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Risk Measures
LetM denote the space of random variables representing portfolio losses
over some fixed time interval, ∆.
Assume that M is a convex cone so that

If L1,L2 ∈ M then L1 + L2 ∈ M
And λL1 ∈ M for every λ > 0.

A risk measure is a real-valued function, % : M→ R, that satisfies certain
desirable properties.

%(L) may be interpreted as the riskiness of a portfolio or ...
... the amount of capital that should be added to the portfolio so that it can
be deemed acceptable

Under this interpretation, portfolios with %(L) < 0 are already acceptable
In fact, if %(L) < 0 then capital could even be withdrawn.
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Axioms of Coherent Risk Measures
Translation Invariance For all L ∈M and every constant a ∈ R, we have

%(L + a) = %(L) + a.

- necessary if earlier risk-capital interpretation is to make sense.

Subadditivity: For all L1,L2 ∈M we have

%(L1 + L2) ≤ %(L1) + %(L2)

- reflects the idea that pooling risks helps to diversify a portfolio

- the most debated of the risk axioms

- allows for the decentralization of risk management.
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Axioms of Coherent Risk Measures
Positive Homogeneity For all L ∈M and every λ > 0 we have

%(λL) = λ%(L).

- also controversial: has been criticized for not penalizing concentration of risk
- e.g. if λ > 0 very large, then perhaps we should require %(λL) > λ%(L)
- but this would be inconsistent with subadditivity:

%(nL) = %(L + · · ·+ L) ≤ n%(L) (1)

- positive homogeneity implies we must have equality in (1).

Monotonicity For L1,L2 ∈M such that L1 ≤ L2 almost surely, we have

%(L1) ≤ %(L2)

- clear that any risk measure should satisfy this axiom.
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Coherent Risk Measures
Definition: A risk measure, %, acting on the convex cone M is called coherent if
it satisfies the translation invariance, subadditivity, positive homogeneity and
monotonicity axioms. Otherwise it is incoherent.

Coherent risk measures were introduced in 1998
- and a large literature has developed since then.
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Convex Risk Measures
Criticisms of subadditivity and positive homogeneity axioms led to the study
of convex risk measures.

A convex risk measure satisfies the same axioms as a coherent risk measure
except that subadditivity and positive homogeneity axioms are replaced by
the convexity axiom:

Convexity Axiom For L1,L2 ∈M and λ ∈ [0, 1]

%(λL1 + (1− λ)L2) ≤ λ%(L1) + (1− λ)%(L2)

It is possible to find risk measures within the convex class that satisfy
%(λL) > λ%(L) for λ > 1.
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Value-at-Risk
Recall ...

Definition: Let α ∈ (0, 1) be some fixed confidence level. Then the VaR of the
portfolio loss, L, at the confidence level, α, is given by

VaRα := qα(L) = inf{x ∈ R : FL(x) ≥ α}

where FL(·) is the CDF of the random variable, L.

Value-at-Risk is not a coherent risk measure since it fails to be subadditive!
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Example 1
Consider two IID assets, X and Y where

X = ε + η where ε ∼ N(0, 1)

and η =
{

0, with prob .991
−10, with prob .009.

Consider a portfolio consisting of X and Y . Then

VaR.99(X + Y ) = 9.8
> VaR.99(X) + VaR.99(Y )
= 3.1 + 3.1
= 6.2

- thereby demonstrating the non-subadditivity of VaR.
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Example 2: Defaultable Bonds
Consider a portfolio of n = 100 defaultable corporate bonds

Probability of default over next year identical for all bonds and equal to 2%.
Default events of different bonds are independent.
Current price of each bond is 100.
If bond does not default then will pay 105 one year from now

- otherwise there is no repayment.

Therefore can define the loss on the ith bond, Li , as

Li := 105Yi − 5

where Yi = 1 if the bond defaults over the next year and Yi = 0 otherwise.

By assumption also see that P(Li = −5) = .98 and P(Li = 100) = .02.
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Example 2: Defaultable Bonds
Consider now the following two portfolios:
A: A fully concentrated portfolio consisting of 100 units of bond 1.

B: A completely diversified portfolio consisting of 1 unit of each of the 100
bonds.

We want to compute the 95% VaR for each portfolio.

Obtain VaR.95(LA) = −500, representing a gain(!) and VaR.95(LB) = 25.

So according to VaR.95, portfolio B is riskier than portfolio A
- absolute nonsense!

Have shown that

VaR.95

( 100∑
i=1

Li

)
≥ 100 VaR.95(L1) =

100∑
i=1

VaR.95(Li)

demonstrating again that VaR is not sub-additive.
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Example 2: Defaultable Bonds
Now let % be any coherent risk measure depending only on the distribution of L.

Then obtain (why?)

%

( 100∑
i=1

Li

)
≤

100∑
i=1

%(Li) = 100%(L1)

- so % would correctly classify portfolio A as being riskier than portfolio B.

We now describe a situation where VaR is always sub-additive ...
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Subadditivity of VaR for Elliptical Risk Factors
Theorem
Suppose that X ∼ En(µ,Σ, ψ) and let M be the set of linearized portfolio losses
of the form

M := {L : L = λ0 +
n∑

i=1
λiXi , λi ∈ R}.

Then for any two losses L1,L2 ∈M, and 0.5 ≤ α < 1,

VaRα(L1 + L2) ≤ VaRα(L1) + VaRα(L2).

12 (Section 1)



Proof of Subadditivity of VaR for Elliptical Risk Factors

Without (why?) loss of generality assume that λ0 = 0.

Recall if X ∼ En(µ,Σ, ψ) then X = AY + µ where A ∈ Rn×k , µ ∈ Rn and
Y ∼ Sk(ψ) is a spherical random vector.

Any element L ∈M can therefore be represented as

L = λTX = λTAY + λTµ

∼ ||λTA|| Y1 + λTµ (2)

- (2) follows from part 3 of Theorem 2 in Multivariate Distributions notes.
Translation invariance and positive homogeneity of VaR imply

VaRα(L) = ||λTA|| VaRα(Y1) + λTµ.

Suppose now that L1 := λT
1 X and L2 := λT

2 X. Triangle inequality implies

||(λ1 + λ2)TA|| ≤ ||λT
1 A|| + ||λT

2 A||

Since VaRα(Y1) ≥ 0 for α ≥ .5 (why?), result follows from (2). 2
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Subadditivity of VaR
Widely believed that if individual loss distributions under consideration are
continuous and symmetric then VaR is sub-additive.

This is not true(!)
Counterexample may be found in Chapter 8 of MFE

The loss distributions in the counterexample are smooth and symmetric but
the copula is highly asymmetric.

VaR can also fail to be sub-additive when the individual loss distributions have
heavy tails.
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Expected Shortfall
Recall ...

Definition: For a portfolio loss, L, satisfying E[|L|] <∞ the expected shortfall
(ES) at confidence level α ∈ (0, 1) is given by

ESα := 1
1− α

∫ 1

α

qu(FL) du.

Relationship between ESα and VaRα therefore given by

ESα := 1
1− α

∫ 1

α

VaRu(L) du (3)

- clear that ESα(L) ≥ VaRα(L).

When the CDF, FL, is continuous then a more well known representation given by

ESα = E [L | L ≥ VaRα] .
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Expected Shortfall
Theorem: Expected shortfall is a coherent risk measure.

Proof: Translation invariance, positive homogeneity and monotonicity properties
all follow from the representation of ES in (3) and the same properties for
quantiles.

Therefore only need to demonstrate subadditivity
- this is proven in lecture notes. 2

There are many other examples of risk measures that are coherent
- e.g. risk measures based on generalized scenarios
- e.g. spectral risk measures

- of which expected shortfall is an example.
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Risk Aggregation
Let L = (L1, . . . ,Ln) denote a vector of random variables

- perhaps representing losses on different trading desks, portfolios or operating
units within a firm.

Sometimes need to aggregate these losses into a random variable, ψ(L), say.

Common examples include:

1. The total loss so that ψ(L) =
∑n

i=1 Li .

2. The maximum loss where ψ(L) = max{L1, . . . ,Ln}.

3. The excess-of-loss treaty so that ψ(L) =
∑n

i=1(Li − ki)+.

4. The stop-loss treaty in which case ψ(L) = (
∑n

i=1 Li − k)+.
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Risk Aggregation
Want to understand the risk of the aggregate loss function, %(ψ(L))

- but first need the distribution of ψ(L).

Often know only the distributions of the Li ’s
- so have little or no information about the dependency or copula of the Li ’s.

In this case can try to compute lower and upper bounds on %(ψ(L)):

%min := inf{%(ψ(L)) : Li ∼ Fi , i = 1, . . . ,n}
%max := sup{%(ψ(L)) : Li ∼ Fi , i = 1, . . . ,n}

where Fi is the CDF of the loss, Li .

Problems of this type are referred to as Frechet problems
- solutions are available in some circumstances, e.g. attainable correlations.

Have been studied in some detail when ψ(L) =
∑n

i=1 Li and %(·) is the VaR
function.
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Capital Allocation
Total loss given by L =

∑n
i=1 Li .

Suppose we have determined the risk, %(L), of this loss.

The capital allocation problem seeks a decomposition, AC1, . . . ,ACn, such that

%(L) =
n∑

i=1
ACi (4)

- ACi is interpreted as the risk capital allocated to the ith loss, Li .

This problem is important in the setting of performance evaluation where we
want to compute a risk-adjusted return on capital (RAROC).

e.g. We might set RAROCi = Expected Profiti / Risk Capitali
- must determine risk capital of each Li in order to compute RAROCi .
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Capital Allocation
More formally, let L(λ) :=

∑n
i=1 λiLi be the loss associated with the portfolio

consisting of λi units of the loss, Li , for i = 1, . . . ,n.

Loss on actual portfolio under consideration then given by L(1).

Let %(·) be a risk measure on a space M that contains L(λ) for all λ ∈ Λ, an
open set containing 1.

Then the associated risk measure function, r% : Λ→ R, is defined by

r%(λ) = %(L(λ)).

We have the following definition ...
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Capital Allocation Principles
Definition: Let r% be a risk measure function on some set Λ ⊂ Rn \ 0 such that
1 ∈ Λ.
Then a mapping, f r% : Λ→ Rn, is called a per-unit capital allocation principle
associated with r% if, for all λ ∈ Λ, we have

n∑
i=1

λif
r%
i (λ) = r%(λ). (5)

We then interpret f r%
i as the amount of capital allocated to one unit of Li

when the overall portfolio loss is L(λ).

The amount of capital allocated to a position of λiLi is therefore λif
r%
i and

so by (5), the total risk capital is fully allocated.
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The Euler Allocation Principle
Definition: If r% is a positive-homogeneous risk-measure function which is
differentiable on the set Λ, then the per-unit Euler capital allocation principle
associated with r% is the mapping

f r% : Λ→ Rn : f r%
i (λ) = ∂r%

∂λi
(λ).

The Euler allocation principle is a full allocation principle since a well-known
property of any positive homogeneous and differentiable function, r(·) is
that it satisfies

r(λ) =
n∑

i=1
λi
∂r
∂λi

(λ).

The Euler allocation principle therefore gives us different risk allocations for
different positive homogeneous risk measures.

There are good economic reasons for employing the Euler principle when
computing capital allocations.
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Value-at-Risk and Value-at-Risk Contributions
Let rαVaR(λ) = VaRα(L(λ)) be our risk measure function.

Then subject to technical conditions can be shown that

f rαVaR
i (λ) = ∂rαVaR

∂λi
(λ)

= E [Li | L(λ) = VaRα(L(λ))] , for i = 1, . . . ,n. (6)

Capital allocation, ACi , for Li is then obtained by setting λ = 1 in (6).

Will now use (6) and Monte-Carlo to estimate the VaR contributions from each
security in a portfolio.

- Monte-Carlo is a general approach that can be used for complex portfolios
where (6) cannot be calculated analytically.
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An Application: Estimating Value-at-Risk Contributions

Recall total portfolio loss is L =
∑n

i=1 Li .

According to (6) with λ = 1 we know that

ACi = E [Li | L = VaRα(L)] (7)

= ∂ VaRα(λ)
∂λi

∣∣∣∣
λ=1

= wi
∂ VaRα
∂wi

(8)

for i = 1, . . . ,n and where wi is the number of units of the ith security held in
the portfolio.

Question: How might we use Monte-Carlo to estimate the VaR contribution,
ACi , of the ith asset?

Solution: There are three approaches we might take:
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First Approach: Monte-Carlo and Finite Differences

As ACi is a (mathematical) derivative we could estimate it numerically using a
finite-difference estimator.

Such an estimator based on (8) would take the form

ÂC i := VaRi,+
α − VaRi,−

α

2δi
(9)

where VaRi,+
α (VaRi,−

α ) is the portfolio VaR when number of units of the ith

security is increased (decreased) by δiwi units.

Each term in numerator of (9) can be estimated via Monte-Carlo
- same set of random returns should be used to estimate each term.

What value of δi should we use? There is a bias-variance tradeoff but a value of
δi = .1 seems to work well.

This estimator will not satisfy the additivity property so that
∑n

i ÂC i 6= VaRα
- but easy to re-scale estimated ÂC i ’s so that the property will be satisfied.
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Second Approach: Naive Monte-Carlo
Another approach is to estimate (7) directly. Could do this by simulating N
portfolio losses L(1), . . . ,L(N) with L(j) =

∑n
i=1 L(j)

i

- L(j)
i is the loss on the ith security in the jth simulation trial.

Could then set (why?) ACi = L(m)
i where m denotes the VaRα scenario, i.e.

L(m) is the dN (1− α)eth largest of the N simulated portfolio losses.

Question: Will this estimator satisfy the additivity property, i.e. will∑n
i ACi = VaRα?

Question: What is the problem with this approach? Will this problem disappear
if we let N →∞?
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A Third Approach: Kernel Smoothing Monte-Carlo

An alternative approach that resolves the problem with the second approach is to
take a weighted average of the losses in the ith security around the VaRα
scenario.

A convenient way to do this is via a kernel function.

In particular, say K (x; h) := K
( x

h
)

is a kernel function if it is:

1. Symmetric about zero
2. Takes a maximum at x = 0
3. And is non-negative for all x.

A simple choice is to take the triangle kernel so that

K (x; h) := max
(

1−
∣∣∣xh ∣∣∣ , 0

)
.
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A Third Approach: Kernel Smoothing Monte-Carlo

The kernel estimate of ACi is then given by

ÂC
ker
i :=

∑N
j=1 K

(
L(j) − ˆVaRα; h

)
L(j)

i∑N
j=1 K

(
L(j) − ˆVaRα; h

) (10)

where V̂aRα := L(m) with m as defined above.

One minor problem with (10) is that the additivity property doesn’t hold. Can
easily correct this by instead setting

ÂC
ker
i := V̂aRα

∑N
j=1 K

(
L(j) − ˆVaRα; h

)
L(j)

i∑N
j=1 K

(
L(j) − ˆVaRα; h

)
L(j)

. (11)

Must choose an appropriate value of smoothing parameter, h.

Can be shown that an optimal choice is to set
h = 2.575σN −1/5

where σ = std(L), a quantity that we can easily estimate.
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When Losses Are Elliptically Distributed
If L1, . . . ,LN have an elliptical distribution then it may be shown that

ACi = E [Li ] + Cov (L,Li)
Var (L) (VaRα(L)− E [L]) . (12)

In numerical example below, we assume 10 security returns are elliptically
distributed. In particular, losses satisfy (L1, . . . ,Ln) ∼ MNn(0,Σ).

Other details include:
1. First eight securities were all positively correlated with one another.
2. Second-to-last security uncorrelated with all other securities.
3. Last security had a correlation of -0.2 with the remaining securities.
4. Long position held on each security.

Estimated VaRα=.99 contributions of the securities displayed in figure below
- last two securities have a negative contribution to total portfolio VaR
- also note how inaccurate the “naive” Monte-Carlo estimator is
- but kernel Monte-Carlo is very accurate!
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