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Risk Management and Time Series

Time series models are often employed in risk management applications. They can be used to estimate
conditional loss distributions which in turn can be used to estimate risk measures such as VaR and CVaR. In
these notes we will briefly describe GARCH models which are often used in financial applications. In addition to
describing how these models can be used to estimate loss measures based on the conditional loss distribution,
we can also use GARCH models for more sophisticated risk management applications. These applications
include using GARCH to model the dynamics of principal components in a factor model or combining GARCH
with extreme value theory to estimate the conditional probability of extreme losses in a given portfolio. We note
that these methods can of course also be used with other time series models.

1 A Brief Introduction to GARCH Models

Let rt denote the log-return of a portfolio between periods t− 1 and t and let Ft denote the information
filtration generated by these returns. We assume

rt = µt + at (1)

where E[rt | Ft−1] = µt and
σ2
t := Var (rt | Ft−1) = Var (at | Ft−1) (2)

Note that µt and σt are known at time t− 1 and are therefore predictable processes. It is common to assume
that µt follows a stationary time series model such as an ARMA(m, s) process in which case

µt = φ0 +

m∑
i=1

φirt−i +

s∑
j=1

γjat−j (3)

where the φi’s and γj ’s are parameters to be estimated. Note that at is the innovation or random component of
the log-return and in practice, the conditional variance of this innovation, σ2

t , is time varying and stochastic.
GARCH models may be used to model this dynamics behavior of conditional variances. In particular, we say σ2

t

follows a GARCH(p, q) model1 if

at = σt εt (4)

and σ2
t = α0 +

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j (5)

where α0 > 0, αi ≥ 0 for i = 1, . . . , p, βj ≥ 0 for j = 1, . . . , q and where the εt’s are IID random variables with
mean zero and variance one. It should be clear from (4) and (5) that the volatility clustering effect we observe
in the market-place is therefore captured by the GARCH(p, q) model. Fat tails are also captured by this model in
the sense that the log-returns in (1) have heavier tails (when at satisfies (4) and (5)) than the corresponding
normal distribution. GARCH models are typically estimated jointly with the conditional mean equation in (3)
using maximum likelihood techniques. The fitted model can then be checked for goodness-of-fit using standard
diagnostic methods. See, for example, Ruppert (2011) or Tsay (2010).

1See Chapter 18 of Statistics and Data Analysis for Financial Engineering (2011) by Ruppert or Chapter 3 of Analysis
of Financial Time Series (2010) by Tsay for a discussion of volatility modeling in general and additional details on the
GARCH(p, q) model. Our modal description here follows Tsay. The acronym “GARCH” stands for generalized autoregressive
conditional heteroscedastic.
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1.1 The GARCH(1, 1) Model

The GARCH(1, 1) is obtained when we take p = q = 1 in (5) and it is the most commonly used GARCH model
in practice. It is not too difficult to see that the GARCH(1, 1) model is stationary if and only α1 + β1 < 1 in
which case the unconditional variance, θ, is given by

θ =
α0

1− α1 − β1
.

Exercise 1 Under what condition(s) is the GARCH(p, q) model stationary? Give an expression for the
unconditional variance, θ, when these condition(s) are satisfied.

Exercise 2 Assuming α1 + β1 < 1 show that we may write

σ2
t+1 = κθ + (1− κ)

[
(1− λ)a2t + λσ2

t

]
(6)

for some constants κ and λ. What are the values of κ and λ?

Forecasting with the GARCH(1, 1) Model

Noting that E[r2t+1 | Ft] = σ2
t+1 we can use (6) to obtain

E[σ2
t+2 | Ft] = κθ + (1− κ)

[
(1− λ)E[a2t+1 | Ft] + λσ2

t+1

]
= κθ + (1− κ)σ2

t+1 (7)

and a similar argument then shows that (7) generalizes to

E[σ2
t+n | Ft] = κθ [1 + (1− κ) + · · ·+ (1− κ)n−2] + (1− κ)n−1σ2

t+1. (8)

It follows from (8) (why?) that E[σ2
t+n | Ft]→ θ as n→∞ so that θ is the best estimate of the long-term

conditional variance.

Assuming we know σ2
1 we can use (6) repeatedly together with the observed returns, i.e. the ri’s for

i = 1, . . . , t, and the ML estimates of κ, θ, λ and the µt’s to compute an estimate of σt+1 at time t. In practice
we do not know σ2

1 and so we typically replace it with the ML estimate of the unconditional variance, θ, or an
estimate of the sample variance of the at’s. We can then use (8) to forecast return variances n periods ahead.
Forecasts of the mean return n periods ahead can be computed in a similar manner by working with the
conditional mean equations of (1) and (3).

1.2 Fitting GARCH Models in R

When the conditional mean equation satisfies (1) and (3) and the volatility dynamics are GARCH(p, q) as given
by (4) and (5) then we have an ARMA(m, s) / GARCH(p, q) model. This model can be fit in R using the
garchFit function which is part of the fGarch library. The following code fragment is taken from the R script
Ex18.3-18.4Fig18.4.R that is associated with Chapter 18 of Ruppert’s Statistics and Data Analysis for Financial
Engineering (2011).

A Code Fragment from the Script Ex18.3-18.4Fig18.4.R

library(fGarch)

data(bmw,package="evir")

bmw.garch_norm = garchFit(~arma(1,0)+garch(1,1),data=bmw,cond.dist="norm")

options(digits=3)

summary(bmw.garch_norm)

In this code fragment an ARMA(1, 0) / GARCH(1, 1) model was fit to BMW return data. Of course it’s
important to check how well the fitted model actually fits the data by performing various diagnostics tests. In
this example Ruppert ultimately settled on an ARMA(1, 1) / GARCH(1, 1) model where the εt’s had a
t-distribution rather than the normal distribution used in the code fragment above. Typing “? garchFit” at the
R prompt will provide further details on the garchFit function.



Risk Management and Time Series 3

2 Applications to Risk Management

Time series models can be used to estimate conditional loss distributions as well as risk measures associated with
these loss distributions. Towards this end, we need to be able to construct a time series of historical returns on a
portfolio assuming the current portfolio composition. Whether or not this is possible will depend on whether
historical return data is available for the individual securities in the portfolio. More generally, we need historical
data for the changes in the risk factors, X, that drive the portfolio loss distribution. This data is usually
available for equities, currencies, futures and government bonds. It is also often available for exchange-traded
derivatives but is generally not available for OTC securities, structured products and other exotic securities.

2.1 Estimating Risk Measures

If we assume that historical data for the changes in the risk factors, X, are available then we can use this data
to construct a time series of portfolio returns assuming the current portfolio composition. We can then fit a
time series model to these portfolio returns and use the fitted model to estimate risk measures such as VaR or
ES. Suppose for example that today is date t and we wish to estimate the portfolio VaR over the period t to
t+ 1. Our fitted time series model will then take the form

rt+1 = µ̂t+1 + at+1 (9)

at+1 = σ̂t+1 εt+1 (10)

where µ̂t+1 and σ̂t+1 are the time t estimates of the next periods mean log-return and volatility. They are
obtained of course from the MLE estimates of the fitted time series model. In the setup of Section 1, we would
obtain µ̂t+1 and σ̂t+1 from the fitted versions of (3) and (5), respectively. We could now use (9) and (10) to

obtain the desired risk measures. For example, we could estimate the current period’s V̂aRα and ÊSα according
to

V̂aR
t

α = µ̂t+1 + σ̂t+1 qα(εt+1) (11)

ÊS
t

α = µ̂t+1 + σ̂t+1 ESα(εt+1). (12)

The distribution of εt+1 will have been estimated when the time-series of portfolio returns was fitted. Note that
(11) and (12) are estimates of loss measures based on the conditional loss distribution. We therefore expect
them to be considerably more accurate than estimates based on the unconditional loss distribution, particularly
over short horizons.

Figure 1 displays the daily price level and daily returns of the S&P 500 from January 2006 to July 2011. Figure
2 then displays the daily VaR.99 violations for the S&P 500 over this period where the daily VaR was estimated
using one of four possible methods: (1) historical Monte-Carlo (2) a normal approximation (3) a t6
approximation and (4) a GARCH(1, 1) model. Each method used a rolling window of one year’s worth of daily
returns to estimate the VaR. Note that only the GARCH model attempts to estimate the conditional loss
distribution. Over this time period the percentages of VaR violations for the four methods were 1.86%, 2.48%,
1.95% and 1.06%, respectively. Clearly the GARCH model performs best according to this metric. Equally
importantly we see that the GARCH violations are not clustered and appear much closer to an IID sequence of
Bernoulli(p = .01) trials than the VaR violations of the unconditional methods. (Standard statistical tests could
be used to test this observation more formally.) This is particularly noticeable during the height of the global
financial crisis in the latter half of 2009. The unconditional methods were clearly underestimating VaR in this
extremely volatile period.

2.2 Combining Time Series Models with Factor Models

Let Xt+1 represent the changes in n risk factors between periods t and t+ 1. Suppose also that we have a
factor model of the form

Xt+1 = µ + B Ft+1 + εt+1 (13)
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Figure 1: Price Level and Returns for the S&P 500
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Figure 2: VaR.99 violations for the S&P500. The first three methods (Historical MC, Normal Approx and
t Approx) all estimate the VaR using a rolling window of one year’s worth of daily closing prices. They
are therefore largely based on approximating the unconditional loss distribution. In the case of the t
approximation we simply set the degrees of freedom equal to 6. The fourth method (GARCH(1, 1)) is based
on approximating the conditional loss distribution with the VaR estimated via (11) with µ̂t+1 simply taken
to be the mean daily return over the previous year.
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where B is an n× k matrix of factor loadings, Ft+1 is a k × 1 vector of factor returns and εt+1 is an n× 1
random vector of idiosyncratic error terms which are uncorrelated and have mean zero. We also assume k < n,
that Ft+1 has a positive-definite covariance matrix and that each component of Ft+1 is uncorrelated with each
component of εt+1. All of these statements are conditional upon the information available at time t. Equation
(13) is then a factor model for X.

Given time series data on Xt we could simply use the factor model to compute a univariate time series of
portfolio losses and then estimate risk measures as described in Section 2.1. An alternative approach, however,
would be to fit separate time series models to each factor, i.e. each component of X. We could still use the
fitted time series models to estimate conditional loss measures as in (11) and (12) but we could also use the
factor model to perform a scenario analysis, however. In particular, we could use the fitted time series models to
provide guidance on the range of plausible factor stresses.

For example, we could use a principal components analysis to construct a factor model and then fit a separate
GARCH model to the time series of each principal component. The estimated conditional variance of each
principal component could then be used to determine the range of factor stresses. This is in contrast to the
method of using the eigen values to determine the range of factor stresses. Since the eigen values are estimates
of the unconditional factor variances we would generally prefer the GARCH approach to construct plausible
scenarios.

2.3 Computing Dynamic Risk Measures Using Extreme Value Theory

We can also combine extreme value theory (EVT) with time series methods to estimate the tails of conditional
loss distributions. Suppose for example, that we have fitted a model such as a GARCH or ARMA / GARCH
model to a time series of portfolio returns and have used to fitted model to compute risk measures as in (11)
and (12). These estimates will have been obtained assuming that the εt’s are IID with some fixed distribution
such as the normal or t distribution.

We can use the fitted time series to compute the residuals, ε̂t, which should be approximately IID if the fitted
time series model is a good fit. We can then apply EVT to the fitted residuals. In particular, we can fit the
generalized Pareto distribution (GPD) to the tails of the fitted residuals and estimate the corresponding risk
measures to again obtain

V̂aR
t

α = µ̂t+1 + σ̂t+1 qα(εGPDt+1) (14)

ÊS
t

α = µ̂t+1 + σ̂t+1 ESα(εGPDt+1) (15)

where the superscript GPD in (14) and (15) is used to emphasize that the εt’s (or their tails), follow a GPD
distribution. Note that there appears to be an inconsistency here in that the original time series model was
fitted using one set of assumptions for the εt’s, i.e. that they are normally or t distributed, and that a different
assumption is used in (14) and (15), i.e. that they have a GPD distribution. This does not present a problem
due to the theory of quasi-maximum likelihood estimation (QMLE) which effectively states that µ̂t+1 and σ̂t+1

are still consistent estimators of µt+1 and σt+1 even though the distributions of the εt’s were misspecified.

Section 7.2.6 (which refers to results in Section 2.3.6) of Quantitative Risk Management by McNeil, Frey and
Embrechts describes several numerical experiments that compare different methods for estimating VaR or ES.
They conclude that methods based on GARCH-EVT, i.e. estimators such as (14) and (15), are most accurate.
Note that we could also have used the Hill estimator as an alternative to the GPD distribution when estimating

V̂aR
t

α and ÊS
t

α. Section 19.6 of Ruppert provides some examples and should be consulted for further details.


