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A Simple Example: Pricing Barrier Options
Barrier options are options whose payoff depends in some way on whether or not
a particular barrier has been crossed before the option expires.

A barrier can be:
A put or a call
A knock-in or knock-out
A digital or vanilla
– so (at least) eight different payoff combinations.

e.g. A knockout put option with strike K , barrier B and maturity T has payoff

Knock-Out Put Payoff = max
(

0, (K − ST) 1{St≥B for all t∈[0,T]}

)
.

e.g. A digital down-and-in call option with strike K , barrier B and maturity T
has payoff

Digital Down-and-In Call = max
(

0, 1{mint∈[0,T] St≤B} × 1{ST≥K}

)
.
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Barrier Options
Knock-in options can be priced from knock-out options and vice versa since a
knock-in plus a knock-out – each with the same strike – is equal to the vanilla
option or digital with the same strike.

Analytic solutions can be computed for European barrier options in the
Black-Scholes framework where the underlying security follows a geometric
Brownian motion (GBM).

Will not bother to derive or present these solutions here, however, since they are
of little use in practice

- this is because the Black-Scholes model is a terrible(!) model for pricing
barrier options.

But can still use GBM to develop intuition and as an example of model risk.

Will concentrate on knock-out put option
- they are traded quite frequently in practice.
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Value of a Knockout Put Option Using Black-Scholes GBM
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Value of Knockout Put with Corresponding Vanilla Put
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Barrier Options
So knock-out put option always cheaper than corresponding vanilla put option.

For low values of σ, however, the prices almost coincide. Why?

While the vanilla option is unambiguously increasing in σ the same is not true for
the knock-out option. Why?

Question: What do you think would happen to the value of the knock-out put
option as σ →∞?

Black-Scholes model is not a good model for pricing barrier options:
It cannot price vanilla options correctly so certainly cannot price barriers.
Suppose there was no market for vanillas but there was a liquid market for
knockout puts. What value of σ should be used to calibrate your BS price to
the market price?
The Black-Scholes Greeks would also be very problematic: what implied
volatility would you use to calculate the Greeks?

In summary, the Black-Scholes model is a disaster when it comes to pricing
barrier options.
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E.G: Parameter Uncertainty and Hedging in Black-Scholes

Now consider the use of the Black-Scholes model to hedge a vanilla European
call option in the model.

Will assume that assumptions of Black-Scholes are correct:
Security price has GBM dynamics
Possible to trade continuously at no cost
Borrowing and lending at the risk-free rate are also possible.

Then possible to dynamically replicate payoff of the call option using a
self-financing (s.f.) trading strategy

- initial value of this s.f. strategy is the famous Black-Scholes arbitrage-free
price of the option.

The s.f. replication strategy requires continuous delta-hedging of the option but
of course not practical to do this.

Instead we hedge periodically – this results in some replication error
- but this error goes to 0 as the interval between rebalancing goes to 0.
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E.G: Parameter Uncertainty and Hedging in Black-Scholes

Pt denotes time t value of the discrete-time s.f. strategy and C0 denotes initial
value of the option.

The replicating strategy is then satisfies

P0 := C0 (1)
Pti+1 = Pti + (Pti − δti Sti ) r∆t + δti

(
Sti+1 − Sti + qSti ∆t

)
(2)

where:

∆t := ti+1 − ti

r = risk-free interest rate

q is the dividend yield

δti is the Black-Scholes delta at time ti
– a function of Sti and some assumed implied volatility, σimp.

Note that (1) and (2) respect the s.f. condition.
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E.G: Parameter Uncertainty and Hedging in Black-Scholes

Stock prices are simulated assuming St ∼ GBM(µ, σ) so that

St+∆t = Ste(µ−σ2/2)∆t+σ
√

∆tZ

where Z ∼ N(0, 1).

In the case of a short position in a call option with strike K and maturity T , the
final trading P&L is then defined as

P&L := PT − (ST −K )+ (3)

where PT is the terminal value of the replicating strategy in (2).

In the Black-Scholes world we have σ = σimp and the P&L = 0 along every price
path in the limit as ∆t → 0.

In practice, however, we cannot know σ and so the market (and hence the option
hedger) has no way to ensure a value of σimp such that σ = σimp.
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E.G: Parameter Uncertainty and Hedging in Black-Scholes

This has interesting implications for the trading P&L: it means we cannot exactly
replicate the option even if all of the assumptions of Black-Scholes are correct!

In figures on next two slides we display histograms of the P&L in (3) that results
from simulating 100k sample paths of the underlying price process with
S0 = K = $100.
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E.G: Parameter Uncertainty and Hedging in Black-Scholes
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E.G: Parameter Uncertainty and Hedging in Black-Scholes
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E.G: Parameter Uncertainty and Hedging in Black-Scholes

Clearly then this is a situation where substantial errors in the form of non-zero
hedging P&L’s are made

- and this can only be due to the use of incorrect model parameters.

This example is intended to highlight the importance of not just having a good
model but also having the correct model parameters.

The payoff from delta-hedging an option is in general path-dependent.

Can be shown that the payoff from continuously delta-hedging an option satisfies

P&L =
∫ T

0

S2
t
2
∂2Vt

∂S2

(
σ2

imp − σ2
t
)

dt

where Vt is the time t value of the option and σt is the realized instantaneous
volatility at time t.

We recognize the term S2
t

2
∂2Vt
∂S2 as the dollar gamma

- always positive for a vanilla call or put option.
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E.G: Parameter Uncertainty and Hedging in Black-Scholes

Returning to s.f. trading strategy of (1) and (2), note that we can choose any
model we like for the security price dynamics

- e.g. other diffusions or jump-diffusion models.

It is interesting to simulate these alternative models and to then observe what
happens to the replication error from (1) and (2).

It is common to perform numerical experiments like this when using a model to
price and hedge a particular security.

Goal then is to understand how robust the hedging strategy (based on the given
model) is to alternative price dynamics that might prevail in practice.

Given the appropriate data, one can also back-test the performance of a model
on realized historical price data to assess its hedging performance.
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E.G: Calibration and Extrapolation in Short-Rate Models
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Binomial models for the short-rate were very popular for pricing fixed income
derivatives in the 1990’s and into the early 2000’s.

Lattice above shows a generic binomial model for the short-rate, rt which is a
1-period risk-free rate.

Risk-neutral probabilities of up- and down-moves in any period are given by qu
and qd = 1− qu, respectively.

Securities then priced in the lattice using risk-neutral pricing in the usual
backwards evaluation manner.
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E.G: Calibration and Extrapolation in Short-Rate Models

e.g. Can compute time t price, ZT
t , of a zero-coupon bond (ZCB) maturing at

time T by setting ZT
T ≡ 1 and then calculating

Zt,j = EQ
t

[
Bt

Bt+1
Zt+1

]
= 1

1 + rt,j
[qu × Zt+1,j+1 + qd × Zt+1,j ]

for t = T − 1, . . . , 0 and j = 0, . . . , t.

More generally, risk-neutral pricing for a “coupon” paying security takes the form

Zt,j = EQ
t

[
Zt+1 + Ct+1

1 + rt,j

]
= 1

1 + rt,j
[qu (Zt+1,j+1 + Ct+1,j+1) + qd (Zt+1,j + Ct+1,j)] (4)

where Ct,j is the coupon paid at time t and state j, and Zt,j is the “ex-coupon”
value of the security at time t and state j.
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E.G: Calibration and Extrapolation in Short-Rate Models

Can iterate (4) to obtain

Zt

Bt
= EQ

t

[ t+s∑
j=t+1

Cj

Bj
+ Zt+s

Bt+s

]
(5)

Other securities including caps, floors, swaps and swaptions can all be priced
using (4) and appropriate boundary conditions.

Moreover, when we price securities like in this manner the model is guaranteed to
be arbitrage-free. Why?
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The Black-Derman-Toy (BDT) Model
The Black-Derman-Toy (BDT) model assumes the interest rate at node Ni,j is
given by

ri,j = aiebij

where log(ai) and bi are drift and volatility parameters for log(r), respectively.

To use such a model in practice we must first calibrate it to the observed
term-structure in the market and, ideally, other liquid fixed-income security prices

- can do this by choosing the ai ’s and bi ’s to match market prices.

Once the parameters have been calibrated we can now consider using the model
to price less liquid or more exotic securities.
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Using BDT to Price a 2− 8 Payer Swaption
Consider pricing a 2− 8 payer swaption with fixed rate = 11.65%.

This is:

An option to enter an 8-year swap in 2 years time.

The underlying swap is settled in arrears so payments would take place in
years 3 through 10.

Each floating rate payment in the swap is based on the prevailing short-rate
of the previous year.

The “payer" feature of the option means that if the option is exercised, the
exerciser “pays fixed and receives floating" in the underlying swap.
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Using BDT to Price a 2− 8 Payer Swaption
We use a 10-period BDT lattice so that 1 period corresponds to 1 year.

Lattice was calibrated to the term structure of interest rates in the market
- there are therefore 20 free parameters, ai and bi for i = 0, . . . , 9, to choose
- and want to match 10 spot interest rates, st for t = 1, . . . , 10.

Therefore have 10 equations in 20 unknowns and so the calibration problem has
too many parameters.

We can (and do) resolve this issue by simply setting bi = b = .005 for all i
- which leaves 10 unknown parameters.

Will assume a notional principal for the underlying swaps of $1m.

Let S2 denote swap value at t = 2
- can compute S2 by discounting the swap’s cash-flows back from t = 10 to

t = 2 using risk-neutral probabilities which we take to be qd = qu = 0.5.
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Using BDT to Price a 2− 8 Payer Swaption
Option then exercised at time t = 2 if and only if S2 > 0

- so value of swaption at t = 2 is max(0,S2).

Time t = 0 value of swaption can be computed using backwards evaluation
- after calibration we find a swaption price of $1, 339 (when b = .005).

It would be naive(!) in the extreme to assume that this is a fair price for the
swaption

- after all, what was so special about the choice of b = .005?

Suppose instead we chose b = .01.

In that case, after recalibrating to the same term structure of interest rates, we
find a swaption price of $1, 962

- a price increase of approximately 50%!

This price discrepancy should not be at all surprising! Why?
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Using BDT to Price a 2− 8 Payer Swaption
Several important lessons regarding model risk and calibration here:

1. Model transparency is very important. In particular, it is very important to
understand what type of dynamics are implied by a model and, more
importantly in this case, what role each of the parameters plays.

2. Should also be clear that calibration is an intrinsic part of the pricing process
and is most definitely not just an afterthought.
Model selection and model calibration (including the choice of calibration
instruments) should not be separated.

3. When calibration is recognized to be an intrinsic part of the pricing process,
we begin to recognize that pricing is really no more than an exercise in
interpolating / extrapolating from observed market prices to unobserved
market prices.
Since extrapolation is in general difficult, we would have much more
confidence in our pricing if our calibration securities were “close” to the
securities we want to price.
This was not the case with the swaption!
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E.G: Regime Shifts: LIBOR Pre- and Post-Crisis
LIBOR calculated on a daily basis:

The British Bankers’ Association (BBA) polls a pre-defined list of banks
with strong credit ratings for their interest rates of various maturities.
Highest and lowest responses are dropped
Average of remainder is taken to be the LIBOR rate.

Understood there was some (very small) credit risk associated with these banks
- so LIBOR would therefore be higher than corresponding rates on

government treasuries.

Since banks that are polled always had strong credit ratings (prior to the crisis)
spread between LIBOR and treasury rates was generally quite small.

Moreover, the pre-defined list of banks regularly updated so that banks whose
credit ratings have deteriorated are replaced with banks with superior credit
ratings.

This had the practical impact of ensuring (or so market participants believed up
until the crisis(!)) that forward LIBOR rates would only have a very modest
degree of credit risk associated with them.
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E.G: Regime Shifts: LIBOR Pre- and Post-Crisis
LIBOR extremely important since it’s a benchmark interest rate and many of the
most liquid fixed-income derivative securities are based upon it.

These securities include:
1. Floating rate notes (FRNs)
2. Forward-rate agreements (FRAs)
3. Swaps and (Bermudan) swaptions
4. Caps and floors.

Cash-flows associated with these securities are determined by LIBOR rates of
different tenors.

Before 2008 financial crisis, however, these LIBOR rates were viewed as being
essentially (default) risk-free

- led to many simplifications when it came to the pricing of the
aforementioned securities.

25 (Section 1)



Derivatives Pricing Pre-Crisis
e.g.1. Consider a floating rate note (FRN) with face value 100.

At each time Ti > 0 for i = 1, . . . ,M the note pays interest equal to
100× τi × L(Ti−1,Ti) where τi := Ti − Ti−1 and L(Ti−1,Ti) is the LIBOR
rate at time Ti−1 for borrowing / lending until the maturity Ti .

Note expires at time T = TM and pays 100 (in addition to the interest) at that
time.

A well known and important result is that the fair value of the FRN at any reset
point just after the interest has been paid, is 100

- follows by a simple induction argument.
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Derivatives Pricing Pre-Crisis
e.g.2. The forward LIBOR rate at time t based on simple interest for lending in
the interval [T1,T2] is given by

L(t,T1,T2) = 1
T2 − T1

(
P(t,T1)
P(t,T2) − 1

)
(6)

where P(t,T ) is the time t price of a deposit maturing at time T .

Spot LIBOR rates are obtained by setting T1 = t.

LIBOR rates are quoted as simply-compounded interest rates, and are quoted on
an annual basis.

The accrual period or tenor, T2 − T1, usually fixed at δ = 1/4 or δ = 1/2
- corresponding to 3 months and 6 months, respectively.
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Derivatives Pricing Pre-Crisis
With a fixed value of δ in mind can define the δ-year forward rate at time t with
maturity T as

L(t,T ,T + δ) = 1
δ

(
P(t,T )

P(t,T + δ) − 1
)
. (7)

The δ-year spot LIBOR rate at time t then given by L(t, t + δ) := L(t, t, t + δ).

Also note that L(t,T ,T + δ) is the FRA rate at time t for the swap(let)
maturing at time T + δ.

That is, L(t,T ,T + δ) is unique value of K for which the swaplet that pays
±(L(T ,T + δ)−K ) at time T + δ is worth zero at time t < T .
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Derivatives Pricing Pre-Crisis
e.g.3. We can compound two consecutive 3-month forward LIBOR rates to
obtain corresponding 6-month forward LIBOR rate.

In particular, we have(
1 + F3m

1
4

)(
1 + F3m

2
4

)
= 1 + F6m

2 (8)

where:
F3m

1 := L(0, 3m, 6m)
F3m

1 := L(0, 6m, 9m)
F6m := L(0, 3m, 9m).
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During the Crisis
All three pricing results broke down during the 2008 financial crisis.

Because these results were also required for pricing of swaps and swaptions, caps
and floors, etc., the entire approach to the pricing of fixed income derivative
securities needed broke down.

Cause of this breakdown was the loss of trust in the banking system and the loss
of trust between banks.

This meant that LIBOR rates were no longer viewed as being risk-free.

Easiest way to demonstrate this loss of trust is via the spread between LIBOR
and OIS rates.
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Overnight Indexed Swaps (OIS)
An overnight indexed swap (OIS) is an interest-rate swap where the periodic
floating payment is based on a return calculated from the daily compounding of
an overnight rate (or index).

e.g. Fed Funds rate in the U.S., EONIA in the Eurozone and SONIA in the
U.K.

The fixed rate in the swap is the fixed rate the makes the swap worth zero at
inception.

Note there is essentially no credit / default risk premium included in OIS rates
- due to fact that floating payments in the swap are based on overnight

lending rates.
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Overnight Indexed Swaps (OIS)
We see that the LIBOR-OIS spreads were essentially zero leading up to the
financial crisis

- because market viewed LIBOR rates as being essentially risk-free with no
associated credit risk.

This changed drastically during the crisis when entire banking system nearly
collapsed and market participants realized there were substantial credit risks in
the interbank lending market.

Since the crisis the spreads have not returned to zero and must now be
accounted for in all fixed-income pricing models.

This regime switch constituted an extreme form of model risk where the entire
market made an assumption that resulted in all pricing models being hopelessly
inadequate!
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Derivatives Pricing Post-Crisis
Since the financial crisis we no longer take LIBOR rates to be risk-free.

And risk-free curve is now computed from OIS rates
- so (for example) we no longer obtain the result that an FRN is always worth

par at maturity.

OIS forward rates (but not LIBOR rates!) are calculated as in (6) or (7) so that

Fd(t,T1,T2) = 1
T2 − T1

(
Pd(t,T1)
Pd(t,T2) − 1

)
where Pd denotes the discount factor computed from the OIS curve and Fd
denotes forward rates implied by these OIS discount factors.
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Derivatives Pricing Post-Crisis
Forward LIBOR rates are now defined as risk-neutral expectations (under the
forward measure) of the spot LIBOR rate, L(T ,T + δ).

Relationships such as (8) no longer hold and we now live in a multi-curve world
- with a different LIBOR curve for different tenors
- e.g. we have a 3-month LIBOR curve, a 6-month LIBOR curve etc.

Question: Which if any of the 3-month and 6-month LIBOR curves will be
lower? Why?

With these new definitions, straightforward extensions of the traditional pricing
formulas (that held pre-crisis) can be used to price swaps, caps, floors, swaptions
etc. in the post-crisis world.
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Model Transparency
Will now consider some well known models in equity derivatives space

- these models (or slight variations of them) also be used in foreign exchange
and commodity derivatives markets.

Can be useful when trading in exotic derivative securities and not just the
“vanilla" securities for which prices are readily available.

If these models can be calibrated to observable vanilla security prices, they can
then be used to construct a range of plausible prices for more exotic securities

- so they can help counter extrapolation risk
- and provide alternative estimates of the Greeks or hedge ratios.

Will not focus on stochastic calculus or various numerical pricing techniques here.

Instead simply want to emphasize that a broad class of tractable models exist and
that they should be employed when necessary.
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Model Transparency
Very important for the users of these models to fully understand their various
strengths and weaknesses

- and the implications of these strengths and weaknesses when they are used
to price and risk manage a given security.

Will see later how these models and others can be used together to infer prices of
exotic securities as well as their Greeks or hedge ratios.

In particular will emphasize how they can be used to avoid the pitfalls associated
with price extrapolation.

Any risk manager or investor in exotic securities should therefore maintain a
library of such models that can be called upon as needed.
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Recalling the Implied Volatility Surface
Recall the GBM model:

dSt = µSt dt + σSt dWt .

When we use risk-neutral pricing we know that µ = r − q.

Therefore have a single free parameter, σ, which we can fit to option prices or,
equivalently, the volatility surface.

Not all surprising then that this exercise fails: the volatility surface is never flat so
that a constant σ fails to re-produce market prices.

This became particularly apparent after the stock market crash of October 1987
when market participants began to correctly identify that lower strike options
should be priced with a higher volatility, i.e. there should be a volatility skew.

The volatility surface of the Eurostoxx 50 Index on 28th November 2007 is
plotted in Figure 39.
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The Implied Volatility Surface

The Eurostoxx 50 Volatility Surface.
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Local Volatility Models
The local volatility framework assumes risk-neutral dynamics satisfy

dSt = (r − q)St dt + σl(t,St)St dWt (9)

– so σl(t,St) is now a function of time and stock price.

Key result is the Dupire formula that links the local volatilities, σl(t,St), to the
implied volatility surface:

σ2
l (T ,K ) =

∂C
∂T + (r − q)K ∂C

∂K + qC
K2

2
∂2C
∂K2

(10)

where C = C (K ,T ) = option price as a function of strike and time-to-maturity.

Calculating local volatilities from (10) is difficult and numerically unstable.

Local volatility is very nice and interesting
- a model that is guaranteed to replicate the implied volatility surface in the

market.

But it also has weaknesses ...
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Local Volatility Models
For example, it leads to unreasonable skew dynamics and underestimates the
volatility of volatility or “vol-of-vol".

Moreover the Greeks that are calculated from a local volatility model are
generally not consistent with what is observed empirically.

Understanding these weaknesses is essential from a risk management point of
view.

Nevertheless, local volatility framework is theoretically interesting and is still
often used in practice for pricing certain types of exotic options such as barrier
and digital options.

They are known to be particularly unsuitable for pricing derivatives that depend
on the forward skew such as forward-start options and cliquets.
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Local Volatility
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(a) Implied Volatility Surface
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(b) Local Volatility Surface

Implied and local volatility surfaces: local volatility surface is constructed from
implied volatility surface using Dupire’s formula.
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Stochastic Volatility Models
Most well-known stochastic volatility model is due to Heston (1989).

It’s a two-factor model and assumes separate dynamics for both the stock price
and instantaneous volatility so that

dSt = (r − q)St dt +
√
σtSt dW (s)

t (11)
dσt = κ (θ − σt) dt + γ

√
σt dW (vol)

t (12)

where W (s)
t and W (vol)

t are standard Q-Brownian motions with constant
correlation coefficient, ρ.

Heston’s stochastic volatility model is an incomplete model
- why?

The particular EMM that we choose to work with would be determined by some
calibration algorithm

- the typical method of choosing an EMM in incomplete market models.

The volatility process in (12) is commonly used in interest rate modeling
- where it’s known as the CIR model.
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Stochastic Volatility Models
The price, C (t,St , σt), of any derivative security under Heston must satisfy

∂C
∂t + 1

2σS2 ∂
2C
∂S2 +ρσγS ∂2C

∂S∂σ + 1
2γ

2σ
∂2C
∂σ2 +(r−q)S ∂C

∂S +κ (θ−σ)∂C
∂σ

= rC .
(13)

Price then obtained by solving (13) subject to the relevant boundary conditions.

Once parameters of the model have been identified via some calibration
algorithm, pricing can be done by either solving (13) numerically or alternatively,
using Monte-Carlo.

Note that some instruments can be priced analytically in Heston’s model
- e.g. continuous-time version of a variance swap.

Heston generally captures long-dated skew quite well but struggles with
short-dated skew, particularly when it is steep.
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Stochastic Volatility Models
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Figure displays an implied volatility surface under Heston’s stochastic volatility
model.

45 (Section 2)



A Detour: Forward Skew
Forward skew is the implied volatility skew that prevails at some future date and
that is consistent with some model that has been calibrated to today’s market
data.

e.g. Suppose we simulate some model that has been calibrated to today’s
volatility surface forward to some date T > 0.

On any simulated path can then compute the implied volatility surface as of that
date T .

This is the date T forward implied volatility surface
- forward skew refers to general shape of the skew in this forward vol. surface
- note that this forward skew is model dependent.
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Forward Skew and Local Volatility
Well known that forward skew in local volatility models tends to be very flat.

A significant feature of local volatility models that is not at all obvious until one
explores and works with the model in some detail.

Not true of stochastic volatility or jump diffusion models
- where forward skew is generally similar in shape to the spot skew.

These observations have very important implications for pricing cliquet-style
securities.

The failure of market participants to understand the properties of their models
has often led to substantial trading losses

- such losses might have been avoided had they priced the securities in
question with several different models.
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Example: The Locally Capped, Globally Floored Cliquet

The locally capped, globally floored cliquet is structured like a bond:

Investor pays the bond price upfront at t = 0.
In return he is guaranteed to receive the principal at maturity as well as an
annual coupon.
The coupon is based on monthly returns of underlying security over previous
year. It is calculated as

Payoff = max
{ 12∑

t=1
min (max(rt , −.01), .01) , MinCoupon

}
(14)

where MinCoupon = .02 and each monthly return satisfies

rt = St − St−1

St−1
.

Annual coupon therefore capped at 12% and floored at 2%.

Ignoring global floor, coupon behaves like a strip of forward-starting monthly
call-spreads.

48 (Section 2)



Example: The Locally Capped, Globally Floored Cliquet

A call spread is a long position in a call option with strike k1 and a short position
in a call option with strike k2 > k1.

A call spread is sensitive to the implied volatility skew.

Would therefore expect coupon value to be very sensitive to the forward skew in
the model.

In particular, would expect coupon value to increase as the skew becomes more
negative.

So would expect a local volatility model to underestimate the price of this
security.

In the words of Gatheral (2006):

“We would guess that the structure should be very sensitive to forward skew
assumptions. Thus our prediction would be that a local volatility assumption
would substantially underprice the deal because it generates forward skews that
are too flat . . .”
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Example: The Locally Capped, Globally Floored Cliquet

And indeed this intuition can be confirmed.

In fact numerical experiments suggest that a stochastic volatility model places a
much higher value on this bond than a comparable local volatility model.

But our intuition is not always correct!

So important to evaluate exotic securities with which we are not familiar under
different modeling assumptions.

And any mistakes are likely to be costly!

In the words of Gatheral (2006) again:

“ . . . since the lowest price invariably gets the deal, it was precisely those
traders that were using the wrong model that got the business . . .
The importance of trying out different modeling assumptions cannot be
overemphasized. Intuition is always fallible!”
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Jump-Diffusion Models
Merton’s jump diffusion model assumes that time t stock price satisfies

St = S0 e(µ−σ2/2)t+σWt

Nt∏
i=1

Yi (15)

where Nt ∼ Poisson(λt) and Yi ’s ∼ log-normal and IID.

Each Yi represents the magnitude of the ith jump and stock price behaves like a
regular GBM between jumps.

If the dynamics in (15) are under an EMM, Q, then µ, λ and the mean jump size
are constrained in such a way that Q-expected rate of return must equal r − q.

Question: Can you see how using (15) to price European options might lead to
an infinitely weighted sum of Black-Scholes options prices?

Other tractable jump-diffusion models are due to Duffie, Pan and Singleton
(1998), Kou (2002), Bates (1996) etc.
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Merton’s Jump-Diffusion Model

0
0.2

0.4
0.6

0.8
1

50

100

150
20

40

60

80

100

120

140

Time−to−MaturityStrike

Im
pl

ie
d 

V
ol

at
ili

ty
 (

%
)

An implied volatility surface under Merton’s jump diffusion model
- any observations?
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Levy Processes
Definition: A Levy process is any continuous-time process with stationary and
independent increments.

Definition: An exponential Levy process, St , satisfies St = exp(Xt) where Xt is a
Levy process.

The two most common examples of Levy processes are Brownian motion and
the Poisson process.

A Levy process with jumps can be of infinite activity so that it jumps
infinitely often in any finite time interval, or of finite activity so that it
makes only finitely many jumps in any finite time interval.

The Merton jump-diffusion model is an example of an exponential Levy
process of finite activity.

The most important result for Levy processes is the Levy-Khintchine formula
which describes the characteristic function of a Levy process.
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Time-Changed Exponential Levy Processes
Levy processes cannot capture “volatility clustering", the tendency of high
volatility periods to be followed by periods of high volatility, and low volatility
periods to be followed by periods of low volatility.

This is due to the stationary and independent increments assumption.

Levy models with stochastic time, however, can capture volatility clustering.

Definition: A Levy subordinator is a non-negative, non-decreasing Levy process.

A subordinator can be used to change the “clock speed" or “calendar speed".

More generally, if yt is a positive process, then we can define our stochastic
clock, Yt , as

Yt :=
∫ t

0
ys ds. (16)

Using Yt to measure time instead of the usual t, we can then model a security
price process, St , as an exponential time-changed Levy process.
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Time-Changed Exponential Levy Processes
Can write the Q-dynamics for St as

St = S0e(r−q)t eXYt

EQ0
[
eXYt |y0

] . (17)

Volatility clustering captured using the stochastic clock, Yt .

e.g. Between t and t + ∆t time-changed process will have moved approximately
yt ×∆t units.
So when yt large the clock will have moved further and increments of St will
generally be more volatile as a result.

Note that if the subordinator, Yt , is a jump process, then St can jump even if the
process Xt cannot jump itself.

Note that in (17) the dynamics of St are Q-dynamics corresponding to the cash
account as numeraire. Why is this the case?

- typical of how incomplete markets are often modeled: we directly specify
Q-dynamics so that martingale pricing holds by construction

- other free parameters are then chosen by a calibration algorithm.
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Normal-Inverse-Gaussian Process with CIR Clock
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Variance-Gamma Process with OU-Gamma Clock
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Time-Changed Exponential Levy Processes
Many Levy processes are quite straightforward to simulate.

However, the characteristic functions of the log-stock price are often available in
closed form, even when the Levy process has a stochastic clock.

In fact it can be shown that
φ(u, t) := E

[
eiu log(St) | S0, y0

]
= eiu((r−q)t+log(S0)) ϕ(−iψx(u); t, y0)

ϕ(−iψx(−i); t, y0)iu (18)

where
ψx(u) := log E

[
eiuX1

]
(19)

is the characteristic exponent of the Levy process and ϕ(u; t, y0) is the
characteristic function of Yt given y0.

Therefore if we know the characteristic function of the integrated subordinator,
Yt , and the characteristic function of the Levy process, Xt , then we also know
the characteristic function of the log-stock price

- and (vanilla) options can be priced using numerical transform methods.
58 (Section 2)



Calibration is an Integral part of the Pricing Process

When we used the BDT model to price swaptions,we saw the calibration process
in an integral component of the pricing process.

Indeed, in early 2000’s there was debate about precisely this issue.

Context for the debate was general approach in the market to use simple
one-factor models to price Bermudan swaptions.

Longstaff, Santa-Clara and Schwartz (2001) argued that since the term-structure
of interest rates was driven by several factors, using a one-factor model to price
Bermudan swaptions was fundamentally flawed.

This argument was sound ... but they neglected to account for the calibration
process.

In response Andersen and Andreasen (2001) argued the Bermudan swaption
prices were actually quite accurate even though they were indeed typically priced
at the time using simple one-factor models.
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Calibration is an Integral part of the Pricing Process

Their analysis relied on the fact that when pricing Bermudan swaptions it was
common to calibrate the one-factor models to the prices of European
swaptions.

On the basis that Bermudan swaptions are actually quite “close” to European
swaptions, they argued the extrapolation risk was small.

This debate clearly tackled the issue of model transparency and highlighted
that model dynamics may not be important at all if the exotic security being
priced is within or close to the span of the securities used to calibrate the model.

Essentially two wrongs, i.e. a bad model and bad parameters, can together make
a right, i.e. an accurate price!
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Using Many Models to Manage Model Risk
The models we have described are quite representative of the models that are
used for pricing many equity and FX derivative securities in practice.

Therefore very important for users of these models to fully understand their
strengths and weaknesses and the implications of these strengths and
weaknesses when used to price and risk manage a given security.

Will see how these models and others can be used together to infer the prices of
exotic securities as well as their Greeks or hedge ratios.

In particular we will emphasize how they can be used to avoid the pitfalls
associated with price extrapolation.

Any risk manager or investor in exotic securities would therefore be well-advised
to maintain a library of such models that can be called upon as needed.
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Another Example: Back to Barrier Options
Well known that the price of a barrier option is not solely determined by the
marginal distributions of the underlying stock price.

Figures on next 2 slides emphasizes this point:

They display prices of down-and-out (DOB) and up-and-out (UOB) barrier
call options as a function of the barrier level for several different models.

In each case strike was set equal to the initial value of underlying security.

Parameter values for all models were calibrated to implied volatility surface
of the Eurostoxx 50 Index on October 7th, 2003.

So their marginal distributions coincide, at least to the extent that
calibration errors are small.
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Down-and-Out Barrier Call Prices Under Different Models
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Down-and-out (DOB) barrier call option prices for different models, all of which
have been calibrated to the same implied volatility surface.
See “A Perfect Calibration! Now What?” by Schoutens, Simons and Tistaert
(2003) for further details.
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Up-and-Out Barrier Call Prices Under Different Models
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Up-and-out (UOB) barrier call option prices for different models, all of which
have been calibrated to the same implied volatility surface.
See “A Perfect Calibration! Now What?” by Schoutens, Simons and Tistaert
(2003) for further details.
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Barrier Options and Extrapolation Risk
Clear that the different models result in very different barrier prices.

Question therefore arises as to what model one should use in practice?
- a difficult question to answer!

Perhaps best solution is to price the barrier using several different models that:
(a) have been calibrated to the market prices of liquid securities and
(b) have reasonable dynamics that make sense from a modeling viewpoint.

The minimum and maximum of these prices could then be taken as the bid-offer
prices if they are not too far apart.

If they are far apart, then they simply provide guidance on where the fair price
might be.

Using many plausible models is perhaps the best way to avoid extrapolation risk.
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Model Calibration Risk
Have to be very careful when calibrating models to market prices!

In general (and this is certainly the case with equity derivatives markets) the
most liquid instruments are vanilla call and put options.

Assuming then that we have a volatility surface available to us, we can at the
very least calibrate our model to this surface.

An obvious but potentially hazardous approach would be to solve

min
γ

N∑
i=1

ωi (ModelPricei(γ)−MarketPricei)2 (20)

where ModelPricei and MarketPricei are model and market prices, respectively,
of the ith option used in the calibration.

The ωi ’s are fixed weights that we choose to reflect either the importance or
accuracy of the ith observation and γ is the vector of model parameters.

There are many problems with performing a calibration in this manner!
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Problems with Calibrating Using (20)
1. In general (20) is a non-linear and non-convex optimization problem. It may

therefore be difficult to solve as there may be many local minima.

2. Even if there is only one local minimum, there may be “valleys" containing
the local minimum in which the objective function is more or less flat.

Then possible that the optimization routine will terminate at different points
in the valley even when given the same input, i.e. market option prices

- this is clearly unsatisfactory!
Consider following scenario:

Day 1: Model is calibrated to option prices and resulting calibrated model is
then used to price some path-dependent security. Let P1 be the price of this
path-dependent security.

Day 2: Market environment is unchanged. The calibration routine is rerun,
the path-dependent option is priced again and this time its price is P2. But
now P2 is very different from P1, despite the fact that the market hasn’t
changed. What has happened?
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Problems with Calibrating Using (20)
Recall that the implied volatility surface only determines the marginal
distributions of the stock prices at different times, T .

It tells you nothing(!) about the joint distributions of the stock price at different
times.

Therefore, when we are calibrating to the volatility surface, we are only
determining the model dynamics up-to the marginal distributions.

All of the parameter combinations in the “valley" might result in the very similar
marginal distributions, but they will often result in very different joint
distributions.

This was demonstrated when we saw how different models, that had been
calibrated to the same volatility surface, gave very different prices for
down-and-out call prices.

Also saw similar results when we priced interest-rate swaptions.
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