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Abstract

A classic approach to financial risk management is the use of scenario analysis to stress test portfolios.
In the case of an S&P 500 options portfolio, for example, a scenario analysis might report a P&L of −$1m
in the event the S&P 500 falls 5% and its implied volatility surface increases by 3 percentage points. But
how accurate is this reported value of −$1m? Such a number is typically computed under the (implicit)
assumption that all other risk factors are set to zero. But this assumption is generally not justified as it
ignores the often substantial statistical dependence among the risk factors. In particular, the expected
values of the non-stressed factors conditional on the values of the stressed factors are generally non-
zero. Moreover, even if the non-stressed factors were set to their conditional expected values rather
than zero, the reported P&L might still be inaccurate due to convexity effects, particularly in the case
of derivatives portfolios. A further weakness of this standard approach to scenario analysis is that the
reported P&L numbers are generally not back-tested so their accuracy is not subjected to any statistical
tests. There are many reasons for this but perhaps the main one is that scenario analysis for derivatives
portfolios is typically conducted without having a probabilistic model for the underlying dynamics of
the risk factors under the physical measure P . In this paper we address these weaknesses by embedding
the scenario analysis within a dynamic factor model for the underlying risk factors. Such an approach
typically requires multivariate state-space models that can model the real-world behavior of financial
markets where risk factors are often latent, and that are sufficiently tractable so that we can compute
(or simulate from) the conditional distribution of unstressed risk factors. We demonstrate how this can
be done for observable as well as latent risk factors in examples drawn from options and fixed income
markets. We show how the two forms of scenario analysis can lead to dramatically different results
particularly in the case of portfolios that have been designed to be neutral to a subset of the risk factors.



1. Introduction

Financial risk management is a key function throughout the finance and insurance industries. At the ag-

gregate level banks, investments firms and insurance companies all need to understand their exposure to

adverse movements in the financial markets. This is also true within these firms at the level of a portfolio

manager (p.m.) or trading desk where it is important to operate within certain risk constraints. One of the

main approaches to financial risk management is the use of scalar risk measures such as Value-at-Risk (VaR)

or Conditional Value-at-Risk (CVaR) to measure the riskiness of a given portfolio over a given time horizon

such as one day or one week. While VaR (and to a lesser extent CVaR) are very popular and often mandated

by regulators, this approach does have serious weaknesses. First and foremost, it can be extremely difficult

to estimate the VaR of a portfolio and this is particularly true for portfolios containing complex derivative

securities, structured products, asset-backed securities etc. Even when the VaR can be estimated accurately,

it is impossible to adequately characterize the risk of a portfolio via a single scalar risk measure such as

its VaR. In addition, a VaR does not identify the risk factors within the portfolio nor the exposure of the

portfolio to those factors. One way to mitigate this for a derivatives portfolio is via the so-called Greeks

such as the delta, vega and theta of an options portfolio. But the Greeks are only local risk measures and

can be extremely inaccurate for large moves in the corresponding risk factors. Such moves, of course, are

the principal concern in risk management.

It is no surprise then that scenario analysis is one of the most popular approaches to risk management.

While there are many forms of scenario analysis, the basic idea is to compute the P&L of the portfolio

under various combinations of stresses to one or more of the risk factors (or securities) driving the portfolio’s

valuation. Given these P&L numbers, the risk management team can assess whether or not the portfolio is

too exposed to any of the risk factors and if so, what actions to take in order to reduce the exposure. In the

case of an S&P 500 options portfolio, for example, a risk manager might report a P&L of -$1m in the event

that the S&P 500 falls 5% and its implied volatility surface increases by 3 points.

One supposed advantage of scenario analysis, particularly for derivatives portfolios, is that a probabilistic

model for the risk factor dynamics is not required. In the example above, for example, a model is not

required to assess how likely is the scenario that the S&P 500 falls approx. 5% and its implied volatility

surface increases by approx. 3 points. Instead the p.m. or risk management team can use their experience

or intuition to assess which scenarios are more likely. For example, it is very unlikely indeed that a large

drop in the S&P 500 would be accompanied by a drop in implied volatilities and so the experienced risk

manager will know that such a scenario can be discounted. Nonetheless, this approach is not scientific and

we are led to question just how accurate the reported value of -$1m is in the original scenario above?

In fact we argue in this paper that such a scenario P&L number can be very inaccurate. First, such a

number is typically computed under the (implicit) assumption that all other risk factors, i.e. all risk factors

besides the underlying and parallel shifts in the volatility surface in our example above, are set to zero. But

this assumption is generally not justified as it ignores the often substantial statistical dependence among the

risk factors. In particular, the expected values of the non-stressed factors conditional on the values of the

stressed factors, are generally non-zero. Second, even if the non-stressed factors were set to their conditional

expected values rather than zero, the reported P&L might still be inaccurate due to convexity effects in the

case of derivatives portfolios whose values typically depend in a non-linear manner on the risk factors. A

further weakness of this standard approach to scenario analysis (for derivatives portfolios) is that the reported
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P&L numbers are typically not back-tested so their accuracy is not subjected to any statistical tests. There

are many reasons for this but perhaps the main one is that scenario analysis for derivatives portfolios is

typically conducted without having a probabilistic model for the underlying dynamics of the risk factors.

A second reason is that none of the considered scenarios ever actually occur since they’re zero probability

events. After all, the probability of the S&P 500 falling exactly 5% and its entire implied volatility surface

increasing by exactly 3 volatility points is zero so one can’t immediately reject the number of -$1m.

This is in contrast to the use of VaR where it is quite standard to count the so-called VaR exceptions

and subject them to various statistical tests that are used to determine the accuracy of the VaR estimation

procedure. But the back-testing of VaR is inherently easier as it only requires the use of univariate time-

series models for the portfolio P&L. In contrast, back-testing scenario analysis would require multivariate

time-series models for the various risk-factors and they are considerably more complicated to estimate and

work with than their univariate counterparts. Moreover risk-factor returns are often latent and therefore

necessitate the use of state-space models. This adds a further complication to back-testing since after the

fact one can only estimate (rather than know with certainty) what the realized latent risk factor returns

were.

In this paper we attempt to address these weaknesses with scenario analysis by embedding it within a

dynamic factor model for the underlying risk factors. Such an approach requires multivariate time series or

state-space models that can model the real-world behavior of financial markets, e.g volatility clustering, and

that are sufficiently tractable so that we can compute and simulate1 from the distribution of unstressed risk

factors conditional on the given scenario. We demonstrate how this can be done for observable as well as

latent risk factors in examples drawn from options and fixed income markets. We also show how the two

forms of scenario analysis can lead to dramatically different results particularly in the case of portfolios that

have been designed to be neutral to a subset of the risk factors. The twin goals of this paper then are (i) to

highlight just how inaccurate the standard approach to scenario analysis can be and (ii) to argue for a more

accurate and scientific approach whereby the reported P&L numbers of a given model can be back-tested and

therefore rejected if necessary. The particular models that we use in our numerical applications are intended

to simply demonstrate that it is possible and important to embed scenario analysis in a dynamic factor

model framework. As such they are merely a vehicle for demonstrating our approach and we certainly don’t

claim they are the “best” such models or that they would be difficult to improve upon. We emphasize at

this point that when we refer to standard scenario analysis we have in mind scenario analysis in the context

of derivatives portfolios, with perhaps the prototypical example being a portfolio of options and futures on

some underlying index such as the S&P 500.

The remainder of this paper is organized as follows. We briefly discuss the literature related to scenario

analysis in Section 2 and then in Section 3 we introduce standard scenario analysis and discuss in further

detail its many weaknesses, again with derivatives portfolios in mind. We show how scenario analysis can be

embedded in a dynamic factor model framework in Section 4 and in Section 5 we discuss how this framework

can be used to evaluate the performance of standard scenario analysis. We then consider an application

to a portfolio of options on the S&P 500 in Section 6. In Section 7 we discuss statistical approaches for

validating a dynamic factor model in the context of scenario analysis and we conclude in Section 8 where we

also outline some directions for future research. Some technical details and additional results are relegated to

1One of the advantages of using simulation is that we can easily estimate other risk measures besides the expected P&L in
a given scenario. For example we could estimate the P&L’s standard deviation or VaR conditional on the scenario.
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the appendices. Appendix D in particular presents a further application of our approach where we consider

scenario analysis in the context of a non-derivatives portfolio, namely of portfolios of U.S. Treasury securities.

2. Literature Review

Following the European Central Bank [14] and Rebonato [29], it is often useful to distinguish between four

different types of scenarios, namely historical, hypothetical, probabilistic, and reverse-engineered scenarios.

Historical scenarios apply market moves that occurred in the past to today’s portfolio. Common examples

are the market moves from the times of the Lehman bankruptcy, the LTCM crisis or the bursting of the dot-

com bubble. Hypothetical scenarios apply to the current portfolio the market moves that might be expected

to occur in the event of some subjectively defined scenario such as the break up of the Euro. Probabilistic

scenarios are constructed by fitting probabilistic models to historical data and using the estimated joint

distribution to develop and analyze scenarios of interest. The work in this paper is very much based on

the probabilistic approach to scenario analysis and then largely with derivative portfolios in mind. Finally,

reverse-engineered scenarios are scenarios that have been identified as the most likely to produce losses at or

exceeding some threshold level in a given portfolio. It is worth noting that each of the four scenario types

can and often do include macro-financial changes as well as market returns. It is also worth emphasizing

that the boundaries between the four scenario types are often blurred and that many approaches have a

hybrid flavor. Reverse-engineered scenarios often use a probabilistic model that has been fitted to historical

data, e.g. Glasserman, Kang and Kang [17]. Moreover, even the most hypothetical scenario analysis will be

informed at least to some extent by statistical considerations relating to the frequency of similar or related

events in the past.

Regardless of the particular approach, the Basel Committee on Banking Supervision [25] recommend that

scenarios be plausible and severe as well as suggestive of risk-reducing actions. Breuer et al. [7] find useful

stress scenarios by defining a region of plausibility for the distribution of the risk-factors and systematically

look for the scenario that results in the worst portfolio loss over this region. They also consider the partial-

scenario problem where they only stress a subset of the risk-factors and show that to maximize plausibility

we should set non-stressed systematic risk factors to their conditional (on the values of the stressed factors)

means. This observation is central to the approach we take in this paper where we emphasize the inaccuracies

that can result from implicitly setting non-stressed factors to zero which is often what is done in practice

for derivatives portfolios. Flood and Korenko [15] present a systematic approach for scenario selection

and use a plausible joint probability distribution together with a grid search over the space of the risk

factors. In contrast, Golub, Greenberg and Ratcliffe [19] select scenarios using the hypothetical approach.

In an interesting recent development Rebonato, e.g. [28, 29], proposes the use of graphical models to select

scenarios. This is a more hybrid approach involving elements of both the probabilistic and hypothetical

approaches. Other work relevant to scenario analysis includes Alfaro and Drehmann [1], Quagliarello [27]

and Bonti et al. [5], while Borio et al. [6] provide a review of current practice.

The probabilistic approach to scenario analysis often requires the construction of factor models and

certainly there is a rich history of factor models in finance going back to the CAPM and later the Fama-

French 3-factor model, for example. While most such factor models have an equity focus, other asset classes

have also been considered. For example Diebold and Li [13] construct a 3-factor model for the U.S. yield

curve. Other approaches include the use of principal components analysis (PCA), e.g. Cont and Fonseca
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[9] develop a PCA-based factor model for the implied volatility surfaces for equities. It is often necessary

to include a time-series component to these models to model the non-iid nature of financial assets and risk

factors. There are many approaches to this, some of which are more ad-hoc in nature, e.g. fitting univariate

GARCH models to the principal components. More generally there is now a rich history in multivariate

time series modeling in finance with a focus on multivariate extensions of GARCH models and (perhaps

to a lesser extent) on state-space models which are required for modeling latent variable dynamics. This

literature is too vast for us to consider here and instead we refer to leading textbooks such as [23] and [34]

and the discussions and references contained therein.

3. Preliminaries and Standard Scenario Analysis

We assume we have a fixed portfolio of securities which in principle could include any combination of securities

– derivatives or otherwise – from any combination of asset classes. In practice, however, we are limited to

reasonably liquid securities for which historical price data is available. Moreover, because of the many

difficulties associated with modelling across asset classes, we mainly have in mind portfolios that contain

only securities from just one or two closely related asset classes. Examples include portfolios of options and

futures on the S&P 500 or portfolios of US Treasury securities. We consider such portfolios in the numerical

experiments of this paper but it should be possible to handle more complex portfolios albeit at the cost of

requiring more sophisticated models. These more complex examples might include portfolios consisting of

options and equity positions on US stocks, portfolios of spot and option positions on the major FX currency

pairs, or even more ambitiously, portfolios consisting of CDS and CDO positions on US credits.

We assume then we are given a fixed portfolio and the goal is to perform some form of scenario analysis

on this portfolio. We let Vt denote the time t value so that the portfolio P&L at time t+1 is ∆Vt ∶= Vt+1−Vt.
In the financial context, we have in mind that time is measured in days so that ∆Vt would then be a daily

P&L. We assume Vt is known at time t but ∆Vt is random. A fundamental goal of risk managers then is

to understand the distribution of ∆Vt. This is required, for example, to estimate the VaR or CVaR of the

portfolio.

As is standard in the risk management literature, we will assume the portfolio value Vt is a function

of n risk factors whose time t values we denote by xt ∈ Rn. It therefore follows that Vt = v(xt) for some

function v ∶ Rn → R. The components of xt might include stock prices in the case of equity portfolios,

yield-to-maturities for fixed income portfolios or implied volatility levels for a number of strike-maturity

combinations in the case of an equity options portfolios. While xt is random, we assume it is Ft-adapted

where F ∶= {Ft} denotes the filtration generated by all relevant and observable security prices and risk factors

in the market. We define the change in risk factor vector ∆xt ∶= xt+1 − xt so that

∆Vt(∆xt) = v(xt +∆xt) − v(xt) (1)

where we have omitted the dependence of ∆Vt on xt in (1) since xt is known at time t and so the uncertainty

in ∆Vt is driven entirely by ∆xt.

3.1. Standard Scenario Analysis

In a standard scenario analysis (SSA hereafter), the risk manager would identify various stresses to apply to

∆xt in (1). For example, such stresses might include parallel shifts or curvature changes in the yield curve
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for a fixed income portfolio. In the case of a portfolio of futures and options on the S&P 500, these stresses

might include shifts to the value of the underlying, i.e. the S&P 500, as well some combination of parallel

shifts to the implied volatility surface and a steepening / flattening of the skew or term structure of implied

volatilities.

When critiquing SSA it is convenient to work with a factor model for the risk factors ∆xt. Such a factor

model might take the form

∆xt = Bft+1 + εt+1, t = 0,1, . . . (2)

where:

� ft+1 ∈ Rm is the common risk factor (c.r.f.) random return vector. Some of these factor returns

may be latent.

� B = [b1 . . . bm] ∈ Rn×m is the matrix of factor loadings and bi ∈ Rn is the ith column of B.

� The εt+1’s ∈ Rn are an i.i.d. sequence of zero-mean random vectors representing idiosyncratic error

terms that are assumed to be independent of the common factors returns.

Consider for example a portfolio of US Treasury securities. Then ∆xt would naturally represent changes in

yield-to-maturities with each component of ∆xt corresponding to a different maturity. If the first common

risk factor represented parallel shifts of the yield curve, we would fix b1 to be a vector of ones. If we then

wished to consider a scenario where all yields increase by 20 basis points, we would set f1,t+1, the first

component of ft+1, equal to +20 bps and set the other m−1 components of ft+1 (as well as εt+1) to zero. The

portfolio P&L would then be computed via (1) with ∆xt determined by the scenario and (2).

More generally, we can define a scenario by jointly stressing any number k ≤ m of the c.r.f. returns.

Consider again our example of an options and futures portfolio on the S&P 500. In this case suppose the

first component of ∆xt refers to the log-return on the S&P 500 between days t and t + 1 with the other

components of ∆xt then representing2 changes in the implied volatilities (between days t and t + 1) for

the various strike-maturity option combinations that appear in the portfolio. If f1,t+1 represents changes

in the S&P 500 spot price then3 b1 = [1 0⋯0]⊺. Similarly, if f2,t+1 represents parallel shifts to the implied

volatility surface then the second column of B would be b2 = [0 1⋯1]⊺. We can now consider a scenario

where f1,t+1 and f2,t+1 are simultaneously stressed. For example, a scenario of interest might be one where

(f1,t+1, f2,t+1) = (−5%, +10) corresponding to a 5% fall in the S&P 500 and a 10 volatility point increase

across its entire implied volatility surface. Once again, under the SSA approach the portfolio P&L can be

computed via (1) with ∆xt determined by (2) where (f1,t+1, f2,t+1) = (−5%, +10) and all other components

of ft+1 and εt+1 set to zero.

In practice, a matrix of scenario P&L’s might be computed as above and in fact multiple two- or even

three-dimensional matrices can be computed corresponding to the simultaneous stressing of k = 2 or k = 3

different c.r.f. returns. It is important to emphasize that in the context of derivatives portfolios, the typical

risk / portfolio manager employing SSA does not have an explicit model like (2) at hand nor does she need

one. In fact, most of the modeling effort in the derivatives space goes into developing dynamic pricing models

2We are assuming that the main risks in the portfolio are underlying and volatility risks. If for example, the portfolio was
exposed to substantial dividend or interest rate risk, which is quite possible in an S&P options portfolio, then additional risk
factors for these risks should be included.

3We would also have Var (ε1,t) = 0 since this would be an instance where a component of ∆xt coincides with one of the
c.r.f.’s.
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under an equivalent martingale measure Q and then developing numerical procedures for computing prices

and the so-called Greeks within these models. It seems very little effort is spent developing dynamic models

for the risk factors driving these prices under the data-generating measure P . The main point of this article

then is to highlight the many weaknesses of SSA for derivatives portfolios and to argue for a more systematic

and scientific approach to it. We can do this by explicitly embedding SSA in a factor model such as (2) and

computing the scenario P&L by also accounting for the dependence structure in (2) and not blindly setting

εt+1 and the unstressed components of ft+1 to zero.

3.2. Problems with Standard Scenario Analysis

Before proceeding, we first expand on the many weaknesses of SSA. They include:

1. A factor model of the form (2) is rarely explicitly stated, particularly for portfolios of derivative

securities. In fact, it may be the case that only a subset of the factors, say the first l ≤ m, are ever

considered for stressing. In that case SSA works with a “model” of the form

∆xt = B1∶l,tf1∶l,t+1 (3)

where B1∶l,t refers to the matrix containing the first l columns of B and f1∶l,t+1 the vector containing the

first l elements of ft+1. The important feature of (3) is that probability distributions are not specified

and in fact play no role in it. It is therefore not a probabilistic model for the risk factor returns ∆xt.

2. Let s = (s1, . . . , sk) where s1 ≤ s2 ≤ ⋯ ≤ sk ≤ l. We then let fs,t+1 ∶= (fs1,t+1, . . . , fsk,t+1) denote the

subset of c.r.f.’s that are stressed under a given scenario. SSA then implicitly assumes

Et[fsc,t+1 ∣ fs,t+1] = 0 (4)

where sc denotes the complement of s so that fsc,t+1 denotes the non-stressed c.r.f. returns in the

scenario. (We use Et[⋅] throughout to denote expectations that are conditional on Ft.) But (4) is

typically not justified and can lead to a very inaccurate estimated P&L for the scenario.

3. Following on from the previous point, an obvious solution would be to set the unstressed factors fsc,t+1

equal to their conditional expectation Et[fsc,t+1 ∣ fs,t+1] when estimating the scenario’s P&L. While this

should be an improvement over SSA, it ignores the uncertainty in εt+1 and fsc,t+1 ∣ (Ft, fs,t+1). This

uncertainty may be significant, particularly for portfolios containing securities whose values depend

non-linearly on ∆xt. But even setting fsc,t+1 = Et[fsc,t+1 ∣ fs,t+1] is not a straightforward task, however,

as it requires a model for the common risk factor return dynamics.

4. Finally, SSA does not lend itself to rigorous back-testing and so SSA is not open to statistical rejection

and so in the language of Popper [26], SSA is not falsifiable. There are several reasons for this. First,

each of the scenarios considered by an SSA are zero probability events and none of the considered

scenarios will have actually occurred on day t+ 1. If this were the only problem, then it would be easy
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to overcome. Specifically, on day t+1 we could “see” exactly what the return in the S&P 500 and what

the parallel change in the implied volatility surface were over the period [t, t+1]. We could then rerun

the scenario analysis for exactly this scenario, i.e. the scenario that transpired, and then compare the

estimated and realised P&L’s.

The problem with this, however, is that we cannot directly observe the actual parallel change in the

implied volatility surface that transpired. This is because this c.r.f. would be a latent c.r.f. and so

could only be estimated / inferred. But to do this a probabilistic model would be required and as we

have noted, SSA often proceeds without a probabilistic model.

Following on from point 4 above, any probabilistic factor model as in (2) would surely be statistically rejected

if it did not also include a multivariate time series component that can capture the fact that the c.r.f. return

dynamics are not iid but in fact are dependent across time. We now proceed to explain how SSA can

be embedded in a dynamic risk factor model and therefore how the weaknesses mentioned above can be

overcome. We note that the dynamic risk factor model is not intended to replace the non-probabilistic

model of (3). Indeed it is quite possible the portfolio manager likes to think in terms of the risk factors

f1∶l,t+1 and would be reluctant to see these replaced by alternative risk factors. The goal here then is to

embed (3) in a dynamic risk factor model as in (2).

4. A Dynamic Factor Model-Based Approach to Scenario Analysis

In order to embed the SSA approach within a dynamic factor model we need to be able to perform the

following steps:

1. Select and estimate a multivariate times series or state-space model for the c.r.f. returns ft+1. We need

to be able to handle both observable and latent factors.

2. Specify a factor model (2) for the risk factor changes ∆xt.

3. Simulate samples of εt+1 and ft+1 ∣ (Ft, fs,t+1) .

4. Compute the portfolio P&L (1) for each simulated sample from Step 3. Given these sample P&L’s we

can estimate the expected P&L for that scenario as well as any other quantities of interest, e.g. a VaR

or CVar for that scenario.

Together Steps 1 and 2 enable us to estimate the joint distribution of the common factor returns condi-

tional on time t information. Specifically, they enable us to estimate the distribution πt+1 where

ft+1 ∣ Ft ∼ πt+1. (5)

We assume Ft includes the time series of risk factor changes ∆x0, . . . ,∆xt−1, as well as the time series of

observable c.r.f. returns. Step 3 then enables us to generate samples from the distribution of the risk factors

∆xt conditional on Ft and the scenario fs,t+1. Given these samples, Step 4 is a matter of computing the

portfolio P&L for each sample and we assume this step is a straightforward task so that any pricing models

required to compute ∆Vt(∆xt) given ∆xt are available and easy to implement.
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As mentioned above, c.r.f.’s can be either observable or latent. Observable c.r.f.’s might include market

indices such as the S&P 500 or the Eurostoxx 50 index, foreign exchange rates, index CDS rates, commodity

prices etc. C.r.f. returns that are latent, however, can only be inferred or estimated from other observable

data such as the ∆xt’s or observable c.r.f.s. Examples of latent c.r.f.’s might include factors that drive the

implied volatility surface of the S&P 500, for example. A popular specification would include three c.r.f.’s

that drive parallel shifts, term-structure shifts and skew shifts in the implied volatility surface, respectively.

Note that such shifts are never observable and can only be inferred from the changes (the ∆xt’s) in the

implied volatilities of S&P 500 options of various strike-maturity combinations. Another example of latent

c.r.f.’s would be the factors that are motivated by a principal components analysis (PCA) of the returns

on US Treasuries of various maturities. While there may be twenty or more maturities available, a PCA

analysis suggests that changes in the yield curve are driven by just three latent factors representing, in order

of importance, a parallel shift in the yield curve, a steepening / flattening of the yield curve, and a change

in curvature of the yield curve, respectively.

Because most settings have one or more latent c.r.f.’s our main focus will be on the use of state-space

models to tackle steps 1 to 3. We begin with the case where all c.r.f.’s are latent.

4.1. State-Space Modeling of the Common Factor Returns

One way to proceed when all c.r.f. returns are latent is to simply construct point estimates of the latent

factors by solving for k = 1, . . . , t an MLE problem4 of the form

max
fk∈Rm

Pε(∆xk−1 −Bfk) (6)

where Pε(⋅) is the PDF of εk from (2). Let f̂k denote the optimal solution to (6). We could then take the f̂k’s

to be observable risk factors and use them to estimate the distribution πt+1 of ft+1 ∣ Ft. This is clearly sub-

optimal, however, as the estimation of the fk’s ignores the temporal dependence in their dynamics. Moreover,

by treating f̂t as the true value of ft (rather than just a noisy point estimate), we are underestimating the

conditional uncertainty in ft+1 when we use these point estimates to estimate πt+1.

Our second and preferred approach overcomes these issues by defining a state-space model for the un-

observable common factors then and treating ∆x0, . . . ,∆xt−1 as noisy observations of the underlying states

f1, . . . , ft. For example, we could model the unobservable common factor returns via an auto-regressive

stochastic process of the form

ft+1 = Gft + ηt+1 (7)

for some matrix G ∈ Rm×m and where the process innovation terms ηt ∈ Rm are assumed to have zero mean

and constant covariance matrix Ση. The initial state f0 is assumed to follow some probability distribution

π0. The hidden-state process (7) together with the observable risk factor changes ∆xt from the factor model

in (2) now form a state-space model.

As before, our goal is to estimate πt+1, the distribution of ft+1 ∣ Ft, where Ft now only includes the history

of observations ∆x0∶t−1 ∶= {∆x0, . . . ,∆xt−1}. Note that if we are able to obtain the filtered probability

distribution P(ft ∣ ∆x0∶t−1), then (7) implies we can obtain πt+1 as the convolution of the two random

4As an alternative to (6) we could obtain the point estimate f̂t by solving a cross-sectional regression problem.
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variables Gft ∣ Ft and ηt+1. Suppose for example, that π0 and both process innovations ηt+1 in (7) and εt+1
in (2) are all Gaussian. Then the filtered distribution ft+1 ∣ Ft is also Gaussian and its mean vector and

covariance matrix can be calculated explicitly via the Kalman Filter [21]. In this case πt+1 would then also

be Gaussian.

For non-Gaussian state-space models, however, obtaining the posterior probability exactly is generally

an intractable problem although there are many tractable approaches that can be used to approximate the

distribution of ft+1 ∣ Ft. The Extended Kalman Filter and the Unscented Kalman Filter [35] can be used for

non-linear Gaussian state space models, for example. More generally particle filters [20] or MCMC [34] could

also be used to approximate the filtered distribution for non-Gaussian state-space models. Particle filters

suffer from the curse of dimensionality, however, while MCMC is computationally expensive. Nonetheless

implementing an MCMC or particle filter (in the lower dimensional setting) for non-linear / non-Gaussian

state-space models should not be too demanding given modern computing power.

As an alternative to computing or approximating the filtered distribution P(ft ∣ ∆x0∶t−1), we could simply

compute its posterior mean E[ft ∣ ∆x0∶t−1] or its maximum a posteriori (MAP) estimate. Then, using f̂t as an

approximation to the actual realization of ft, we can approximate πt+1 as the distribution of Gf̂t +ηt+1, i.e.,

the right-hand-side of (7), which would simply be the distribution of ηt+1 shifted to have mean Gf̂t. While

this neglects the uncertainty in our estimation of ft this is often a second-order issue relative to obtaining

the correct mean of πt+1.

4.2. Modeling Both Observable and Unobservable Common Factor Returns

Situations in which there are a combination of observable and latent common factor returns are not un-

common. For example, in an S&P 500 options portfolio a scenario would typically include stresses to some

combination of the S&P 500 (observable) and parallel, skew or term structure shifts (latent) in the S&P

500’s implied volatility surface. In this case, the challenge is to construct a multivariate state-space / time

series model that can simultaneously accommodate observable and latent c.r.f. returns. While there may be

many ways to tackle this modeling problem, one obvious approach is to assume all of the c.r.f.’s are latent

but that the noisy signals for a subset of them (the observable ones) are essentially noiseless.

To make this more precise, we assume we have mo observable and mu latent common factors so that the

factor model (2) can then be written as

∆xt = Bofot+1 +Bufut+1 + εt+1 (8)

where Bo ∈ Rn×mo

and Bu ∈ Rn×mu

are the factor loadings matrices for the observable and latent common

factors fot+1 and fut+1, respectively. Our objective is to estimate πt+1, the probability distribution of ft+1 ∣ Ft,
where Ft now corresponds to the σ-algebra generated by the history of risk factor changes ∆x0∶t−1 and of

the observable common factor returns fo1∶t. We define the no ∶= n +mo dimensional vector

yt ∶=
⎡⎢⎢⎢⎢⎣

∆xt

fot+1

⎤⎥⎥⎥⎥⎦

which we treat as the time t+1 observations vector. The model’s latent state variables at time t+1 are given

9



by the m ∶=mo +mu dimensional vector

ft+1 ∶=
⎡⎢⎢⎢⎢⎣

fot+1
fut+1

⎤⎥⎥⎥⎥⎦
.

We now assume the observation dynamics satisfy

yt =
⎡⎢⎢⎢⎢⎣

∆xt

fot+1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

Bo Bu

Imo 0mou

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

fot+1
fut+1

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

εt+1
0mo

⎤⎥⎥⎥⎥⎦
t = 0,1, . . . (9)

where Imo is the mo ×mo identity matrix, 0mou is the mo ×mo matrix of zeros and 0mo is an mo × 1 vector

of zeros. We can again assume latent state dynamics of the form given in (7). Since (7) and (9) form a

state-space model, we can fit the model and estimate πt+1 using the various approaches described above.

For instance, assuming εt+1 and ηt+1 to be normally distributed, we could use the EM algorithm to estimate

the parameters of the state-space model (7) and (9) using historical data. The Kalman Filter can then be

employed to obtain the filtered probability distribution P(ft ∣ y0∶t−1) for any sequence of observations y0∶t−1.

Finally, we can then obtain πt+1 exactly as the sum of two normal random vectors Gft ∣ Ft and ηt+1, which

of course is also normal.

We will use a model of the form (7) and (9) in Section 6 where we consider portfolios containing options

and futures on the S&P 500 index. One obvious weakness with this model is that it fails to capture some of

the well-known behavior of S&P 500 returns (and equity returns more generally). For example, we cannot

capture volatility clustering using such a model. In Section 6 we will overcome this by embedding a GARCH

model for the S&P 500 returns within a state-space model of the form (7) and (9). We will also provide

empirical evidence in Section 7 that this GARCH / state-space model combination is a clear improvement

over the simple state-space model of (7) and (9). More generally, it should be possible to move beyond linear

state-space models via the use of MCMC, particle filters etc. to build more realistic models of c.r.f. return

dynamics.

5. Evaluating the Performance of SSA

The objective of the dynamic factor model-based scenario analysis (hereafter DFMSA) is to compute

∆V dfm
t (c) ∶= Et[∆Vt(ft+1, εt+1) ∣ fs,t+1 = c] (10)

where c denotes the levels of the stressed factors in the given scenario, and Et[⋅] ∶= E[⋅ ∣ Ft] denotes an

expectation taken with respect to the distribution πt+1. It’s clear we have to be able to compute or simulate

from the distribution of ft+1 ∣ (Ft, fs,t+1 = c) in order5 to calculate the conditional expectation in (10). Since

πt+1 is the true conditional distribution of ft+1 ∣ Ft, we know that ∆V dfm
t (c) is the best estimate (in the

mean-squared error sense) of the scenario P&L. We can therefore calculate the error obtained from following

the SSA approach for a given scenario c as

Eabs

t (c) ∶= ∣∆V dfm
t (c) −∆V ss

t (c)∣ (11)

5We also note that the conditional distribution of εt+1 ∣ (Ft, fs,t+1 = c) (where εt+1 is given in (2)) is equal to its unconditional
distribution since εt+1 is independent of Ft and ft+1 by assumption.
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where ∆V ss
t (c) denotes the estimated scenario P&L at time t according to the SSA approach. We must

of course acknowledge that the error in (11) is somewhat misleading in that it assumes our dynamic factor

model is indeed the correct model that governs the real-world security price dynamics. Moreover, it seems

reasonable to assume there is some dynamic factor model that governs the real-world security price dynamics

and that we have been able to construct a reasonable approximation to it. After all, if our model is not a

reasonably good approximation to it, then it would be rejected by one or more of the statistical tests that

are discussed in Section 7. As such, we feel it is reasonable to take (11) as a ballpark estimate of the error

than can arise from adopting the SSA approach.

We can also provide a partial decomposition of the error in (11) by calculating an alternative scenario

P&L that is given by

∆V alt
t (c) ∶= ∆Vt(Bµct) (12)

where B is the factor loadings matrix of the factor model (2) and

µct ∶= Et[ft+1 ∣ fs,t+1 = c]. (13)

This alternative scenario P&L estimator (suggested in point #3 from Section 3.2) goes beyond the SSA

approach by using the expected value of the c.r.f. returns conditional on the scenario to estimate the risk

factor changes ∆xt via the factor model (2), i.e. by setting ∆xt = Bµct . This leads to the alternative

estimated scenario P&L in (12). Note that the alternative scenario P&L ∆V alt
t (c) will in general differ

from6 and be less accurate than ∆V dfm
t (c) as defined in (10). We can then decompose the error in (11) by

Eabs

t (c) = ∣∆V dfm
t (c) −∆V ss

t (c)∣

= ∣∆V dfm
t (c) −∆V alt

t (c) +∆V alt
t (c) −∆V ss

t (c)∣

≤ ∣∆V dfm
t (c) −∆V alt

t (c)∣ + ∣∆V alt
t (c) −∆V ss

t (c)∣. (14)

We note that ∣∆V dfm
t (c) −∆V alt

t (c)∣ gives a measure of the error that results from ignoring the variance in

the conditional distribution of the c.r.f. returns and the idiosyncratic error terms. In contrast, ∣∆V alt
t (c) −

∆V ss
t (c)∣ provides a measure of the error that results from setting the unstressed common factor returns to

zero rather than their conditional expected values. While the sum of these two errors does not equal the

true error we see from (14) that their sum does provide an upper bound on this error. In our numerical

applications we found that the second term on the r.h.s. of (14), i.e. ∣∆V alt
t (c) −∆V ss

t (c)∣, is considerably

more significant than the first term on the r.h.s. and often provides a very good approximation to the true

error on the l.h.s. of (14). Of course this may not be the case in general, particularly with portfolios whose

P&L is very non-linear in the risk factors ∆xt and where the conditional variance of the non-stressed factors

is substantial.

6Suppose for example that ∆Vt(⋅) is a convex function. Then Jensen’s inequality implies ∆V alt
t (c) = ∆Vt(Bµc

t) =

∆Vt(Et[Bft+1 + εt+1 ∣ fs,t+1 = c]) ≤ Et[∆Vt(Bft+1 + εt+1) ∣ fs,t+1 = c] = ∆V dfm
t (c). In this case ∆V alt

t (c) would underes-

timate the estimated scenario P&L when ∆Vt(⋅) is convex. Similarly ∆V alt
t (c) would overestimate the estimated scenario P&L

when ∆Vt(⋅) is concave.
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5.1. Back-Testing Procedure for Evaluating SSA

In our numerical experiments we will simulate a ground truth model for T periods and for each period

compute the SSA error as defined in (11). We can then average these errors across time to get some idea of

how poorly (or well) SSA performs in relation to DFMSA. Since the ground truth model will coincide with

the dynamic factor-model that we use to perform the scenario analysis, this approach assumes the estimated

P&Ls from the DFMSA are correct in the mean-squared error sense. While of course this is optimistic, it

does serve to highlight just how inaccurate the P&Ls reported by SSA can be. It is also worth emphasizing

that while we assume we know the structure of the ground truth model in these back-tests, we still do not

get to observe the latent c.r.f.’s. These latent factor returns must be inferred in our back-tests from the risk

factor returns, i.e. the ∆xt’s, as well as the observable c.r.f. returns. In general, we will also be required to

re-estimate the parameters of the model each day within the back-tests rather than simply assuming these

parameters are given and known to us.

More specifically, in each of our back-tests we assume we have T days of simulated data. We choose s

where 0 < s < T to be the size of the rolling window that we will use to re-estimate the model at each time

t ≥ s. Having estimated the dynamic-model’s parameters, we then estimate πt+1 and use it to estimate the

DFMSA P&L ∆V dfm
t . The SSA P&L ∆V ss

t is also computed at this time. At the end of the back-test we

can calculate the average of the back-test P&L for each approach according to

∆V dfm ∶= 1

T − s
T−1
∑
t=s

∆V dfm
t ∆V ss ∶=

1

T − s
T−1
∑
t=s

∆V ss
t (15)

Comparing ∆V ss with ∆V dfm gives a measure of the bias of the SSA approach over the course of the back-

test. We can also calculate the mean absolute difference between the estimated SSA P&L and the estimated

DFMSA P&L. That is we define

Eabs ∶= 1

T − s
T−1
∑
t=s

∣∆V dfm
t −∆V ss

t ∣ (16)

as the average error in the P&L estimated by the SSA approach. Of course this error depends on the ground

truth model and its parameters as well as the portfolio and scenario under consideration. Our general

back-testing procedure is outlined in Algorithm 1 below.

5.2. What Portfolios to Back-Test?

Before proceeding to our numerical experiments, it is worth discussing what kinds of portfolios we have in

mind when comparing the SSA approach with the DFMSA approach. For all of the reasons outlined earlier

we would argue that, regardless of the portfolio, any scenario analysis ought to be embedded in a dynamic

factor model setting. Nonetheless, it stands to reason that certain types of portfolios might show little

difference between the scenario P&Ls reported by the SSA and DFMSA approaches, respectively. On the

other hand, it is not difficult to imagine settings where the two scenario P&Ls might be very different. For

example, consider a setting with securities whose daily P&L’s are non-linear functions of their risk factor

changes and where some of the c.r.f. returns are at least moderately7 dependent. Consider now a portfolio

7The assumption that some of the c.r.f. returns might display moderate dependence is not a strong assumption since
even uncorrelated c.r.f. returns can display moderate dependence. Suppose for example that the c.r.f. returns have a joint
multivariate t distribution with ν degrees-of-freedom. These factor returns can be uncorrelated and yet still have extreme tail
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Algorithm 1 back-testing to Estimate Average SSA Error for a Given Scenario and Ground-Truth Model

Input: s, T,K, gmodel, C,c ▷ s = # periods in rolling window for model training
▷ T = # periods in back-test horizon

▷ K = # of samples used to estimate factor model-based scenario P&L
▷ gmodel is the ground-truth model

▷ c, s define the scenario.
1: Generate f0 from gmodel
2: for t← 0 to T − 1 do
3: Generate (ft+1, ∆xt) ∣ ft from gmodel
4: if t ≥ s then
5: Estimate DFM parameters
6: Estimate πt+1 from (fo(t−s)∶t, ∆x(t−s)∶(t−1)) ▷ fot−s∶t are observable
7: for k ← 1 to K do ▷ K = # of Monte-Carlo samples

8: Generate f
(k)
t+1 ∣ (Ft, fs,t+1 = c) and ε

(k)
t+1 to obtain ∆x

(k)
t

9: Compute scenario P&L ∆Vt(∆x
(k)
t )

10: end for
11: Compute ∆V dfm

t ∶= ∑Kk=1 ∆Vt(∆x
(k)
t )/K ▷ Estimated scenario P&L

12: Compute ∆V ss
t ▷ SSA P&L obtained by setting εt+1, non-stressed c.r.f. returns to 0

13: Compute Eabs

t ∶= ∣∆V dfm
t −∆V ss

t ∣
14: end if
15: end for
16: Compute ∆V dfm,∆V ss and Eabs as defined in (15) and (16)
Output: ∆V dfm,∆V ss and Eabs

that was designed to be: (i) neutral to the subset of c.r.f.’s that are stressed in scenarios and (ii) highly

exposed to the c.r.f. returns that are never stressed in any of the scenarios. If some of the non-stressed c.r.f.

returns are conditionally dependent on some of the stressed c.r.f. returns then such a portfolio should result

in very different scenario P&Ls for the SSA and DFMSA approaches.

For an adversarial example, let fe where e ⊂ {1, . . . ,m} denote the subset of the c.r.f.’s to which the p.m.

wants to be exposed. It’s possible for example that the p.m. has a strong view regarding the direction of fe

over the short term and wishes to trade on that view. Similarly, let fn where n ⊂ {1, . . . ,m} denote the set of

c.r.f.’s to which the trader is required to be neutral according to the risk-management team. We assume the

p.m. computes scenario P&Ls using the DFMSA approach while the risk team uses the SSA approach. The

p.m. can then easily construct a risky portfolio that gives her the desired exposure to fe but that appears

to have little risk according to the risk management team’s perspective. If some of the c.r.f. returns in fn

are dependent (conditional on the scenario) with some of the c.r.f. returns in fe then this portfolio should

result in very different scenario P&Ls for the SSA and DFMSA approaches. In Appendix A we outline a

simple linear programming approach for constructing such portfolios and we will use these portfolios in our

numerical experiments of Section 6 and Appendix D.

We also note that this setting is not at all contrived since it is quite possible for a p.m. to have a strong

view on a less important risk factor which may not be a risk-factor considered by the risk-management team.

Less generously, it may be the case that the p.m. is incentivized to take on a lot of risk regardless of whether

or not he / she has a view justifying this risk-taking. Regardless of the p.m.’s motivation, the use of SSA

instead of DFMSA can lead to very misleading scenario P&L’s.

dependence [23]. As a result the distribution of these factors conditional on an extreme scenario can display strong dependence.
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6. An Application to an S&P Options Portfolio

In this application we consider a p.m. that can invest in European call and put options on the S&P 500

index as well as in the index itself. As is standard market practice, we will use the Black-Scholes formula

to price these options. To value the portfolio, we will therefore8 assume the vector of risk factor changes

∆xt consists of the daily log-return of the S&P 500 together with daily changes in the implied volatilities of

specific strike-maturity combinations.

In order to capture well-known features such as volatility clustering in the S&P 500 dynamics, we will not

use the daily log-return of the S&P 500 directly in ∆xt. Instead we propose to use the innovations process

resulting from a GARCH model9 fitted to the S&P 500 log-returns. These innovations have the property of

having a constant volatility (which we can set to 1) and can be therefore thought of as the devolatilized S&P

500 log-returns. More precisely, we assume that rt ∶= log(St+1/St) follows a GARCH(1,1) model given by

rt = σtzt, t = 1,2, . . . (17)

where the innovations zt form a process of i.i.d. random variables with zero mean and unit variance, and

where σt is the conditional volatility of rt, and is given by

σ2
t = α0 + α1r

2
t−1 + β1σ2

t−1, t = 1,2, . . . (18)

with α0 > 0 and α1, β1, σ0 ≥ 0. From (17) and (18) we note that the conditional volatility of the rt’s, given

by σt, is dynamic through time and can capture volatility clustering through its non-negative dependence

on the volatility of the prior period. We then take zt = log(St+1/St)/σt to be the first element of the vector

of risk factor changes ∆xt.

We let It(ξ, τ) denote the implied volatility at time t of a European option with time-to-maturity τ and

option moneyness ξ ∶=K/St where K denotes the option strike and St the time t price of the S&P 500. We

assume that on each day we can observe the implied volatility surface at a finite set of moneyness-maturity

pairs {(ξ1, τ1), . . . , (ξn−1, τn−1)}. For a fixed pair (ξ, τ), we denote the change in implied volatility from t to

t + 1 by

∆It(ξ, τ) ∶= It+1(ξ, τ) − It(ξ, τ). (19)

The vector of risk factors changes is then given by the n-dimensional vector

∆xt ∶= (zt,∆It(ξ1, τ1), . . . ,∆It(ξn−1, τn−1))⊺ (20)

where the moneyness-maturity pairs in (20) cover the distinct moneyness-maturity combinations of the

options in the market.

Our dynamic factor model will consist of four c.r.f.’s. We will take the innovations zt (obtained from

8We assume the risk-free rate of interest and dividend yield remain constant throughout and therefore do not model risk
factors associated with them. This is typical for an equity options setting unless the p.m. wishes to trade with a specific view
on dividends. We also acknowledge that in practice one trades futures on the S&P 500 index rather than the index itself. Given
the assumption of a constant risk-free rate and dividend yield, there is essentially no difference in assuming we can trade the
index itself, however, and so we will make that assumption here.

9GARCH models are a well-established class of time-series models that can model empirically observed behavior such as
volatility clustering in equity markets. [23] and [34] can be consulted for a more detailed exposition as well as related references.
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the GARCH model of the S&P 500’s daily log-returns) to be the first c.r.f. and of course this is observable.

The other m = 3 c.r.f.’s will be latent factors that drive changes in the implied volatility surface, specifically

parallel10 changes in the surface, a steepening / flattening of the volatility skew, and a steepening / flattening

of the term structure. As our model will contain both observable and latent c.r.f.s we will proceed as discussed

in Section 4.2 and use a linear Gaussian state-space model. In particular, we will use a slightly modified

version of (9) and define

∆xt =
⎡⎢⎢⎢⎢⎣

1

bo

⎤⎥⎥⎥⎥⎦
fot+1 +

⎡⎢⎢⎢⎢⎣

0⊺3
Bu

⎤⎥⎥⎥⎥⎦
fut+1 +

⎡⎢⎢⎢⎢⎣

0

εt+1

⎤⎥⎥⎥⎥⎦
(21)

where fot+1 ∶= zt is the observable c.r.f. which coincides with the first component of ∆xt, fut+1 ∈ R3 denotes

the vector of latent c.r.f.s and 03 ∈ R3 denotes the zero vector. The factor loadings for the observable and

latent c.r.f.s are denoted by bo ∈ Rn−1 and Bu ∈ R(n−1)×3, respectively. The ith element of bo indicates

how a shock to zt affects the implied volatility ∆It(ξi, τi). The matrix Bu is constructed to model the

aforementioned m = 3 types of stresses on the implied volatility surface. Specifically (and recalling that the

(i + 1)st component of ∆xt is ∆It(ξi, τi)), we assume

∆It(ξi, τi) = boi fot+1 + ( 1
√
τi

) fu1,t+1 + (1 − ξi) fu2,t+1 + ln(2τi)fu3,t+1 + εi,t+1, for i = 1, . . . , n − 1 (22)

where boi , f
u
i,t+1 and εi,t+1 denote the ith elements of bo, fut+1 and εt+1, respectively, in (21). Comparing (21)

and (22), we see that bi,1 ∶= 1/√τi, bi,2 ∶= 1 − ξi and bi,3 ∶= ln(2τi) where bi,j is the (i, j)th element of Bu.

A few comments on (22) are now in order. It is well known (see for example Natenberg [24]) that when

volatility rises (falls), the implied volatility of long-term options rises (falls) less than the implied volatility

of short-term options. This empirical observation has led to the commonly used “square-root-of-time” rule

whereby the relative difference in implied volatility changes for options with the same moneyness but different

maturities is in proportion to the square-roots of their relative maturities. We model this rule via the factor

loadings for the parallel-shift c.r.f. Suppose, for example, there is a fu1,t+1 = 1 volatility point shock to the

parallel-shift c.r.f. Then the fu1,t+1/
√
τi term in (22) implies that the implied volatility of 1-year options

would increase by 1 point exactly, whereas the implied volatility of a 1-month option would increase by

1/
√

1/12 ≈ 3.46 points.

The second latent c.r.f. is used to drive changes in the implied volatility skews11 in the surface. We use

the so-called “sticky-moneyness” rule which assumes that, for a given maturity, the implied volatility is a

univariate function of the moneyness ξ = K/S. The “sticky-moneyness” rule that we adopt in (22) can be

10We acknowledge that the absence of arbitrage imposes restrictions on the magnitude of permissable c.r.f. stresses. For
example, Rogers [31] has shown that the implied volatility surface cannot move in parallel without introducing arbitrage
opportunities. Indeed it is well known that moves in the implied volatilities are more likely to follow a “square-root-of-time”
rule and we will model this below with our first latent c.r.f. For another example, it is also well-known that that the volatility
skew at any fixed maturity cannot become too steep without introducing arbitrage. We don’t explicitly rule out scenarios that
allow for arbitrage but note that such scenarios would have to be very extreme indeed. Moreover, it is easy to check a given
scenario for arbitrage and so ruling out such scenarios would be very straightforward.

11An implied volatility skew is the cross-section of the implied volatility surface that we obtain when we hold the time-to-
maturity fixed. There is therefore a different skew for each time-to-maturity. There are various skew models in the literature
and we refer the interested reader to the work of Derman and Miller [12] who describe some of these models.
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loosely motivated by first assuming

It(ξ, τ) = I0(1, τ) − βt (ξ − 1) (23)

where I0(1, τ) is the implied volatility of an at-the-money option, i.e. with ξ = 1, with maturity τ at some

initial time t = 0, and where βt determines the slope of the skew at time t. The model (23) implies the

implied volatility for at-the-money options (for which ξ = 1) remains constant for a given maturity τ , and

that changes in implied volatility are given by

∆It(ξ, τ) = −∆βt (ξ − 1) (24)

where ∆βt ∶= βt+1 − βt defines the change in skew (or slope) of the implied volatility. We account for this

skew behavior in our factor model (21) by taking ∆βt to be the c.r.f. fu2,t+1 and setting the corresponding

factor loadings to (1 − ξ). Then if fu2,t+1 > 0, for example, the implied volatilities of options with moneyness

< 1 (> 1) would increase (decrease) thereby resulting in the steepening of the skew for any given maturity τ .

Similarly a shock fu2,t+1 < 0 would result in a flattening of the skew.

The third c.r.f. fu3,t+1 models changes to the term-structure of implied volatility for any given level of

moneyness. The loading term ln(2τi) means that a positive shock to fu3,t+1 would leave 6-month volatilities

unchanged, but would increase (decrease) the volatilities of options with longer (shorter) maturities thereby

resulting in the flattening of an inverted term structure or steepening of an already upward sloping term

structure. We note that the parallel shift c.r.f. also affects the term structure due to the square-root-of-time

rule. However, including the term structure c.r.f. enriches the dynamics of the volatility surface model as it

allows for a broader variety of systematic moves, i.e. moves driven only by the c.r.f.s.

Finally, we note that at this point we are neither arguing for or against the specific model of (21) and

(22) together with (2). Whether or not the model would work well in practice would depend on its ability to

pass the various statistical tests that we describe and implement in Section 7. We will see there that while

the model is not perfect, it is a significant improvement over a more naive version of the model where the

S&P 500 log-returns (rather than the devolatilized returns) are taken to be the first component of the c.r.f.

returns.

6.1. Model Calibration

We obtained implied volatility data on the S&P 500 for the period January 2006 through August 2013 from

the OptionMetrics IVY database. In particular, we used the daily implied volatility data that OptionMetrics

provide for various delta-maturity12 combinations. We transformed the data to moneyness-maturity coordi-

nates using a non-parametric Nadaraya-Watson estimator based on an independent bivariate Gaussian kernel

[16]. We can therefore obtain the implied volatilities on any given day for the fixed set of moneyness-maturity

pairs given by the cross-product of

ξ ∈ Ωξ ∶= {0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2} and τ ∈ Ωτ ∶= {1/12, 2/12, 3/12, 6/12, 1} , (25)

where the time-to-maturity τ is measured in years.

12Roughly speaking, they build an implied volatility surface based on each day’s closing prices (of the S&P 500 and its traded
options) and then use this surface to read off volatilities for the various delta-maturity combinations.
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Using the log-returns of the S&P 500 index for the same period, we fit the GARCH(1,1) model13 and

obtain the resulting observable time-series of innovations zt. We then used the zt’s together with the implied

volatility data to fit the linear Gaussian state-space model of (21) and (22) via the EM algorithm. We take

our ground-truth model to be the resulting fitted model. The parameters of this ground-truth model are

given in Appendix B.

We assume our portfolio can contain the S&P 500 index, at-the-money and out-of-the-money call options

with moneyness (ξ = K/S) in the set {1.00,1.025,1.05,1.075,1.10,1.15} and out-of-the-money put options

with moneyness in the set {0.85,0.90,0.925,0.95,0.975}. The options are assumed to have maturities in the

set Ω′
τ ∶= {i/12 ∶ i = 1, . . . ,12} so there are a total of N = 133 securities in the universe. Each option is priced

using the Black-Scholes formula and so we interpolate the implied volatility surface as necessary to obtain

the implied volatility for certain moneyness-maturity pairs that are not explicitly modeled. As was the case

in Section D.1, we again assume that a risk-free cash account is also available. The cash account is the

(N + 1)st security and each day it returns 0% w.p. 1.

On each day of our back-test, we construct a portfolio using the LP approach as described in Section 5.2

and Appendix A. We consider a p.m. who on each day t believes (i) the devolatized S&P 500 log-return

will be14 -2 and (ii) the parallel shift c.r.f. will increase by 1 volatility point. We note from (21) that a 1

volatility point increase in the parallel shift c.r.f. would translate to a 1/√τ volatility points increase for

options with maturity τ , assuming the idiosyncratic noise and other c.r.f. returns were zero. For example,

a 1-month option would then see a 1/
√

1/12 = 3.46 volatility points increase. These anticipated movements

correspond to -2 and +2 standard deviation moves in the two c.r.f.s, respectively.

We assume the p.m. can take short positions on any of the securities except for the cash account so that

0 ≤ wN+1 ≤ 1. We also assume that −0.3 ≤ wi ≤ 0.3 for i = 1, . . . ,N so that the risk in any one security is

limited. We also have the budget constraint ∑N+1
i=1 wi = 1. In addition to these constraints, we assume that

the risk-management desk requires portfolios to be kept “neutral” with respect to a given set of scenarios

involving joint stresses to pairwise combinations of the first three c.r.f. returns, i.e., the market, the parallel

shift and skew c.r.f. returns. Neutrality to a given scenario is defined as having the portfolio SSA P&L

under that scenario to be within ±α = 2% of the initial portfolio value. The given scenarios are the elements

of the cross-product of ΩMkt ×ΩParallelShift or ΩMkt ×ΩSkew, where

ΩMkt ∶= {−3,−2,−1,0,1,2,3}

ΩParallelShift ∶= {−1.5, −1.0, −0.5, 0.0, 0.5, 1.0, 1.5} (26)

ΩSkew ∶= {−9, −6, −3, 0, 3, 6, 9}.

The values in ΩMkt,ΩParallelShift and ΩSkew were calibrated to be approximately 0,±1,±2 and ±3 standard

deviations of the zt, parallel shift and skew c.r.f. returns, respectively. The units of ΩParallelShift and ΩSkew

are volatility points. Recall that the magnitude of these movements in the c.r.f.s is given by the corresponding

columns of bo and Bu in the factor model (21). For example, a -6 unit move in the skew c.r.f. return translates

to a (1 − ξ) × (−6) move in the implied volatility for options with moneyness ξ assuming the idiosyncratic

noise and other c.r.f. returns were zero. This translates to a decrease in implied volatility of 0.6 volatility

13Standard approaches to fitting GARCH models are Maximum Likelihood Estimation (MLE) and Quasi-MLE methods. For
details of these approaches, refer to [23].

14Recall that zt has unit standard deviation and so a fall of -2 in zt implies via (17) an S&P 500 log-return of −2σt.
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points for options with ξ = 0.9 and an increase of 0.9 volatility points for options with ξ = 1.15. Finally, we

also impose the (linear equality) constraints that require the portfolio to be delta, gamma and vega neutral.

We impose the latter constraints to allow for the fact that SSA is typically not done in isolation and so it

would be typical for any risk manager / p.m. to also know the delta, gamma and vega of the portfolio. By

insisting that the portfolio be neutral to the Greeks we are simply making it more difficult for the p.m. to

“game” the fact that the scenario constraints are based on SSA rather than the correct DFMSA.

On each day of the back-test we constructed the portfolio and then applied SSA and DFMSA to it

using the same scenarios that we used to define the scenario constraints on the portfolio, i.e. scenarios

corresponding to shocks in the cross-product of ΩMkt and ΩParallelShift and ΩMkt and ΩSkew. We back-tested

the model using Algorithm 1 and using the ground-truth model to simulate data for a back-testing horizon

of T = 1,000 periods. We used an initial training window of size s = 500 and then for each t ∈ {s, . . . , T − 1}
we fit the GARCH(1,1) model and used the EM algorithm on the observable simulated data ∆x(t−s)∶(t−1)
to re-estimate the model parameters bo,G,Ση and Σε, as well as the parameters of the normal distribution

governing the initial state ft−s. Having re-trained the model at time t, we use the Kalman Filter to obtain the

distribution of ft ∣ ∆xt−s∶t−1. We finally obtain πt+1 as the distribution of the convolution of Gft ∣ ∆x(t−s)∶(t−1)
and ηt+1 and simulate samples from πt+1 to estimate the scenario P&L’s under both SSA and DFMSA

approaches.

6.2. Numerical Results

The results of the back-test are displayed in Tables 1 to 3 below. Table 1 contains the average P&L ∆V ss as

estimated by the SSA approach for the same set of scenarios that were used to construct the portfolio. As

a result, it is not surprising to see the reported P&L’s are all less than 2% in absolute value. The average

estimated P&L ∆V dfm obtained using the DFMSA approach is then reported in Table 2 for the same set of

scenarios. It is very clear that the portfolio is (on average) not at all neutral to the various scenarios. For

example, when the market c.r.f. return and the parallel shift c.r.f. are shocked by +3 and -1, respectively,

the DFMSA approach estimates a loss of 11.9% whereas the SSA approach estimates a loss of just 0.8%.

Similarly, a shock to the skew c.r.f. of -9 together with a market c.r.f. shock of 3 yields an estimated 8.0%

loss under the DFMSA approach whereas the SSA approach actually yields a gain of 0.6%.

It is also clear from Table 2 that, as designed, the portfolio has the correct directional exposure to positive

moves in the parallel shift c.r.f. and negative moves in the market c.r.f. Furthermore, the portfolio also reacts

positively to positive moves in the skew c.r.f. This can be explained by observing the correlations between

the skew and the parallel shift c.r.f. returns as reported in Appendix B. Specifically, the skew c.r.f. return

is positively correlated with the parallel shift c.r.f. (≈ 30% correlation) and has close to zero correlation to

the market c.r.f. return (≈ 2%). Since the portfolio is positively exposed to shocks in the parallel shift c.r.f.

return it is therefore no surprise to see the portfolio is also positively exposed to positive shocks to the skew

c.r.f. too. This of course is not captured by the SSA results in Table 1.

Motivated by the (partial) error decomposition in (14) from Section 5, we define

Eabs

cond ∶=
1

T − s
T−1
∑
t=s

∣∆V alt
t −∆V ss

t ∣ Eabs

vol ∶=
1

T − s
T−1
∑
t=s

∣∆V dfm
t −∆V alt

t ∣ (27)

where ∆V alt
t is defined in (12) and is our alternative estimated scenario P&L. We obtain ∆V alt

t by setting
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Table 1: Average of back-test SSA P&L ∆V ss (defined in (15)) for a portfolio that is constructed to have: (i) exposure
to negative changes to the market (zt) c.r.f. returns and positive exposure to changes in the parallel shift c.r.f. returns
and (ii) to be approximately neutral (max. loss within ±α ∶= 2% according to SSA) with respect to the pre-specified
scenarios in the table. Subtable (a) displays the average SSA P&L when simultaneously stressing the market and
parallel shift c.r.f. returns. Subtable (b) displays the average SSA P&L when simultaneously stressing the market
and skew c.r.f. returns. All P&L numbers are in dollars per $100 of face value of the portfolio. The portfolio is
constructed anew on each day of the back-test period.

∆V ss

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -9 -6 -3 0 3 6 9

-3 -0.6 0.4 0.1 -0.2 -0.6 -1.1 -1.7 0.0 -0.1 -0.2 -0.2 -0.2 -0.1 0.0

-2 1.9 1.8 1.7 1.5 1.2 0.8 0.2 1.7 1.6 1.5 1.5 1.5 1.6 1.7

-1 1.6 1.7 1.6 1.5 1.3 1.0 0.5 1.8 1.7 1.6 1.5 1.5 1.5 1.5

0 0.8 0.9 1.0 1.0 0.9 0.6 0.1 1.4 1.3 1.1 1.0 0.9 0.9 0.8

1 0.8 1.0 1.2 1.2 1.0 0.7 0.2 1.8 1.6 1.3 1.2 1.0 0.9 0.8

2 0.4 0.7 0.9 0.9 0.7 0.3 -0.3 1.8 1.5 1.2 0.9 0.6 0.4 0.2

3 -1.2 -0.8 -0.6 -0.6 -0.8 -1.2 -2.0 0.6 0.2 -0.2 -0.6 -0.9 -1.3 -1.6

Table 2: Average of back-test DFMSA P&L ∆V dfm for the same portfolio and scenarios as reported in Table 1. All
P&L numbers are in dollars per $100 of face value of the portfolio.

∆V dfm

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -9 -6 -3 0 3 6 9

-3 5.1 6.3 7.1 7.9 8.8 10.2 11.4 4.0 4.9 5.2 5.2 6.9 6.7 8.0

-2 3.5 4.4 5.8 7.2 8.3 9.5 10.1 3.6 4.0 4.9 5.5 6.4 6.7 7.6

-1 0.2 1.9 2.3 4.8 5.6 7.2 7.8 1.6 1.4 2.4 3.4 4.1 5.0 5.6

0 -2.7 -1.8 -0.9 1.1 2.5 3.4 4.0 -1.1 -0.8 0.8 0.7 1.6 2.4 3.0

1 -6.2 -4.4 -3.9 -1.9 -0.6 0.9 1.5 -2.5 -1.5 -1.5 -0.5 -0.4 0.4 0.8

2 -9.1 -7.8 -6.3 -4.7 -3.8 -2.6 -2.2 -5.1 -4.3 -3.2 -3.7 -3.2 -1.7 -2.0

3 -13.9 -11.9 -10.6 -9.5 -8.5 -7.1 -6.8 -8.0 -8.0 -7.9 -6.5 -6.6 -6.3 -6.1

∆xt = Bµct where µct (defined in (13)) is the expected value of the c.r.f. returns conditional on the scenario.

It follows from the triangle inequality in (14) for each t = s, . . . , T − 1 that Eabs ≤ Eabs

cond +Eabs

vol .

Tables 3 and 4 display the average values of Eabs

vol and Eabs

cond, respectively, in our back-test. It is clear from

Table 3 that the error in reported P&L’s that results from using the alternative ∆V alt
t is relatively small

and is less than 2.5% in all of considered scenarios. In contrast, the errors in Table 4 are significantly larger.

These observations suggest (at least in this example), that the main source of error in the SSA approach is

in setting the non-stressed factors to zero rather than their expectations conditional on the given scenario.

We can also observe from Table 4 (a) that the largest absolute errors occur when the market and parallel

shift c.r.f. returns are subjected to the most extreme shocks. This indicates that setting the skew and term-

structure c.r.f. returns to zero (which is how SSA would proceed) results in higher errors when the market

and parallel shift c.r.f. returns are more severely stressed. Referring to the c.r.f. return correlation matrix

ρη that is reported in Appendix B, we see this observation can be explained by noting that the parallel shift

c.r.f. return is moderately and negatively correlated with the term-structure c.r.f. (≈ −33% correlation) and

is strongly correlated with the skew c.r.f. return (≈ 55% correlation). Clearly setting the term-structure and

skew c.r.f. returns to zero would be highly inaccurate in this setting.
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Table 3: Average back-test error Eabs
vol of the SSA P&L for the same portfolio and scenarios as in Tables 1 and 2.

Eabs
vol

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -9 -6 -3 0 3 6 9

-3 1.7 1.6 1.4 1.6 1.4 1.7 1.4 2.2 1.8 2.3 1.9 1.8 1.9 1.9

-2 1.4 1.7 1.4 2.0 1.5 1.5 1.2 1.9 1.6 1.8 1.5 1.4 1.7 1.7

-1 1.6 1.5 1.8 1.3 1.6 1.4 1.4 1.6 2.1 1.6 1.5 2.0 1.6 1.4

0 2.0 1.7 1.7 1.7 1.4 1.5 1.6 1.7 1.9 2.0 1.8 1.6 1.6 1.8

1 2.2 1.9 1.8 1.7 1.6 1.4 1.2 1.7 1.6 2.0 1.9 1.4 1.6 1.5

2 2.0 2.2 2.0 1.8 1.7 1.8 1.5 1.9 1.8 1.6 1.5 1.9 1.6 1.8

3 2.3 1.8 2.0 1.9 1.7 1.7 1.6 2.1 1.8 2.1 1.8 1.8 1.7 1.6

Table 4: Average back-test error Eabs
cond of the SSA P&L for the same portfolio and scenarios as in Tables 1, 2 and 3.

Eabs
cond

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -9 -6 -3 0 3 6 9

-3 4.3 5.8 7.1 8.5 10.0 11.5 12.8 4.3 4.9 5.6 6.1 6.8 7.5 8.1

-2 1.7 2.9 4.4 5.7 7.2 8.7 10.0 2.0 2.7 3.3 4.0 4.6 5.3 6.1

-1 1.4 0.5 1.5 2.9 4.4 5.8 7.3 0.6 0.6 1.3 1.9 2.6 3.4 4.2

0 4.1 2.8 1.5 0.5 1.5 3.0 4.4 2.2 1.6 0.8 0.3 0.7 1.5 2.1

1 7.0 5.7 4.4 2.9 1.6 0.5 1.4 4.3 3.5 2.8 2.0 1.2 0.7 0.7

2 9.8 8.5 7.3 5.9 4.5 3.0 1.5 6.5 5.7 5.0 4.2 3.6 2.7 2.0

3 12.6 11.3 10.0 8.8 7.4 5.9 4.4 8.8 8.0 7.2 6.5 5.8 5.1 4.4

6.3. Historical Back-Testing

While DFMSA and SSA performed on simulated paths of the ground-truth model provides some insight into

their relative performance, a comparison of both approaches on actual historical scenarios would provide

more concrete support. To accomplish this, we perform both SSA and DFMSA for a selection of derivative

securities during days of extreme market volatility during the 2008 financial crisis. As a benchmark, we

compute the true realized P&L for each of the securities during these dates. We then compare the true

realized P&L to the stressed P&Ls obtained via SSA on one hand, and to the stressed P&Ls obtained via

DFMSA on the other. The objective of this comparison is to provide some direct15 evidence regarding the

extent to which DFMSA provides a better picture of the risks of a security or portfolio than SSA.

To perform the historical back-test on a specific day t, we use the GARCH-embedded state-space model

described earlier and estimate the corresponding parameters of the model using a window of the s > 0 periods

up to and excluding day t. We use the same data-sets as described in Section 6.1 to estimate the model each

day. The historical stress scenario is selected by choosing a subset of c.r.f.s and setting them to their realized

values on day t + 1. While this is straightforward for the observable c.r.f. return, i.e. the devolatilized S&P

500 c.r.f return, it presents a difficulty if we choose any latent c.r.f. returns to stress as the realization of the

latent c.r.f. returns would have to be inferred. Using estimated c.r.f. returns, however, would induce a bias in

our historical back-testing procedure that favors DFMSA over SSA. For this reason, we will only16 consider

15Indirect evidence is obtained via the various statistical tests that any multivariate dynamic model can be subjected to. a
sample of such tests is described in Section 7.

16In Appendix C we discuss the issue of inferring the realization of latent c.r.f. returns in the context of a historical back-test
and why that results in a bias that overstates the accuracy of DFMSA. Our results in Appendix C suggest the bias may be
quite small, however.
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scenarios that stress the devolatilized S&P 500 c.r.f return here and our historical back-testing procedure is

outlined in Algorithm 2 below.

Algorithm 2 Historical back-testing with observable c.r.f. returns to compare SSA and DFMSA

Input: s, t,K, s ▷ s = # periods in window for model training
▷ t = period to perform SA

▷ K = # of samples used to estimate factor model-based scenario P&L
▷ s = indices of observable c.r.f. returns to stress.

1: Estimate DFM parameters
2: Estimate πt+1 from (fo(t−s)∶t, ∆x(t−s)∶(t−1)) ▷ fo(t−s)∶t are observable
3: for k ← 1 to K do
4: Generate f

(k)
t+1 ∣ (Ft, fs,t+1 = c) and ε

(k)
t+1 to obtain ∆x

(k)
t

5: Compute scenario P&L ∆Vt(∆x
(k)
t )

6: end for
7: Compute ∆V dfm

t ∶= ∑Kk=1 ∆Vt(∆x
(k)
t )/K ▷ Estimated scenario P&L

8: Compute ∆V ss
t ▷ SSA P&L obtained by setting εt+1, non-stressed common factors to 0

9: Compute ∆V act
t using the realized value of ∆xt ▷ Actual realized P&L

10: Compute errors Edfm

t ∶= ∣∆V dfm
t −∆V act

t ∣ and Ess

t ∶= ∣∆V ss
t −∆V act

t ∣
11: Compute the ratio Eratio

t ∶= Edfm

t /Ess

t

Output: ∆V dfm
t ,∆V ss

t ,∆V
act
t ,Edfm

t ,Ess

t and Eratio

t

We selected three dates to perform this historical analysis, namely September 29, 2008, when the

S&P500’s log-return was -9.22%, October 13, 2008 when the S&P log-return was +10.96%, and October

15, 2008 when the S&P log-return was -9.47%. For a particular date of interest, we use a window of the

s = 250 previous trading days to fit the state-space model (21) and (22) as described in Section 6.1. We

then set the scenario of interest to be the realized market17 c.r.f. return and then proceeded with SSA and

DFMSA to obtain the stressed P&Ls ∆V dfm
t and ∆V ss

t . Denoting the actual time t realized P&L by ∆V act
t ,

we calculate the absolute errors of each SA approach as

Edfm

t ∶= ∣∆V dfm
t −∆V act

t ∣ Ess

t ∶= ∣∆V ss
t −∆V act

t ∣ . (28)

Finally, we compute the ratio Edfm

t /Ess

t which provides a measure of the performance of DFMSA compared

to SSA. For example, if the ratio is equal to 1 then both approaches provide similar errors, whereas a ratio

that is smaller (greater) than 1 indicates that DFMSA gave a more (less) accurate scenario P&L estimate

than SSA. The results are displayed in Table 5. In all cases we see that DFMSA outperforms SSA with

Edfm

t /Ess

t always less than 50% and in some cases is less than 7%. While this should come as no surprise -

it’s well known that S&P 500 returns and implied volatility moves are strongly negatively correlated - and

so it’s clear that SSA would do a particularly bad job for these scenarios. That said, these results do serve

to highlight the importance of embedding scenario analysis in a dynamic factor model and accounting for

dependency among factors when estimating scenario P&L.

It would be interesting to see how the results in Table 5 would change if we assumed a DFM that did

not include the GARCH component for the S&P log-returns. We can easily do this by again assuming

the state-space model (21) and (22) but now with the first element of ∆xt in (20) equal to the S&P 500

log-return rather than its devolatilized log-return. The results are displayed in Table 6. There are two clear

17We can back-out the realization of the market c.r.f. return, defined as the innovation term in the GARCH model (17), by
taking the realized S&P 500 log-return and dividing it by the σt computed from the estimated GARCH model via (18).
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Table 5: Historical SA back-test on three dates during the financial crisis for two out-of-the-money options with
maturity = 10 months and for the portfolio described in Section 6.1. On each date the scenario is set to be the
realized S&P c.r.f. return. All P&L numbers are in dollars per $100 of face value. We display the resulting SSA P&L,
DFMSA P&L and the actual realized P&L for each security / portfolio. We also display the ratio of the DFMSA
absolute error to the SSA absolute error.

Date S&P Log-Return Security ∆V ss
t ∆V dfm

t ∆V act
t Edfm

t /Ess
t

9/29/2008 -9.22% 0.90 mness, 10 m. Put 39.8 68.4 77.2 23.6%

9/29/2008 -9.22% 1.05 mness, 10 m. Call -56.8 -38.4 -33.7 20.2%

9/29/2008 -9.22% LP Portfolio -0.5 37.9 62.2 38.7%

10/13/2008 +10.96% 0.90 mness, 10 m. Put -14.7 -34.0 -42.6 30.7%

10/13/2008 +10.96% 1.05 mness, 10 m. Call 61.1 42.0 28.1 42.3%

10/13/2008 +10.96% LP Portfolio -1.5 -9.6 -12.4 26.3%

10/15/2008 -9.47% 0.90 mness, 10 m. Put 19.9 42.5 40.0 12.4%

10/15/2008 -9.47% 1.05 mness, 10 m. Call -46.5 -30.9 -29.7 7.1%

10/15/2008 -9.47% LP Portfolio -13.7 10.6 9.1 6.8%

observations we can make. First, we see that the non-GARCH-embedded DFM model outperforms SSA.

This is satisfying as it suggests that even a DFMSA based on a relatively poor dynamic model can do a

better job than SSA. Second, by comparing the results in Table 5 with those in Table 6 we can see that the

more sophisticated GARCH-embedded model clearly does a better job than the non-GARCH version. In

fact we see that the Edfm

t /Ess

t numbers in Table 5 are almost 10 percentage points lower on average than the

corresponding numbers in Table 6.

Table 6: Everything is identical to the set-up in Table 5 except the first component of the c.r.f. return vector now
represents the S&P log-returns rather than the devolatilized S&P log-returns.

Date S&P Log-Return Security ∆V ss
t ∆V dfm

t ∆V act
t Edfm

t /Ess
t

9/29/2008 -9.22% 0.90 mness, 10 m. Put 39.8 69.0 77.2 21.9%

9/29/2008 -9.22% 1.05 mness, 10 m. Call -56.8 -37.8 -33.7 17.9%

9/29/2008 -9.22% LP Portfolio -10.4 29.0 63.9 47.0%

10/13/2008 +10.96% 0.90 mness, 10 m. Put -14.7 -30.5 -42.6 43.5%

10/13/2008 +10.96% 1.05 mness, 10 m. Call 61.1 44.7 28.1 50.3%

10/13/2008 +10.96% LP Portfolio 12.3 -4.9 -15.1 37.4%

10/15/2008 -9.47% 0.90 mness, 10 m. Put 19.9 38.1 40.0 9.3%

10/15/2008 -9.47% 1.05 mness, 10 m. Call -46.5 -31.6 -29.7 11.4%

10/15/2008 -9.47% LP Portfolio -10.4 2.6 10.0 36.2%

7. Statistical Evaluation of the Model in DFMSA

While not our main focus, a key aspect to implementing DFMSA in practice is the statistical evaluation of the

dynamic factor model (d.f.m.) in question. We have argued that the SSA approach does not require or use a

probabilistic model (see (3)) and therefore does not lend itself to any form of statistical testing. This is not

true of DFMSA and in this section we briefly outline some potential approaches to the statistical validation

of the underlying d.f.m. At a high level a data-set will consist of observations (∆xt, fot ) for t = 1, . . . , T of

the risk factor returns and observable c.r.f. returns. While most of the state-space model literature, e.g.
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[34, 32], tends to focus on the estimation and implementation of these models there appears to be relatively

little work on the statistical testing of these models. Some notable exceptions include [30, 33]. Because the

ultimate goal of these models in our context is the accurate estimation of the daily P&L for a given portfolio

(in a given scenario) we will focus here on some tests that can be applied to the one-dimensional time-series

of portfolio returns.

7.1. VaR Exceptions for a Given Portfolio

Given any portfolio, by assumption we can use the ∆xt’s to construct the univariate time series of the

portfolio’s realized P&L’s, i.e. the ∆Vt(∆xt)’s. As a first test of the d.f.m. it seems reasonable to require

that, at the very least, the realized ∆Vt(∆xt)’s should be consistent with the estimated ∆Vt(∆xt)’s predicted

by the d.f.m. A straightforward and commonly used approach for doing this is through the use of so-called

Value-at-Risk (VaR) exceptions. Towards this end we recall that the time t α-VaR (for a given portfolio) is

the Ft-measurable random variable VaRt+1(α) that satisfies

P (∆Vt(∆xt) < VaRt+1(α) ∣ Ft) = 1 − α

for any fixed α ∈ (0,1). The time t α-VaR is therefore the (1−α)-quantile of the distribution of the portfolio

P&L conditional on Ft. We define a VaR exception as the event that the realized ∆Vt is lower than VaRt+1(α)
and use It+1(α) to denote the indicator function for such an event. Specifically, we define

It+1(α) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∆Vt(∆xt) < VaRt+1(α)

0, otherwise.
(29)

It follows that It+1(α) is a Bernoulli random variable with success probability 1−α. Since the {It(α)}t’s are

adapted to the filtration {Ft}t≥1, it can in fact be easily shown18 that they form an i.i.d. sequence of Bernoulli

random variables. This result forms the basis of several simple tests for the d.f.m. under consideration.

We begin by letting V̂aRt+1(α) be our d.f.m. estimate of VaRt+1(α) conditional on Ft for t = 1, . . . , T .

For example, in the linear-Gaussian state-space models of Section 6 and Appendix D, we can use the Kalman

Filter to obtain the mean vector and covariance matrix of the distribution of ft+1 ∣ Ft. We can then use

(7) and (2), respectively, to simulate K samples from the distributions of ft+1 ∣ Ft and εt+1 and from there

use (1) to obtain K samples ∆V
(1)
t , . . . ,∆V

(K)
t of the P&L ∆Vt(∆xt). We then take the (1 − α)-quantile

V̂aRt+1(α) of the empirical distribution obtained from these K samples as our d.f.m’s estimate of VaRt+1(α).

Binomial Distribution Tests

We can construct the sequence of empirical VaR exception indicators Ît+1(α) by substituting V̂aRt+1(α)
for VaRt+1(α) in (29). Under the null hypothesis that our state-space model is correct, it follows that

∑T−1t=0 Ît+1(α) has a Binomial(T,1 − α) distribution. We can therefore use standard tests for the binomial to

test the null hypothesis. For example, Kupiec [22] describes a two-sided binomial test with test statistic

ZT = ∑
T
t=1 Ît(α) − T (1 − α)√

Tα(1 − α)
. (30)

18For a proof of this statement see Lemma 9.5 in [23], for example.
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In particular, we then reject the null hypothesis at the κ level if ∣ZT ∣ ≥ Φ−1(1−κ/2), where Φ(⋅) denotes the

standard normal CDF.

Various other tests can also be employed. For example, under the same null hypothesis that our state-

space model is correct, it follows that the time between consecutive VaRt+1(α) exceptions are independent

and geometrically distributed with success probability α. This property can be tested by approximating the

geometric distribution with an exponential distribution and using a Q-Q plot or a likelihood ratio test as

proposed by [8]. See also [23] for further details and additional discussion of these and other tests.

Table 7 (a) shows the results of the VaR exceptions’ binomial test for the GARCH-embedded dynamic

factor model, as described in Section 6, where for each day t we fit the model using observable data for

the previous s = 500 trading days. We note that in 2008 the model results in a statistically significant high

number of both 99% and 95% VaR exceptions for the majority of the assets considered. However, for the

remaining years the number of VaR exceptions are in accordance with the expected number of exceptions

for the most part. We suspect that adding an extreme-value-theory component to the GARCH model might

improve the model sufficicently to pass these tests even in the financial crisis period of 2008. See for example

Section 9.3 of [23].

For comparison, Table 7 (b) shows the results for the non-GARCH-embedded model that that we also

considered in Section 6.3. This model is simply the state-space model of (22) and (7) but where the first

element of ∆xt and the first c.r.f. correspond to the S&P 500 log-returns themselves. We note that the

non-GARCH model performs considerably worse than the GARCH-embedded state-space model. This is

not surprising as the non-GARCH model is not capable of capturing stochastic and time-varying volatility

and in particular, volatility clustering.

Independence Tests

Because the (1−α)-VaR violations form an i.i.d. sequence of Bernoulli random variables with parameter α,

it follows that the time-intervals between such violations will be i.i.d. geometric, again with parameter α.

We can therefore construct a test of the geometric hypothesis for any proposed d.f.m. We can use the fact

that a discrete-time Bernoulli process for rare events can be approximated by a Poisson process. This in turn

implies that the discrete geometric distribution for the intervals between VaR violations can be approximated

by an exponential distribution. To be precise, and paraphrasing from Section 9.3 of [23], we assume the

time interval [t, t + 1] in discrete time has length ∆t in the chosen unit of continuous time. For example, if

[t, t+1] represents a trading day, then ∆t = 1 if time is measured in days and ∆t = 1/250 if time is measured

in years. If the Bernoulli rare event probability is 1 − α, then the approximating Poisson process has rate

λ = (1 − α)∆t and the approximating exponential distribution has mean 1/λ. The exponential hypothesis

can be tested using a Q-Q plot of the intervals between (1 − α)-VaR violations against the quantiles of a

standard exponential distribution.

Figure 1 shows the Q-Q plots for the 95%-VaR independence test for the same securities as those examined

in Table 7 for the period January 2008 through August 2013. To aid in visualizing the results, the plots

are on a logarithmic scale. We observe that the S&P 500 index, as well as the 6 and 9 month put options

with moneyness 0.9 generally have slightly shorter spacings between VaR exceptions than the exponential

distribution benchmark. In addition, most of the options have a heavier right tail than the exponential

distribution benchmark, so that the longest spacings between VaR exceptions are larger than they should

be under the exponential assumption. These results are not surprising in light of the results from Table 7
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Table 7: Number of 95% and 99% VaR exceptions of (a) the GARCH-embedded d.f.m, where we use the innovations
zt as a c.r.f., and (b) the non-GARCH d.f.m., where we use the log-returns of the S&P 500 index as a c.r.f. We
highlight significant differences between the expected and realized number of exceptions, according to the binomial
test at the 5% confidence level.

(a) GARCH-Embedded D.F.M. (b) Non-GARCH D.F.M.

Year 08 09 10 11 12 13* All 08 09 10 11 12 13* All

95% VaR Exceptions 95% VaR Exceptions

Expected 13 13 13 13 13 8.5 71 13 13 13 13 13 8.5 71

S&P500 index 27 15 14 18 10 9 93 34 4 13 22 4 10 87

0.90 mness, 6m Put 27 6 6 20 10 9 78 26 4 14 22 5 16 87

1.05 mness, 6m Call 18 9 6 10 8 5 56 39 2 4 19 7 3 74

0.90 mness, 9m Put 19 11 7 14 10 6 67 24 4 12 22 4 13 79

1.05 mness, 9m Call 19 9 6 12 9 5 60 39 2 5 17 6 4 73

0.90 mness, 12m Put 20 14 11 15 8 9 77 18 4 10 18 3 4 57

1.05 mness, 12m Call 20 13 6 10 12 6 67 42 4 8 22 5 6 87

99% VaR Exceptions 99% VaR Exceptions

Expected 2.6 2.6 2.6 2.6 2.6 1.7 14.3 2.6 2.6 2.6 2.6 2.6 1.7 14.3

S&P500 index 8 4 8 7 5 2 34 20 0 7 14 1 3 45

0.90 mness, 6m Put 5 4 2 2 4 0 17 14 3 5 12 1 7 42

1.05 mness, 6m Call 6 4 1 3 3 0 17 18 2 2 10 1 0 33

0.90 mness, 9m Put 6 4 2 2 4 1 19 14 2 4 12 1 2 35

1.05 mness, 9m Call 6 5 1 2 3 0 17 18 1 2 12 1 1 35

0.90 mness, 12m Put 7 1 1 4 1 1 15 10 1 3 9 1 1 25

1.05 mness, 12m Call 6 3 1 3 3 3 19 17 1 3 10 1 2 34

*Options data was available through August 2013.

where we noted that there were a significant number of VaR exceptions in 2008. It stands to reason then

that in the Q-Q plots of Figure 1, we would expect the large number of 2008 VaR exceptions to result in

intervals between VaR exceptions being shorter than the exponential distribution would suggest.

7.2. Scenario VaR Exceptions

We can use the same VaR exception framework to evaluate the state-space model within the context of

scenario analysis. In particular, instead of calculating the VaR from the distribution of ∆Vt(∆xt) ∣ Ft, we

use the distribution of ∆Vt(∆xt) ∣ (Ft, fs,t+1 = ct+1) for some subset s of the c.r.f. vector ft+1 and for some

time t + 1 scenario ct+1. In order to count the VaR exceptions, however, we must be able to obtain the

realization of the P&L conditional on Ft and fs,t+1 = ct+1. We therefore must set ct+1 to be equal to the

realized value frs,t+1 of fs,t+1 as we did in the historical back-testing framework of Section 6.3. Moreover,

we only19 consider scenarios where only observable c.r.f. returns are stressed. For each time t we estimate

V̂aRt+1(α) ∣ (Ft, fs,t+1 = frs,t+1) again using Monte Carlo as described in Section 7.1 but where we now sample

from ft+1 ∣ (Ft, fs,t+1 = frs,t+1). Having estimated each scenario-conditional V̂aRt+1(α), we can compute the

empirical VaR exception indicator Ît+1(α) and conduct the same tests as described in Section 7.1.

Table 8 (a) shows the results of the VaR exceptions’ binomial test for the GARCH-embedded dynamic

factor model. In this case the only observable c.r.f. return is the devolatilized S&P 500 log-return and so for

19This is because if scenarios include the stressing of latent c.r.f. returns, then it will be necessary to estimate the realized
values of these c.r.f. returns which could potentially introduce significant bias into the statistical testing of the scenario VaR
exceptions.
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Figure 1: Independence Tests: Q-Q plots for the number of days between 95% VaR exceptions on a log scale for the
S&P 500 and European call and put options on it of varying moneyness and maturity.

each day t in the back-test, the scenario in question is simply the realized devolatilized S&P 500 log-return

over the period [t, t + 1]. The results are similar to those in Table 7 (a) although one notable difference is

that we can see from Table 8 (a) that occasionally there were too few scenario 95% VaR exceptions. Given

these results were based on conditioning on the S&P 500 c.r.f. return, it suggests that perhaps a more

sophisticated model for the dynamics of the implied volatility c.r.f. returns is required. For comparison we

show in Table 8 (b) the results for the corresponding non-GARCH embedded model. Not surprisingly, this

model performs far worse than the GARCH-embedded model.

We note that it would also be possible to perform independence tests of the scenario VaR exceptions

as described in Section 7.1. We conclude this section by emphasizing the that any DFMSA should be

accompanied by a statistical testing framework to validate the use of the d.f.m. under consideration. If it
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Table 8: Number of 95% and 99% market c.r.f.-conditional VaR exceptions of (a) the GARCH-embedded d.f.m, where
we use the innovations zt as a c.r.f., and (b) the non-GARCH d.f.m., where we use the log-returns of the S&P 500 index
as a c.r.f. We use the same selection of out-of-the-money options as in Table 7. We highlight significant differences
between the expected and realized number of exceptions, according to the binomial test at the 5% confidence level.

(a) GARCH-embedded d.f.m. (b) Non-GARCH d.f.m.

Year 08 09 10 11 12 13* All 08 09 10 11 12 13* All

95% VaR Exceptions 95% VaR Exceptions

Expected 13 13 13 13 13 8.5 71 13 13 13 13 13 8.5 71

0.90 mness, 6m Put 26 7 7 23 13 10 86 27 5 18 30 16 16 112

1.05 mness, 6m Call 23 14 3 15 7 3 65 32 5 16 29 14 9 105

0.90 mness, 9m Put 27 13 5 15 8 5 73 30 5 17 26 17 13 108

1.05 mness, 9m Call 31 15 2 13 7 1 69 31 4 14 22 15 5 91

0.90 mness, 12m Put 28 19 2 9 2 0 60 25 3 9 17 6 2 62

1.05 mness, 12m Call 24 17 2 9 4 1 57 23 2 8 14 10 3 60

99% VaR Exceptions 99% VaR Exceptions

Expected 2.6 2.6 2.6 2.6 2.6 1.7 14.3 2.6 2.6 2.6 2.6 2.6 1.7 14.3

0.90 mness, 6m Put 14 0 1 10 2 3 30 15 2 11 14 7 10 59

1.05 mness, 6m Call 15 2 0 8 0 0 25 21 2 8 14 5 4 54

0.90 mness, 9m Put 14 0 1 8 1 0 24 20 2 10 11 3 7 53

1.05 mness, 9m Call 13 4 0 4 0 0 21 15 1 7 11 5 3 42

0.90 mness, 12m Put 11 4 0 5 0 0 20 13 2 6 7 2 2 32

1.05 mness, 12m Call 13 5 0 3 0 0 21 15 0 4 9 2 2 32

*Options data was available through August 2013.

fails to pass the testing framework and this failure is deemed significant20, then alternative models should

be developed and tested.

8. Conclusions and Further Research

We have argued in this paper for the embedding of scenario analysis inside a dynamic factor model framework

so that more accurate estimates of scenario P&L’s can be computed and so that these estimates can be

subjected to a rigorous back-testing framework. This is particularly important for derivatives portfolios

where scenario analysis is often performed in a naive fashion by implicitly setting unstressed c.r.f. returns

to zero in the absence of any dynamic model for the c.r.f. returns.

There are many interesting directions for future research. First, it would be particularly interesting to

extend and develop the state-space modeling framework to more complex asset classes than considered in

Section 6 and Appendix D. For example, we would like to perform DFMSA for portfolios consisting of

options and equity positions on many stocks or portfolios of spot and option positions on the major FX

currency pairs. It would also be of interest to extend these models to allow for stochastic correlation which

is a well-observed feature of financial markets, particularly in times of crisis.

A second direction, which is complimentary to the first, would be the development of more sophisticated

state-space models that move us beyond the linear-Gaussian framework we have considered in this paper.

Such models would surely be required for modeling stochastic correlation but we suspect they would also

20We have in mind here the distinction between statistical and practical significance. Given that all models are “wrong”, it’s
inevitable that even good models will eventually fail tests of statistical significance given sufficient data. It is important then
to consider issues of practical significance when accepting or rejecting models.
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lead to superior back-testing results than those obtained in Section 7. Specifically, while we used a GARCH

model to devolatilize the S&P return component, we made no such correction for the three implied volatility

c.r.f. returns and assumed they were sufficiently well modelled by the linear-Gaussian framework. Clearly,

this assumption might not be justified and it would be interesting to develop a more sophisticated state-space

model even for this single-stock application.

Of course the Kalman filtering framework no longer applies once we go beyond the linear-Gaussian state-

space model. Nonetheless, given modern computing power this should not be too problematic as MCMC and

particle filters can be employed instead. Moreover there is already a substantial literature, e.g. Chapter 12

of Tsay [34], on the use of MCMC and particle filters for financial time-series from which we could borrow.

Instead of using MCMC and particle filters, it might be more convenient to simply set the unstressed latent

c.r.f. returns equal to their conditional means or MAPs (maximum a posteriori) estimates. In fact we already

experimented with this in Tables 3 and 4 of Section 6.2 and we saw there that there was only a small loss

in accuracy when we set the the unstressed latent c.r.f. returns equal to their conditional means. It was

easy to determine their conditional means in the linear-Gaussian set-up of that section since the conditional

distributions were Gaussian and easy to compute via the Kalman filter. For more general state-space models,

computing the means or MAPs would be more problematic. Nonetheless, some special purpose optimization

algorithms have been developed for this purpose. For example, Aravkin [2, 3] computes the MAP estimates

when the innovations have a multivariate t distribution. It is worth emphasizing that one major difficulty

with moving beyond the linear-Gaussian framework is how the parameters of these models can be estimated

and whether or not there is sufficient data available for their estimation. We used the well-known EM

algorithm in our linear-Gaussian setting but there appears to be relatively little work on how to estimate

model parameters in non-linear Gaussian settings.

We spent some time in Section 7 discussing some of the standard statistical tests to which we could

subject our dynamic factor models. There we focussed mainly on VaR and so-called scenario VaR exceptions

for fixed portfolios. Working with fixed portfolios can loosely be viewed as working with one-dimensional

projections of the underlying multivariate distributions. This seems like a reasonable approach, particularly

in light of the Cramér-Wold Theorem [10] which states that a multivariate distribution is uniquely determined

by its one-dimensional projections. It would be interesting to consider other statistical approaches to model

validation, however. In recent years, for example, there has been considerable interest in the concept of

elicitability [18] and its use in model selection and comparison via back-testing; see for example [11, 4, 36]. It

would be interesting to take an elicitability approach to model selection for the purposes of scenario analysis

as proposed in this paper.

A further statistical issue of interest is the bias that arises in the context of historical back-testing when

we have to infer the realized values of latent c.r.f. returns. We discussed this issue in Section 6.3 and

provided some results in Appendix C that indicated that the size of the this bias may not be very large in

some circumstances. It would be interesting to explore this issue more systematically and possibly with a

view to estimating and therefore controlling for the bias in such historical back-tests.

Another interesting direction for future research relates to the recent work of Rebonato, e.g. [28, 29].

Rebonato has proposed the use of graphical models for scenario analysis in a context where macro-economic

and systemic risk factors might be stressed. It might be interesting to embed our DFMSA approach within

a graphical model (GM) framework. Consider for example a GM where the root nodes represent macro-

economic factor returns and suppose we want to consider a scenario where some of these returns are set to

28



some fixed stress levels. We can propagate this scenario through the other nodes of the GM via Monte-Carlo

simulation to obtain samples of stresses to some c.r.f returns (represented by other nodes) in the GM. Each

such sample could then represent a “scenario” in our DFM where we now need to simulate from the c.r.f.

returns that were not included in the GM. A key assumption here is that the distribution of the non-GM

c.r.f. returns is independent of all random variables in the GM conditional on the GM’s c.r.f. returns.

More generally, it would be interesting to see if we could include all of the DFM’s c.r.f. returns within the

GM and to define the conditional distributions in the GM in such a way that the joint marginal distribution

of the c.r.f. returns in the GM agrees with the joint distribution of the c.r.f. returns in the DFM. If we could

do this, then we could perform scenario analysis at both the macro-level (which may be of more interest at

the institution level) and c.r.f. return level (which may be of more interest at the desk / portfolio level) and

to do so in a mutually consistent way. We suspect this should be possible if everything was multivariate

normally distributed but it may be too challenging to do this more generally.

Finally, we mention the possibility of using DFMSA to establish margining rules for exchanges. A key

task for derivative exchanges is constructing reasonable rules for establishing the margin requirements for

portfolios of (derivative) securities. This is not an easy task and yet in order to remain competitive with

other exchanges, it is important that exchanges not impose excessive requirements. We believe a scenario

analysis approach, suitably embedded in a dynamic factor model, might be a useful approach for establishing

such rules.
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A. Portfolio Construction Via Linear Programming

We develop a simple linear programming (LP) approach to construct a portfolio according to the setting

and notation introduced in Section 5.2. We assume the p.m can trade in N securities and that their daily

P&L, ∆vi(∆x), for i = 1, . . . ,N , depends on the vector of risk factor changes ∆x ∈ Rn. The p.m. wishes to

determine the portfolio weights w1, . . . ,wN where ∑Ni=1wi = 1 and where wi is the percentage of the portfolio

value allocated to security i. The p.m. believes fe = c at the end of the next period and wishes to construct

per portfolio to take advantage of this belief. The p.m. also believes and uses the DFM approach and has

therefore estimated πt+1 as well as the parameters of the model (2) and the corresponding dynamic factor

model for ft. She can therefore easily simulate K samples of the risk factor changes, ∆x(1), . . . ,∆x(K) and

the use these samples to estimate the expected P&L for each of the N securities conditional on the view, i.e.

scenario, that fe = c. We let ∆vfm

i ∶= 1
K ∑

K
k=1 ∆vi(∆x(k)) denote these expected conditional P&Ls. Letting

w ∶= (w1, . . . ,wN), the p.m.’s objective function will therefore be given by

F (w) ∶=
N

∑
i=1
wi∆v

fm

i (31)

which is her expected portfolio P&L conditional on the view fe = c.

The p.m. must also satisfy certain constraints imposed by the risk management team. In particular, the

risk management team require that the estimated scenario P&L’s for L different scenarios must lie between

−α% and α%. These estimated scenario P&L’s are computed using the SSA approach and involve stresses

to combinations of the c.r.f.’s in fn. For each security i = 1, . . . ,N and each scenario l = 1, . . . , L, we can use

the SSA approach to estimate the P&L of the ith security in that scenario. If we denote this estimated P&L

by ∆v
(l)
i then these risk constraints will result in the following linear constraints for the LP:

Al+(w) ∶=
N

∑
i=1
wi∆v

(l)
i ≤ α for l = 1, . . . , L

Al−(w) ∶=
N

∑
i=1
wi∆v

(l)
i ≥ −α for l = 1, . . . , L (32)

We can then combine (31) and (32) together with the constraint 1⊺w = 1 to obtain the full LP that the p.m.

must solve to obtain her optimal portfolio.

We note that it’s easy to formulate more realistic LPs. For example, it would make sense to allow α

to be scenario dependent and only limit the downside risk in the L scenarios. Similarly, we could assume

the risk-management team is more sophisticated and therefore use DFMSA when estimating the scenario

P&Ls. Likewise, it is easy to include constraints imposed by the p.m. rather than the risk-management

team. Additional constraints on the so-called Greeks, e.g. delta, gamma, vega etc, of the overall portfolio as

well as position constraints could also be imposed in the LP. Nonetheless the LP formulated above seems like

a very straightforward way to highlight the problems that can arise when using SSA rather than DFMSA.
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B. Ground Truth Parameters for the S&P 500 Options Portfolio of Section 6

The parameters of the GARCH model (17) and (18) from Section 6, given by

rt = σtzt, t = 1,2, . . .

σ2
t = α0 + α1r

2
t−1 + β1σ2

t−1, t = 1,2, . . .

are estimated using the historical time series of S&P 500 returns via the standard R library rugarch. The

resulting estimates were α0 = 2.06 × e−6, α1 = 0.0975 and α2 = 0.8894.

Our state-space model (21) from Section 6 assumes the observation model

∆xt =
⎡⎢⎢⎢⎢⎣

1

bo

⎤⎥⎥⎥⎥⎦
fot+1 +

⎡⎢⎢⎢⎢⎣

0⊺3
Bu

⎤⎥⎥⎥⎥⎦
fut+1 +

⎡⎢⎢⎢⎢⎣

0

εt+1

⎤⎥⎥⎥⎥⎦

where the first component of ∆xt represents the daily log-return (in percentage points) of the devolatized

S&P 500 and the remaining components represent the daily changes (in volatility points) in implied volatility

for n−1 moneyness-maturity pairs. The factor loadings matrix Bu corresponding to the latent c.r.f. returns

is given explicitly for each moneyness-maturity pair by (22). The parameter estimates for bo,G,Ση and Σε

in (7) and (21) were obtained via the EM algorithm where we also imposed the constraint that G is diagonal.

While not strictly necessary, this assumption was made to help the convergence of the EM algorithm and it

implies that (i) each c.r.f. return follows a univariate AR(1) process with no exogenous covariates and (ii)

the dependence in ft+1 conditional on Ft is induced via the covariance matrix Ση.

The ground-truth model parameters for the observation model (21) were obtained as

bo =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.13

−0.99

−0.92

−0.86

−0.81

−0.78

−0.75

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.46 0.20 −1.79

3.46 0.10 −1.79

3.46 0.05 −1.79

3.46 0.00 −1.79

3.46 −0.05 −1.79

3.46 −0.10 −1.79

3.46 −0.20 −1.79

⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

diag(Σ1/2
ε ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0151

0.0044

0.0029

0.0033

0.0033

0.0040

0.0108

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we show only21 the rows of bo,Bu and diag(Σ1/2
ε ) that correspond to the first seven moneyness-

maturity pairs (ξ, τ): (0.80,30d), (0.90,30d), (0.95,30d), (1.00,30d), (1.05,30d), (1.10,30d) and (1.20,30d).
The estimated parameters of the c.r.f. returns model (7) are

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0789 0.0000 0.0000 0.0000

0.0000 −0.1093 0.0000 0.0000

0.0000 0.0000 −0.3556 0.0000

0.0000 0.0000 0.0000 −0.1432

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ση =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00009 0.00000 0.00001 0.00000

0.00000 0.00001 0.00004 0.00000

0.00001 0.00004 0.00057 −0.00001

0.00000 0.00000 −0.00001 0.00001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the first, second, third and fourth rows (and columns) of G and Ση represent the devolatized S&P

21The complete model parameters are available upon request.

33



500, parallel shift, skew and term structure c.r.f. returns, respectively. For reference, the standard deviations

and correlation matrix of the innovations ηt’s are given by

diag(Σ1/2
η ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0096

0.0034

0.0240

0.0020

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ρη =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0266 0.0454 0.0010

0.0266 1.0000 0.5494 −0.3322

0.0454 0.5494 1.0000 −0.3565

0.0010 −0.3322 −0.3565 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The initial distribution π0 was assumed to be normal with a zero mean vector and a diagonal covariance

matrix with all diagonal elements set to 0.005.

C. Historical Back-Tests When the Scenario Stresses Include Latent C.R.F.s

Following on from Section 6.3, we consider here how we might perform a historical back-test when one or

more of the c.r.f. returns that are stressed in a given scenario are latent. Suppose the current day is t and

we wish to perform a scenario analysis for the period t to t+1 where fs,t+1 denotes the subset of c.r.f. returns

that are stressed in the scenario. An obvious approach would be to first estimate these c.r.f. returns on date

t + 1 via some smoothed distribution by using the observable information in the time window t − s through

t + s. Specifically, we could compute f̂s,t+1 ∶= Et[fs,t+1 ∣ fo(t−s)∶(t+s), ∆x(t−s)∶(t+s−1)], where we recall that fot

corresponds to the observable c.r.f. returns. We then define the scenario c to be c = f̂s,t+1 and we can then

proceed to estimate the DFMSA and SSA P&Ls for date t + 1 in this scenario. Indeed it is straightforward

to adjust Algorithm 2 to account for a scenario involving latent c.r.f. returns in this way.

The Bias That Results from Using Estimated C.R.F. Returns

Unfortunately setting c = f̂s,t+1 introduces a degree of bias into our results. Indeed, by taking the scenario

c to be the scenario that is most consistent with the observed data, we are giving an implicit advantage to

DFMSA. To see this, suppose for argument’s sake that the entire vector fs,t+1 is latent and that its true

realized (but unobserved) value was frs,t+1 = 0 where we use the superscript r to denote the realization of

the random vector fs,t+1. Suppose also that the realization of εt+1 in (2) was extreme. Then unless the

observations are particularly informative, this is likely to result in a smoothed estimate f̂s,t+1 that is far from

0. The estimated DFMSA P&L for this scenario c = f̂s,t+1 will therefore likely be closer to the true realized

P&L than it would be if the scenario was equal to the true realization of the c.r.f. return, i.e. c = frs,t+1 = 0.

This is because the true realized P&L will be more consistent with fs,t+1 = f̂s,t+1 than with fs,t+1 = frs,t+1 = 0.

To be clear the bias arises not because our estimated P&L for that scenario is biased but rather because of

how we choose the scenario in the first place. The more accurately we can estimate fs,t+1, the smaller this

bias will be. In fact this is why we propose using a smoothed estimate of f̂s,t+1 rather than a filtered estimate

which may seem like a more natural thing to do. And indeed if fs,t+1 were fully observable then the bias will

disappear which is why we had no bias problem with the historical back-testing results of Section 6.3 when

our scenarios only involved the observable c.r.f. return which was the devolatilized S&P 500 log-return.

We can get a sense of the magnitude of this bias as follows. The simulation results of Section 6.2 were

obtained by simulating a ground truth model and within this simulation we had access to the realized latent

c.r.f. returns frs,t+1. Of course these realizations were not used to generate the estimated scenario P&L’s there

since they were treated as being unobserved. We can, however, use them here to estimate the aforementioned
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bias. In particular, we can compute the mean absolute difference (MAD) between the estimated P&L and

the realized P&L for three scenarios: (i) c = frs,t+1 (ii) c = f̂s,t+1 and (iii) c = ˆ̂
fs,t+1 where we use

ˆ̂
fs,t+1 to denote

the filtered estimate of fs,t+1. Because the filtered estimate will be noisier than the smoothed estimate, the

bias we described above should result in the MAD decreasing when we go from (i) to (iii).

Table 9 illustrates the MADs of SSA and DFMSA, performed by stressing the S&P and the parallel

shifts c.r.f. returns, for a set of out-of-the-money put and call options. For each scenario analysis approach

(SSA and DFMSA), the scenario c was set to each of the true realized scenario (benchmark), the scenario

given by the smoothed estimates and the scenario given by the filtered estimates, respectively. To give a

sense of the magnitude of the average P&L for each security, we included the mean absolute realized P&L

over the simulated period. The main take away of Table 9 is that the MADs of scenario analysis (SA) when

estimating the latent c.r.f.s (either using filtered or smoothed estimates) are smaller than the benchmark.

The smoothed scenario numbers are closer than the filtered scenario numbers to the true scenario numbers

which is as expected since the bias decreases with a more accurate estimation of the true realized scenario.

Table 9: MADs between the realized P&L and the scenario analysis P&L (SSA and DFMSA, performed by stressing
the S&P and the parallel shifts c.r.f. returns). Scenarios are set to be either the true realized c.r.f. returns, or the
smoothed or filtered estimates of the c.r.f. returns

Realized Scen. Smoothed Scen. Filtered Scen. Mean Absolute

Security SSA DFMSA SSA DFMSA SSA DFMSA Realized P&L

0.90 mness, 3 m. Put 3.11 3.19 3.03 3.09 2.97 3.03 6.26

1.05 mness, 3 m. Call 2.91 2.90 2.82 2.82 2.76 2.77 4.35

0.90 mness, 6 m. Put 3.32 3.37 3.22 3.27 3.15 3.20 8.67

1.05 mness, 6 m. Call 2.34 2.31 2.27 2.24 2.22 2.19 5.39

0.90 mness, 1 y. Put 2.28 2.32 2.21 2.25 2.17 2.20 3.60

1.05 mness, 1 y. Call 1.88 1.82 1.82 1.76 1.78 1.73 2.78

It is also interesting to note that in the results of Table 9, DFMSA does not outperform SSA. This can be

explained by the fact that the majority of scenarios in the simulation would have c.r.f. returns that are quite

small in magnitude and often close to zero. The advantages of DFMSA over SSA in such scenarios would

be very small indeed and so we are not surprised to see the two approaches perform similarly. To see that

DFMSA outperforms SSA in more extreme scenarios, Table 10 again illustrates the MADs but now where

we consider only those simulated periods for which the realized parallel shift c.r.f. return was greater than

two standard deviations. The out-performance of the DFMSA approach is clear here. It’s also interesting to

note that across both Tables 9 and 10, the size of the bias seems relatively small. This suggests it may be

safe to perform historical back-testing of scenarios that involve latent c.r.f. returns. But clearly, considerably

more research would be required before we could be confident in proposing this.

D. An Application to a Portfolio of U.S. Treasury Securities

Here we consider a simple fixed income setting where the p.m. can invest in U.S. treasury securities of n

distinct maturities τ1, . . . , τn. While the resulting portfolio is not a derivatives portfolio, we can nonetheless

use it to highlight the importance of using DFMSA rather than SSA even for portfolios of non-derivatives

securities. The risk factor changes for any portfolio chosen by the p.m. will then be the vector ∆xt ∈ Rn

whose ith component denotes the change in yield-to-maturity from dates t to t + 1 of the zero-coupon-bond
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Table 10: MADs between the realized P&L and the scenario analysis P&L, calculated as in Table 9, but considering
only those periods for which the parallel shift c.r.f. return was greater than 2 standard deviations.

Realized Scen. Smoothed Scen. Filtered Scen. Mean Absolute

Security SSA DFMSA SSA DFMSA SSA DFMSA Realized P&L

0.90 mness, 3 m. Put 7.87 6.82 7.44 6.41 6.99 6.08 18.55

1.05 mness, 3 m. Call 7.00 6.76 6.71 6.49 6.50 6.35 13.13

0.90 mness, 6 m. Put 4.70 4.53 4.52 4.32 4.41 4.16 13.80

1.05 mness, 6 m. Call 2.82 2.57 2.63 2.40 2.47 2.24 5.86

0.90 mness, 1 y. Put 2.87 2.66 2.67 2.48 2.52 2.34 4.15

1.05 mness, 1 y. Call 2.32 1.82 2.16 1.71 2.03 1.60 2.20

maturing at time τi. Our first step towards specifying a dynamic factor model is to specify the c.r.f’s as

in (2). A principal components analysis (PCA) of yield curve data suggests there are m = 3 c.r.f.’s for the

U.S. yield curve and that these factors can explain anywhere from 85% to 95% of the total noise in the yield

curve changes. In decreasing order of importance these c.r.f.’s drive parallel, slope and curvature changes,

respectively, in the yield curve. To specify a parametric model for these c.r.f.’s we will use the model of

Diebold and Li [13] and modify it to include an idiosyncratic noise term εt+1 as in (2). The resulting yield

curve model can then be written as

∆xt(τ) = f1,t+1 + (1 − e−λτ
λτ

) f2,t+1 + (1 − e−λτ
λτ

− e−λτ) f3,t+1 + εt+1(τ) (33)

where ∆xt(τ) corresponds to the yield curve change for maturity τ , f1,t+1, f2,t+1 and f3,t+1 are the c.r.f.

returns, and εt+1(τ) is the component of εt+1 corresponding to maturity τ . The parameter λ is a positive

scalar that can be chosen22 to optimize the fit to the yield curve across some time window. The model

(33) can be written in matrix form ∆xt = Bft+1 + εt+1 (as in (2)) with bi,1 ∶= 1, bi,2 ∶= (1 − e−λτi)/λτi and

bi,3 ∶= bi,2 − e−λτi where bi,j denotes the (i, j)th element of B.

It’s clear that b1, the first column of B, can capture parallel changes to the yield curve. For example, a

value of f1,t+1 = 1% will result in the entire yield curve increasing by 1%. The second column b2 captures

changes in the slope of the yield curve which are driven by f2,t+1. We can see this in the left-hand plot

of Figure 2 below where we see that the loadings are monotonically decreasing in τ . This means that

if f2,t+1 = 1%, for example, then short-term yields will increase considerably more than long-term yields,

thereby reducing the slope of the yield curve. If the current yield curve happened to be upward-sloping then

this would result in a flattening of the yield curve. The third column b3 captures changes in the curvature

of the yield curve which are driven by f3,t+1. We can see this in the right-hand plot of Figure 2 where we see

that the loadings are monotonically increasing in τ for the first few years after which they are monotonically

decreasing. Shocks to f3,t+1 will therefore change the curvature of the current yield curve.

Of course the c.r.f. returns are latent and so we will use (2) together with the state-space model of (7) and

the observation process (33) to complete the specification of our model. Specifically, we will assume that ηt,

εt and f0 are normally distributed. Unlike our equity options application of Section 6, we make no attempt

here to empirically validate this model nor do we claim that it provides a particularly good approximation

to reality. Instead, this example is merely intended to provide a further demonstration of how we might

22Diebold and Li [13] chose a value of λ = 0.7308 for the US Treasury yield curve.
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Figure 2: Factor Loadings for the Diebold factor model.

embed SSA inside a DFM and, depending on the portfolio under consideration, see that SSA can result in

very misleading results.

D.1. Model Calibration and Back-Testing

In order to back-test our model we obtained US Treasury yield data from January 2008 through December

2017 for n = 11 maturities: 1, 3 and 6 months, and 1, 2, 3, 5, 7, 10, 20 and 30 years. We take our ground-truth

model to be the model we obtain by using the EM algorithm to fit the linear Gaussian state-space model

of (7) and (33) to the aforementioned yield curve data. Our yield curve model from (33) in matrix form is

∆xt = Bft+1 + εt+1 where we recall ∆xt denotes the yield changes in b.p.s for the n maturities and

ft+1 ∶= [ParallelShiftt+1 Slopet+1 Curvaturet+1]
⊺

denotes the 3 × 1 vector of c.r.f. returns between dates t and t + 1. Following Diebold and Li [13] we take

λ = 0.7308 which results in the loadings matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1

0.97 0.91 0.84 0.71 0.53 0.41 0.27 0.19 0.14 0.07

0.03 0.08 0.14 0.23 0.29 0.29 0.24 0.19 0.14 0.07

1

0.05

0.05

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⊺

.

The parameter estimates for Σε,G and Ση in (7) were obtained from the EM algorithm and G was con-

strained to be diagonal so that each c.r.f. return follows a univariate AR(1) process with no exogenous

covariates, i.e., fi,t+1 = gi,ifi,t + ηi,t+1 for i = 1,2,3 where gi,i denotes the ith diagonal element of G. As a

result, the cross-sectional dependence between c.r.f’s in ft+1 are induced exclusively via the covariance of the
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innovation process ηt+1. The ground-truth model parameters were estimated to be

diag(Σ1/2
ε ) = [0.0600 0.0312 0.0146 0.0165 0.0158 0.0109 0.0112 0.0135 0.0107 0.0056 0.0097]

⊺

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0383 0.0000 0.0000

0.0000 0.0727 0.0000

0.0000 0.0000 0.0399

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and Ση =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0036 −0.0038 −0.0002

−0.0038 0.0066 −0.0039

−0.0002 −0.0039 0.0266

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The initial distribution π0 of the c.r.f. returns was assumed to be Gaussian with mean zero and diagonal

covariance matrix with diagonal elements equal to 0.01.

For each day of our back-test we construct a portfolio using the linear programming approach described

in Section 5.2 and Appendix A. The securities used to build the portfolio are zero-coupon risk-free bonds for

the n = 11 maturities listed above as well as a risk-free cash account – the (n+ 1)st security – that each day

returns 0% w.p. 1. We include a cash-account because it is realistic – p.m.s always have the option to take

on zero risk by keeping their funds in cash – and it also provides a simple guarantee that there is a feasible

portfolio, i.e. 100% in the cash-account, that satisfies all of the risk-constraints.

We consider a p.m. that on each day t believes f1,t+1 will equal -12 basis points (1 b.p. = .01%) and

that f2,t+1 will equal -16 b.p.s. The p.m. is therefore always anticipating a parallel fall in the yield curve

combined with an increase in it’s slope. Note that the magnitude of these movements for the risk factors

∆xt can be determined via the corresponding columns of B in the factor model (33). For example, if i

corresponds to the 30 year maturity then bi,1 = 1 and bi,2 = 0.05 so that the resulting move in the 30-year

yield is −1 × 0.12 − 0.05 × 0.16 = −0.128, i.e. a fall of 12.8 b.p.s. (This assumes the third c.r.f. return f3,t+1
and εt+1 are both zero.) These anticipated movements correspond to −2 standard deviation moves in each

of the first two c.r.f.s. and the p.m. wishes to construct23 her portfolio to maximize her P&L with this view

in mind.

We assume: (i) the p.m. can take on short positions so that wi can be negative for each i and (ii) a

leverage limit of 10 on each risky security so that −10 ≤ wi ≤ 10 for each i. In addition to these constraints

we assume the risk-management desk requires the p.m.’s portfolio to be “neutral” with respect to several

scenarios involving joint stresses to pairwise combinations of the three c.r.f.s. They define “neutral” in such

a way that the SSA P&L for the specified scenarios must be within ±α = 3% of the value of the portfolio at

time t. More specifically, each scenario is given by an element of the cross-product of ΩParallelShift × ΩSlope

or ΩParallelShift ×ΩCurvature where

ΩParallelShift ∶= {−24,−12,0,12,24}

ΩSlope ∶= {−32,−16,0,16,32} (34)

ΩCurvature ∶= {−64,−32,0,32,64}.

The values in ΩParallelShift, ΩSlope and ΩCurvature were calibrated to be approximately 0,±2 and ±4 standard

deviations of the three c.r.f. returns, respectively and their units are b.p.s. Once the portfolio has been

constructed we then apply SSA and DFMSA on it using the following scenarios:

23It’s worth emphasizing that our back-tests are not at all concerned with why the p.m. has this particular view or whether
or not it is ever justified. The view is simply used to construct a portfolio to which we then apply SSA and DFMSA.
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(i) Simultaneous stresses to the parallel shift and slope c.r.f. returns, with shocks in the cross-product of

ΩParallelShift and ΩSlope,

(ii) Simultaneous stresses to the parallel shift and curvature c.r.f. returns, with shocks in the cross-product

of ΩParallelShift and ΩCurvature,

Note that the same set of scenarios are used to both construct the portfolio (via constraints on the LP) and

analyze the risk of the portfolio. This of course makes sense since the constraints in the LP are driven by

the scenario analysis that the risk-management desk routinely performs.

We back-tested the model using Algorithm 1 from Section 5.1 and where we used the ground-truth model

to simulate data for a back-test horizon of T = 1,000 days. We set the training window to be of size s = 500

days. For each time t ∈ {s, . . . , T − 1}, we use the EM algorithm on the observable simulated data ∆xt−s∶t−1
to re-estimate the model parameters G, Ση, Σε as well as the parameters of the normal distribution πt−s
governing the initial state ft−s. Once the model has been (re-)trained at time t we can use the Kalman

filter to calculate the mean vector and covariance matrix of the distribution of ft ∣ ∆xt−s∶t−1. Given the c.r.f.

return dynamics in (7), it then follows that πt+1 is the convolution of the distribution of the Gaussian random

variables Gft ∣ ∆xt−s∶t−1 and ηt+1 and is therefore also Gaussian. Note that, even though we simulate the

c.r.f. returns from the ground truth model in step 3 of Algorithm 1, these are assumed unobservable and

are therefore not used by the EM algorithm to re-estimate the model parameters in step 5 of the algorithm.

The SSA and DFMSA approaches are then implemented in the remaining steps of the algorithm.

D.2. Numerical Results

Tables 11 to 13 display the results of our back-test. Table 11 shows the average back-tested P&L ∆V ss as

reported by the SSA approach. On each day of the back-test the portfolio was constructed in such a way

that the SSA loss conditional on the given scenario would be within ±α = 3%. It is therefore no surprise to

see that the average-back-tested P&L numbers are also within ±3% and so this portfolio strategy appears to

have relatively little risk. In contrast Table 12 displays the true average back-tested expected P&L ∆V dfm

conditional on the given scenario. These P&L numbers were computed using the DFMSA approach and we

can see from them that the portfolio is not “neutral” w.r.t. the specified scenarios. For example, when the

slope c.r.f. is shocked by 32 b.p.s and the parallel c.r.f. return remains flat, the SSA approach predicts a

2.6% loss whereas the DFMSA approach predicts a 4.8% loss. We see that the differences between the two

approaches can differ by up to a factor of 3. Moreover, it’s possible for SSA to report a scenario loss while

DFMSA reports an expected scenario profit and vice versa. We also note it’s possible to obtain more extreme

discrepancies between the two approaches. For example, we could have the p.m. take a more extreme view

on the parallel and slope c.r.f. returns or have her take a view on the slope and curvature c.r.f. returns.

Joint movements of these two c.r.f. returns are not considered in any of the scenarios and so a view on these

two c.r.f. returns might allow the p.m. to better game the risk-management constraints.

Table 13 displays the mean absolute error Eabs (as defined in (16)) of the SSA approach. Once again

we observe the large errors produced by SSA. The largest error shown is 4.1% for the scenario in which the

slope and parallel c.r.f. returns are stressed to -32 bps and -24bps, respectively.
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Table 11: Average of back-test SSA P&L ∆V ss (defined in (15)) for a portfolio that is constructed to have: (i)
exposure to negative changes to the parallel and slope c.r.f. returns and (ii) to be approximately neutral (max. loss
within ±α ∶= 3% according to SSA) with respect to the pre-specified scenarios in the table. Subtable (a) displays
the average SSA P&L when simultaneously stressing the parallel and slope c.r.f. returns. Subtable (b) displays the
average SSA P&L when simultaneously stressing the parallel and the curvature c.r.f. returns. All P&L numbers are
in dollars per $100 of face value of the portfolio. The portfolio is constructed anew on each day of the back-test
period.

∆V ss

(a) Slope (bps) (b) Curvature (bps)

Parallel Shift (bps) -32 -16 0 16 32 -64 -32 0 32 64

-24 3.0 1.7 0.4 -0.9 -2.2 -2.3 -1.0 0.4 1.7 3.0

-12 2.8 1.5 0.2 -1.2 -2.5 -2.5 -1.2 0.2 1.5 2.8

0 2.6 1.3 0.0 -1.3 -2.6 -2.6 -1.3 0.0 1.3 2.6

12 2.5 1.2 -0.1 -1.4 -2.7 -2.7 -1.4 -0.1 1.2 2.5

24 2.5 1.2 -0.1 -1.4 -2.7 -2.7 -1.4 -0.1 1.2 2.4

Table 12: Average of back-test DFMSA P&L ∆V dfm for the same portfolio and scenarios as reported in Table 11.
All P&L numbers are in dollars per $100 of face value of the portfolio.

∆V dfm

(a) Slope (bps) (b) Curvature (bps)

Parallel Shift (bps) -32 -16 0 16 32 -64 -32 0 32 64

-24 7.1 4.7 2.3 -0.1 -2.4 -5.3 -3.4 -1.7 0.0 1.7

-12 6.0 4.2 1.2 -1.3 -3.6 -4.2 -2.6 -0.9 0.9 2.6

0 5.0 2.4 0.1 -2.4 -4.8 -3.4 -1.8 0.0 1.7 3.4

12 3.7 1.5 -1.1 -3.3 -5.8 -2.5 -0.7 1.0 2.8 4.4

24 2.9 0.6 -1.9 -4.3 -6.6 -1.3 0.3 2.0 3.7 5.5

Table 13: Average back-test error Eabs of the SSA P&L for the same portfolio and scenarios as in Tables 11 and 12.
Eabs is defined in (16).

Eabs

(a) Slope (bps) (b) Curvature (bps)

Parallel Shift (bps) -32 -16 0 16 32 -64 -32 0 32 64

-24 4.1 3.0 2.0 0.9 0.5 3.0 2.4 2.1 1.7 1.3

-12 3.2 2.8 1.1 0.4 1.1 1.9 1.5 1.1 0.6 0.4

0 2.3 1.1 0.4 1.1 2.2 0.8 0.6 0.3 0.6 0.9

12 1.2 0.4 1.0 2.0 3.1 0.5 0.7 1.1 1.6 2.0

24 0.5 0.7 1.8 2.9 3.9 1.4 1.7 2.1 2.5 3.0
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