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Risk Measures

® L et M denote the space of random variables representing portfolio losses
over some fixed time interval, A.

® Assume that M is a convex cone so that

L |fL1,L2 € M then L1 + L, € M
* And AL: € M for every A > 0.

® A risk measure is a real-valued function, o : M — R, that satisfies certain
desirable properties.

® o(L) may be interpreted as the riskiness of a portfolio or ...

® .. the amount of capital that should be added to the portfolio so that it can
be deemed acceptable

® Under this interpretation, portfolios with ¢o(L) < 0 are already acceptable
® In fact, if p(L) < 0 then capital could even be withdrawn.
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Axioms of Coherent Risk Measures

Translation Invariance For all L € M and every constant a € R, we have
o(L+a) = o(L)+ a.
- necessary if earlier risk-capital interpretation is to make sense.
Subadditivity: For all Ly, Ly € M we have
o(Li + Lz) < o(L1) + o(L2)

- reflects the idea that pooling risks helps to diversify a portfolio
- the most debated of the risk axioms

- allows for the decentralization of risk management.
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Axioms of Coherent Risk Measures

Positive Homogeneity For all L € M and every A > 0 we have
o(AL) = Xe(L).

- also controversial: has been criticized for not penalizing concentration of risk

e.g. if A > 0 very large, then perhaps we should require o(AL) > Ao(L)

but this would be inconsistent with subadditivity:
o(nL) = o(L+---+ L) <mno(L) (1)

- positive homogeneity implies we must have equality in (1).

Monotonicity For L, Ly € M such that L; < Lo almost surely, we have
o(L1) < o(Le)

- clear that any risk measure should satisfy this axiom.
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Coherent Risk Measures

Definition: A risk measure, g, acting on the convex cone M is called coherent if
it satisfies the translation invariance, subadditivity, positive homogeneity and
monotonicity axioms. Otherwise it is incoherent.

Coherent risk measures were introduced in 1998

- and a large literature has developed since then.
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Convex Risk Measures

® Criticisms of subadditivity and positive homogeneity axioms led to the study
of convex risk measures.

® A convex risk measure satisfies the same axioms as a coherent risk measure
except that subadditivity and positive homogeneity axioms are replaced by
the convexity axiom:

Convexity Axiom For Ly, Ly € M and A € [0, 1]

o(AL1 + (1—=XN)La) < Xo(Ly) + (1—=XNo(Ls)

It is possible to find risk measures within the convex class that satisfy
o(AL) > Ao(L) for A > 1.
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Value-at-Risk

Recall ...

Definition: Let o € (0,1) be some fixed confidence level. Then the VaR of the
portfolio loss, L, at the confidence level, «, is given by

VaR, = ¢(L) = inf{z € R : Fr(z) > a}

where F(-) is the CDF of the random variable, L.

Value-at-Risk is not a coherent risk measure since it fails to be subadditive!
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Example 1

Consider two |ID assets, X and Y where
X =€+ where e~ N(0,1)
and _ 0, with prob .991
"= 1 =10, with prob .009.

Consider a portfolio consisting of X and Y. Then

9.8

VaR.gg(X) + VaR‘gg( Y)
= 31+31

= 6.2

VaR_gg(X + Y)

V

- thereby demonstrating the non-subadditivity of VaR.
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Example 2: Defaultable Bonds

Consider a portfolio of n = 100 defaultable corporate bonds

® Probability of default over next year identical for all bonds and equal to 2%.
® Default events of different bonds are independent.

® Current price of each bond is 100.
® |f bond does not default then will pay 105 one year from now
- otherwise there is no repayment.

Therefore can define the loss on the i bond, L;, as
L; == 105Y; — 5
where Y; = 1 if the bond defaults over the next year and Y; = 0 otherwise.

By assumption also see that P(L; = —5) = .98 and P(L; = 100) = .02.
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Example 2: Defaultable Bonds

Consider now the following two portfolios:
A: A fully concentrated portfolio consisting of 100 units of bond 1.

B: A completely diversified portfolio consisting of 1 unit of each of the 100
bonds.

We want to compute the 95% VaR for each portfolio.
Obtain VaR g5(L4) = —500, representing a gain(!) and VaR g5(Lg) = 25.

So according to VaR g5, portfolio B is riskier than portfolio A

- absolute nonsense!

Have shown that

100

100
VaR o5 (Z Li> > 100 VaR g5(L1) ZVaRgd
7=1

demonstrating again that VaR is not sub-additive.
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Example 2: Defaultable Bonds

Now let ¢ be any coherent risk measure depending only on the distribution of L.

Then obtain (why?)
100 100
<2L> < Z@(Li) = 1000(L1)

- so p would correctly classify portfolio A as being riskier than portfolio B.

We now describe a situation where VaR is always sub-additive ...
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Subadditivity of VaR for Elliptical Risk Factors

Theorem
Suppose that X ~ E,, (1, X,4) and let M be the set of linearized portfolio losses
of the form .
M= {L:L = X + Y MXy, A\ €R}
i=1

Then for any two losses L1, Ly € M, and 0.5 < a < 1,

VaRa(Ll—i-Lg) < VaRa(Ll) + VaRa<L2).
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Proof of Subadditivity of VaR for Elliptical Risk Factors

Without (why?) loss of generality assume that Ao = 0.

Recall if X ~ E,,(u, 2,1) then X = AY + u where A € R"** 1, € R"™ and
Y ~ Si(¢) is a spherical random vector.

Any element L € M can therefore be represented as

L = ATX = ATAY + ATy
IANTA[ YL + ATp (2)

- (2) follows from part 3 of Theorem 2 in Multivariate Distributions notes.

Translation invariance and positive homogeneity of VaR imply
VaR, (L) = [[ATA[| VaR, (Y1) + ATy

Suppose now that L := AlTX and Ly := )\QTX. Triangle inequality implies
A +22)PAl < IATA[] + [IX2 Al

Since VaR, (Y1) > 0 for a > .5 (why?), result follows from (2). O
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Subadditivity of VaR

Widely believed that if individual loss distributions under consideration are
continuous and symmetric then VaR is sub-additive.

This is not true(!)
® Counterexample may be found in Chapter 8 of MFE

® The loss distributions in the counterexample are smooth and symmetric but
the copula is highly asymmetric.

VaR can also fail to be sub-additive when the individual loss distributions have
heavy tails.
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Expected Shortfall

Recall ...

Definition: For a portfolio loss, L, satisfying E[|L|] < co the expected shortfall

(ES) at confidence level oo € (0,1) is given by

1 1
ES, = —— qu(Fr) du.

l—a J,

Relationship between ES, and VaR,, therefore given by

1 1
ES, = / VaR, (L) du

l1—«

- clear that ES, (L) > VaR,(L).

When the CDF, F, is continuous then a more well known representation given by

ES. = E[L|L > VaR,].
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Expected Shortfall

Theorem: Expected shortfall is a coherent risk measure.

Proof: Translation invariance, positive homogeneity and monotonicity properties
all follow from the representation of ES in (3) and the same properties for
quantiles.

Therefore only need to demonstrate subadditivity
- this is proven in lecture notes. O

There are many other examples of risk measures that are coherent
- e.g. risk measures based on generalized scenarios

- e.g. spectral risk measures

- of which expected shortfall is an example.
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Risk Aggregation

Let L = (Ly,..., L,) denote a vector of random variables

- perhaps representing losses on different trading desks, portfolios or operating
units within a firm.

Sometimes need to aggregate these losses into a random variable, (L), say.

Common examples include:
1. The total loss so that (L) = Y. | L;.
2. The maximum loss where ¢ (L) = max{L1,..., L,}.
3. The excess-of-loss treaty so that (L) = Y7 (L; — ki) "
4. The stop-loss treaty in which case (L) = (31, L; — k)"

17 (Section 2)



Risk Aggregation

Want to understand the risk of the aggregate loss function, o(¢)(L))
- but first need the distribution of ¢ (L).

Often know only the distributions of the L;'s

- so have little or no information about the dependency or copula of the L;'s.

In this case can try to compute lower and upper bounds on g(¢(L)):
Omin = inf{o(¢(L)) : L~ Fyy i=1,...,n}
Omaz = sup{o(¥(L)) : Ly~ F;, i=1,...,n}

where Fj; is the CDF of the loss, L;.

Problems of this type are referred to as Frechet problems

- solutions are available in some circumstances, e.g. attainable correlations.

Have been studied in some detail when (L) = Y7 | L; and o(-) is the VaR
function.

‘ 18 (Section 2)



Capital Allocation

Total loss given by L =", L;.

Suppose we have determined the risk, o(L), of this loss.

The capital allocation problem seeks a decomposition, ACY, ..., AC,, such that
o(L) = Y ACG; (4)
i=1

- AC; is interpreted as the risk capital allocated to the i*" loss, L;.

This problem is important in the setting of performance evaluation where we
want to compute a risk-adjusted return on capital (RAROC).

e.g. We might set RAROC; = Expected Profit; / Risk Capital,

- must determine risk capital of each L; in order to compute RAROC,;.
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Capital Allocation

More formally, let L(X) := >"7_, A\;L; be the loss associated with the portfolio
consisting of \; units of the loss, L;, for i =1,...,n.

Loss on actual portfolio under consideration then given by L(1).

Let o(-) be a risk measure on a space M that contains L(A) for all X € A, an
open set containing 1.

Then the associated risk measure function, r, : A = R, is defined by

We have the following definition ...
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Capital Allocation Principles

Definition: Let r, be a risk measure function on some set A C R" \ 0 such that
1eA

Then a mapping, f™ : A — R", is called a per-unit capital allocation principle
associated with r, if, for all A € A, we have

DN = (). (5)
=1

® \We then interpret f[g as the amount of capital allocated to one unit of L;
when the overall portfolio loss is L(A).

® The amount of capital allocated to a position of \;L; is therefore \;f;* and
so by (5), the total risk capital is fully allocated.
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The Euler Allocation Principle

Definition: If r, is a positive-homogeneous risk-measure function which is
differentiable on the set A, then the per-unit Euler capital allocation principle
associated with 7, is the mapping

Frei AR fle(A) = g:?(x).

7

® The Euler allocation principle is a full allocation principle since a well-known
property of any positive homogeneous and differentiable function, r(-) is
that it satisfies

n
ar
A) = Ai=—(N).
) =2 Ay
® The Euler allocation principle therefore gives us different risk allocations for
different positive homogeneous risk measures.

® There are good economic reasons for employing the Euler principle when
computing capital allocations.
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Value-at-Risk and Value-at-Risk Contributions

Let 0, r(A) = VaRy(L(A)) be our risk measure function.

Then subject to technical conditions can be shown that

o ore,
"VaRr _ VaR

= E[L; | L(A) =VaR,(L(A))], for i=1,...,n. (6)
Capital allocation, AC;, for L; is then obtained by setting A =1 in (6).
Will now use (6) and Monte-Carlo to estimate the VaR contributions from each
security in a portfolio.

- Monte-Carlo is a general approach that can be used for complex portfolios
where (6) cannot be calculated analytically.
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An Application: Estimating Value-at-Risk Contributions

Recall total portfolio loss is L

= Z?:l L.

According to (6) with A = 1 we know that

AC;

for i =1,...,n and where w;
the portfolio.

= E[L;| L =VaR,(L)] (7)
~ 9VaR,(\)
- 2 A=1

dVaR,

th

is the number of units of the i** security held in

Question: How might we use Monte-Carlo to estimate the VaR contribution,

AC;, of the it asset?

Solution: There are three approaches we might take:
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First Approach: Monte-Carlo and Finite Differences

As AC; is a (mathematical) derivative we could estimate it numerically using a
finite-difference estimator.

Such an estimator based on (8) would take the form

— VaR%T — VaR%:~
AC; = —2o "o
C %, (9)

where VaR%" (VaR% ™) is the portfolio VaR when number of units of the i*
security is increased (decreased) by J;w; units.

Each term in numerator of (9) can be estimated via Monte-Carlo
- same set of random returns should be used to estimate each term.

What value of §; should we use? There is a bias-variance tradeoff but a value of
6; = .1 seems to work well.

This estimator will not satisfy the additivity property so that ) AC; # VaR,

- but easy to re-scale estimated AC;’s so that the property will be satisfied.

‘ 25 (Section 3)



Second Approach: Naive Monte-Carlo

Another approach is to estimate (7) directly. Could do this by simulating N
portfolio losses L(V), ..., L) with L) =7 | LEJ)

- LEj) is the loss on the ¥ security in the j** simulation trial.

Could then set (why?) AC; = Lgm) where m denotes the VaR,, scenario, i.e.
L(™) is the [N(1 — )]* largest of the N simulated portfolio losses.

Question: Will this estimator satisfy the additivity property, i.e. will
S P AC; = VaR,?

Question: What is the problem with this approach? Will this problem disappear
if we let N — oco?
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A Third Approach: Kernel Smoothing Monte-Carlo

An alternative approach that resolves the problem with the second approach is to
take a weighted average of the losses in the i*" security around the VaR,
scenario.

A convenient way to do this is via a kernel function.

In particular, say K (z;h) := K (%) is a kernel function if it is:

1. Symmetric about zero
2. Takes a maximum at z =0

3. And is non-negative for all z.
A simple choice is to take the triangle kernel so that

,0).

K(z; h) := max (17 ‘%
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A Third Approach: Kernel Smoothing Monte-Carlo

The kernel estimate of AC; is then given by
S K (B9 = VaRa; h) 20
2 K (L0 - VaRysh)

——ker

AC,

(10)

where VaR,, := L(™ with m as defined above.

One minor problem with (10) is that the additivity property doesn't hold. Can
easily correct this by instead setting

YN K (L<J'> — ViR, h) L

———ker .

AC;" =VaR (11)

(' Yl K (LU) foaRu;h> Lo

Must choose an appropriate value of smoothing parameter, h.

Can be shown that an optimal choice is to set
h=2575q0 N~1/°

where o = std(L), a quantity that we can easily estimate.

28 (Section 3)



When Losses Are Elliptically Distributed

If L1,..., Ly have an elliptical distribution then it may be shown that
N Cov (L7 Ll)
ACz =E [Lz} + T(L) (VaRa(L) E [LD . (12)

In numerical example below, we assume 10 security returns are elliptically
distributed. In particular, losses satisfy (L1, ..., L,) ~ MN,(0,X).

Other details include:
1. First eight securities were all positively correlated with one another.
2. Second-to-last security uncorrelated with all other securities.
3. Last security had a correlation of -0.2 with the remaining securities.

4. Long position held on each security.

Estimated VaR,—.g9 contributions of the securities displayed in figure below
- last two securities have a negative contribution to total portfolio VaR
- also note how inaccurate the “naive” Monte-Carlo estimator is
- but kernel Monte-Carlo is very accurate!
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Contribution

VaR(1 Contributions By Security
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