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Risk Measures, Risk Aggregation and Capital
Allocation

We consider risk measures, risk aggregation and capital allocation in these lecture notes and build on our earlier
introduction to Value-at-Risk (VaR) and Expected Shortfall (ES). We will follow Chapter 8 of the 2nd edition of
Quantitative Risk Management by MFE quite closely. This chapter, however, contains considerably more
material than we will cover and it should be consulted if further details are required.

1 Coherent Measures of Risk

In 1999 Artzner et al. proposed a list of properties that any good risk measure should have and this list gave rise
to the concept of coherent and incoherent measures of risk. Since then a substantial body of research has
developed on the theoretical properties of risk measures and we describe some of these results here.

Let M denote the space of random variables representing portfolio losses over some fixed time interval, ∆. We
assume that M is a convex cone so that if L1 ∈M and L2 ∈M then L1 + L2 ∈M and λL1 ∈M for every
λ > 0. A risk measure is then a real-valued function, % : M→ R, that satisfies certain desirable properties.
%(L) may be interpreted as the riskiness of a portfolio or the amount of capital that should be added to a
portfolio with a loss given by L, so that the portfolio can then be deemed acceptable from a risk point of view.
Note that under this latter interpretation, portfolios with %(L) < 0 are already acceptable and do not require
capital injections. In fact, if %(L) < 0 then capital could even be withdrawn while the portfolio would still
remain acceptable. The following properties of a risk measure merit special attention:

Axiom 1 : (Translation Invariance) For all L ∈M and every constant a ∈ R, we have %(L+ a) = %(L) + a.

This property is necessary if the risk-capital interpretation we stated above is to make sense.

Axiom 2 : (Subadditivity) For all L1, L2 ∈M, we have %(L1 + L2) ≤ %(L1) + %(L2).

This axiom reflects the idea that pooling risks helps to diversify a portfolio. While this has been the most
debated of the risk axioms, it allows for the decentralization of risk management. For example, if a risk
manager has a total risk budget of B, he can divide B into B1 and B2 where B1 +B2 = B. He can then
allocate risk budgets of B1 and B2 to different trading desks or operating units in the organization, safe in
the knowledge that the firm-wide risk will not exceed B.

Axiom 3 : (Positive Homogeneity) For all L ∈M and every λ > 0 we have %(λL) = λ%(L).

This axiom is also somewhat controversial and has been criticized for not penalizing concentration of risk
and any associated liquidity problems. In particular, if λ > 0 is very large, then some people claim that we
should require %(λL) > λ%(L). However, such a result would be inconsistent with the subadditivity axiom.
This is easily seen if we write

%(nL) = %(L+ · · ·+ L) ≤ n%(L) (1)

where n ∈ N and the inequality follows from subadditivity. The positive homogeneity assumption states
that we must have equality in (1). This reflects the fact that there are no diversification benefits when we
hold multiples of the same portfolio, L.
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Axiom 4 : (Monotonicity) For L1, L2 ∈M such that L1 ≤ L2 almost surely, we have %(L1) ≤ %(L2).

It is clear that any risk measure should satisfy this axiom.

Definition 1 A risk measure, %, acting on the convex cone M is called coherent if it satisfies the translation
invariance, subadditivity, positive homogeneity and monotonicity axioms.

Remark 1 The criticisms of the subadditivity and positive homogeneity axioms have led to the study of
convex risk measures. A convex risk measure satisfies the same axioms as a coherent risk measure except
that the subadditivity and positive homogeneity axioms are replaced by the convexity axiom:

Axiom 5 : (Convexity) For L1, L2 ∈M and λ ∈ [0, 1],

%(λL1 + (1− λ)L2) ≤ λ%(L1) + (1− λ)%(L2).

It is possible within the convex class to find risk measures that satisfy %(λL) ≥ λ%(L) for λ > 1.

1.1 Value-at-Risk

Value-at-risk is not a coherent risk measure because it fails to be subadditive. This is perhaps the principal1

criticism that is made of VaR when it is compared to other risk measures. We will see two examples below that
demonstrate this. We first recall the definition of VaR.

Definition 2 Let α ∈ (0, 1) be some fixed confidence level. Then the VaR of the portfolio loss, L, at the
confidence interval, α, is given by

VaRα := qα(L) = inf{x ∈ R : FL(x) ≥ α}.

where FL(·) is the CDF of the random variable, L.

Example 1 Consider2 two assets, X and Y , that are usually normally distributed but are subject to occasional
shocks. In particular, assume that X and Y are independent and identically distributed with

X = ε + η where ε ∼ N(0, 1) and η =

{
0, with prob .991
−10, with prob .009.

Consider a portfolio consisting of X and Y . Then

VaR.99(X + Y ) = 9.8 > VaR.99(X) + VaR.99(Y ) = 3.1 + 3.1 = 6.2

thereby demonstrating the non-subadditivity of VaR.

Exercise 1 Confirm that the VaR values of 3.1 and 9.8 in the previous example are correct.

We now give a more meaningful and disturbing example of how VaR fails to be sub-additive.

Example 2 (VaR for a Portfolio of Defaultable Bonds (E.G. 6.7 in 1st ed. of MFE))
Consider a portfolio of n = 100 defaultable corporate bonds where the probability of a default over the next year
is identical for all bonds and is equal to 2%. We assume that defaults of different bonds are independent from
one another. The current price of each bond is 100 and if there is no default, a bond will pay 105 one year from
now. If the bond defaults then there is no repayment. This means we can define Li, the loss on the ith bond, as

Li := 105Yi − 5

where Yi = 1 if the bond defaults over the next year and Yi = 0 otherwise. By assumption we also see that
P (Li = −5) = .98 and P (Li = 100) = .02. Consider now the following two portfolios:

1Of course, the general criticism that summarizing an entire loss distribution with just a single number can be applied to
all risk measures, coherent or not. Furthermore, there is the implicit assumption that we know the loss distribution when
determining the value of a risk measure. This assumption is often unjustifiable: it can and indeed has often led to financial
catastrophe!

2This example is taken from “Subadditivity Re-Examined: the Case for Value-at-Risk” by Dańıelsson et al.
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A: A fully concentrated portfolio consisting of 100 units of bond 1.

B: A completely diversified portfolio consisting of 1 unit of each of the 100 bonds.

We can compute the 95% VaR for each portfolio as follows:

Portfolio A: The loss on portfolio A is given by LA = 100L1 so that VaR.95(LA) = 100VaR.95(L1). Note that
P (L1 ≤ −5) = .98 > .95 and P (L1 ≤ l) = 0 < .95 for l < −.5. We therefore obtain VaR.95(L1) = −5 and so
VaR.95(LA) = −500. So the 95% VaR for portfolio A corresponds to a gain(!) of 500.

Portfolio B: The loss on portfolio B is given by

LB =

100∑
i=1

Li = 105

100∑
i=1

Yi − 500

and so VaR.95(LB) = 105 VaR.95(
∑100
i=1 Yi)− 500. Note that M :=

∑100
i=1 Yi ∼ Bin(100, .02) and by

inspection we see that P (M ≤ 5) ≈ .984 > .95 and P (M ≤ 4) ≈ .949 < .95. Therefore VaR.95(M) = 5 and so
VaR.95(LB) = 525− 500 = 25.

So according to VaR.95, portfolio B is riskier than portfolio A. This is clearly nonsensical. Note that we have
shown that

VaR.95

(
100∑
i=1

Li

)
≥ 100 VaR.95(L1) =

100∑
i=1

VaR.95(Li)

demonstrating again that VaR is not subadditive.

Remark 2 Let % be any coherent risk measure that depends only on the distribution of L. Then we obtain

%

(
100∑
i=1

Li

)
≤

100∑
i=1

%(Li) = 100%(L1)

and so in the previous example, % would correctly classify portfolio A as being riskier than portfolio B.

We now describe a situation where VaR is always subadditive.

Theorem 1 (Subadditivity of VaR for Elliptical Risk Factors (Theorem 6.8 in MFE))

Suppose that X ∼ En(µ,Σ, ψ) and let M be the set of linearized portfolio losses of the form

M := {L : L = λ0 +

n∑
i=1

λiXi, λi ∈ R}.

Then for any two losses L1, L2 ∈M, and 0.5 ≤ α < 1,

VaRα(L1 + L2) ≤ VaRα(L1) + VaRα(L2).

Proof: Without loss of generality we may assume that λ0 = 0. Recall also that if X ∼ En(µ,Σ, ψ) then
X = AY + µ where A ∈ Rn×k, µ ∈ Rn and Y ∼ Sk(ψ) is a spherical random vector. Any element L ∈M can
therefore be represented as

L = λTX = λTAY + λTµ

∼ ||λTA|| Y1 + λTµ (2)

where (2) follows from part 3 of Theorem 2 in the Multivariate Distributions lecture notes. Now the translation
invariance and positive homogeneity of VaR imply

VaRα(L) = ||λTA|| VaRα(Y1) + λTµ.
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Suppose now that L1 := λT1 X and L2 := λT2 X. The triangle inequality implies

||(λ1 + λ2)TA|| ≤ ||λT1 A|| + ||λT2 A||

and since VaRα(Y1) ≥ 0 for α ≥ .5 (why?), the result follows from (2). �

Remark 3 It is a widely held belief that if the individual loss distributions under consideration are continuous
and symmetric then VaR is subadditive. This is not true and a counterexample may be found in Section 6.2 of
MFE. The loss distributions in the counterexample are smooth and symmetric but the copula is highly
asymmetric. VaR can also fail to be subadditive when the individual loss distributions have heavy tails.

1.2 Expected Shortfall

We now show that expected shortfall (ES) or CVaR is a coherent measure of risk. We first recall the definition
of ES.

Definition 3 For a portfolio loss, L, satisfying E[|L|] <∞ the expected shortfall at confidence level α ∈ (0, 1)
is given by

ESα(L) :=
1

1− α

∫ 1

α

qu(FL) du.

The relationship between ESα and VaRα is therefore given by

ESα(L) :=
1

1− α

∫ 1

α

VaRu(L) du (3)

from which it is clear that ESα(L) ≥ VaRα(L). When the CDF, FL, is continuous then a more well known
representation of ESα(L) is given by

ESα(L) :=
E [L; L ≥ qα(L)]

1− α
= E [L | L ≥ VaRα] . (4)

The following result demonstrates that expected shortfall is a coherent risk measure. We again follow the proof
in MFE.

Theorem 2 Expected shortfall is a coherent risk measure.

Proof: The translation invariance, positive homogeneity and monotonicity properties all follow from the
representation of ES in (3) and the same properties for quantiles. We therefore only need to demonstrate
subadditivity.

Let L1, . . . , Ln be a sequence of random variables and let L1,n ≥ · · · ≥ Ln,n be the associated sequence of
order statistics. Note that

m∑
i=1

Li,n = sup{Li1 + · · ·+ Lim : 1 ≤ i1 < · · · < im ≤ n} (5)

where m ∈ N satisfying 1 ≤ m ≤ n is arbitrary. Now let (L, L̃) be a pair of random variables with joint CDF, F ,
and let (L1, L̃1), . . . , (Ln, L̃n) be an IID sequence of bivariate random vectors with this same CDF. Then

m∑
i=1

(L+ L̃)i,n = sup{(L+ L̃)i1 + · · ·+ (L+ L̃)im : 1 ≤ i1 < · · · < im ≤ n}

≤ sup{Li1 + · · ·+ Lim : 1 ≤ i1 < · · · < im ≤ n} + sup{L̃i1 + · · ·+ L̃im : 1 ≤ i1 < · · · < im ≤ n}

=

m∑
i=1

Li,n +

m∑
i=1

L̃i,n. (6)
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Now set3 m = bn(1− α)c and let n→∞. It may be shown4 that 1
m

∑m
i=1 Li,n → ESα(L),

1
m

∑m
i=1 L̃i,n → ESα(L̃) and 1

m

∑m
i=1(L+ L̃)i,n → ESα(L+ L̃). The subadditivity of ES then follows

immediately from (6). �

There are many other examples of risk measures that are coherent. They include, for example, risk measures
based on generalized scenarios and spectral risk measures of which expected shortfall is an example.

2 Bounds for Aggregate Risk

Let L = (L1, . . . , Ln) denote a vector of random variables, each one representing a loss on a particular trading
desk, portfolio or operating unit within a firm. Sometimes we wish to aggregate these losses into a single
random variable, ψ(L), say. Common examples of the aggregating function, ψ(·), include:

• The total loss so that ψ(L) =
∑n
i=1 Li.

• The maximum loss where ψ(L) = max{L1, . . . , Ln}.

• The excess-of-loss treaty so that ψ(L) =
∑n
i=1(Li − ki)+.

• The stop-loss treaty in which case ψ(L) = (
∑n
i=1 Li − k)

+
.

We wish to understand the risk of the aggregate loss function, %(ψ(L)), but to do so we need to know the
distribution of ψ(L). In practice, however, we often know only the distributions of the Li’s and have little or no
information about the dependency or copula of the Li’s. In this case we can try to compute lower and upper
bounds on %(ψ(L)). In particular we can formulate the two problems

%min := inf{%(ψ(L)) : Li ∼ Fi, i = 1, . . . , n}
%max := sup{%(ψ(L)) : Li ∼ Fi, i = 1, . . . , n}

where Fi is the CDF of the loss, Li. Problems of this type are referred to as Frechet problems and solutions are
available in some circumstances. Indeed, when we study copulas we will see an example of such a problem when
we address the question of attainable correlations given known marginal distributions. In a risk management
context, these problems have been studied in some detail when ψ(L) =

∑n
i=1 Li and %(·) is the VaR function.

Results related to this problem are generally of more theoretical than practical interest and so we will not discuss
them any further. Results and references, however, can be found in Section 6.2 of MFE.

3 Capital Allocation

Consider again a total loss given by L =
∑n
i=1 Li and suppose we have determined the risk, %(L), of this loss.

The capital allocation problem seeks a decomposition, AC1, . . . , ACn, such that

%(L) =

n∑
i=1

ACi (7)

and where ACi is interpreted as the risk capital that has been allocated to the ith loss, Li. This problem is
important in the setting of performance evaluation where we want to compute a risk-adjusted return on capital
(RAROC). This return might be estimated, for example, by Expected Profit / Risk Capital and in order to

3bxc is defined to be the largest integer less than or equal to x, i.e. the floor of x.
4See, for example, Lemma 2.20 in MFE.
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compute this we must determine the risk capital of each of the Li’s. Obviously, we would require the
corresponding risk capitals to sum to the total risk capital so that (7) is satisfied.

More formally, let L(λ) :=
∑n
i=1 λiLi be the loss associated with the portfolio consisting of λi units of the loss,

Li, for i = 1, . . . , n. The loss on the actual portfolio under consideration is then given by L(1). Let %(·) be a
risk measure on a space M that contains L(λ) for all λ ∈ Λ, an open set containing 1. Then the associated risk
measure function, r% : Λ→ R, is defined by r%(λ) = %(L(λ)). We have the following definition.

Definition 4 Let r% be a risk measure function on some set Λ ⊂ Rn \ 0 such that 1 ∈ Λ. Then a mapping,
fr% : Λ→ Rn, is called a per-unit capital allocation principle associated with r% if, for all λ ∈ Λ, we have

n∑
i=1

λif
r%
i (λ) = r%(λ). (8)

We then interpret f
r%
i as the amount of capital allocated to one unit of Li when the overall portfolio loss is

L(λ). The amount of capital allocated to a position of λiLi is therefore λif
r%
i and so by (8), the total risk

capital is fully allocated.

Definition 5 (Euler Capital Allocation Principle) If r% is a positive-homogeneous risk-measure
function which is differentiable on the set Λ, then the per-unit Euler capital allocation principle associated with
r% is the mapping

fr% : Λ→ Rn : f
r%
i (λ) =

∂r%
∂λi

(λ).

The Euler allocation principle is seen to be a full allocation principle since a well-known property of any positive
homogeneous and differentiable function, r(·) is that it satisfies r(λ) =

∑n
i=1 λi

∂r
∂λi

(λ). The Euler allocation
principle therefore gives us different risk allocations for different positive homogeneous risk measures. It should
also be mentioned that there are good economic reasons5 for employing the Euler principle when computing
capital allocations. We will not discuss those reasons here, however.

We now describe the Euler allocation for some specific risk measure below. Section 6.3 of MFE should be
consulted for proofs and further details if necessary.

Standard Deviation and the Covariance Principle

Let rsd(λ) = std(L(λ)) be our risk measure function and write Σ for the variance-covariance matrix of

L1, . . . , Ln. Then rsd(λ) =
(
λTΣλ

)1/2
and using the Euler allocation principle it follows that

frsdi (λ) =
∂rsd
∂λi

(λ) =
(Σλ)i
rsd(λ)

=

∑n
j=1 Cov(Li, Lj)λj

rsd(λ)
=

Cov(Li, L(λ))√
Var(L(λ))

(9)

and the actual capital allocation, ACi, for Li is obtained by setting λ = 1 in (9). This is then known as the
covariance principle.

Value-at-Risk and Value-at-Risk Contributions

If rαV aR(λ) = VaRα(L(λ)) is our risk measure function, then subject to technical conditions it can be shown that

f
rαV aR
i (λ) =

∂rαV aR
∂λi

(λ) = E [Li | L(λ) = VaRα(L(λ))] , for i = 1, . . . , n. (10)

5See Section 6.3.3 of MFE for these reasons.
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Once again, the actual capital allocation, ACi, for Li is then obtained by setting λ = 1 in (10).

Expected Shortfall and Shortfall Contributions

If rαES(λ) = E [L(λ) | L(λ) ≥ VaRαL(λ)] is our risk measure function, then subject again to technical
conditions it can be shown that

f
rαES
i (λ) =

∂rαES
∂λi

(λ) =
1

1− α
E [Li | L(λ) ≥ VaRα(L(λ))] , for i = 1, . . . , n. (11)

We therefore have the capital allocation ACi = E [Li | L ≥ VaRα(L)] for the risk, Li, where L := L(1).

3.1 An Application: Estimating Value-at-Risk Contributions

We now consider an application6 where we will use (10) to estimate the VaR contributions from each security in
a portfolio. We will do this via Monte-Carlo simulation, a general approach that can be used for complex
portfolios where (10) cannot be calculated analytically. Recall that the total portfolio loss is given by
L =

∑n
i=1 Li. According to (10) with λ = 1 we know that

ACi = E [Li | L = VaRα(L)] (12)

=
∂ VaRα(λ)

∂λi

∣∣∣∣
λ=1

= wi
∂ VaRα
∂wi

(13)

for i = 1, . . . , n and where wi is the number of units of the ith security held in the portfolio.

Question: How might we use Monte-Carlo to estimate the VaR contribution, ACi, of the ith asset?

Solution: There are three approaches we might take:

1. As ACi is a (mathematical) derivative we could estimate it numerically. In particular a finite-difference
estimator based on (13) would take the form

ÂCi :=
VaRi,+α − VaRi,−α

2δi
(14)

where VaRi,+α (VaRi,−α ) is the portfolio VaR when the number of units of the ith security is increased
(decreased) by δiwi units. Each term in the numerator of (14) can be estimated via Monte-Carlo. For
variance reduction purposes, the same set of random returns should be used to estimate each term. It
remains to choose an appropriate value of δi. There is a bias-variance tradeoff to be made in this choice
and a value of δi = .05 or .1 seems to lead to reasonable results in practice.

Note that this estimator will not satisfy the additivity property so that
∑n
i ACi 6= VaRα. It easy to

perform a re-scaling of the estimated ÂCi’s so that the property will be satisfied.

2. Another approach is to estimate (12) directly. We could do this by simulating N portfolio losses

L(1), . . . , L(N) with L(j) =
∑n
i=1 L

(j)
i where L

(j)
i is the loss on the ith security in the jth simulation. We

could then set (why?) ACi = L
(m)
i where m denotes the VaRα scenario, i.e. L(m) is the dN(1− α)eth

largest of the N simulated portfolio losses.

Question: Will this estimator satisfy the additivity property, i.e. will
∑n
i ACi = VaRα?

Question: What is the problem with this approach? Will this problem disappear if we let N →∞?

6See “Cracking VAR with kernels” (RISK, 2006) by E. Epperlein and A. Smillie for a more complete application and discussion.
See also “Simulations with Exact Means and Covariances” (2009) by A. Meucci for an application where the VaR contributions
of a equity options portfolio are estimated.
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3. An alternative approach that resolves the problem alluded to in the previous question is to take a weighted
average of the losses in the ith security around the VaRα scenario. One convenient way to do this is via a
kernel function. In particular, we say K(x;h) := K

(
x
h

)
is a kernel function if it is symmetric about zero,

takes a maximum at x = 0 and is non-negative for all x. A simple choice is to take the triangle kernel so
that

K(x;h) := max
(

1−
∣∣∣x
h

∣∣∣ , 0
)
.

The kernel estimate of ACi is then given by

ÂC
ker

i :=

∑N
j=1K

(
L(j) − V̂aRα;h

)
L
(j)
i∑N

j=1K
(
L(j) − V̂aRα;h

) (15)

where V̂aRα := L(m) with m as defined above. One minor problem with (15) is that the additivity
property doesn’t hold. We can easily correct this by instead setting

ÂC
ker

i := V̂aRα

∑N
j=1K

(
L(j) − V̂aRα;h

)
L
(j)
i∑N

j=1K
(
L(j) − V̂aRα;h

)
L(j)

. (16)

It remains to choose an appropriate value of the smoothing parameter, h. It can be shown that an optimal
choice (in the sense of minimizing mean-squared error) is to set

h = 2.575σN−1/5

where σ is the standard deviation of L, a quantity that we can easily estimate.

Exercise 2 How would you use Monte-Carlo to estimate ACi when we use expected shortfall as our risk
measure?

When Losses Are Elliptically Distributed

If L1, . . . , LN have an elliptical distribution then it may be shown that

ACi = E [Li] +
Cov (L,Li)

Var (L)
(VaRα(L)− E [L]) . (17)

In our numerical example below, we will assume that the portfolio losses are elliptically distributed so that the
VaR contributions can also be computed analytically via (17) and then compared to the Monte-Carlo estimates
obtained from (16).

Example 3 (Elliptically Distributed Losses)
In Figure 3 we have plotted the estimated V aRα=.99 contributions of a portfolio consisting of n = 10 securities.
We assumed losses were multivariate normally distributed so that (L1, . . . , Ln) ∼ MNn(0,Σ). The first eight
securities were all positively correlated with one another, the second-to-last security was uncorrelated and the
last security had a correlation of -.2 with the remaining securities. As a result we see that the last two securities
have a negative contribution to the total portfolio VaR. The “naive” Monte-Carlo estimator refers to the
estimator outlined in approach #2 above.

3.2 Estimating Factor Contributions to Value-at-Risk

We have focussed on computing the VaR contribution from individual securities. We might prefer, however, to
compute the VaR contribution from a collection of risk factors and it is relatively straightforward to do this. In
fact, our earlier calculations can be viewed as a specific case of this where we have one (change in risk) factor
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Figure 1: VaR.99(L) by Security. The analytic numbers are correct as the underlying losses were elliptically –
in this case multivariate normally – distributed. The Monte-Carlo estimates were based on 100k simulations.
The kernel-smoothed estimate is very accurate whereas the naive approach is (not surprisingly) very poor.
The true VaR.99(L) was $6.37m and the estimated VaR.99(L) was $6.32m.

for each security in the portfolio. In that case the ith factor, Fi, is simply the return on the ith security and we
can write L =

∑n
i=1 wiFi. The contribution of Fi to the portfolio VaR is then ACi as computed earlier.

More generally we might be interested in risk factors, F̃, defined according to F̃ := PF for some constant
matrix P. In the case that P is invertible we can write

L = w>F = w>P−1PF = w̃>F̃

where
w̃> := w>P−1. (18)

We can therefore view the portfolio as a portfolio with individual losses F̃1, . . . , F̃n with positions w̃1, . . . , w̃n
and compute the VaR contributions as above. If however, we have already estimated the VaR contributions
from the original securities (or risk factors F), then we can use these estimates by noting that

∂ VaRα
∂w̃

= P
∂ VaRα
∂w

. (19)

As in (13) the VaR contribution of F̃i is then given by

ÃCi = w̃i
∂ VaRα
∂w̃i

which is easily calculated from the previously calculated AC1, . . . , ACn using (18) and (19).

In the case where P is not invertible then a little more work is required. But see A. Meucci’s “Risk
Contributions from Generic User-Defined Factors ” for how to handle this case as well as additional examples.


