn
and then receive a payoff, Y .

The payoff is random and depends on the color of the selected ball so that if the
color is c then Y is drawn from the PDF, fc.

The urn contains red, green, blue and yellow balls, and each of the four colors is
equally likely to be chosen.

The producer of the game show would like to know how much a contestant will
win on average when he plays the game.

To answer this question, she decides to simulate the payoffs of n contestants and
take their average payoff as her estimate.
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Stratified Sampling: A Motivating Example
Payoff, Y , of each contestant is simulated as follows:

1. Simulate a random variable, I , where I is equally likely to take any of the
four values r , g, b and y

2. Simulate Y from the density fI (y).
Average payoff, θ := E[Y ], then estimated by

θ̂n :=
∑n

j=1 Yj

n .

Now suppose n = 1000, and that a red ball was chosen 246 times, a green ball
270 times, a blue ball 226 times and a yellow ball 258 times.

Question: Would this influence your confidence in θ̂n?

Question: What if fg tended to produce very high payoffs and fb tended to
produce very low payoffs?

Question: Is there anything that we could have done to avoid this type of
problem occurring?
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Stratified Sampling: A Motivating Example
Know each ball color should be selected 1/4 of the time so we could force this to
hold by conducting four separate simulations, one each to estimate E[X |I = c]
for c = r , g, b, y.

Note that

E[Y ] = 1
4E[Y |I = r ] + 1

4E[Y |I = g] + 1
4E[Y |I = b] + 1

4E[Y |I = y]

so an unbiased estimator of θ is obtained by setting

θ̂st,n := 1
4 θ̂r,nr + 1

4 θ̂g,ng + 1
4 θ̂b,nb + 1

4 θ̂y,ny (4)

where θc := E[Y |I = c] for c = r , g, b, y.

Question: How does Var
(
θ̂st,n

)
compare with Var

(
θ̂n

)
?

To answer this we assume (for now) that nc = n/4 for each c, and that Yc is a
sample from the density, fc.
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Stratified Sampling: A Motivating Example
Then a fair comparison of Var(θ̂n) with Var(θ̂st,n) should compare

Var(Y1 + Y2 + Y3 + Y4) with Var(Yr + Yg + Yb + Yy) (5)

Y1, Y2, Y3 and Y4 are IID samples from the original simulation algorithm

Yc’s are independent with density fc(·), for c = r , g, b, y.

Now recall the conditional variance formula which states

Var(Y ) = E[Var(Y |I )] + Var(E[Y |I ]). (6)

Each term in the right-hand-side of (6) is non-negative so this implies

Var(Y ) ≥ E[Var(Y |I )]

= 1
4Var(Y |I = r) + 1

4Var(Y |I = g) + 1
4Var(Y |I = b) + 1

4Var(Y |I = y)

= Var(Yr + Yg + Yb + Yy)
4 .
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Stratified Sampling
This implies

Var(Y1 + Y2 + Y3 + Y4) = 4 Var(Y )

≥ Var(Yr + Yg + Yb + Yy).

Can therefore conclude that using θ̂st,n leads to a variance reduction.

Variance reduction will be substantial if I accounts for a large fraction of the
variance of Y .

Note also that computational requirements for computing θ̂st,n are similar to
those required for computing θ̂n.

We call θ̂st,n a stratified sampling estimator of θ and say that I is the
stratification variable.

38 (Section 3)



The Stratified Sampling Algorithm
Want to estimate θ := E[Y ] where Y is a random variable.

Let W be another random variable that satisfies the following two conditions:

Condition 1: For any ∆ ⊆ R, P(W ∈ ∆) can be easily computed.

Condition 2: It is easy to generate (Y |W ∈ ∆), i.e., Y given W ∈ ∆.

- note that Y and W should be dependent to achieve a variance reduction.

Now divide R into m non-overlapping subintervals, ∆1, . . . ,∆m, such that∑m
j=1 pj = 1 where pj := P(W ∈ ∆j) > 0.
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Notation

1. Let θj := E[Y |W ∈ ∆j ] and σ2
j := Var(Y |W ∈ ∆j).

2. Define the random variable I by setting I := j if W ∈ ∆j .

3. Let Y (j) denote a random variable with the same distribution as
(Y |W ∈ ∆j) ≡ (Y |I = j).

Therefore have
θj = E[Y |I = j] = E[Y (j)]

and
σ2

j = Var(Y |I = j) = Var(Y (j)).
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Stratified Sampling
In particular obtain

θ = E[Y ] = E[E[Y |I ]] = p1E[Y |I = 1] + . . . + pmE[Y |I = m]
= p1θ1 + . . . + pmθm.

To estimate θ we only need to estimate the θi ’s since the pi ’s are easily
computed by condition 1.

And we know how to estimate the θi ’s by condition 2.

If we use ni samples to estimate θi , then an estimate of θ is given by

θ̂st,n = p1θ̂1,n1 + . . .+ pm θ̂m,nm .

Clear that θ̂st,n will be unbiased if each θ̂i,ni is unbiased.
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Obtaining a Variance Reduction
Would like to compare Var(θ̂n) with Var(θ̂st,n).

First must choose n1, . . . ,nm such that n1 + . . .+ nm = n.

Clearly, optimal to choose the ni ’s so as to minimize Var(θ̂st,n).

Consider, however, the sub-optimal allocation where we set nj := npj for
j = 1, . . . ,m.

Then

Var(θ̂st,n) = Var(p1θ̂1,n1 + . . .+ pm θ̂m,nm )

= p2
1
σ2

1
n1

+ . . .+ p2
m
σ2

m
nm

=
∑m

j=1 pjσ
2
j

n .
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Obtaining a Variance Reduction
But the usual simulation estimator has variance σ2/n where σ2 := Var(Y ).

Therefore, need only show that
∑m

j=1 pjσ
2
j < σ2 to prove the non-optimized

stratification estimator has a lower variance than the usual raw estimator.

But the conditional variance formula implies

σ2 = Var(Y )
≥ E[Var(Y |I )]

=
m∑

j=1
pjσ

2
j

and the proof is complete!
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Optimizing the Stratified Estimator
We know

θ̂st,n = p1

∑n1
i=1 Y (1)

i
n1

+ . . . + pm

∑nm
i=1 Y (m)

i
nm

where for a fixed j, the Y (j)
i ’s are IID ∼ Y (j).

This then implies

Var(θ̂st,n) = p2
1
σ2

1
n1

+ . . . + p2
m
σ2

m
nm

=
m∑

j=1

p2
j σ

2
j

nj
. (7)

To minimize Var(θ̂st,n) must therefore solve the following constrained
optimization problem:

min
nj

m∑
j=1

p2
j σ

2
j

nj
subject to n1 + . . .+ nm = n. (8)
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Optimizing the Stratified Estimator
Can easily solve (8) using a Lagrange multiplier to obtain

n∗j =
(

pjσj∑m
j=1 pjσj

)
n. (9)

Minimized variance is given by

Var(θ̂st,n∗) =

(∑m
j=1 pjσj

)2

n .

Note that the solution (9) makes intuitive sense:

If pj large then (other things being equal) makes sense to expend more effort
simulating from stratum j.

If σ2
j is large then (other things being equal) makes sense to simulate more

often from stratum j so as to get a more accurate estimate of θj .
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Stratification Simulation Algorithm for Estimating θ

set θ̂n,st = 0; σ̂2
n,st = 0;

for j = 1 to m
set sumj = 0; sum_squaresj = 0;
for i = 1 to nj

generate Y (j)
i

set sumj = sumj + Y (j)
i

set sum_squaresj = sum_squaresj + Y (j)
i

2

end for
set θj = sumj/nj
set σ̂2

j =
(
sum_squaresj − sum2

j /nj
)
/(nj − 1)

set θ̂n,st = θ̂n,st + pjθj
set σ̂2

n,st = σ̂2
n,st + σ̂2

j p2
j /nj

end for
set approx. 100(1− α) % CI = θ̂n,st ± z1−α/2 σ̂n,st
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Example: Pricing a European Call Option
Wish to price a European call option where we assume St ∼ GBM (r , σ2).

Then
C0 = E

[
e−rT max(0,ST −K )

]
= E[Y ]

where Y = h(X) = e−rT max
(

0, S0e(r−σ2/2)T+σ
√

TX −K
)

for X ∼ N(0, 1).

While we know how to compute C0 analytically, it’s worthwhile seeing how we
could estimate it using stratified simulation.

Let W = X be our stratification variable. To see that we can stratify using this
choice of W note that:

1. We can easily computed P(W ∈ ∆) for ∆ ⊆ R.

2. We can easily generate (Y |W ∈ ∆).

Therefore clear that we can estimate C0 using X as a stratification variable.
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Example: Pricing an Asian Call Option
The discounted payoff of an Asian call option is given by

Y := e−rT max
(

0,
∑m

i=1 SiT/m

m −K
)

(10)

– its price therefore given by Ca = E[Y ].

Now each SiT/m may be expressed as

SiT/m = S0 exp
(

(r − σ2/2) iT
m + σ

√
T
m (X1 + . . . + Xi)

)
(11)

where the Xi ’s are IID N(0, 1).

Can therefore write Ca = E [h(X1, . . . ,Xm)] where h(.) given implicitly by (10)
and (11).
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Example: Pricing an Asian Call Option
Can estimate Ca using stratified sampling but must first choose a stratification
variable, W .

One possible choice would be to set W = Xj for some j.

But this is unlikely to capture much of the variability of h(X1, . . . ,Xm).

A much better choice would be to set W =
∑m

j=1 Xj .

Of course, we need to show that such a choice is possible, i.e. must show that

(1) P(W ∈ ∆) is easily computed

(2) (Y |W ∈ ∆) is easily generated.
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Computing P(W ∈ ∆)
Since X1, . . . ,Xm are IID N(0, 1), we immediately have that W ∼ N(0,m).

If ∆ = [a, b] then

P(W ∈ ∆) = P (N(0,m) ∈ ∆) = P (a ≤ N(0,m) ≤ b)

= P
(

a√
m
≤ N(0, 1) ≤ b√

m

)
= Φ

(
b√
m

)
− Φ

(
a√
m

)
.

Similarly, if ∆ = [b,∞), then P(W ∈ ∆) = 1− Φ
(

b√
m

)
.

And if ∆ = (−∞, a], then P(W ∈ ∆) = Φ
(

a√
m

)
.
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Generating (Y |W ∈ ∆)
Need two results from the theory of multivariate normal random variables:

Result 1:

Suppose X = (X1, . . . ,Xm) ∼ MVN(0,Σ).

If we wish to generate a sample vector X, we first generate
Z ∼ MVN(0, Im) and then set

X = CTZ (12)

where CTC = Σ.

One possibility of course is to let C be the Cholesky decomposition of Σ.

But in fact any matrix C that satisfies CTC = Σ will do.
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Result 2
Let a = (a1 a2 . . . am) satisfy ||a|| = 1, i.e.

√
a2

1 + . . .+ a2
m = 1, and let

Z = (Z1, . . . ,Zm) ∼ MVN(0, Im). Then

{
(Z1, . . . ,Zm)

∣∣∣ m∑
i=1

aiZi = w
}
∼ MVN(wa>, Im − a>a).

Therefore, to generate {(Z1, . . . ,Zm)|
∑m

i=1 aiZi = w} just need to generate V
where

V ∼ MVN(wa>, Im − a>a) = wa> + MVN(0, Im − a>a).

Generating such a V is very easy since

(Im − a>a)>(Im − a>a) = Im − a>a.

That is, Σ>Σ = Σ where Σ = Im − a>a

- so we can take C = Σ in (12).
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Back to Generating (Y |W ∈ ∆)
Can now return to the problem of generating (Y | W ∈ ∆).

Since Y = h(X1, . . . ,Xm), we can clearly generate (Y | W ∈ ∆) if we can
generate [(X1, . . . ,Xm) |

∑m
i=1 Xi ∈ ∆].

To do this, suppose again that ∆ = [a, b].

Then[
(X1, . . . ,Xm)

∣∣∣ m∑
i=1

Xi ∈ [a, b]

]
≡

[
(X1, . . . ,Xm)

∣∣∣ 1√
m

m∑
i=1

Xi ∈
[

a√
m
,

b√
m

]]
.

Now we can generate [(X1, . . . ,Xm) |
∑m

i=1 Xi ∈ ∆] in two steps:
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Back to Generating (Y |W ∈ ∆)
Step 1: Generate

[
1√
m
∑m

i=1 Xi

∣∣∣ 1√
m
∑m

i=1 Xi ∈
[

a√
m ,

b√
m

]]
.

Easy to do since 1√
m
∑m

i=1 Xi ∼ N(0, 1) so just need to generate(
N(0, 1)

∣∣∣ N(0, 1) ∈
[

a√
m
,

b√
m

])
.

Let w be the generated value.

Step 2:
Now generate [

(X1, . . . ,Xm)
∣∣∣ 1√

m

m∑
i=1

Xi = w
]

which we can do by Result 2 and the comments that follow.
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Measuring Counterparty Credit Exposure: PFE and EPE

Counterparty credit exposure is the exposure to loss due to the failure of a
counterparty to fulfill their obligations

- at the root of traditional banking since the earliest form of financial
instruments were bonds.

The key statistical measures of counterparty credit exposure are:

1. Potential future exposure (PFE)
2. Expected positive exposure (EPE)

Given a security (or portfolio of securities with the same counterparty) with
maturity T :

PFEt is the quantile (usually 97.5% or 99%) of the time t price distribution
EPEt is the mean of the positive part of the time t price distribution.

Both PFEt and EPEt are determined using market information today at time 0.
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Credit Valuation Adjustments (CVA)

Figure is courtesy of Giovanni Cesari, UBS.
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Credit Valuation Adjustments (CVA)
The CVA of a derivative security is the price of the counterparty credit exposure
for that security.

It is an adjustment to the price of the derivative that takes into account
counterparty credit exposure.

To calculate the CVA consider the loss that occurs on the position should the
counterparty default at time t < T :

Losst = (1− RV ) 1{τ=t}V +
τ (13)

where:
τ denotes random default time of counterparty
Vt denotes the time t value (from our perspective) of the derivative security
RV is the recovery rate.
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Credit Valuation Adjustments (CVA)
The CVA is the time t = 0 value of the sum of all losses, Losst , where the sum is
taken over all t ∈ [0,T ].

Like all security prices, it is determined via risk-neutral pricing and so we obtain

CVA0,T = (1− RV )
∫ T

0
EQ

0

[
V +

u
Nu

1{τ=u}

]
du (14)

where Q denotes the EMM corresponding to the numeraire price process, Nt .

Evaluating (14) is generally computationally intensive.

If V +
u /Nu is Q-independent of τ then can then model the default event

separately from the price process of the derivative security.

Moreover, CDS prices in the market-place can typically then be used to work with
the term EQ

0
[
1{τ=u}

]
.

When V +
u /Nu and τ are Q-dependent, however, then matters are considerably

more complex and one must now account for the possibility of wrong-way risk.
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Credit Valuation Adjustments (CVA)
Very often analytic expressions are not available for the price Vt

- so it must be computed numerically or via Monte-Carlo simulation.

If the derivative security is Bermudan / American then matters become even
more complicated as an optimal stopping problem must then be solved at each
time point t along each simulated path.

In general then, evaluating CVA0,T is demanding and often requires nested
Monte-Carlo simulations.
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Bilateral CVA (and DVA)
In determining (13) we have only taken our point of view.

However our counterparty will also perceive the possibility that we will default on
them and therefore they too will compute a CVA.

The sum of the two CVAs is known as bilateral CVA and it is this CVA that
should be accounted for in the price of the derivative security.

Note that the value of our counterparty’s CVA is our debit value adjustment
(DVA).

Question: Suppose the underlying derivative security moves in our favor. Do you
think we will record a gain or loss on our CVA? What about our DVA?
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Estimating the Greeks
Let C (θ) := EQ

0 [Y (θ)] be the price of a particular derivative security. Then

α(θ) := ∂C
∂θ

is the derivative price’s sensitivity to changes in the parameter θ.

e.g. If C = value of a standard European call option in the Black-Scholes
framework and θ = S0 then α(θ) is the delta of the option

- and it can be calculated explicitly.

In general, however, we will not have an explicit expression for α(θ)
- but can then use Monte-Carlo methods.

Will only describe the approach of using finite difference approximations here.

But more sophisticated (and generally superior when applicable) approaches are
also available. They include

1. The pathwise method
2. The likelihood ratio method.
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Finite-Difference Approximations
One approach is to simply simulate the finite-difference ratio

∆ε := Y (θ + ε)−Y (θ − ε)
2ε (15)

for some small given ε > 0.

Could therefore estimate α(θ) by simulating (and then averaging) samples of ∆ε.

Noting that

Var (∆ε) = Var (Y (θ + ε)) + Var (Y (θ − ε))− 2 Cov (Y (θ + ε), Y (θ − ε))
4ε2

(16)
it is clear that a variance reduction will follow if Cov (Y (θ + ε), Y (θ − ε)) > 0.

Therefore Y (θ + ε) and Y (θ − ε) should not be estimated independently.

Instead they should be estimated using common random numbers, i.e. generating
them from the same U (0, 1) random variable.
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Common Random Numbers
For small ε, the variance reduction from common random numbers can be
dramatic.

But clearly a tradeoff between bias and variance in our selection of ε.

In general can be shown that we should choose ε = O(n−1/5) in (15)
- convergence of the estimator in (15) is then O(n−2/5)
- but O(n−1/2) convergence can be obtained if Y is continuous in θ

- in which case ε should be taken as small as possible.

Similar results available for estimating second-order Greeks
- but convergence rates are not as good
- so estimating these quantities is fundamentally harder.
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