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Abstract

We study the performance of a stylized supply chain where multiple retailers and a single
producer compete in a Cournot-Stackelberg game. At time t = 0 the retailers order a single
product from the producer and upon delivery at time T > 0, they sell it in the retail market
at a stochastic clearance price. We assume the retailers’ profits depend in part on the realized
path of some tradeable stochastic process such as a foreign exchange rate, interest rate or
more generally, some tradeable economic index. Because production and delivery do not take
place until time T , the producer offers a menu of wholesale prices to the retailer, one for each
realization of the process up to some time, τ , where 0 ≤ τ ≤ T . The retailers’ ordering
quantities therefore depend on the realization of the process until time τ . We also assume,
however, that the retailers are budget-constrained and are therefore limited in the number of
units they may purchase from the producer. The supply chain might therefore be more profitable
if the retailers were able to reallocate their budgets across different states of nature. In order to
affect a (partial) reallocation, we assume that the retailers are also able to trade dynamically in
the financial market. After solving for the Nash equilibrium we address such questions as: (i)
whether or not the players would be better off if the retailers merged and (ii) whether or not
the players are better off when the retailers have access to the financial markets. Our model
can easily handle variations where, for example, the retailers are located in a different currency
area to the producer or where the retailers must pay the producer before their budgets are
available. Finally, we consider the case where the producer can choose the optimal timing, τ , of
the contract and we formulate this as an optimal stopping problem.

Subject Classifications: Finance: portfolio, management. Optimal control: applications. Pro-
duction: applications.

Keywords: Procurement contract, financial constraints, supply chain coordination.



1 Introduction

We study the performance of a stylized supply chain where multiple retailers and a single producer
compete in a Cournot-Stackelberg game. At time t = 0 the retailers order a single product from
the producer and upon delivery at time T > 0, they sell it in the retail market at a stochastic
clearance price that depends in part on the realized path or terminal value of some observable and
tradeable financial process. Because production and delivery do not take place until time T , the
producer offers a menu of wholesale prices to the retailer, one for each realization of the process up
to time some time, τ , where 0 ≤ τ ≤ T . The retailers’ ordering quantities are therefore contingent
upon the realization of the process up to time τ .

We also assume, however, that the retailers are budget-constrained and are therefore limited in
the number of units they may purchase from the producer. As a result, the supply chain might be
more profitable if the retailers were able to reallocate their financial resources, i.e. their budgets,
across different states. By allowing the retailers to trade dynamically in the financial markets we
enable such a (partial) reallocation of resources. The producer has no need to trade in the financial
markets as he is not budget constrained and, like the retailers, is assumed to be risk neutral. After
solving for the Cournot-Stackelberg equilibrium we address such questions as whether or not the
players would be better off if the retailers merged and whether or not the players are better off
when the retailers have access to the financial markets.

We now attempt to position our paper within the vast literature on supply chain management.
We refer the reader to the books by de Kok and Graves (2003) and Simchi-Levi et al. (2004) for
a general overview of supply chain management issues and to the survey article by Cachon (2003)
for a review of supply chain management contracts.

A distinguishing feature of our model with respect to most of the literature in supply chain man-
agement is the budget constraint that we impose on the retailers’ procurement decisions. Some
recent exceptions include Buzacott and Zhang (2004), Caldentey and Haugh (2009), Dada and Hu
(2008), Kouvelis and Zhao (2008), Xu and Birge (2004) and Caldentey and Chen (2009).

Xu and Birge (2004) analyze a single-period newsvendor model which is used to illustrate how
a firm’s inventory decisions are affected by the existence of a budget constraint and the firm’s
capital structure. In a multi-period setting, Hu and Sobel (2005) examine the interdependence of
a firm’s capital structure and its short-term operating decisions concerning inventory, dividends,
and liquidity. In a similar setting, Dada and Hu (2008) consider a budget-constrained newsvendor
that can borrow from a bank that acts strategically when choosing the interest rate applied to
the loan. They characterize the Stackelberg equilibrium and investigate conditions under which
channel coordination, i.e., where the ordering quantities of the budget-constrained and non budget-
constrained newsvendors coincide, can be achieved.

Buzacott and Zhang (2004) incorporate asset-based financing in a deterministic multi-period pro-
duction/inventory control system by modeling the available cash in each period as a function of
the firm’s assets and liabilities. In their model a retailer finances its operations by borrowing from
a commercial bank. The terms of the loans are contingent upon the retailer’s balance sheet and
income statement and in particular, upon the inventories and accounts receivable. The authors
conclude that asset-based financing allows retailers to enhance their cash return over what it would
otherwise be if they were only able to use their own capital.
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The work by Caldentey and Haugh (2009), Kouvelis and Zhao (2008) and Caldentey and Chen
(2009) are the most closely related to this paper. They all consider a two-echelon supply chain sys-
tem in which there is a single budget constrained retailer and investigate different types of procure-
ment contracts between the agents using a Stackelberg equilibrium concept. In Kouvelis and Zhao
(2008) the supplier offers different type of contracts designed to provide financial services to the
retailer. They analyze a set of alternative financing schemes including supplier early payment dis-
count, open account financing, joint supplier financing with bank, and bank financing schemes. In
a similar setting, Caldentey and Chen (2009) discuss two alternative forms of financing for the
retailer: (a) internal financing in which the supplier offers a procurement contract that allows the
retailer to pay in arrears a fraction of the procurement cost after demand is realized and (b) external
financing in which a third party financial institution offers a commercial loan to the retailer. They
conclude that in an optimally designed contract it is in the supplier’s best interest to offer financing
to the retailer and that the retailer will always prefer internal rather than external financing.

In Caldentey and Haugh (2009) the supplier offers a modified wholesale price contract which is
executed at a future time τ . The terms of the contract are such that the actual wholesale price
charged at time τ depends on information publicly available at this time. Delaying the execution
of the contract is important because in this model the retailer’s demand depends in part on a
financial index that the retailer and supplier can observe through time. As a result, the retailer
can dynamically trade in the financial market to adjust his budget to make it contingent upon
the evolution of the index. Their model shows how financial markets can be used as (i) a source
of public information upon which procurement contracts can be written and (ii) as a means for
financial hedging to mitigate the effects of the budget constraint. In this paper, we therefore
extend the model in Caldentey and Haugh (2009) by considering a market with multiple retailers
in Cournot competition as well as a Stackelberg leader. Our extended model can also easily handle
variations where, for example, the retailers are located in a different currency area to the producer
or where the retailers must pay the producer before their budgets are available. In addition we
consider the case where the producer can choose the optimal timing, τ , of the contract and we
formulate this as an optimal stopping problem.

A second related stream of research considers Cournot-Stackelberg equilibria. There is an extensive
economics literature on this topic that focuses on issues of existence and uniqueness of the Nash
equilibrium. See Okoguchi and Szidarovsky (1999) for a comprehensive review. In the context
of supply chain management, there has been some recent research that investigates the design of
efficient contracts between the supplier and the retailers. For example, Bernstein and Federgruen
(2003) derive a perfect coordination mechanism between the supplier and the retailers. This mecha-
nism takes the form of a nonlinear wholesale pricing scheme. Zhao et al. (2005) investigate inventory
sharing mechanisms among competing dealers in a distribution network setting. Li (2002) stud-
ies a Cournot-Stackelberg model with asymmetric information in which the retailers are endowed
with some private information about market demand. In contrast, the model we present in this
paper uses the public information provided by the financial markets to improve the supply chain
coordination.

Finally, we mention that there exists a related stream of research that investigates the use of finan-
cial markets and instruments to hedge operational risk exposure. See Boyabatli and Toktay (2004)
for a detailed review. For example, Caldentey and Haugh (2006) consider the general problem of dy-
namically hedging the profits of a risk-averse corporation when these profits are partially correlated
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with returns in the financial markets. Chod et al. (2009) examine the joint impact of operational
flexibility and financial hedging on a firm’s performance and their complementarity/substitutability
with the firm’s overall risk management strategy. Ding et al. (2007) and Dong et al. (2006) examine
the interaction of operational and financial decisions from an integrated risk management stand-
point. Boyabatli and Toktay (2010) analyze the effect of capital market imperfections on a firm’s
operational and financial decisions in a capacity investment setting. Babich and Sobel (2004) pro-
pose an infinite-horizon discounted Markov decision process in which an IPO event is treated as
a stopping time. They characterize an optimal capacity-expansion and financing policy so as to
maximize the expected present value of the firm’s IPO. Babich et al. (2008) consider how trade
credit financing affects the relationships among firms in the supply chain, supplier selection, and
supply chain performance.

The remainder of this paper is organized as follows. Section 2 describes our model, focussing in
particular on the supply chain, the financial markets and the contractual agreement between the
producer and the retailers. We analyze this model in Section 3 in the special case where all of the
retailers have identical budgets. We then consider the more general case in Section 4 where we
focus on characterizing the Cournot equilibrium of the retailers. In Section 5 we discuss the value
of the financial markets and we conclude in Section 6. Most of our proofs as well as our discussion
of the optimal timing of the contract are contained in the Appendices.

2 Model Description

We now describe the model in further detail. We begin with the supply chain description and
then discuss the role of the financial markets. At the end of the section we define the contract
which specifies the agreement between the producer and the retailers. Throughout this section
we will assume for ease of exposition that both the producer and the retailers are located in the
same currency area and that interest rates are identically zero. In Section 3 we will relax these
assumptions and still maintain the tractability of our model using change of measure arguments.

2.1 The Supply Chain

We model an isolated segment of a competitive supply chain with one producer that produces a
single product and N competing retailers that face a stochastic clearance price1 for this product.
This clearance price, and the resulting cash-flow to the retailers, is realized at a fixed future time
T > 0. The retailers and producer, however, negotiate the terms of a procurement contract at time
t = 0. This contract specifies three quantities:

(i) A production time, τ , with 0 ≤ τ ≤ T . While τ will be fixed for most of our analysis, we will
also consider the problem of selecting an optimal τ in Appendix C.

(ii) A rule that specifies the size of the order, qi, for the ith retailer where i = 1, . . . , N . In general,
qi may depend upon market information available at time τ .

1Similar models are discussed in detail in Section 2 of Cachon (2003). See also Lariviere and Porteus (2001).
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(iii) The payment, W(qi), that the ith retailer pays to the producer for fulfilling the order. Again,
W(qi) will generally depend upon market information available at time τ . The timing of this
payment is not important when we assume that interest rates are identically zero. In Section
3.4, however, we will assume interest rates are stochastic when we consider the case where the
retailers must pay the producer before their budgets are available. It will then be necessary
to specify exactly when the retailers pay the producer.

We will restrict ourselves to transfer payments that are linear on the ordering quantity. That is,
we consider the so-called wholesale price contract where W(q) = w q and where w is the per-unit
wholesale price charged by the producer. We assume that the producer offers the same contract
to each retailer and while this simplifies the analysis considerably, it is also realistic. For example,
it is often illegal for a producer to price-discriminate among its customers. We also assume that
during the negotiation of the contract the producer acts as a Stackelberg leader. That is, for a
fixed procurement time τ , the producer moves first and at t = 0 proposes a wholesale price menu,
wτ , to which the retailers then react by selecting their ordering levels, qi, for i = 1, . . . , N . Note
that the N retailers also compete among themselves in a Cournot-style game to determine their
optimal ordering quantities and trading strategies.

We assume that the producer has unlimited production capacity and that if production takes place
at time τ then the per-unit production cost is cτ . We will generally assume that cτ is constant but2

many of our results, however, go through when cτ is stochastic. The producer’s payoff as a function
of the procurement time, τ , the wholesale price, wτ , and the ordering quantities, qi, is given3 by

ΠP :=
N∑

i=1

(wτ − cτ ) qi. (1)

We assume that each retailer is restricted by a budget constraint that limits his ordering decisions.
In particular, we assume that each retailer has an initial budget, Bi, that may be used to purchase
product units from the producer. Without loss of generality, we order the retailers so that B1 ≥
B2 ≥ . . . ≥ BN . We assume each of the retailers can trade in the financial markets during the time
interval [0, τ ], thereby transferring cash resources from states where they are not needed to states
where they are.

For a given set of order quantities, the ith retailer collects a random revenue at time T . We compute
this revenue using a linear clearance price model. That is, the market price at which the retailer
sells these units is a random variable, P (Q) := A− (qi + Qi−), where A is a non-negative random
variable, Qi− :=

∑
j 6=i qj and Q :=

∑
j qj . The random variable A models the market size that we

assume is unknown. The realization of A, however, will depend in part on the realization of the
financial markets between times 0 and T . The payoff of the ith retailer, as a function of τ , wτ , and
the order quantities, then takes the form

ΠRi := (A− (qi + Qi−)) qi − wτ qi. (2)

2When we consider the optimal timing of τ in Appendix C we will assume that cτ is deterministic and increasing

in τ so that production postponement comes at a cost.
3In Section 3.3 we will assume that the producer and retailers are located in different currency areas. We will

then need to adjust (2) appropriately.
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A stochastic clearance price is easily justified since in practice unsold units are generally liquidated
using secondary markets at discount prices. Therefore, we can view our clearance price as the
average selling price across all units and markets. As stated earlier, wτ and the qi’s will in general
depend upon market information available at time τ . Since W(q), ΠP and the ΠRi ’s are functions
of wτ and the qi’s, these quantities will also depend upon market information available at time τ .

The linear clearance price in (2) is commonly assumed in the economics literature for reasons of
tractability. It also helps ensure that the game will have a unique Nash equilibrium. (For further
details see Chapter 4 of Vives, 2001.)

2.2 The Financial Market

The financial market is modeled as follows. Let Xt denote4 the time t value of a tradeable security
and let {Ft}0≤t≤T be the filtration generated by Xt on a probability space, (Ω,F ,Q). We do not
assume that FT = F since we want the non-financial random variable, A, to be F-measurable
but not FT -measurable. There is also a risk-less cash account available from which cash may be
borrowed or in which cash may be deposited. Since we have assumed5 zero interest rates, the time
τ gain (or loss), Gτ (θ), that results from following a self-financing6 Ft-adapted trading strategy,
θt, can be represented as a stochastic integral with respect to X. In a continuous-time setting, for
example, we have

Gτ (θ) :=
∫ τ

0
θs dXs. (3)

We assume that Q is an equivalent martingale measure (EMM) so that discounted security prices
are Q-martingales. Since we are currently assuming that interest rates are identically zero, however,
it is therefore the case that Xt is a Q-martingale. Subject to integrability constraints on the set
of feasible trading strategies, we also see that Gt(θ) is a Q-martingale for every Ft-adapted self-
financing trading strategy, θt.

Our analysis will be simplified considerably by making a complete financial markets assumption.
In particular, let Gτ be any suitably integrable contingent claim that is Fτ -measurable. Then a
complete financial markets assumption amounts to assuming the existence of an Ft-adapted self-
financing trading strategy, θt, such that Gτ (θ) = Gτ . That is, Gτ is attainable. This assumption is
very common in the financial literature. Moreover, many incomplete financial models can be made
complete by simply expanding the set of tradeable securities. When this is not practical, we can
simply assume the existence of a market-maker with a known pricing function or pricing kernel7

who is willing to sell Gτ in the market-place. In this sense, we could then claim that Gτ is indeed
attainable.

4All of our analysis goes through if we assume Xt is a multi-dimensional price process. For ease of exposition we

will assume Xt is one-dimensional.
5As mentioned earlier, we will relax this assumption in Section 3.4.
6A trading strategy, θt, is self-financing if cash is neither deposited with nor withdrawn from the portfolio during

the trading interval, [0, T ]. In particular, trading gains or losses are due to changes in the values of the traded

securities. Note that θt represents the number of units of the tradeable security held at time s. The self-financing

property then implicitly defines the position at time s in the cash account. Because we have assumed interest rates

are identically zero, there is no term in (3) corresponding to gains or losses from the cash account holdings. See

Duffie (2004) for a technical definition of the self-financing property.
7See Duffie (2004). More generally, Duffie may be consulted for further technical assumptions (that we have

omitted to specify) regarding the filtration, {Ft}0≤t≤T , feasible trading-strategies, etc.
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Regardless of how we choose to justify it, assuming complete financial markets means that we will
never need to solve for an optimal dynamic trading strategy, θ. Instead, we will only need to
solve for an optimal contingent claim, Gτ , safe in the knowledge that any such claim is attainable.
For this reason we will drop the dependence of Gτ on θ in the remainder of the paper. The only
restriction that we will impose on any such trading gain, Gτ , is that the corresponding trading gain
process, Gs := EQs [Gτ ] be a Q-martingale8 for s < τ . In particular we will assume that any feasible
trading gain, Gτ , satisfies EQ0 [Gτ ] = G0 where G0 is the initial amount of capital that is devoted to
trading in the financial market. Without any loss of generality we will typically assume G0 = 0.
This assumption will be further clarified in Section 2.3.

A key aspect of our model is the dependence between the payoffs of the supply chain and returns
in the financial market. Other than assuming the existence of EQτ [A], the expected value of A

conditional on the information available in the financial markets at time τ , we do not need to make
any assumptions regarding the nature of this dependence. We will make the following assumption
regarding EQτ [A].

Assumption 1 For all τ ∈ [0, T ], Āτ := EQτ [A] ≥ cτ .

This condition ensures that for every time and state there is a total production level, Q ≥ 0, for
which the retailers’ expected market price exceeds the producer’s production cost. In particular,
this assumption implies that it is possible to profitably operate the supply chain.

2.3 The Flexible Procurement Contract with Financial Hedging

The final component of our model is the contractual agreement between the producer and the
retailers. We consider a variation of the traditional wholesale price contract in which the terms
of the contract are specified contingent upon the public history, Fτ , that is available at time
τ . Specifically, at time t = 0 the producer offers an Fτ -measurable wholesale price, wτ , to the
retailers. In response to this offer, the ith retailer decides on an Fτ -measurable ordering quantity9,
qi = qi(wτ ), for i = 1, . . . , N . Note that the contract itself is negotiated at time t = 0 whereas the
actual order quantities are only realized at time τ ≥ 0.

The retailers’ order quantities at time τ are constrained by their available budgets at this time.
Besides the initial budget, Bi, the ith retailer has access to the financial markets where he can
hedge his budget constraint by purchasing at date t = 0 a contingent claim, G

(i)
τ , that is realized

at date τ and that satisfies EQ0 [G
(i)
τ ] = 0. Given an Fτ -measurable wholesale price, wτ , the retailer

purchases an Fτ -measurable contingent claim, G
(i)
τ , and selects an Fτ -measurable ordering quantity,

qi = qi(wτ ), in order to maximize the economic value of his profits. Because of his access to the
financial markets, the retailer can therefore mitigate his budget constraint so that it becomes

wτ qi ≤ Bi + G(i)
τ for all ω ∈ Ω and i = 1, . . . , N.

8Whenever we write EQs [·] it should be understood as EQ[·|Fs].
9There is a slight abuse of notation here and throughout the paper when we write qi = qi(wτ ). This expression

should not be interpreted as implying that qi is a function of wτ . We only require that qi be Fτ -measurable and so

a more appropriate interpretation is to say that qi = qi(wτ ) is the retailer’s response to wτ .
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Since the no-trading strategy with G
(i)
τ ≡ 0 is always an option, it is clear that for a given wholesale

price, wτ , the retailers are always better-off having access to the financial market. Whether or not
the retailers will remain better off in equilibrium will be discussed in Section 3.

Before proceeding to analyze this contract a number of further clarifying remarks10 are in order.

1. The model assumes a common knowledge framework in which all parameters of the models
are known to all agents. Because of the Stackelberg nature of the game, this assumption
implies that the producer knows the retailers’ budgets and the distribution of the market
demand. We also make the implicit assumption that the only information available regarding
the random variable, A, is what we can learn from the evolution of Xt in the time interval
[0, τ ]. If this were not the case, then the trading strategy in the financial market could depend
on some non-financial information and so it would not be necessary to restrict the trading
gains to be Fτ -measurable. More generally, if Yt represented some non-financial noise that
was observable at time t, then the trading strategy, θt, would only need to be adapted with
respect to the filtration generated by X and Y . In this case the complete financial market
assumption is of no benefit and it would be necessary for the retailers to solve the much
harder problem of finding the optimal θ in order to find the optimal G

(i)
τ ’s.

2. In this model the producer does not trade in the financial markets because, being risk-neutral
and not restricted by a budget constraint, he has no incentive to do so.

3. A potentially valid criticism of this model is that, in practice, a retailer is often a small
entity and may not have the ability to trade in the financial markets. There are a number
of responses to this. First, we use the word ‘retailer’ in a loose sense so that it might in
fact represent a large entity. For example, an airline purchasing aircraft is a ‘retailer’ that
certainly does have access to the financial markets. Second, it is becoming ever cheaper and
easier for even the smallest ‘player’ to trade in the financial markets. Finally, even if the
retailer does not have access to the financial market, then the producer, assuming he is a big
‘player’, can offer to trade with the retailer or act as his financial broker.

4. We claimed earlier that, without loss of generality, we could assume G
(i)
0 = 0. This is clear

for the following reason. If G
(i)
0 = 0 then then the ith retailer has a terminal budget of

B
(i)
τ := Bi +G

(i)
τ with which he can purchase product units at time τ and where EQ0 [G

(i)
τ ] = 0.

If he allocated a > 0 to the trading strategy, however, then he would have a terminal budget
of B

(i)
τ = Bi − a + G

(i)
τ at time τ but now with EQ0 [G

(i)
τ ] = a. That the retailer is indifferent

between the two approaches follows from the fact any terminal budget, B
(i)
τ , that is feasible

under one modeling approach is also feasible under the other and vice-versa.

5. Another potentially valid criticism of this framework is that the class of contracts is too
complex. In particular, by only insisting that wτ is Fτ -measurable we are permitting whole-
sale price contracts that might be too complicated to implement in practice. If this is the case
then we can easily simplify the set of feasible contracts. By using appropriate conditioning
arguments, for example, it would be straightforward to impose the tighter restriction that wτ

be σ(Xτ )-measurable instead where σ(Xτ ) is the σ-algebra generated by Xτ .
10These clarifications were also made in Caldentey and Haugh (2009) who study the single-retailer case.
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We complete this section with a summary of the notation and conventions that will be used through-
out the remainder of the paper. The subscripts R, P, and C are used to index quantities related
to the retailers, producer and central planner, respectively. The subscript τ is used to denote the
value of a quantity conditional on time τ information. For example, ΠP|τ is the producer’s ex-
pected payoff conditional on time τ information. The expected value, EQ0 [ΠP|τ ], is simply denoted
by ΠP and similar expressions hold for the retailers and central planner. Any other notation will
be introduced as necessary.

3 The Equibudget Case

We begin with the special case where all of the retailers have identical budgets. While not a
realistic assumption in practice, we can solve for the producer’s optimal price menu in this case
and therefore solve for the overall Cournot-Stackelberg equilibrium. Moreover, we can completely
address questions regarding whether or not the retailers should merge or remain in competition.
We can also compare the equilibrium solution to the solution of the centralized planner in this case
and therefore determine the efficiency of the supply chain. Some of the single-retailer results of
Caldentey and Haugh (2009) will prove useful in this multi-retailer equibudget case.

Consider then the case where each of the retailers has the same budget so that Bi = B for all
i = 1, . . . , N . For a given price menu, wτ , the ith retailer’s problem is

ΠR(wτ ) = max
qi≥0, Gτ

EQ0
[(

Āτ − (qi + Qi−)− wτ

)
qi

]
(4)

subject to wτ qi ≤ B + Gτ , for all ω ∈ Ω (5)

EQ0 [Gτ ] = 0. (6)

While the equibudget problem is a special case of the game we will solve in Section 4, it is instructive
to see an alternative solution. In the equibudget case, each of the N retailers has the following
solution:

Proposition 1 (Optimal Strategy for the N Retailers in the Equibudget Case)

Let wτ be an Fτ -measurable wholesale price offered by the producer and let Qτ , X and X c be defined

as follows. Qτ := (Āτ−wτ)+

(N+1) , X := {ω ∈ Ω : B ≥ Qτ wτ} and X c := Ω − X . The following two
cases arise in the computation of the optimal ordering quantities and the financial claims:

Case 1: Suppose that EQ0 [Qτ wτ ] ≤ B. Then qi(wτ) = Qτ and there are infinitely many
choices of the optimal claim, Gτ = G

(i)
τ , for i = 1, . . . , N . One natural choice is to take

Gτ = [Qτ wτ −B] ·
{

δ if ω ∈ X
1 if ω ∈ X c where δ :=

∫
X c [Qτ wτ −B] dQ∫
X [B −Qτ wτ ] dQ

.

In this case (possibly due to the ability to trade in the financial market), the budget constraint
is not binding for any of the N retailers.

Case 2: Suppose EQ0 [Qτwτ ] > B. Then

qi(wτ ) = q(wτ ) =

(
Āτ − wτ (1 + λ)

)+

(N + 1)
and Gτ := q(wτ )wτ −B (7)
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is optimal for each i where λ ≥ 0 solves EQ0 [q(wτ )wτ ] = B.

Proof: See Appendix A.

The manufacturer’s problem is straightforward to solve. Given the best response of the N retailers,
his problem may be formulated as

ΠP = max
wτ , λ≥0

N EQ0

[
(wτ − cτ )

(
Āτ − wτ (1 + λ)

)+

(N + 1)

]
(8)

subject to EQ0

[
wτ

(
Āτ − wτ (1 + λ)

)+

(N + 1)

]
≤ B. (9)

Note that the factor N outside the expectation in (8) is due to the fact that there are N retailers
and that the producer earns the same profit from each of them. Note also that there should be N

constraints in this problem, one corresponding to each of the N retailers. However, by Proposition
1, these N constraints are identical since each retailer solves the same problem. The producer’s
problem then only requires the one constraint given in (9). We can easily re-write this problem as

ΠP = max
wτ , λ≥0

2N

N + 1
EQ0

[
(wτ − cτ )

(
Āτ − wτ (1 + λ)

)+

2

]
(10)

subject to EQ0

[
wτ

(
Āτ − wτ (1 + λ)

)+

2

]
≤ (N + 1)

2
B (11)

and now it is clearly identical11 to the producer’s problem where the budget constraint has been
replaced by (N + 1)B/2 and there is just one retailer. In particular, the solution of the pro-
ducer’s problem and of the Cournot-Stackelberg game follows immediately from Proposition 7 in
Caldentey and Haugh (2009). We have the following result.

Proposition 2 (Producer’s Optimal Strategy and the Cournot-Stackelberg Solution)

Let φP be the minimum φ ≥ 1 that solves EQ0

[(
Ā2

τ−(φ cτ )2

8

)+
]
≤ (N+1)

2 B and let δP := φP cτ . Then

the optimal wholesale price and ordering level for each retailer satisfy

wτ =
Āτ + δP

2
and qτ =

(
Āτ − δP

)+

2(N + 1)
. (12)

The players’ expected payoffs conditional on time τ information satisfy

ΠP|τ =
2N

(N + 1)
(Āτ + δP − 2cτ ) (Āτ − δP)+

8
and ΠR|τ =

((Āτ − δP)+)2

4(N + 1)2
. (13)

Proof: The statements regarding the producer follow immediately from Proposition 7 in
Caldentey and Haugh (2009) with the budget replaced by (N + 1)B/2 and the objective function
multiplied by 2N/(N + 1). The statements regarding the retailers are due to the fact that the
optimal value of λ in (10) is 0. This value of λ and the optimal value of wτ can then be substituted
into the expression for the optimal ordering quantity in either12 Case 1 or Case 2 of Proposition 1.
The expressions for qτ and ΠR|τ then follow immediately. ¤

11The factor 2N/(N + 1) in the objective function has no bearing on the optimal λ and wτ .
12Both cases lead to the same value of qτ as the producer chooses the price menu in such a way that the budget is

at the cutoff point between being binding and non-binding with λ = 0.
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3.1 Should the Retailers Merge in the Equibudget Case?

In the equibudget case we can answer the question as to whether or not the producer and retailers
would be better off if the retailers were to merge into a single entity with a combined budget of
N ×B. In this subsection13 we will use the superscripts C and M to denote quantities associated
with the competitive retailers and merged retailers, respectively. The constraint in (11) implies that
from the perspective of the producer’s optimization problem, the merged entity’s budget would
increase by only a factor of 2N/(N +1). Similarly it is clear from (10) that the producer’s objective
function would be reduced by this same factor of 2N/(N + 1). As before, the subscripts P and R

refer to the producer and retailer, respectively. We will use the subscript AR to denote a quantity
that is summed across all retailers. This will only apply in the competitive retailer case so, for
example, ΠC

AR|τ refers to the total profits of the N retailers when they remain in competition. Our
first result is that the producer always prefers the retailers to remain in competition when they
have identical budgets.

Proposition 3 (Producer Prefers Competitive Retailers) The expected profits of the producer when
there are N retailers, each with a budget of B, is greater than or equal to his expected profits when
there is just one retailer with a budget of N ×B.

Proof: See Appendix A.

It is worth emphasizing that the producer is only better off in expectation when there are multiple
competing retailers. On a path-by-path basis, the producer will not necessarily be better off. In
particular, there will be some outcomes where the ordering quantity is zero under the competing
retailers model and strictly positive under the merged retailer model. The producer will earn zero
profits on such paths under the competing retailer model, but will earn strictly positive profits
under the merged retailer model.

Proposition 4 (Retailers Are Always Better Off Merging) The profits of the merged retailer are
greater than the total profits of the N competing retailers on a path-by-path basis.

Proof: The profits of the merged retailer is given by ΠM
R|τ = ((Āτ−δM)+)2

16 where δM is the value of δH

in Proposition 7 of Caldentey and Haugh (2009) but with B replaced by N×B. The total profits of
the retailers in the Cournot version of the game, however, is given by ΠC

AR|τ = N((Āτ−δP)+)2

4(N+1)2
where

δP is given by Proposition 2. It is clear that δP ≥ δM and so the result follows immediately. ¤

3.2 Efficiency of the Supply Chain in the Equibudget Case

In this section we briefly discuss the efficiency of the supply chain in the equibudget case. To do
this we need to solve the central planner’s problem when he has a budget of NB. We can do this
by appealing again to the results of Caldentey and Haugh (2009). We focus on production levels,

13In Section 3.2 we will use C to refer to the central planner.

11



double marginalization and the competition penalty. Towards this end, we define the following
performance measures, all of which are conditional on Fτ :

Qτ :=
Nqτ

qC|τ
=

N(Āτ − δP)+

(N + 1)(Āτ − δC)+
, Wτ :=

wτ

cτ
=

Āτ + δP

2cτ
, and

Pτ := 1 − EQ0[ΠP|τ ] + NEQ0 [ΠR|τ ]
EQ0[ΠC|τ ]

= 1 − N

(N + 1)2

[
(N + 2)Āτ + NδP − 2(N + 1)cτ

]
(Āτ − δP)+

(Āτ + δC − 2cτ )(Āτ − δC)+

where EQ0[ΠC|τ ] is the central planner’s expected profits, δC is the smallest value14 of δ ≥ cτ such

that EQ0 [cτ

(
Āτ−δ

2

)+
] ≤ NB, and qC|τ is the optimal ordering quantity of the central planner.

It is interesting to note that, conditional on Fτ , the centralized supply chain is not necessarily more
efficient than the decentralized operation. For instance, we know that in some cases δP < δC and
so for all those outcomes, ω, with δP < Āτ < δC, qC|τ = 0 and qτ > 0 and the competition penalty
is minus infinity. We mention that this only occurs because of the retailers’ ability to trade in the
financial markets. If δP ≥ δC, however, then it is easy to see that the centralized solution is always
more efficient than the decentralized supply chain so that Qτ ≤ 1 and P ≥ 0. We also note that
if the budget is large enough so that both the decentralized and centralized operations can hedge
away the budget constraint then δP = δC = cτ and

Qτ =
N

(N + 1)
and Pτ =

1
(N + 1)2

.

3.3 Retailers Based in a Foreign Currency Area

We now assume that the retailers and producer are located in different currency areas and use
change-of-numeraire arguments to show that our analysis still15 goes through. Without any loss
of generality, we will assume that the retailers and producer are located in the “foreign” and
“domestic” currency areas, respectively. The exchange rate, Zt say, denotes the time t domestic
value of one unit of the foreign currency. When the producer proposes a contract, wτ , we assume
that he does so in units of the foreign currency. Therefore the ith retailer pays qiwτ units of foreign
currency16 to the producer. The retailers’ problem is therefore unchanged from the problem we
considered at the beginning of Section 3 if we take Q to be an EMM of a foreign investor who takes
the foreign cash account as his numeraire security. As explained in Appendix B, this same Q can
also be used by the producer as a domestic EMM where he takes the domestic value of the foreign
cash account as the numeraire security.

We could take our financial process, Xt, to be equivalent to Zt so that the retailers hedge their
foreign exchange risk in order to mitigate the effects of their budget constraints. This would only
make sense if Āτ and the exchange rate, Zt, were dependent. More generally, we could allow Xt

14See Caldentey and Haugh (2009) for details.
15See Ding et al. (2007) for a comprehensive review of the literature discussing exchange rate uncertainty in a

production/inventory context.
16Which is the domestic currency from the retailers’ perspective.
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to be multi-dimensional so that it includes Zt as well as other tradeable financial processes that
influence Āτ .

The producer must convert the retailers’ payments into units of the domestic currency and he
therefore earns a per-unit profit of either (i) wτZτ − cτ if production costs are in units of the
domestic currency or (ii) Zτ (wτ − cτ ) if production costs are in units of the foreign currency. Case
(i) would apply if production takes place domestically whereas case (ii) would apply if production
takes place in the foreign currency area. We will assume17 that interest rates in both the domestic
and foreign currency areas are identically zero.

Analogously to (10) and (11) we find in the equibudget case that the producer’s problem in case
(i) is given by

ΠP = max
wτ , λ≥0

Z0
2N

N + 1
EQ0

[
(wτZτ − cτ )

Zτ

(
Āτ − wτ (1 + λ)

)+

2

]
(14)

subject to EQ0

[
wτ

(
Āτ − wτ (1 + λ)

)+

2

]
≤ (N + 1)

2
B. (15)

Note that Zτ appears in the denominator inside the expectation in (14) because, as explained
above, the domestic value of the foreign cash account is the appropriate numeraire corresponding
to the EMM, Q. Since we have assumed interest rates are identically zero, the foreign value of
the foreign cash-account is identically one and so its domestic value is Zt at time t. For the same
reason, Z0 appears outside the expectation in (14). Solving the producer’s problem in (14) and (15)
is equivalent to solving the problem he faced earlier in this section but now with a stochastic cost,
ĉτ := cτ/Zτ . However, it can easily be seen that the proof of Proposition 2, or more to the point,
Proposition 7 in Caldentey and Haugh (2009), goes through unchanged when cτ is stochastic. We
therefore obtain the same result as Proposition 2 with cτ replaced by ĉτ and Q interpreted as a
foreign EMM with the domestic value of the foreign cash account as the numeraire security.

Remark: If instead case (ii) prevailed so that the producer’s per-unit profit was Zτ (wτ − cτ ) then
the Zτ term in both the numerator and denominator of (14) would cancel, leaving the producer
with an identical problem to that of Section 3 albeit with different EMMs. So while the analysis
for case (ii) is identical to that of Section 3, the probability measures under which the solutions are
calculated are different.

3.4 Stochastic Interest Rates and Paying the Producer in Advance

We now consider the problem where the retailers’ budgets are only available at time T but that
the producer must be paid at time τ < T . We will assume that interest rates are stochastic and
no longer identically zero so that the retailers’ effective time τ budgets are also stochastic. In
particular, we will assume that the Q-dynamics of the short rate are given by the Vasicek18 model
so that

drt = α(µ− rt) dt + σdWt (16)
17We assume zero interest rates only so that we can focus on the issues related to foreign exchange.
18See, Duffie (2004) for a description of the Vasicek model and other related results that we use in this subsection.

Note that it is not necessary to restrict ourselves to the Vasicek model. We have done so in order to simplify the

exposition but our analysis holds for more general models such as the multi-factor Gaussian and CIR processes that

are commonly employed in practice.
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where α, µ and σ are all positive constants and Wt is a Q-Brownian motion. The short-rate, rt,
is the instantaneous continuously compounded risk-free interest rate that is earned at time t by
the ‘cash account’, i.e., cash placed in a deposit account. In particular, if $1 is placed in the cash
account at time t then it will be worth exp

(∫ T
t rs ds

)
at time T > t. It may be shown that the

time τ value of a zero-coupon-bond with face value $1 that matures at time T > τ satisfies

ZT
τ := ea(T−τ)+b(T−τ)rτ (17)

where a(·) and b(·) are known deterministic functions of the time-to-maturity, T − τ . In particular,
ZT

τ is the appropriate discount factor for discounting a known deterministic cash flow from time T

to time τ < T .

Returning to our competitive supply chain, we assume as before that the N retailers’ profits are
realized at time T ≥ τ . Since the producer now demands payment from the retailers at time τ

when production takes place this implies that the retailers will be forced to borrow against the
capital B that is not available until time T . As a result, the ith retailer’s effective budget at time
τ is given by

Bi(rτ ) := BiZ
T
τ = Bie

a(T−τ)+b(T−τ)rτ .

As before, we assume that the stochastic clearance price, A−Q, depends on the financial market
through the co-dependence of the random variable A, and the financial process, Xt. To simplify
the exposition, we could assume that Xt ≡ rt but this is not necessary. If Xt is a financial process
other than rt, we simply need to redefine our definition of {Ft}0≤t≤T so that it represents the
filtration generated by Xt and rt. Before formulating the optimization problems of the retailers
and the producer we must adapt our definition of feasible Fτ -measurable financial gains, Gτ . Until
this point we have insisted that any such Gτ must satisfy EQ0 [Gτ ] = 0, assuming as before that zero
initial capital is devoted to the financial hedging strategy. This was correct when interest rates
were identically zero but now we must replace that condition with the new condition19

EQ0 [DτGτ ] = 0 (18)

where Dτ := exp
(− ∫ τ

0 rs ds
)

is the stochastic discount factor. The ith retailer’s problem for a
given Fτ -measurable wholesale price, wτ , is therefore given20 by

ΠR(wτ ) = max
qi≥0, Gτ

EQ0 [DT (AT − (qi + Qi−)) qi −Dτwτqi] (19)

subject to wτ qi ≤ Bi(rτ ) + Gτ , for all ω ∈ Ω (20)

EQ0 [DτGτ ] = 0 (21)

and Fτ −measurability of qi. (22)

Note that both DT and Dτ appear in the objective function (19) and reflect the times at which
the retailer makes and receives payments. We also explicitly imposed the constraint that qi be
Fτ -measurable. This was necessary21 because of the appearance of DT in the objective function.

19See the first paragraph of Appendix B for why this is the case.
20We write AT for A to emphasize the timing of the cash-flow.
21To be precise, terms of the form DT (AT − qi) should also have appeared in the problem formulations of earlier

sections in this paper. In those sections, however, Dt ≡ 1 for all t and so the conditioning argument we use above

allows us to replace AT with Āτ in those sections.
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We can easily impose the Fτ -measurability of qi by conditioning with respect to Fτ inside the
expectation appearing in (19). We then obtain

EQ0
[
Dτ

(
ĀD

τ − (qi + Qi−)− wτ

)
qi

]
(23)

as our new objective function where ĀD
τ := EQτ [DT AT ]/Dτ . With this new objective function it is

no longer necessary to explicitly impose the Fτ -measurability of qi.

It is still straightforward to solve for the retailers’ Cournot equilibrium. One could either solve
the problem directly as before or alternatively, we could use the change-of-numeraire method of
Section 3.3 that is described in Appendix B. In particular, we could switch to the so-called forward
measure where the EMM, Qτ , now corresponds to taking the zero-coupon bond maturing at time
τ as the numeraire. In that case the ith retailer’s objective function in (23) can be written22 as

Zτ
0 E

Qτ
0

[(
ĀD

τ − (qi + Qi−)− wτ

)
qi

]
. (24)

We can therefore solve for the retailers’ Cournot equilibrium using our earlier analysis but with Āτ

and Q replaced by ĀD
τ and Qτ , respectively. Note that the constant factor, Zτ

0 , in (24) is the same
for each retailer and therefore makes no difference to the analysis. Following the first approach we
obtain the following solution to the retailer’s problem. We omit the proof as it is very similar to
the proof of Proposition 1.

Proposition 5 (Retailers’ Optimal Strategy)

Let wτ be an Fτ -measurable wholesale price offered by the producer and define Qτ := (ĀD
τ −wτ)+

(N+1) ZT
τ

.
This is the optimal ordering quantity for each retailer in the absence of any budget constraints. The
following two cases arise:

Case 1: Suppose EQ0 [DτQτwτ ] ≤ EQ0 [DτB(rτ )] = ZT
0 B. Then qi(wτ ) := qτ := Qτ for all i

and (possibly due to the ability to trade in the financial market) the budget constraints are
not binding.

Case 2: Suppose EQ0 [DτQτwτ ] > ZT
0 B. Then

qi(wτ ) := qτ :=

(
ĀD

τ − wτ (1 + λ)
)+

(N + 1)ZT
τ

for all i = 1, . . . , N (25)

where λ ≥ 0 solves
EQ0 [Dτwτqτ ] = EQ0 [B(rτ )Dτ ] = ZT

0 B. (26)

Given the retailers’ best response, the producer’s problem may now be formulated23 as

ΠP = max
wτ , λ≥0

EQ0

[
Dτ (wτ − cτ )

(
ĀD

τ − wτ (1 + λ)
)+

(N + 1)ZT
τ

]
(27)

subject to EQ0

[
Dτwτ

(
ĀD

τ − wτ (1 + λ)
)+

(N + 1)ZT
τ

]
≤ ZT

0 B. (28)

22The condition (21) can also be written in terms of Qτ as Zτ
0 EQτ

0 [Gτ ] = 0, i.e., EQτ
0 [Gτ ] = 0.

23We assume here and in the foreign retailer setting that the production costs, cτ , are paid at time τ .
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The Cournot-Stackelberg equilibrium and solution of the producer’s problem in the equibudget
case is given by the following proposition. We again omit the proof of this proposition as it it very
similar to the proof of Proposition 2.

Proposition 6 (The Equilibrium Solution)
Let φP be the minimum φ ≥ 1 that satisfies EQ0

[
Dτ

8ZT
τ

(
(ĀD

τ )2 − (φcτ )2
)+

]
≤ (N+1)

2 ZT
0 B and let

δP := φPcτ . Then the optimal wholesale price and ordering level satisfy

wτ =
δP + ĀD

τ

2
and qτ =

(
ĀD

τ − δP

)+

2(N + 1)ZT
τ

.

4 The Cournot Game in the Non-Equibudget Case

We now consider the more general and interesting problem where the retailers are no longer assumed
to have identical budgets. We will focus on the case where interest rates are identically zero but
note that the change of measure argument of Section 3.4 can easily be applied to handle stochastic
interest rates. Taking Qi− and the producer’s price menu, wτ , as fixed, the ith retailer’s problem
is formulated as

ΠRi(wτ ) = max
qi≥0, Gτ

EQ0
[(

Āτ − (qi + Qi−)− wτ

)
qi

]
(29)

subject to wτ qi ≤ Bi + Gτ , for all ω ∈ Ω (30)

EQ0 [Gτ ] = 0. (31)

Each of the N retailers must solve this problem and our goal is to characterize the resulting
Cournot equilibrium. We also assume that the retailers have been ordered so that B1 ≥ B2 ≥ . . . ≥
BN . The following proposition, whose statement requires some additional notation, computes the
retailers’ equilibrium order quantities as a function of wτ . First, we define the random variable
ατ := Āτ/wτ . Since Āτ is the expected maximum clearing price (corresponding to Q = 0) and wτ

is the procurement cost, we may interpret ατ − 1 as the expected maximum per unit margin of the
retail market. It follows that in equilibrium the producer chooses wτ so that ατ ≥ 1 and we will
assume that this condition is satisfied. We also define the auxiliary function, H(·), which plays an
important role in solving the retailers’ problem:

H(B) := inf{x ≥ 1 such that EQ0 [w
2
τ (ατ − x)+] ≤ B}.

Note that H(B) is a non-increasing function in B > 0.

Proposition 7 For a given wholesale price menu, wτ , the optimal ordering quantities, qi, satisfy

qi = wτ


 ατ

nτ + 1
− αi

i + 1
+

nτ∑

j=i+1

αj

j (j + 1)




+

for all i = 1, 2, . . . , N

EQ0 [wτ qi] = Bi if αi > 1,

where

αi := H((i + 1)Bi + Bi+1 + · · ·+ BN ) for all i = 1, 2, . . . , N, (32)

nτ := max {i ∈ {0, 1, . . . , N} such that αi ≤ ατ} . (33)
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Proof: See Appendix A.

It is clear from the proof of Proposition 7 that the random variable nτ is the number of retailers
that order a positive quantity given the wholesale price, wτ . Furthermore, the ordering B1 ≥ B2 ≥
· · · ≥ BN implies that qi > 0 if and only if i ≤ nτ . The parameter αi is therefore the cutoff point
such that the ith retailer orders a positive quantity only if ατ ≥ αi. It follows from equation (32)
that αi does not depend on the i − 1 highest budgets, Bj , for j = 1, . . . , i − 1. In fact αi only
depends on Bi, the sum of the N − i smallest budgets and the number of retailers, i− 1, that have
a budget larger than Bi. As a result, qi only depends on Bi, (Bi+1 + · · · + BN ) and i. In other
words, the procurement decisions of small retailers are unaffected by the size of larger retailers for
a given wholesale price wτ . In equilibrium, however, we expect the wholesale price wτ to depend
on the entire vector of budgets. Proposition 7 also implies that

qi − qi+1 = wτ

(
(ατ − αi)+ − (ατ − αi+1)+

i + 1

)
, i = 1, 2, . . . , N

and this confirms our intuition that larger retailers order more than smaller ones so that qi is
non-increasing in i. This follows from the fact that H(B) is non-increasing in B which implies that
the αi’s are non-increasing in i. Having characterized the Cournot equilibrium of the N retailers,
we can now determine the producer’s expected profits, ΠP = EQ0 [(wτ − cτ ) Q(wτ )], for a fixed price
menu, wτ . We have the following proposition.

Proposition 8 The producer’s expected payoff satisfies

ΠP =
m− 1

m
EQ0 [(wτ − cτ ) (Āτ − wτ)] +

N∑

j=m

(
Bj

m
− cτ

j(j + 1)
EQ0 [(Āτ − αj wτ)+]

)
(34)

where
m = m({wτ}) := max{i ≥ 1 such that αi−1 = 1} (35)

with α0 := 1.

Proof: See Appendix A.

Note that m is the index of the first retailer whose budget constraint is binding24 with the under-
standing that if m = N + 1 then all N retailers are non-binding. We can characterize those values
of m ∈ {1, . . . , N + 1} that are possible. In particular, if the producer sets wτ = Āτ then all of
the retailers are non-binding and so m = N + 1. We can also find the smallest possible value of
m, mmin say, by setting wτ = cτ , solving for the resulting αi’s using (32) and then taking mmin

according to (35). Assuming the Bi’s are distinct, the achievable values of m are given by the set
Mfeas := {mmin, . . . , N + 1}. This can be seen by taking wτ = γcτ + (1− γ)Āτ with γ = 0 initially
and then increasing it to 1. In the process each of the values in Mfeas will be obtained.

We could use this observation to solve numerically for the producer’s optimal menu, w∗τ , by solving
a series of sub-problems. In particular we could solve for the optimal price menu subject to the
constraint that m = m∗ for each possible value of m∗ ∈ Mfeas. Each of these N − m∗ + 2 sub-
problems could be solved numerically after discretizing the probability space. The overall optimal
price menu, w∗τ , is then simply the optimal price menu in the sub-problem whose objective function
is maximal.

24We say a player is binding if his budget constraint is binding in the Cournot equilibrium. Otherwise a player is

non-binding.
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4.1 A Constant Wholesale Price

The problem of numerically optimizing the expected payoff in (34) is considerably more tractable
if the producer offers a constant wholesale price w̄ instead of a random menu wτ . From a practical
standpoint, this is an important special case since a constant wholesale price is also a much simpler
contract to implement. In this case, Proposition 8 can be specialized as follows.

Corollary 1 Under a constant wholesale price, w̄, the producer’s expected payoff is given by25

ΠP =
w̄ − cτ

m


(m− 1) EQ0[(Āτ − w̄)+] +

N∑

j=m

Bj

w̄


 . (36)

Let w̄∗(B1, . . . , BN ) be the constant wholesale price that maximizes the value of ΠP. Then, it follows
that w̄∗(B1, . . . , BN ) ≥ w̄∗(∞, . . . ,∞) for all B1 ≥ B2 ≥ · · · ≥ BN .

Proof: See Appendix A.

The last part of Corollary 1 asserts that it is in the producer’s best interest to increase the wholesale
price when selling to budget-constraint retailers. By doing so the producer is inducing the retailers
to reallocate their limited budgets into those states in which demand is high and for which the
retailers have the incentives to invest more of their budgets in procuring units from the producer.
As a result, the producer is able to extract a larger fraction of the retailers initial budgets.

While m is a function of w̄ it is nonetheless straightforward to check that ΠP in (36) is a continuous
function of w̄. Note also that if some budget is transferred from one non-binding player to another
non-binding player and both players remain non-binding after the transfer then ΠP is unchanged.
Similarly if some budget is transferred from one binding player to another binding player and both
players remain binding after the transfer then ΠP is again unchanged. Both of these statements
follow from (36) and because it is easy to confirm that in each case the value of m is unchanged.

If some budget is transferred from a binding player to a non-binding player, however, then the
ordering of the Bi’s and the definition of the αi’s imply that both players remain binding and
non-binding, respectively, after the transfer. Therefore m remains unchanged and ΠP decreases
according to (36).

Conversely, we can increase ΠP by transferring budget from a non-binding player to a binding player
in such a way that both players remain non-binding and binding, respectively, after the transfer.
It is also possible to increase ΠP if budget is transferred from one non-binding player to another
non-binding player so that the first player becomes binding after the transfer.

Note that the statements above are consistent with the idea that the producer would like to see the
budgets spread evenly among the various retailers. See Proposition 9 below for a similar result.

4.2 Should the Retailers Merge or Remain in Competition?

A question of particular interest is whether or not the retailers should merge or remain in com-
petition. We now give a partial26 answer to that question from the producer’s perspective. The

25The positive part in (36) is needed because in this case with wτ = w̄ it is not necessarily true that ατ = Āτ/wτ ≥ 1.
26We were able to give a more complete answer in Section 3 when we specialized to the case of equal budgets.
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following proposition, which we prove in Appendix A, describes conditions under which the pro-
ducer always27 prefers the retailers to remain in competition.

Proposition 9

(a) For any wτ , the producer prefers the N retailers to remain in competition rather than merging
and combining their budgets when the marginal production cost, cτ , is zero. In particular, this is
true in the Cournot-Stackelberg equilibrium where the producer optimizes over wτ .

(b) If wτ is restricted to a constant, then the producer prefers the N retailers to remain in compe-
tition rather than merging and combining their budgets. In particular, this is true in the Cournot-
Stackelberg equilibrium where the producer optimizes over the constant, wτ .

Proof: See Appendix A for the proof of (a). The proof of (b) follows from the discussion imme-
diately following Corollary 1.

5 The Value of Financial Markets

In this section we discuss the value that the financial markets add to the competitive supply chain.
There are two means by which the financial markets add value: (i) as a mechanism for mitigating
the retailers’ budget constraints via dynamic trading and (ii) as a source of public information
upon which the ordering quantities and prices are contingent. We begin with (i) and towards this
end we need to discuss the so-called28 F-contract. The F-contract is in fact identical to our earlier
contract but we now assume that the retailers can no longer trade in the financial markets.

5.1 The F-Contract

Drawing on the results of Caldentey and Haugh (2009) in the single-retailer case, we can compare
the performance of the supply chain across the two contracts in the equibudget case as well as
determining the players’ preferences over each contract. We begin with a brief discussion of the
retailers’ problem in the general case where budgets are not identical across the N retailers.

The General Case: Non-Identical Budgets

For a fixed price menu, wτ , it is straightforward to solve for the retailers’ Cournot equilibrium. In
particular, the ith player solves

ΠF
R(wτ ) = max

qi≥0
EQ0

[(
Āτ − (qi + Qi−)− wτ

)
qi

]
(37)

subject to wτ qi ≤ Bi for all ω ∈ Ω. (38)
27While we expect this result to be true in general, we have been unable to prove it. We also prove this result in

Section 3 when the retailers have identical budgets.
28The term “F-contract” was introduced by Caldentey and Haugh (2009) and so we will use the same term here.
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This problem decouples and is solved separately for each outcome, ω. The first order conditions
imply

qi = min
(

Bi

wτ
,

(Āτ −Qi− − wτ )+

2

)
.

We see that there is a function m(ω) ∈ {0, 1, . . . , N} so that the budget constraints are not binding
in state ω for the first m retailers only. The solution then takes the form

q
(m)
i =





q(m) :=

(
Āτ − ∑N

j=m+1

Bj
wτ

− wτ

)+

m+1 , i = 1, . . . , m
Bi/wτ , i = m + 1, . . . , N.

(39)

Note that m was a constant in Section 4 whereas here m is random. In order to determine the
value of m = m(ω), we must determine that value of m whereby the mth retailer can afford to
order q(m) units but where the (m + 1)th retailer cannot afford q(m) units. Mathematically, this
translates to determining the value of m such that Bm+1 < q(m)wτ ≤ Bm with the understanding
that BN+1 := 0. If no such m ≥ 1 exists then we take m = 0 and the budget constraints bind for
all N retailers. It is also necessary to check that there is not more than one value of m for which
the above conditions hold. While this may seem intuitively clear, it is not immediately obvious and
so we state it as a Lemma which we prove in Appendix A.

Lemma 1 There is at most one value of m ∈ {1, . . . , N} satisfying Bm+1 < q(m)wτ ≤ Bm.

The retailers’ problem is then solved separately for each ω ∈ Ω by determining the number of non-
binding retailers, m(ω). The producer’s problem also decouples and he simply chooses wτ (ω) to
optimize his expected profits given the retailers reaction function. We could characterize the values
of wτ for which exactly i retailers are non-binding for i = 0, . . . , N and then determine an expression
for the producer’s expected profits. Since our focus in this paper is not on the F-contract, however,
we will move instead to the equibudget case where it is possible to make statements concerning the
players preferences over the two contracts.

The Equibudget Case

When the N retailers all have the same budget, B, then (39) is easily seen to reduce to

qi = qτ := min

((
Āτ − wτ

)+

N + 1
,

B

wτ

)
for all i = 1, . . . , N. (40)

The producer’s optimal objective function then becomes

ΠF
P = N EQ0

[
max

wτ≥cτ

{
(wτ − cτ ) min

((
Āτ − wτ

)+

N + 1
,

B

wτ

)}]
(41)

= EQ0

[
max

wτ≥cτ

{
(wτ − cτ ) min

(
N

(
Āτ − wτ

)+

N + 1
,

NB

wτ

)}]

≥ EQ0

[
max

wτ≥cτ

{
(wτ − cτ ) min

((
Āτ − wτ

)+

2
,

NB

wτ

)}]
. (42)
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But (42) is the producer’s problem when the N retailers merge and have a combined budget of
NB. We have therefore shown that the producer also prefers the retailers to remain in competition
when the flexible contract is under consideration. Explicit solutions for the maximization problems
in (41) and (42) are easily computed and are given in Caldentey and Haugh (2009). We also obtain
the following result.

Proposition 10 In the equibudget case the producer is always better off if the N retailers have
access to the financial markets.

Proof: When the retailers have access to the financial markets the producer’s objective function
is given by (10). But this is equivalent to 2N/(N + 1) times the objective function of the producer
when there is just a single retailer with a budget of (N +1)B/2. Similarly, the producer’s objective
function in (41) is equivalent to 2N/(N + 1) times the producer’s objective function in the flexible
setting with just a single retailer having a budget of (N + 1)B/2. But then the result follows
immediately from Proposition 8 in Caldentey and Haugh (2009) who show in the single retailer
setting that the producer always prefers the retailer to have access to the financial markets. ¤

Caldentey and Haugh (2009) show that the situation is more complicated for the retailers. In
particular, the retailers may or may not prefer having access to the financial markets in equilibrium.
The relationship between cτ and δP (as defined in Proposition 2) is key: if cτ = δP the retailers
also prefer having access to the financial markets. If cτ < δP, however, then their preferences can
go either way.

5.2 The Value of Information in the Financial Markets

The financial markets also add value to the supply chain by allowing the retailers to mitigate their
budget constraints via dynamic trading. The next proposition emphasizes the value of information
in a competitive supply chain. Under the assumption of zero marginal production costs, it states
that for an Fτ1-measurable price menu, wτ , the producer is always better off when the retailers’
orders are allowed to be contingent upon time τ2 information where τ2 > τ1. Later in Appendix
C we will discuss the optimal timing, τ , of the contract. Clearly the optimal τ achieves the
optimal tradeoff between the value of additional information and the cost associated with delaying
production.

Proposition 11 Consider two times τ1 < τ2 and let wτ be an Fτ1-measurable price menu. Con-
sider the following two scenarios: (1) the producer offers price menu wτ and the retailers choose
their Cournot-optimal Fτ1-measurable ordering quantities which is then produced at time τ1 and
(2) the producer again offers price menu wτ but the retailers now choose their Cournot-optimal
Fτ2-measurable ordering quantities which is then produced at time τ2. If cτ1 = cτ2 = 0 then the
producer always prefers scenario (2).

Proof: See Appendix A.

The conclusion of Proposition 11 might appear to be obvious as it is clearly true that the retailers
would prefer scenario (2). After all, scenario (2) gives them (at no extra cost) additional information
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upon which to base their ordering decisions and additional time to run their financial hedging
strategy. However, it is not immediately clear that the producer should also benefit from this
delay. Proposition 11 states that the producer does indeed benefit from this delay, at least when
marginal production costs are zero.

6 Conclusions and Further Research

We have studied the performance of a stylized supply chain where multiple retailers and a single
producer compete in a Cournot-Stackelberg game. At time t = 0 the retailers order a single
product from the producer and upon delivery at time T > 0, they sell it in the retail market at
a stochastic clearance price that depends in part on the realized path or terminal value of some
tradeable financial process. Because production and delivery do not take place until time T , the
producer offers a menu of wholesale prices to the retailer, one for each realization of the process
up to time some time, τ , where 0 ≤ τ ≤ T . The retailers’ ordering quantities can therefore depend
on the realization of the process until time τ . We also assumed, however, that the retailers were
budget-constrained and were therefore limited in the number of units they could purchase from
the producer. Because the supply chain is potentially more profitable if the retailers can allocate
their budgets across different states we allow them to trade dynamically in the financial market.
After solving for the Nash equilibrium we addressed such questions as: (i) whether or not the
players would be better off if the retailers merged and (ii) whether or not the players are better off
when the retailers have access to the financial markets. We also considered variations of the model
where, for example, the retailers were located in a different currency area to the producer. Finally
in Appendix C we consider the situation where the producer could choose the optimal timing, τ ,
of the contract and we formulated this as an optimal stopping problem.

There are several possible directions for future research. First, it would be interesting to model and
solve the game where each retailer’s budget constitutes private information that is known only to
him. This problem formulation would therefore require us to solve for a Bayesian Nash equilibrium.
It would also be of interest to identify and calibrate settings where supply chain payoffs are strongly
dependent on markets. We would then like to estimate just how much value is provided by the
financial markets in its role as (i) a source of public information upon which contracts may be
written and (ii) as a means of mitigating the retailers’ budget constraints. A further direction is
to consider alternative contracts such as 2-part tariffs for coordinating the supply chain. Of course
we would still like to have these contracts be contingent upon the outcome of the the financial
markets. Finally, we would like to characterize the producer’s optimal price menu in the general
non-equibudget case and where the marginal cost, cτ , is not zero.
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A Proofs

Proof of Proposition 1: It is straightforward to see that Qτ is each of the N retailer’s optimal
ordering level given the wholesale price menu, wτ , in the absence of a budget constraint. This
follows from a standard Cournot-style analysis in which all of the retailers, owing to their identical
budgets, order the same quantity. In order to implement this solution, each retailer would need a
budget Qτ wτ for all ω ∈ Ω. Therefore, if each retailer can generate a financial gain, Gτ , such that
Qτ wτ ≤ B +Gτ for all ω ∈ Ω then he would be able to achieve his unconstrained optimal solution.

By definition, X contains all those states for which B ≥ Qτ wτ . That is, the original budget B is
large enough to cover the optimal purchasing cost for all ω ∈ X . However, for ω ∈ X c, the initial
budget is not sufficient. The financial gain, Gτ , then allows the retailer to transfer resources from
X to X c.

Suppose the condition in Case 1 holds so that EQ0 [Qτ wτ ] ≤ B. Note that according to the definition
of Gτ in this case, we see that B + Gτ = Qτ wτ for all ω ∈ X c. For ω ∈ X , however, B + Gτ =
(1 − δ) B + δQτ wτ ≥ Qτ wτ . The inequality follows since δ ≤ 1. Gτ therefore allows the retailer
to implement the unconstrained optimal solution. The only point that remains to check is that Gτ

satisfies EQ0 [Gτ ] = 0. This follows directly from the definition of δ.

Suppose now that the condition specified in Case 2 holds. We solve the ith retailer’s optimization
problem in (29) by relaxing the gain constraint (31) with a Lagrange multiplier, λi. We also relax
the budget constraint in (30) for each realization of X up to time τ . The corresponding multiplier for
each such realization is denoted by β(i)

τ dQ where β(i)
τ plays the role of a Radon-Nikodym derivative

of a positive measure that is absolutely continuous with respect to Q. The first-order optimality
conditions for the relaxed version of the retailer’s problem are then given by

qi =
(Āτ − wτ (1 + β(i)

τ )−Qi−)+

2

β(i)
τ = λi, β(i)

τ

(
wτ qi −B + Gτ

)
= 0, β(i)

τ ≥ 0, and EQ0 [Gτ ] = 0.

We look for a symmetric equilibrium of the above system of equations where λi = λ and qi = q for
all i = 1, . . . , N .

It is straightforward to show that the solution given in Case 2 of the proposition satisfies these
optimality conditions; only the non-negativity of β(i)

τ needs to be checked separately. To prove
this, note that β(i)

τ = λi = λ, therefore it suffices to show that λ ≥ 0. This follows from three
observations

(a) Since 0 ≤ wτ the function EQ0

[
wτ

(
Āτ−wτ (1+λ)

(N+1)

)+
]

is decreasing in λi.

(b) In Case 2, by hypothesis, we have

EQ0

[
wτ

(
Āτ − wτ

)+

(N + 1)

]
= EQ0 [Qτ wτ ] > B

(c) Finally, we know that λ solves

EQ0

[
wτ

(
Āτ − wτ (1 + λ)

)+

(N + 1)

]
= B.
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(a) and (b) therefore imply that we must have λ ≥ 0. ¤

Proof of Proposition 3: Let f(B) be the producer’s optimal expected profits as a function of
the retailers’ common budget. Then

f(B) := max
wτ , λ≥0

EQ0

[
(wτ − cτ )

(
Āτ − wτ (1 + λ)

)+

2

]

subject to EQ0

[
wτ

(
Āτ − wτ (1 + λ)

)+

2

]
≤ B.

From (10) and (11) we see that the expected payoff, ΠP, that the producer achieves by serving N

competing retailers with individual budget B is therefore equal to

ΠP =
2N

N + 1
f

(
(N + 1)

2
B

)
.

When there is just one retailer with a budget of NB, the producer’s expected profit, Π̃P say, satisfies
Π̃P = f(NB). In order to prove the proposition we must therefore show show that for all B ≥ 0
and N

f(NB) ≤ 2N

N + 1
f

(
(N + 1)

2
B

)
.

Since f(0) = 0, a sufficient condition for this inequality to hold is that f(B) is a concave function
in [0,∞). We can use the results in Proposition 3 to rewrite f(B) as

f(B) = EQ0

[
(Āτ + (1 ∧ φ) cτ − 2cτ ) (Āτ − (1 ∧ φ) cτ )+

8

]
(A-1)

where φ is the positive root of the equation EQ0
[
(Ā2

τ − (φ cτ )2)+
]

= 8 B. We will prove the concavity
of f(B) by first proving it for a discrete approximation to Āτ and then using a convergence argument
to prove it for Āτ . Specifically, if we define Aθ := θbĀτ/θc for an arbitrary θ > 0, then Aθ takes
values in {0, θ, 2θ, . . . } and

Q(Aθ = k θ) = Q(k θ ≤ Āτ < (k + 1) θ) for k = 0, 1, 2 . . .

We define the auxiliary function

fθ(B) := EQ0

[
(Aθ + (1 ∧ φθ) cτ − 2cτ ) (Aθ − (1 ∧ φθ) cτ )+

8

]
(A-2)

where φθ is the positive root of the equation EQ0
[
(A2

θ − (φθ cτ )2)+
]

= 8 B. Since limθ↓0 Aθ = Āτ , we
can apply the Dominated convergence Theorem29 to see that limθ↓0 fθ(B) = f(B). And since the
limit of concave functions is itself concave, it therefore suffices to prove the concavity of fθ(B). To
show this, let us define B̄ such that φθ ≥ 1 for all B ≤ B̄. It follows that fθ(B) = fθ(B̄) for all
B ≥ B̄. Hence, since fθ(B) is continuous and nondecreasing, we only need to prove that fθ(B) is
concave in the domain [0, B̄].

29The expressions inside the expectations in (A-1) and (A-2) are dominated by EQ0
[

A2
θ

8

]
so that it is sufficient for

convergence that Āτ has a second moment.
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For B ≤ B̄ the budget constraint in the definition of fθ(B) is tight and so we can rewrite fθ(B) as

fθ(B) = B − cτ

4
Hθ(B), B ≤ B̄,

where
Hθ(B) := EQ0

[
(Aθ − δ)+

]
and δ ≥ 1 solves EQ0

[(
A2

θ − δ2
)+

]
= 8 B.

For a fixed B ∈ [0, B̄], let us define δθ(B) ≥ 0 as the positive root in the budget constraint above
and define a sequence of budgets 0 = B0 ≤ B1 ≤ · · · ≤ Bm = B̄ such that ki := dδθ(Bi)/θe for all
B ∈ [Bi, Bi+1). It then follows that for all B ∈ [Bi, Bi+1),

δθ(B) =

√∑
k≥ki

(k θ)2Q(Aθ = k θ) − 8B

Q(Aθ ≥ ki θ)
and Hθ(B) =

∑

k≥ki

k θ − δθ(B)Q(Aθ ≥ ki θ).

We therefore see that Hθ(B) is convex in each interval, [Bi, Bi+1), since δθ(B) is concave in these
intervals. To complete the proof, it suffices to show that Hθ(B) is continuously differentiable in
[0, B̄] which is equivalent to showing that Hθ(B) is differentiable at each Bi, i = 1, . . . , m. Since
δθ(B) is continuous in B by construction, the continuously differentiability of Hθ(B) follows by
observing that the derivative of δθ(B) with respect to B is proportional to 1/δθ(B). ¤

The following lemma is used in proving Proposition 7.

Lemma 2 The optimal ordering quantities, qi for i = 1, . . . , N , satisfy

qi =

{ [Āτ−wτ((nτ+1)(1+λi)−
∑nτ

j=1(1+λj))]
(nτ+1) , for i ≤ nτ

0, otherwise,
(A-3)

where nτ = i − 1 for all outcomes, ω ∈ Ω, satisfying αi−1 ≤ ατ (ω) < αi. Indeed αi is the value
of ατ where the ith retailer moves from ordering zero to ordering a positive quantity. This cutoff
point satisfies

αi = i(1 + λi) −
i−1∑

j=1

(1 + λj) for i = 1, . . . , N (A-4)

where λj is the Lagrange multiplier for the jth retailer’s optimization problem. Moreover, if Vτ is
an Fτ -measurable random variable then

(i + 1) EQ0[Vτ qi] +
N∑

j=i+1

EQ0 [Vτ qj ] =
∫

αi<ατ

Vτ (Āτ − αi wτ) dQ. (A-5)

Proof of Lemma 2: Taking Qi− and the producer’s price menu, wτ , as fixed, it is straightforward
to obtain

qi =

(
Āτ − wτ (1 + λi)−Qi−

)+

2
(A-6)

where λi ≥ 0 is the deterministic Lagrange multiplier corresponding to the ith retailer’s budget
constraint. In particular, λi ≥ 0 is the smallest real such that EQ0 [wτ qi] ≤ Bi. Given the ordering
of the budgets, Bi, it follows that λ1 ≤ λ2 ≤ . . . ≤ λN when they are chosen optimally. Equation
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(A-6) and the ordering of the Lagrange multipliers then implies that for each outcome ω, there is
a function nτ ∈ {0, 1, . . . , N} such that qj(ω) = 0 for all j > nτ . Continuing to write qi for qi(ω),
we therefore obtain the following system of equations

qi = Āτ − wτ (1 + λi)−Q, for i = 1, . . . , nτ (A-7)

where we recall that Q =
∑

qi. For a fixed ω we have nτ linear equations in nτ unknowns which
we can easily solve to obtain (A-3). Summing the qi’s we also obtain

Q =
1

nτ + 1

[
nτĀτ − wτ

nτ∑

i=1

(1 + λi)

]
. (A-8)

Now suppose qi(ω) = 0 in some outcome, ω. Then (A-6) implies Āτ −wτ (1 + λi)−Q ≤ 0 which,
after substituting for Q using (A-8), implies that

1 + λi ≥
ατ +

∑nτ
j=1(1 + λj)

nτ + 1
. (A-9)

Let αi be the cutoff point where the ith retailer moves from ordering zero to ordering a positive
quantity. Abusing notation slightly, we see30 that n(αi) = i− 1 and so (A-9) implies (A-4). Since
the λi’s are non-decreasing in i it is easy to see that the αi’s are also non-decreasing in i, as we
would expect. We also see that n(ατ ) = k − 1 for all ατ satisfying αk−1 ≤ ατ < αk. Setting
αN+1 := ∞, we can combine these results and (A-3) to write

qi =
N∑

k=i

1
k + 1

[
Āτ − wτ

(
(k + 1) (1 + λi)−

k∑

j=1

(1 + λj)
)]

11
(
ατ ∈ [αk, αk+1)

)
. (A-10)

Letting Ωk := {ω : αk ≤ ατ < αk+1}, we see that (A-10) implies

N∑

j=i+1

EQ0[Vτ qj ] =
N∑

j=i+1

N∑

k=j

∫

Ωk

Vτ

k + 1

[
Āτ − wτ

(
(k + 1) (1 + λj)−

k∑

s=1

(1 + λs)
)]

dQ

=
N∑

k=i+1

k∑

j=i+1

∫

Ωk

Vτ

k + 1

[
Āτ − wτ

(
(k + 1) (1 + λj)−

k∑

s=1

(1 + λs)
)]

dQ

=
N∑

k=i+1

∫

Ωk

Vτ

k + 1


(k − i) Āτ − wτ

(
(k + 1)

k∑

j=i+1

(1 + λj)− (k − i)
k∑

s=1

(1 + λs)
)

 dQ.

Combining this last identity and the fact that

EQ0[Vτ qi] =
N∑

k=i

∫

Ωk

Vτ

k + 1

[
Āτ − wτ

(
(k + 1) (1 + λi)−

k∑

j=1

(1 + λj)
)]

dQ

we obtain

EQ0 [Vτ qi] +
1

i + 1

N∑

j=i+1

EQ0 [Vτ qj ] =
N∑

k=i

∫

Ωk

Vτ

k + 1
Zik dQ (A-11)

30We are assuming that the N budgets are distinct so that Bk−1 > Bk. This then implies qi(αk) > 0 for all

i ≤ k − 1. The case where some budgets coincide is straightforward to handle.
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where

Zik :=


Āτ − wτ

(
(k + 1) (1 + λi)−

k∑

j=1

(1 + λj)
)

+
(k − i) Āτ − wτ

(
(k + 1)

∑k
j=i+1(1 + λj)− (k − i)

∑k
s=1(1 + λs)

)

i + 1


 .

and where we have used the convention
∑i

j=i+1(1 + λj) = 0. After some straightforward manipu-
lations, one can show that

Zik =
k + 1
i + 1

(Āτ − αi wτ)

and so by the definition of Ωk we can substitute for Zik in (A-11) and obtain (A-5). ¤

Proof of Proposition 7: Using (A-4) recursively, one can show that

1 + λi =
αi

i
+

i−1∑

j=1

αj

j (j + 1)
.

Substituting this expression in (A-3) and using the fact that αi > ατ for i > nτ , we obtain
the expression for qi in Proposition 7. In addition, it follows from the proof of Lemma 2 that
αi − 1 = λi is the Lagrange multiplier for the ith retailer’s budget constraint. Hence, if αi > 1 the
budget constraint is binding and EQ0 [wτqi] = Bi.

To complete the proof, we need to show that αi and nτ are given by (32) and (33). The expression
for nτ follows from the proof of Lemma 2.

With Vτ set to wτ , Lemma 2 implies

EQ0 [wτ qi] +
1

i + 1

N∑

j=i+1

EQ0[wτ qj ] =
∫

αi<ατ

wτ

i + 1
(Āτ − αi wτ)dQ (A-12)

for i = 1, . . . , N . But the budget constraints for the N retailers also imply

EQ0[wτ qi] +
1

i + 1

N∑

j=i+1

EQ0[wτ qj ] ≤ Bi +
1

i + 1

N∑

j=i+1

Bj (A-13)

which, when combined with (A-12), leads to

∫

αi<ατ

wτ (Āτ − αi wτ)dQ ≤ (i + 1)Bi +
N∑

j=i+1

Bj (A-14)

for i = 1, . . . , N . We can use (A-14) sequentially to determine the αi’s. Beginning at i = N , we
see that the N th retailer’s budget constraint is equivalent to

∫

αN<ατ

wτ (Āτ − αN wτ)dQ ≤ (N + 1)BN . (A-15)
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The optimality condition on λi implies that it is the smallest non-negative real that satisfies the
ith budget constraint. Since the optimal λi’s are non-decreasing in i, we see from (A-13) that αi is
therefore the smallest real greater than or equal to 1 satisfying the ith budget constraint. Therefore,
beginning with i = N we can check if αN = 1 satisfies (A-15) and if it does, then we know the N th

budget constraint is not binding. If αN = 1 does not satisfy (A-15) then we set αN equal to that
value (greater than one) that makes (A-15) an equality. In particular, we obtain that the optimal
value of αN is H((N + 1)BN ), as desired.

Note that if αN = 1 then none of the budget constraints are binding. In particular, this implies
αi = 1 and λi = 0 for all i = 1, . . . N . Moreover, (32) must be satisfied for all i since it is true
for i = N and since the Bi’s are decreasing. Suppose now that the budget constraint is binding
for retailers i + 1, . . . , N and consider the ith retailer. Then the ith retailer’s budget constraint is
equivalent31 to (A-14) and we can again use precisely the same argument as before to argue that
(32) holds. ¤

Proof of Proposition 8: To compute the value of ΠP we will compute the expected revenue
EQ0 [wτ Q] and expected cost, cτEQ0 [Q], separately. The first step is to determine those retailers that
will be using their entire budgets in the Cournot equilibrium. We know from Proposition 7 and the
definition of m in (35) that only the budget constraints of the first m−1 retailers will not be binding
and so EQ0 [wτ qi] = Bi for i = m,m + 1, . . . , N . It also follows that λ1 = λ2 = · · · = λm−1 = 1 and
so (A-7) implies that

qi =
(
Āτ −Q− wτ

)+
, i = 1, . . . ,m− 1. (A-16)

Using this identity we obtain

EQ0[wτ Q] =
m−1∑

j=1

EQ0 [wτ qj ] +
N∑

j=m

EQ0 [wτ qj ]

= (m− 1)EQ0[wτ (Āτ −Q− wτ)+] +
N∑

j=m

Bj

= (m− 1)EQ0[wτ (Āτ − wτ)+ − wτ Q] +
N∑

j=m

Bj (A-17)

where we have used the observation that (Āτ − Q − wτ)+ = (Āτ − wτ)+ − Q. This observation
follows because (i) if Āτ ≤ wτ then by (A-6) Q = 0 and (ii) if Q > 0 then Āτ ≥ wτ and we can
argue using (A-7), say, that (Āτ − Q − wτ)+ = Āτ − Q − wτ . We can now re-arrange (A-17) to
obtain

EQ0 [wτ Q] =
1
m




N∑

j=m

Bj + (m− 1)EQ0 [wτ (Āτ − wτ)+]


 . (A-18)

In order to calculate the expected cost, we can use Lemma 2 with Vτ ≡ 1 to see that for any i we
have

(i + 1)EQ0 [qi] +
N∑

j=i+1

EQ0 [qj ] = EQ0 [(Āτ − αi wτ)+]. (A-19)

31Equivalence follows because the second terms on either side of the inequality sign in (A-13) are equal by assump-

tion.
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(A-19) then defines a system of N linear equations in the N unknowns, EQ0[qi], i = 1, . . . , N . If
we let M = [Mij ] be the N ×N upper-triangular matrix defined as

Mij :=





0 if i > j

i + 1 if i = j

1 if i < j

then it is easy to check that [M−1
ij ] = 1{j=i}/(j + 1) − 1{j>i}/(j(j + i)). The system (A-19) then

implies

N∑

i=1

EQ0 [qi] =
N∑

i=1

N∑

j=1

[M−1
ij ] EQ0[(Āτ − αj wτ)+]

=
N∑

j=1

1
j(j + 1)

EQ0[(Āτ − αj wτ)+] (A-20)

and so we obtain

EQ0[cτQ] =
(m− 1)cτ

m
EQ0 [(Āτ − wτ)+] +

N∑

j=m

cτ

j(j + 1)
EQ0 [(Āτ − αj wτ)+]. (A-21)

where we have used the fact that α1 = . . . = αm−1 = 1. We can now combine (A-18) and (A-21)
to obtain (34) as desired. ¤

Proof of Corollary 1:

Using the definition of αj for j ≥ m and assuming a constant w̄, we see that the expectation
EQ0 [(Āτ − αj wτ)+] in equation (34) can be replaced by ((j + 1)Bj + Bj+1 + · · ·+ BN )/w̄. The rest
of the derivation of (36) follows directly after some simple calculations.

Let us now prove the second part. For notational convenience, we will write w̄∗ := w̄∗(B1, . . . , BN )
and w̄∞ := w̄∗(∞, . . . ,∞). Note that the producer payoff can be rewritten as follows

ΠP(w̄) =
m− 1

m
Π∞P (w̄) +

(
1− cτ

w̄

) N∑

j=m

Bj

m
, (A-22)

where Π∞P (w̄) := (w̄ − cτ )E[(Āτ − w̄)+] is the producer’s payoff when each retailer has an infinite
budget (modulo the constant (N − 1)/N). It follows that w̄∞ is the unique maximizer of Π∞P (w̄).
The uniqueness of w̄∞ follows from the fact that Π∞P (w̄) is a unimodal function of w̄. Hence, both
Π∞P (w̄) and (1−cτ/w̄) are increasing functions of w̄ in [cτ , w̄

∞). This observation together with the
facts that m is a piecewise constant function of w̄ and ΠP(w̄) is a continuous function of w̄ imply
that w̄∗ ≥ w̄∞. (The continuity of Π∞P (w̄) is not immediate since m is a discontinuous function of
w̄. However, checking this property is straightforward and is left to the reader.) ¤

Proof of Proposition 9:

(a) We will prove a more general result where we compare the N -retailer case to the (N−1)-retailer
case that is created by merging the largest two retailers. We will use the notation in Proposition
8 to describe quantities associated with the N retailer case and use the ‘hat’ notation to describe
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quantities associated with the (N − 1)-retailer case. We must therefore show that ΠP − Π̂P ≥ 0.
Proposition 8 then implies

ΠP − Π̂P =
(m− m̂)

m m̂
EQ0 [wτ (Āτ − wτ)+] +

N∑

j=m

Bj

m
−

N−1∑

j=m̂

B̂j

m̂
. (A-23)

Note that B̂1 = B1 + B2 and that B̂i = Bi+1 for i = 2, . . . , N − 1. We also define Ci and Ĉi as

Ci := (i + 1)Bi + · · · + BN for i = 1, . . . , N

Ĉi :=

{
2(B1 + B2) + · · · + BN , for i = 1
(i + 1)Bi+1 + · · · + BN , for i = 2, . . . , N − 1.

Note that Ci and Ĉi are the arguments of the function, H, that defines the corresponding αi’s
and α̂i’s in (32). By the ordering assumption on the budgets we see that C1 ≤ Ĉ1 which implies
α1 ≥ α̂1. Similarly for i = 2, . . . , N − 1 we have Ci ≥ Ĉi which implies αi ≤ α̂i. In fact it is also
clear that Ci+1 ≥ Ĉi for i ≥ 2 so that αi+1 ≤ α̂i. We now consider the various possible values of m

and m̂. The following cases follow from our previous observations:

1. m = 1: in this case all of the budget constraints in the original system are binding. The only
possible values of m̂ are 1 and 2. In particular m̂−m ∈ {0, 1}.

2. m = 2: in this case only the first budget constraint in the original system is non-binding, m̂

must also equal 2 and so m̂−m = 0.

3. 3 ≤ m ≤ N + 1: in this case at least three budget constraints in the original system are
non-binding, m̂ can take on any value in {2, . . . , m− 1} and m̂−m ∈ {2−m, . . . ,−1}.

We now prove the result:

Case (i): Suppose m = 1 and m̂ = 2. Then (A-23) reduces to

ΠP − Π̂P = − 1
2
EQ0 [wτ (Āτ − wτ)+] +

N∑

j=1

Bj −
N−1∑

j=2

B̂j

2

=
1
2


2(B1 + B2) +

N∑

j=3

Bj − EQ0[wτ (Āτ − wτ)+]


 ≥ 0 (A-24)

since m̂ = 2, implying the first constraint is the new system is non-binding.

Case (ii): Suppose m = m̂. Then (A-23) clearly implies ΠP − Π̂P ≥ 0. Together with Case (i), we
have now covered the first two possibilities above.
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Case (iii): Suppose m ≥ 3 so that m̂−m < 0. Then (A-23) implies

ΠP − Π̂P =
(m− m̂)

mm̂
EQ0[wτ (Āτ − wτ)+] +




N∑

j=m

Bj




(
1
m
− 1

m̂

)
− 1

m̂

m−1∑

j=m̂+1

Bj

=
(m− m̂)

mm̂


EQ0[wτ (Āτ − wτ)+] −

N∑

j=m

Bj


 − 1

m̂

m−1∑

j=m̂+1

Bj

≥ (m− m̂)
mm̂


(m̂ + 1)Bm̂+1 + · · ·+ BN −

N∑

j=m

Bj


 − 1

m̂

m−1∑

j=m̂+1

Bj (A-25)

where (A-25) follows since α̂m̂ > 1 and so EQ0 [wτ (Āτ − wτ)+] ≥ Ĉm. Note that the right-hand-side
of (A-25) equals Bm/m > 0 if m̂ + 1 = m. Otherwise the right-hand-side of (A-25) equals

(m− m̂)
mm̂

[(m̂ + 1)Bm̂+1 + · · ·+ Bm−1] − 1
m̂

m−1∑

j=m̂+1

Bj

=
1
m̂

[(m̂ + 1)Bm̂+1 + · · ·+ Bm−1] − 1
m

[(m̂ + 1)Bm̂+1 + · · ·+ Bm−1] − 1
m̂

m−1∑

j=m̂+1

Bj

= Bm̂+1 − 1
m

[(m̂ + 1)Bm̂+1 + · · ·+ Bm−1]

≥ Bm̂+1 − m− 1
m

Bm̂+1 =
Bm̂+1

m
> 0.

and so the result follows. ¤

Proof of Lemma 1: The proof is by contradiction so suppose32 wτ > 0, m < n, and that both
n and m satisfy

Bn+1 < q(n)wτ ≤ Bn (A-26)

Bm+1 < q(m)wτ ≤ Bm. (A-27)

If we use (39) to substitute for q(n) and q(m) in (A-26) and (A-27), and then rearrange terms we
obtain

(n + 1)
Bn+1

wτ
+

N∑

j=n+1

Bj

wτ
< Āτ − wτ ≤ (n + 1)

Bn

wτ
+

N∑

j=n+1

Bj

wτ
(A-28)

(m + 1)
Bm+1

wτ
+

N∑

j=m+1

Bj

wτ
< Āτ − wτ ≤ (m + 1)

Bm

wτ
+

N∑

j=m+1

Bj

wτ
(A-29)

Since m < n, however, we see that the ordering of the Bi’s implies the expression on the right of the
second inequality in (A-28) is less than or equal to the expression on the left of the first inequality
in (A-29). A contradiction follows immediately since we then obtain Āτ − wτ < Āτ − wτ . ¤

32When wτ = 0, none of the budget constraints are binding and we obtain the standard Cournot equilibrium with

n = N in (39).
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Proof of Proposition 11: Let mj , α
(j)
i for i = 1, . . . , N and j = 1, 2 denote the usual Cournot

optimal quantities for scenario j and retailer i. Since EQτ1 [Āτ2 ]/x = Āτ1/x for any x > 0 Jensen’s
Inequality implies

EQ0 [wτ (Āτ2/x− wτ)+] ≥ EQ0[wτ (Āτ1/x− wτ)+]. (A-30)

After multiplying across (A-30) by x it then follows from the definition of the αi’s in (32) that

α
(2)
i ≥ α

(1)
i for i = 1, . . . , N.

This in turn implies that m2 ≤ m1. Let Π(1)
P and Π(2)

P denote the producer’s expected revenue in
scenarios (1) and (2) respectively. Then (A-18) implies

Π(2)
P −Π(1)

P =
(m1 −m2)

m1m2

N∑

j=m1

Bj +
1

m2

m1−1∑

j=m2

Bj +
(m2 − 1)

m2
EQ0[wτ (Āτ2 − wτ)+]

− (m1 − 1)
m1

EQ0[wτ (Āτ1 − wτ)+]

≥ (m1 −m2)
m1m2

N∑

j=m1

Bj +
1

m2

m1−1∑

j=m2

Bj +
(m2 −m1)

m1m2
EQ0 [wτ (Āτ1 − wτ)+] ((A-30) with x = 1)

=
(m1 −m2)

m1m2




N∑

j=m1

Bj − EQ0 [wτ (Āτ1 − wτ)+]


 +

1
m2

m1−1∑

j=m2

Bj

≥ (m1 −m2)
m1m2




N∑

j=m1

Bj − (m1 + 1)Bm1 − · · · −BN


 +

1
m2

m1−1∑

j=m2

Bj (by def. of m1)

=
(m2 −m1)

m2
Bm1 +

1
m2

m1−1∑

j=m2

Bj . (A-31)

Note that the right-hand-side of (A-31) equals zero if m1 = m2. Otherwise m2 < m1 and the
right-hand-side of (A-31) is greater than or equal to (m1 −m2)(Bm2 − Bm1−1)/m2 which in turn
is non-negative. The result therefore follows. ¤

B Martingale Pricing with Foreign Assets

Martingale pricing theory states that the time 0 value, G0, of a security that is worth Gτ at time τ

and does not pay any intermediate cash-flows, satisfies G0/N0 = EQ0[Gτ/Nτ ] where Nt is the time t

price of the numeraire security and Q is an equivalent martingale measure (EMM) associated with
that numeraire. It is common to take the cash account as the numeraire security and this is the
approach we have followed in most of this paper. With the exception of Section 3.4, however, the
value of the cash account at time t was always $1 since we assumed interest rates were identically
zero. We therefore had G0 = EQ0 [Gτ ] and since we insisted G0 = 0 we obtained EQ0 [Gτ ] = 0. When
interest rates are non-zero we still have N0 = 1 but now Nτ = exp

(∫ τ
0 rs ds

)
and so, for example, we

have (18). In the main text we take Dt = N−1
t . See Duffie (2004) for a development of martingale

pricing theory.
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Martingale Pricing with Foreign Assets

Suppose now that there is a domestic currency and a foreign currency with Zt denoting the exchange
rate between the two currencies at time t. In particular, ZtYt is the time t domestic currency value
of a foreign asset that has a time t foreign currency value of Yt. Let B

(f)
t denote the time t value

of the foreign cash account and let Q denote the EMM of a foreign investor taking the foreign cash
account as numeraire. This implies

EQt

[
YT

B
(f)
T

]
=

Yt

B
(f)
t

(B-32)

for all t ≤ T and where we assume again that the asset with foreign currency value Yt at time t

does not33 pay any intermediate cash flows. But equation (B-32) can be re-written as

EQt

[
ZT YT

ZT B
(f)
T

]
=

ZtYt

ZtB
(f)
t

. (B-33)

Note that ZtYt is the domestic currency value of the foreign asset and ZtB
(f)
t is the domestic

currency value of the foreign cash account. Note also that if Vt is the time t price of a domestic
asset then Vt/Zt is the foreign currency value of the asset at time t. We therefore obtain by
martingale pricing that

EQt

[
VT /ZT

B
(f)
T

]
=

Vt/Zt

B
(f)
t

or equivalently,

EQt

[
VT

ZT B
(f)
T

]
=

Vt

ZtB
(f)
t

(B-34)

We can therefore conclude from (B-33) and (B-34) that Q is also the EMM of a domestic investor,
but now with the domestic value of the foreign cash account as the corresponding. We use these
observations in Section 3.3.

C Optimal Production Postponement

We now extend the contract so that τ , the time at which the physical transaction takes place, is
an endogenous decision variable that is determined as part of the solution to the Nash equilibrium.
Our discussion will focus on the single-retailer case, which as we have seen in Section 3, includes the
multi-retailer case when the retailers have identical budgets. Later we will assume that the budget,
B, is sufficiently large so that the budget constraint is non-binding (possibly due to the ability to
trade in the financial markets). Our interest in the optimal timing of the contract is motivated by
our desire to understand the tradeoff between delaying production when the production cost, cτ ,
is increasing, and allowing the ordering quantities and price menu to be contingent upon a larger
information set. Allowing the producer to choose the optimal timing of the contract therefore
allows him to take optimal advantage of the information made available by the financial markets.

33If it did pay intermediate cash-flows between t and T then they would have to be included inside the expectation

in (B-32).
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We consider two alternatives formulations. In the first alternative, τ is restricted to be a deter-
ministic time in [0, T ] that is selected at time t = 0. Motivated by the terminology of dynamic
programming, we refer to this alternative as the optimal open-loop production postponement model.
In the second alternative, we permit τ to be an Ft-stopping time that is bounded above by T . We
call this alternative the optimal closed-loop production postponement model. In both cases, the
procurement contract offered by the producer takes the form of a pair, (τ, wτ), where the whole-
sale price menu, wτ , is required to be Fτ -measurable. We note that the producer always prefers
the closed-loop model though from a practical standpoint the open-loop model may be easier to
implement in practice.

Independently of whether τ is a deterministic time or a stopping time, the optimal ordering level for
the retailer, given a contract (τ, wτ ), is an Fτ -measurable menu, qτ , that satisfies34 the conditions
in Proposition 1 with N = 1.

The producer’s problem of selecting the optimal time τ is given by

ΠP = max
τ,φ≥1

EQ0

[
(Āτ + φ cτ − 2cτ ) (Āτ − φ cτ )+

8

]
(C-35)

subject to EQ0

[(
Ā2

τ − φ2 c2
τ

8

)+
]
≤ B. (C-36)

Note that the expression for ΠP in (C-35) is the expression given for ΠP|τ in Proposition 2 while
(C-36) is the corresponding constraint from the same Proposition. Of course τ should be restricted
to either a deterministic time or a stopping time depending on which model (open-loop or closed-
loop) is under consideration. For a given τ , the objective in (C-35) is decreasing in φ so that the
producer’s problem reduces to

ΠP = max
τ
EQ0

[
(Āτ + φ cτ − 2cτ ) (Āτ − φ cτ )+

8

]
(C-37)

subject to φ = inf

{
ψ ≥ 1 : EQ0

[(
Ā2

τ − ψ2 c2
τ

8

)+
]
≤ B

}
. (C-38)

To solve this optimization problem we would first need to specify the functional forms of Āτ and
cτ and depending on these specifications, the solution may or may not be easy to find. For the
remainder of this section, however, we will show how this problem may be solved when additional
assumptions are made. In particular, we make the following three assumptions:

1. Xt is a diffusion process with dynamics satisfying

dXt = σ(Xt) dWt, (C-39)

where Wt a Q-Brownian motion. Note that we have not included a drift term in the dynamics
of Xt since it must be the case that Xt is a Q-martingale. This is not a significant assumption
and we could easily consider alternative processes for Xt.

34It is easy to check that the proof of Proposition 1 remains unchanged if τ is allowed to be a stopping time.
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2. We adopt a specific functional form to model the dependence between the market clearance
price and the financial market. In particular, we assume that there behaves a well-behaved35

function, F (x), and a random variable, ε, such that one of the following two models holds.

Additive Model: A = F (XT ) + ε, with EQ[ε] = 0, or (C-40)

Multiplicative Model: A = ε F (XT ), with ε ≥ 0 and EQ[ε] = 1. (C-41)

The random perturbation ε captures the non-financial component of the market price uncer-
tainty and is assumed to be independent of Xt. Note that if F (x) = Ā, we recover a model
for which demand is independent of the financial market.

3. We assume that the initial budget, B, is sufficiently large so that the retailer is able to hedge
away the budget constraint for every stopping time, τ . That is, φ = 1 for every τ ∈ T . This
is a significant assumption36 and effectively reduces the problem to one of finding the optimal
(random) timing of the contract when there is no budget constraint.

C.1 Optimal Open-Loop Production Postponement

We now restrict τ to be a deterministic time in [0, T ]. Based on the third assumption above, the
producer’s optimization problem in (C-37) reduces to

max
τ∈[0,T ]

EQ0
[
(Āτ − cτ )2

]
= max

τ∈[0,T ]
Var(Āτ) + (Ā− cτ )2. (C-42)

We note that in this optimization problem there is a trade-off between demand learning as repre-
sented by the variance term, Var(Āτ), and production costs as represented by (Ā− cτ )2. The first
term is increasing in τ while the second term is decreasing in τ so that, in general, the optimization
problem in (C-42) does not admit a trivial solution and depends on the particular form of the
functions Var(EQ[A |Xτ ]) and cτ .

The Itô Representation Theorem37 implies the existence of an Ft-adapted process, {θt : t ∈ [0, T ]},
such that

A = Ā +
∫ T

0
θt dXt + ε or A = ε

(
Ā +

∫ T

0
θt dXt

)

for the additive or multiplicative model, respectively. In both cases the Q-martingale property of
Xt implies

Āτ = Ā +
∫ τ

0
θt dXt. (C-43)

In order to compute the variance of Āτ we use the Q-martingale property of the stochastic integral
and invoke Itô’s isometry to obtain

Var(Āτ) = EQ0

[(∫ τ

0
θt dXt

)2
]

= EQ0

[∫ τ

0
θ2
t d[X]t

]
,

35It is necessary, for example, that F (·) satisfy certain integrability conditions so that the stochastic integral in

(C-43) be a Q-martingale. In order to apply Itô’s Lemma it is also necessary to assume that F (·) is twice differentiable.

Because this section is intended to be brief, we omit the various technical conditions that are required to make our

arguments completely rigorous.
36If we only wanted to solve for the open-loop policy it would not be necessary to make this assumption. In that

case we could solve for the optimal τ and φ in (C-37) and (C-38) numerically.
37See Øksendal (1998) for a formal statement. Øksendal (1998) may also be consulted for a statement of Itô’s

isometry.
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where the process [X]t is the quadratic variation of Xt with dynamics d[X]t = σ2(Xt) dt. It follows
that

Var(Āτ) =
∫ τ

0
EQ0 [(θt σ(Xt))2] dt.

The open-loop optimal problem therefore reduces to solving

max
τ∈[0,T ]

{∫ τ

0
EQ0[(θt σ(Xt))2] dt + (Ā− cτ )2

}
. (C-44)

If there is an interior solution to this problem (i.e., τ∗ ∈ (0, T )), then it must satisfy the first-order
optimality condition

EQ0 [(θτ σ(Xτ ))2]− 2 (Ā− cτ ) ċτ = 0, where ċτ :=
dcτ

dτ
.

Example 1 Consider the case in which the security price, Xt, follows a geometric Brownian motion

with dynamics

dXt = σ Xt dWt

where σ 6= 0 and Wt is a Q-Brownian motion. The quadratic variation process then satisfies d[X]t =
σ2 X2

t dt. To model the dependence between the market clearance price and the process, Xt, we assume

a linear model for F (·) so that F (X) = A0 +A1 X where A0 and A1 are positive constants. Therefore,

depending on whether we consider the additive or multiplicative model, we have

A = A0 + A1 XT + ε or A = ε (A0 + A1 XT ),

where ε is a zero-mean or unit-mean random perturbation, respectively, that is independent of the

process, Xt. It follows that Āτ = A0 + A1 Xτ and Ā = EQ0[A] = A0 + A1 X0. In addition, it is clear

that θt is identically equal to A1 for all t ∈ [0, T ]. We assume that the per unit production cost increases

with time and is given by

cτ = c0 + α τκ, for all τ ∈ [0, T ],

where α and κ are positive constants.

To impose the additional constraint that Āτ ≥ cτ for all τ (Assumption 1), we restrict our choice of the

parameters A0, T , c0, κ, and α so that A0 ≥ c0 +α T κ. Since EQ0[X2
t ] = X2

0 exp(σ2 t) the optimization

problem in (C-44) reduces to

max
τ∈[0,T ]

{
(A1 X0)2 (exp(σ2 τ)− 1) + (Ā− c0 − α τκ)2

]}
.

In general, a closed form solution is not available unless κ = 0. This is a trivial case in which cτ is

constant and the optimal strategy is to postpone production until time T so that τ∗ = T . Figure 1

shows the value of the objective function as a function of τ for four different values of κ. The cost

functions are such that it becomes cheaper to produce as κ increases. Note that for κ ∈ {4, 8}, it is

convenient to postpone production. For the more expensive production cost functions that occur when

κ ∈ {0.25, 1}, production postponement is not profitable and it is optimal to produce immediately.

¤
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Figure 1: Optimal open-loop production postponement for four different production cost functions parameterized by κ.

The other parameters are X0 = σ = T = 1, A1 = 8, A0 = 16, c0 = 2.4 and α = 5.6.

C.2 Optimal Closed-Loop Production Postponement

Instead of selecting a fixed transaction time, τ , at t = 0, the producer now optimizes over the set
of stopping times bounded above by T . In this case, the optimization problem in (C-37) reduces
to solving for

max
τ∈T

EQ0
[
(Āτ − cτ )2

]
, (C-45)

where T is the set of Ft-adapted stopping times bounded above by T . Again, the third assumption
above has resulted in this simplified form of the objective function. According to the modeling of
A in (C-40) or (C-41), it follows that v(τ, Xτ ) := Āτ = EQτ [F (XT )] is a Q-martingale that satisfies

v(t, x)
∂t

+
1
2

σ2(x)
∂2v(t, x)

∂x2
= 0, v(T, x) = F (x).

We define U to be the set {(t, x) : Gg(t, x) > 0} where g(t, x) := (v(t, x)−ct)2 is the payoff function
and G is the generator

G :=
∂

∂t
+

1
2
σ2(x)

∂2

∂x2
.

We then obtain
U =

{
(t, x) : (σ(x) vx(t, x))2 > 2(v(t, x)− ct) ċt

}
,

where vx is the first partial derivative of v with respect to x. In general, the set U is a proper
subset of the optimal continuation region for the stopping problem in (C-45). Computing the
optimal stopping time analytically is a difficult task and is usually done numerically. However, if
U turns out to equal the entire state space then it is clear that it is always optimal to continue so
that τ = T .

Example 3: (Continued)
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Consider the setting of Example 1 but where now τ is a stopping time instead of a deterministic time.

For the linear function F (X) = A0 + A1 X, the auxiliary function v satisfies v(t, x) = A0 + A1 x, and

the region U is given by

U =
{
(t, x) : (σ x A1)2 > 2(A0 + A1 x− ct) ċt

}
.

Straightforward calculations allow us to rewrite U as

U =

{
(t, x) : x >

ċt +
√

ċ2
t + 2σ2 (A0 − ct) ċt

σ2 A1

}
.

Let us define the auxiliary function

ρ(t) :=
ċt +

√
ċ2
t + 2σ2 (A0 − ct) ċt

σ2 A1
.

Since U is a subset of the optimal continuation region, we know that it is never optimal to stop if

Xt > ρ(t). Of course, it is possible that Xt < ρ(t) and yet still be optimal to continue.

We solved for the optimal continuation region numerically by using a binomial model to approximate

the dynamics of Xt. In so doing, we can assess the quality of the (suboptimal) strategy that uses ρ(t) to

define the continuation region. Figure 2 shows the optimal continuation region and the threshold ρ(t)
for four different cost functions. These cost function are given by cτ = c0 + α τκ with κ = 0.25, 1, 4,

and 8. When X(τ) is above the optimal threshold it is optimal to continue. The vertical dashed line

corresponds to the optimal open-loop deterministic time computed in Figure 1. For κ = 0.25 or κ = 1
this optimal deterministic time equals 0 since X0 lies below the optimal threshold. For κ = 4 it equals

0.476, and for κ = 8 it equals 0.678.

Interestingly, for high values of κ the auxiliary threshold ρ(t) is a good approximation for the optimal

solution. However, as κ decreases the quality of the approximation deteriorates rapidly. Except for the

case where κ = 0.25, the optimal threshold increases with time. This reflects the fact that the producer

becomes more likely to stop and exercise the procurement contract as the end of the horizon approaches.

We conclude this example by computing the optimal expected payoff for the producer under both the

optimal open-loop policy and the optimal closed-loop policy.

κ Open-Loop Payoff Closed-Loop Payoff % Increase

0.25 7.29 7.29 0.0%

1 7.29 7.305 0.2%

4 7.71 7.99 3.7%

8 8.09 8.33 3.8%

Producer’s expected payoff for four different production cost functions parameterized by κ.

The other parameters are X0 = σ = T = 1, A1 = 8, A0 = 16, c0 = 2.4 and α = 5.6.

Naturally, the optimal stopping time (closed-loop) policy produces a higher expected payoff than the

optimal deterministic time (open-loop) policy. The improvement, however, is only a few percentage

points which might suggest that a simpler contract based on a deterministic time captures most of the

benefits of allowing τ to be a decision variable. In practice, of course, it would be necessary to model the

operations and financial markets more accurately and to calibrate the resulting model correctly before

such conclusions could be drawn. ¤
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Figure 2: Optimal continuation region for four different manufacturing cost functions parameterized by κ. The other

parameters are X0 = σ = T = 1, A1 = 8, A0 = 16, c0 = 2.4 and α = 5.6.
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