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We consider the problem of dynamically hedging the profits of a corporation when these profits are correlated with returns
in the financial markets. In particular, we consider the general problem of simultaneously optimizing over both the operating
policy and the hedging strategy of the corporation. We discuss how different informational assumptions give rise to different
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to demonstrate the methodology.
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1. Introduction. In this paper, we propose a framework for modelling the operations of a nonfinancial
corporation that also trades in the financial markets. The corporation must simultaneously choose an optimal
operating policy and an optimal trading strategy in the financial markets. In practice, it has long been observed
that nonfinancial corporations do, in fact, hedge using financial markets. The goal of this paper then is to describe
a method by which operations and hedging might be conducted.
One immediate difficulty that arises when modelling this problem is that most of the operations literature

assumes that corporations are risk neutral. Indeed, this is supported by the famous work of Modigliani and
Miller [24] who argue that in a frictionless world there is no need for corporations to hedge as shareholders can
do so themselves. While this argument has some merit, we do, of course, live in a world with many frictions.
These frictions include the costs of financial distress, taxes, and agency costs, as well as frictions in the capital
markets. As a result, it is often the case that corporations should and do hedge. Once this is recognized, it is no
longer plausible to assume that corporations are always risk neutral.
In this paper, we therefore consider the problem of dynamically hedging the profits of a risk-averse corporation

when these profits are correlated with returns in the financial markets. The central modelling insight is to view
the operations and facilities of the corporation as an asset in the corporation’s portfolio. This view enables us to
pose the problem as one of financial hedging in incomplete markets, a problem that has been studied extensively
in the recent literature in mathematical finance, e.g., Schweizer [31]. Though we pose the problem as one of
hedging in incomplete markets, we also have the added complexity of simultaneously seeking to choose an
optimal operating policy. As a result, we also have some control over the type of asset to be hedged. This is a
distinguishing feature of this paper that is generally not found in the mathematical finance literature. We also
discuss how different informational assumptions give rise to different types of hedging and solution techniques.
In particular, the class of feasible hedging strategies that are available to the corporation will depend on whether
or not the corporation can observe the evolution of all relevant state variables.
To maintain tractability, we will assume that the corporation has a mean-variance objective function. While

this of course is somewhat restrictive, it is often used in practice and can serve as a useful first approximation.
The techniques that we use are based on the mean-variance analysis of Schweizer [30], and the martingale
approach of Cox and Huang [8] and Karatzas et al. [19]. While we are aware of the very recent progress that
has been made towards solving hedging problems for more general utility functions and general price processes
(e.g., Bertsimas et al. [2], Delbaen et al. [10], Gouriéroux et al. [16], Laurent and Pham [22], Lim [23], Pham
et al. [28], Schweizer [31]), we have not attempted to apply this work here. Indeed, much of this literature
is concerned with issues regarding existence and uniqueness of solutions and does not lend itself easily to
the computation of such solutions. Moreover, the purpose of this paper is simply to highlight the modelling
framework and demonstrate that it can be used to solve some interesting problems in operations management.
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We will see that our framework appears to be most useful when the operational control is a scalar or vector
of scalars as opposed to a dynamic control policy. In the latter case, we can still use the framework to solve the
problem numerically (see Appendix B), but it is not at all clear that this provides any improvement beyond the
standard Hamilton-Jacobi-Bellman (HJB) approach.
The remainder of this paper is organized as follows. In §2, we formulate the problem under two different

informational assumptions and show how to solve the problem in each case. In §§3 and 4, we demonstrate the
methodology by solving two problems from operations management, including the so-called newsboy problem.
We finally conclude and discuss future research directions in §5.

2. Model and problem formulation. Let ���� ��� be a probability space endowed with two independent
standard Brownian motions, B1� t and B2� t . We denote by � = ��t�0≤t≤T the usual filtration generated by �B1�B2�
where T is a fixed-time horizon. We also define a subfiltration �� of � that will represent the evolution of the
observable information in the model. When all relevant information is observable, then we will have �� = �.
The financial market that we consider consists of a risk-free cash account and a risky stock. Without lost

of generality, we will assume throughout that the risk-free interest rate, r , is identically zero. The time t stock
price, Xt , satisfies the stochastic differential equation

dXt =
tXt dt+�tXt dB1� t� (1)

where 
t and �t are assumed to be bounded adapted processes. We define the set � of self-financing trading
strategies to be the collection of ��-predictable processes �
t�0≤t≤T satisfying

Ɛ

[∫ T

0

2t X

2
t dt

]
<��

We interpret 
t as the number of shares in the stock held at time t. Given �
t�0≤t≤T , the self-financing con-
dition then implicitly defines the position in the cash account for all t ∈ �0� T �. Recalling that r ≡ 0, the gain
process, Gt�
�, associated with a trading strategy, 
 ∈�, is defined to be

Gt�
� �=
∫ t

0

t dXt for all t ∈ �0� T ��

We consider the problem of a risk-averse nonfinancial corporation that earns a terminal payoff, HT , that may
be interpreted as the profits that are earned from operating in �0� T �. Of course HT will depend on the operating
policy, �, that is adopted in this interval. In this context, � represents a generic operational policy that may
in principle be anything from a scalar control to a complex state-dependent control policy. We will usually
write H���

T to signify the dependence of the operating profits on �. The set of ��-predictable admissible policies
is denoted by � and we will assume that for � ∈ � , the payoff H���

T is an �T -measurable random variable that
satisfies H���

T ∈�p��� for some p > 2.
In addition to the nonfinancial operations, the corporation is able to trade in the financial market by employing

a self-financing trading strategy, 
 ∈ �. Therefore, for a given initial wealth, W0, and for a given strategy,
��� 
� ∈ � × �, the corporation’s time T wealth is given by W0 + H���

T +GT �
�. (Due to the possibility of
unlimited borrowing, we may assume that � is independent of the operating policy, �.)
We assume that the corporation has a quadratic utility function, u�·�, defined over terminal wealth so that

u�w�=w− lw2 where l is a positive constant. Then, the corporation’s problem is to solve

max
��� 
�∈�×�

Ɛ
[
u
(
W0 +H���

T +GT �
�
)]
� (2)

An important potential weakness in our problem formulation can be seen in (2) where operational profits
and trading profits are treated identically in the corporation’s utility function. In practice, this is certainly not
the case. For example, suppose the corporation has a choice over two possible random variables, Y1 and Y2,
which represent terminal profits. If Y1 and Y2 are identically distributed, then in our problem formulation, the
corporation should be indifferent between the two. Suppose now, however, that Y1 is strongly positively correlated
with the financial market and that Y2 is independent of the financial market. Then, for diversification reasons,
shareholders (and therefore the corporation) would prefer Y2 to Y1. A simple argument based on the capital asset
pricing model (CAPM) makes this clear, but the reasoning applies more generally.
A solution �H��∗�

T �G∗
T � to (2), where H��∗�

T + G∗
T is highly correlated with the financial markets due to a

significant reduction in operational activity, might therefore be unappealing. This would be true in particular
if the solution was intended to be implemented on a permanent basis, i.e., if after each period of length T
the corporation intended to implement the same optimal operating and hedging strategies. However, there are
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many reasons for why such a significant reduction in operations might make sense on a temporary basis. We
also mention that, in many contexts, we would not expect the optimal solution to (2) to necessarily result in a
reduction in operations. We mention finally that any problems associated with a solution resulting in a significant
reduction in operational activity could be overcome by working instead with an equivalent martingale measure
(EMM), �, rather than the physical measure, � . The cumulative trading gains process is a martingale under any
such measure, �, and so the only motivation for trading would be to hedge operational cash flows. On the other
hand, it is more difficult to interpret the quadratic objective function when we use an EMM, �.
Let us now comment on the relationships between Xt , B2, and �. We have assumed that X represents some

financial market, e.g., an equity index, an exchange rate, or possibly an economic index. As such, we would
not expect X to depend in any way on the operating policy, �, of an individual corporation. It is possible
that an argument could be made for introducing some dependency if the corporation was extremely large and
the hedging security, X, was, for example, an index reflecting the performance of the industry in which the
corporation operates. However, we do not have that situation in mind in this paper, and so we assume that �
has no impact upon X. Similarly, B2 represents nonfinancial or idiosyncratic noise. It is firm specific and might
represent that part of the market demand for a particular good that is not explained by the current state of the
economy or financial market. Or it might simply represent the uncertain quality of a product to be purchased or
manufactured at some future date. Because of this interpretation, we make the natural assumption that 
t and �t
are adapted to the filtration generated by B1 only. Finally, the manner in which H

���
T then depends on X and B2

will depend on the application in question. We will give some examples in §§3 and 4.
We now conclude this section with two observations. First, we mention that the models we consider in this

paper could be extended to the case where B1 and B2 are correlated multidimensional Brownian motions. Second,
it is easy to see that the utility function, u�·�, satisfies

u�w�= 1
4l

− l
(
1
2l

−w
)2

�

Therefore, in order to avoid trivial solutions in (2), we assume that the initial wealth, W0, satisfies W0 < 1/�2l�.
Of course, for the same reason, we should also expect that W0 + V ���0 < 1/�2l� where V ���0 is some intrinsic
initial value of H���

T . This is discussed in more detail in §2.4.

2.1. Informational assumptions. As stated above, the filtration �� represents the evolution of observable
information in the model, while � is the usual filtration generated by �B1�B2�.
In this paper, we will consider two scenarios regarding observable information. In the first, we will assume

that the corporation can only observe the evolution of B1� t . The interpretation, then, is that the corporation can
observe the financial market but cannot observe the evolution of the nonfinancial noise, B2� t . This might occur,
for example, if B2� t represents the unobserved quality of a supplier’s goods, or the unobserved quality of a
competitor’s products or services. Depending on the context, many other interpretations are possible. In this
scenario, �� �= �� F

t �0≤t≤T , which in turn is defined to be the usual filtration generated by B1� t . Such a model will
be referred to as an incomplete information (II) model.
In the second scenario, we assume that the corporation is able to observe the evolution of B1� t and B2� t .

In this case, �� = �. We will refer to this model as a complete information (CI) model. When considering the
CI model, it will be necessary to assume that the mean-variance trade-off, 
t/�t , is bounded and deterministic.
This assumption is standard in the hedging literature despite its obvious shortcomings. Fortunately, it is satisfied
by geometric Brownian motion, the canonical model for modelling financial price processes. We can also argue
that, from the perspective of a nonfinancial corporation, this assumption may not present any serious difficulty.
In particular, a corporation might be quite happy to approximately hedge financial risks by assuming that the
hedging instrument, Xt , has a deterministic mean-variance trade-off, even if this is only approximately true.
Of course, intermediate cases are possible where B2� t is not fully observable, but some information over and

beyond what can be inferred from the financial markets is available. We will not consider these cases in this
paper.
When considering the II model in this paper, we will simplify its solution considerably by making a complete

financial markets assumption. In particular, we will assume that any suitably integrable contingent claim that
is � F

T measurable is attainable by a self-financing trading strategy, 
 ∈�. In words, it states that if we ignore
the nonfinancial noise, B2, then markets are complete. Such an assumption has been made before in other
contexts. For example, Smith and Nau [33] make a similar assumption for pricing real options in a discrete time
framework. They call their market a partially complete market, whereas we will use the term complete financial
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market. Collin Dufresne and Hugonnier [7] also make a complete financial markets assumption in the context
of pricing and hedging contingent claims whose payoffs depend on nonmarket events. We should point out that
in the model with only two Brownian motions that we have described, this assumption is in fact redundant.
However, as our model generalizes easily to problems with multiple Brownian motions, we observe that the
complete financial markets assumption for these more general models amounts to assuming that if there are m
traded securities, then there are less than or equal to m Brownian motions driving their price processes. H���

T will
then depend on these m Brownian motions as well as other sources of nonfinancial noise.
We can again argue that such an assumption is not particularly restrictive from the perspective of a nonfi-

nancial corporation that is happy to approximately hedge its financial risks. Moreover, given the ability to trade
continuously in various derivative securities, the assumption of complete financial markets becomes ever easier
to justify. Finally, we can even imagine the situation where the corporation purchases from a financial interme-
diary a derivative security with payoff, DT . In such a situation, it is immaterial to the corporation whether or
not financial markets are complete. All that is required by the corporation to choose its optimal hedging strategy
is knowledge of the intermediary’s state price density process. (A state price density process is a process whose
value at a particular state and time may be interpreted as the price, per unit probability, of a security that pays $1
in that state and time. See Duffie [11] for further details.) We also note that should such a scenario prevail,
then it would enable us to consider other price processes such as jump diffusions, for example, when solving II
models.
The benefit of the complete financial markets assumption is that it will allow us to easily identify an appro-

priate state price density (SPD), "F� t , for pricing claims that only depend on B1. Since our hedging gains in
the II model are only allowed to depend on B1, we can use "F� t to find the optimal hedging strategy. We now
describe how to do this.

2.2. The incomplete information solution. As stated earlier, the market in this model is incomplete and the
operational payoff H���

T is not attainable using a self-financing trading strategy. In the absence of arbitrage, which
we naturally assume, this implies that there are infinitely many SPDs. However, our completeness of financial
markets assumption implies that all of these SPDs price financial risks, that is, risks that depend only on B1
identically. Therefore, we can choose any such SPD, "F� t , knowing that Ɛ�"F� T CT � is the unique arbitrage-free
price of any � F

T -measurable claim that pays CT at time T . Given the stock price process (1), we can choose
"F� t = exp�−�1/2� ∫ t0 $2s ds− ∫ t

0 $s dB1� s� where $s �=
s/�s . Note that this choice assumes the market price of
risk for B2 is identically zero. However, this choice is merely for convenience and other choices would work
equally well. We will now solve the II model.
The solution procedure will be to find the optimal trading gain, GT �
�, for a fixed operating policy, �, and to

then optimize over �. (We do not explicitly recognize the dependence of GT on �.) So, suppose now that � ∈ �
is fixed. Then, the corporation’s hedging problem is

max
GT

Ɛ
[
H
���
T +GT − l

(
H
���
T +GT

)2]
(3)

subject to Ɛ�"F� T GT �=W0 (4)

and GT is � F
T -measurable.

The constraint in (4) is the budget constraint. This specifies that the time 0 value of the hedging gain, GT , must
equal W0, the initial cash that is available for the corporation’s hedging strategy. This problem is solved by first
taking conditional expectations with respect to � F

T in (3) and using the � F
T measurability of GT to obtain the

equivalent formulation

max
GT

Ɛ
[
Ɛ
[
H
���
T − lH���2

T �� F
T

]+GT − lG2
T − 2lGT Ɛ

[
H
���
T �� F

T

]]
(5)

subject to Ɛ�"F� T GT �=W0� (6)

Now the problem is easily solved (see, for example, Duffie [11]) using a single Lagrange multiplier, &, for the
constraint (6). We no longer need to explicitly impose the � F

T measurability of GT since this constraint will now
be automatically satisfied. The first-order condition, which is also sufficient given the concavity of the objective
in (5), is

1− 2lGT − 2lƐ
[
H
���
T �� F

T

]= &"F� T � (7)
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We solve (7) for GT and then substitute for GT in (6) to obtain

&∗ = 1− 2lƐ
[
"F� T Ɛ

[
W0 +H���

T �� F
T

]]
Ɛ�"2

F� T �
� (8)

Finally, combining (7) and (8), we obtain

G∗
T =

1
2l

− Ɛ
[
H
���
T �� F

T

]− &∗
2l
"F� T (9)

so that the optimal hedging wealth, G∗
T , is �

F
T -measurable as desired.

To find the optimal operating policy, �, we must now solve max� Ɛ�u�H
���
T +G∗

T ��. We can easily rewrite this
optimization problem as

max
�∈�

{
1
4l

− l

Ɛ�"2
F� T �

Ɛ

[(
1
2l

−W0 − 
Ɛ[H���
T

])2

+ Ɛ�"2
F� T �Ɛ

[(
H
���
T − Ɛ

[
H
���
T �� F

T

])2]]}
� (10)

where 
Ɛ�H���
T � �= Ɛ�"F� T H

���
T �.

At this point, we make the observation that while this methodology solves the II problem, it might also serve
as a good approximation for the CI problem when we cannot solve the latter explicitly. We would expect the
II approximation to work well for CI problems when the financial noise, B1, has a significant impact on H

���
T .

Even when B1 has little or no impact on H
���
T , however, the II approximation is often useful as it will hedge, in

some sense, against an average value of H���
T .

We also remark that the methods we have used in this section can, in principle, be applied to more general util-
ity functions, u�·�. The issue then is one of tractability and whether or not we can compute Ɛ�u�H���

T +GT � �� F
T �

explicitly and then solve for G∗
T so that optimizing over � is then possible. In the case of the newsboy problem

of §3, for example, this would be less of an issue since then the optimal � is a scalar for which we could solve
numerically.

2.3. The complete information solution. To solve the complete information problem, we will use the
results on mean-variance hedging that were obtained by Schweizer [30]. This work in turn was motivated by
Duffie and Richardson [12] and Föllmer and Schweizer [14].
Throughout this section, we will assume that the mean-variance trade-off of the traded stock, $t �=
t/�t , is

a bounded and deterministic function. Again, we will initially fix the operating strategy, � ∈ � , and then solve
the hedging problem for this fixed �. The first step towards solving (2) for a fixed � is to find an appropriate
optimality condition for the hedging strategy, 
. Since �2��� is a Hilbert space equipped with the inner product
�X�Y �= Ɛ�XY � and since GT ��� �= 'GT �
� � 
 ∈ �( is a closed (see, for example, Monat and Stricker [25])
linear subspace of �2���, we can use the projection theorem to characterize the optimal trading strategy 
∗ ∈�
and obtain

Ɛ

[(
H
���
T +GT �
∗�−

1
2l

)
GT �
�

]
= 0 for all 
 ∈�� (11)

The solution to (11) can be found using the minimum equivalent martingale measure (MEMM), �� ≈ � ,
defined by

d��
d�
�= exp

(
−
∫ T

0
$t dB1� t −

1
2

∫ T

0
$2t dt

)
� (12)

The minimal equivalent martingale measure was originally introduced by Föllmer and Schweizer [14] in the
context of local risk minimization. Since then it has been recognized that for mean-variance hedging problems,
the appropriate martingale measure is in fact the variance optimal equivalent martingale measure (VOEMM)
(Delbaen and Schachermayer [9]). However, the two measures coincide when the mean-variance trade-off is
deterministic, as we have assumed here. (In general, it is easy to find the MEMM, but establishing the existence
of the VOEMM and actually computing it when it is known to exist are much harder. See the survey by
Schweizer [31] for further details.)
Girsanov’s theorem then implies that under �� , both X and B2 are square-integrable martingales. Because of its

importance for our analysis, we summarize in the following theorem the key result of Schweizer [30]. We will
use 
Ɛ�·� to denote expectation under �� . (Since the CI and II methods both use the same equivalent martingale
measure (EMM), �� , there is no ambiguity in our notation. As an earlier observation pointed out, however, there
are other EMMs that work equally well for the II model. No such flexibility exists for the CI model.)
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Theorem 1 (Schweizer [30]). For any �T -measurable claim H
���
T ∈ �p��� for some p > 2, there is a

hedging strategy, )���, and a process, *��� ∈�2���, such that H���
T admits the decomposition

H
���
T = V ���0 +

∫ T

0
)
���
t dXt +

∫ T

0
*
���
t dB2� t�

where V ���0 �= 
Ɛ�H���
T �. In addition, the optimal strategy, 


∗, that solves (11) is given by 
∗ =+�G∗
t � where G

∗
t

solves the stochastic differential equation (SDE)

dG∗
t =−+�G∗

t �dXt�

where G∗
0 = 0, +�G∗

t � = )���t + 
t/��2
t Xt��V

���
t +G∗

t +W0 − 1/�2l��, and V ���t is the intrinsic value process
defined by

V
���
t �= 
Ɛ[H���

T ��t
]= V ���0 +

∫ t

0
)���s dXs +

∫ t

0
*���s dB2� s � (13)

The decomposition in (13) is known as the Galtchouk-Kunita-Watanabe (GKW) decomposition (e.g.,
Jacod [18]) of V ���t under �� with respect to X. This result then solves the optimal hedging problem when the
operating policy, �, is fixed. In order to now optimize over �, we first need to compute the expected utility as
a function of �, given the optimal strategy 
∗ defined in Theorem 1 above. We then define

,
���
t �= 1

4l
− lƐ

[(
1
2l

−V ���t −G∗
t −W0

)2]

and we note that ,���T is the optimal expected utility for the fixed control, �. The following result characterizes the
dynamics of ,���t . It is not presented by Schweizer [30], but the proof is very similar to the proof of Theorem 1
in Schweizer [30], and we present it in Appendix A only for the sake of completion. Similar expressions may
be found in Pham [27].

Theorem 2. Let us define the auxiliary process A���t �= Ɛ��1/�2l� − V ���t − G∗
t − W0�

2� so that ,���t =
1/�4l�− lA���t . Then, A���t is given by

A
���
t = exp

(
−
∫ t

0
$2s ds

)[(
1
2l

−V ���0 −W0

)2

+
∫ t

0
exp

(∫ s

0
$2. d.

)
Ɛ
[
*���s

2]
ds
]
� (14)

Theorem 2 implies that A���t is an increasing function of Ɛ�*���
2

t �, and we would therefore like to have Ɛ�*���
2

t �

as small as possible. In the event that Ɛ�*���
2

t � is identically zero and that V ���0 +W0 = 1/�2l�, then we can
achieve the target wealth, 1/�2l�, almost surely.
Theorem 2 also implies that we obtain the following control problem for the complete information problem:

max
�∈�

{
1
4l

− lA���T
}

or equivalently, min
�∈�
A
���
T � (15)

In general, one of the main difficulties with solving complete information problems is that of finding the
GKW decomposition in (13). In particular, we need to compute V ���0 = 
Ɛ�H���

T � and *
���
t in order to solve (15).

Finding 
Ɛ�H���
T � �t� should be sufficient as we can then use Itô’s lemma to find V ���0 and *���t . If we cannot

compute 
Ɛ�H���
T � �t� directly, however, then we might still be able to compute it if the problem is Markovian

(e.g., Pham et al. [28]) by representing Vt = 
Ɛ�H���
T ��t� as a solution to a particular partial differential equation.

For problems involving generic stochastic operating policies, �t , finding an analytic expression for the GKW
decomposition of H���

T appears to be very difficult. Appendix B details how the optimization problem in (15)
can be solved numerically in such circumstances. Nor is it clear that Theorems 1 and 2 and the GKW approach
then provide a computational advantage over the standard Hamilton-Jacobi-Bellman approach to the problem.
On the other hand, Theorems 1 and 2 and the GKW approach are useful when the operating policy, �, is a
scalar or vector of scalars. In this event, it is often easy to find the GKW decomposition of H���

T which may
then be used to solve for the optimal �∗. The examples we consider in §§3 and 4 fall under this category.
Before proceeding further, we will briefly discuss the relation of the II solution to the CI solution. It is

natural to conjecture that the II solution might be found from the CI solution by simply projecting the latter
onto an appropriate subspace. Föllmer and Schweizer [14] show that this is indeed true in the context of local
risk minimization problems and for certain types of market incompleteness. However, for the mean-variance
problems considered here, we do not know of such a result.
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2.4. The value of information. In an operations context, it may be the case that the corporation only has
access to imperfect information, but by paying a cost, K, it might be able to obtain access to all relevant
information. The cost K might be the cost associated with monitoring the operations and quality of a supplier,
for example, or it might be the cost associated with doing a market survey to understand customer preferences
and their demand functions. In the proposition below, we determine whether or not a corporation should pay
this fixed cost when there is no flexibility in the operating strategy.

Proposition 1. Suppose that the stock price process, Xt , has a deterministic mean-variance tradeoff. Then,
for a fixed control, �, and payoff, H���

T , with decomposition (13), the corporation would be better off paying a
cost, K, to obtain perfect information if and only if

Ɛ�"2
F� T �Ɛ

[(
H
���
T − Ɛ

[
H
���
T �� F

T

])2]− ∫ T

0
Ɛ�"2

F� t�Ɛ
[
*
���2

t

]
dt ≥K

(
1
l
+K− 2

(
V
���
0 +W0

))
� (16)

The proof follows directly from (10) and (15) together with the identities Ɛ�"2
F� t� = exp�

∫ t
0 $

2
s ds� and

Ɛ�"F� T H
���
T �= V ���0 . Interpreting V ���0 as the time zero value of H���

T , we see that assuming �V ���0 +W0� < 1/�2l�
is equivalent to making a particular type of nonsatiation assumption, and that under this assumption, we see that
the right-hand side in (16) is nonnegative for K. In this case, we see that if T ↓ 0, then the condition in (16) is
violated, reflecting the fact that extra information is of little value if there is not sufficient time available to use
it. Similarly, and as we would expect, if H���

T is � F
T measurable, then the left-hand side in (16) is 0 and there is

no point in paying a positive cost, K, for information that has no value, assuming again that V ���0 +W0 < 1/�2l�.
In deciding whether or not to purchase access to information in practice, we would ideally like to compare

the expected utility of the CI model evaluated at �∗
CI with the expected utility of the II model evaluated at �∗

II .
This can certainly be done on a case-by-case basis when these quantities are computable. On the other hand,
Proposition 1 compares the two models evaluated at the same policy, �. It is clear, however, that if � = �∗

II and
the condition in (16) is satisfied, then it will also be worthwhile to pay K for the extra information when there
is freedom to choose the operating policy.

3. The newsboy problem. The first example we consider is the so-called newsboy problem. At time t = 0,
a newsboy selects the number, I , of newspapers that he will order to satisfy a stochastic demand, DT , that is
revealed at time T > 0. The net profit that the newsboy will then collect at time T is

H
�I�
T �DT � �=Rmin'DT � I(+ r�I −DT �+ − b�DT − I�+ −pI�

where R and p are the unit retail and purchasing prices of a newspaper, respectively, r is the salvage value of
each unsold unit, and b is the per unit penalty cost of unsatisfied demand.
To avoid trivial solutions, we assume that R>p > r . It is straightforward to show that H�I�

T �DT � may also be
expressed as

H
�I�
T �DT �= �R− r�DT + �r −p�I − �R+ b− r��DT − I�+� (17)

We assume that the demand, DT , is a function of the time T value of a financial index, XT , and some other
noise, B2T , where B2 is a Brownian motion independent of X. For expositional purposes, we will consider a
simple demand function that is commonly used in the operations literature. In particular, we assume

DT �XT �B2� T � �= 3 +4 ln�XT �+5B2T �
where 3 > 0, 4, and 5 are fixed parameters.
We will assume that the index, Xt , is a geometric Brownian motion so that Xt =X0 exp��
− 1

2�
2�t+�B1t�.

Under this assumption, DT is normally distributed with mean 
DT �= 3̃ + 4�
− 1
2�

2�T and variance �2
DT
�=

�42�2 +52�T , where 3̃ �= 3 +4 ln�X0�.
Despite its simplicity, the newsboy problem is a rich modelling device that has been studied extensively in

the operations literature (see the recent surveys by Silver et al. [32] and Khouja [20] for details). This is due to
the wide range of practical applications that share this simple structure. These applications include, for example,
retailers in the apparel industry who need to determine stock levels, manufacturers and services who need to
determine operating capacity, or hotels and airlines who need to manage booking and overbooking policies. In
the standard version of the problem, the newsboy is a risk-neutral agent that maximizes the expected value of
H
�I�
T �DT � in (17). In this case, it is well known that the optimal solution, I

∗, solves the fractile equation

+DT �I
∗�= R+ b−p

R+ b− r �
where +DT �·� is the cumulative probability distribution of DT .
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In this example, we will assume that the newsboy is risk averse and, in particular, that he is a mean-variance
optimizer.
The risk-averse newsboy has received some attention in the operations literature. Eeckhoudt et al. [13] discuss

the solution for a general concave utility function and show that the risk-averse newsboy orders less than his
risk-neutral counterpart. The particular case of a mean-variance utility function is considered by Chen and
Federgruen [4]. Similarly to Eeckhoudt et al. [13], Chen and Federgruen show that when the newsboy’s terminal
wealth is based on net profits, as in (17) above, then the mean-variance optimal ordering level is always smaller
than the risk-neutral solution. On the other hand, if the newsboy’s terminal wealth is based on costs rather
than profits, then the mean-variance optimal solution can, depending on the demand distribution, be larger or
smaller than the risk-neutral solution. Lau [21] studies the newsboy problem using a mean-standard deviation
formulation as well as a performance criterion that maximizes the probability of achieving a given terminal
wealth.
A few papers have considered the possibility of using financial markets to hedge the newsboy’s risk exposure.

Anvari [1] studies the newsboy problem using the capital asset pricing model (CAPM) while Chung [5] provides
an alternative derivation of Anvari’s results. In this formulation, the newsboy borrows capital at time t = 0 to
invest in two independent projects, namely the newspaper operation and the financial market. The investment in
the financial market generates random returns at time T that are assumed to be correlated with the newspaper
demand. Under the assumption that the expected return of this portfolio can be modelled using the one-period
CAPM, Anvari [1] computes the optimal inventory strategy in the case of a normally distributed newspaper
demand. Depending on the sign of the covariance between the newspaper demand and the financial market
returns, the optimal inventory level can be larger or smaller than the traditional risk-neutral solution. Gaur and
Seshadri [15] also consider a single-period model where the newspaper demand is modelled as a linear function
of the price of a financial asset, and where hedging strategies are restricted to combinations of long positions
on a European call option and short-sale positions on the underlying financial asset.
The mean-variance analysis of the newsboy problem that we consider here extends the current literature in

two directions. First, we allow the newsboy to trade continuously in the financial market in the interval �0� T �
in order to hedge the operational risk. The only restriction we place on the hedging strategy is the natural
restriction that it be self-financing. This contrasts with the static single-period models that have been studied to
date. Second, we solve the problem for two different filtrations that model possible evolutions of the newsboy’s
information.
We now solve the CI and II newsboy problems and, for comparison purposes, we also solve two alternative

versions of the problem. In the first alternative, the static-financial-hedging model, the newsboy uses a simple
“buy-and-hold” trading strategy so that he only trades once in the financial markets, at t = 0 (e.g., as in
Anvari’s [1] model). In the second alternative, the no-financial-hedging model, there is no possibility of trading
in the financial markets. We note that this no-hedging model is consistent with most of the operations literature.

3.1. Complete information solution. Since the newsboy has complete information, the optimal ordering
strategy is obtained by solving (15). That is, we solve

min
I

{(
1
2l

−V �I�0

)2

+
∫ T

0
exp�$2t�Ɛ

[
*
�I�2

t

]
dt
}
� (18)

where as before, $=
/� , V �I�0 = 
Ɛ�H�I�
T �, and *

�I�
t is defined by (13). V �I�0 and *�I�t are given by the following

theorem which we prove in Appendix C.

Theorem 3. (a) Let the process H�I�
t be defined by replacing DT with Dt in the definition of H

�I�
T . Then,

V
�I�
t = 
Ɛ�H�I�

T ��t� satisfies
V
�I�
t =H�I�

t − 1
2
4�2

∫ T

t
�R−r−�R+b−r��1− �+Ds ��t �I���ds−

1
2
�R+b−r��42�2+52�

∫ T

t
6̂Ds ��t �I�ds� (19)

for all t ∈ �0� T � almost surely, where 6̂Ds ��t �·� is the density function associated with the CDF, �+Ds ��t �·�, of Ds
given �t .
(b) In addition, *�I�t is defined �up to a set of d�� × dt measure 0� as

*
�I�
t = 5

[
�R− r�− �R+ b− r�

(
1�Dt ≥ I�+

1
2

∫ T

t

(
I −Dt
s− t − 1

2
4�2

)
6̂Ds ��t �I�ds

)]
� (20)

We can solve for the optimal ordering quantity, I∗, by first substituting for V �I�0 and Ɛ�*�I�
2

t � in (18), and then
solving numerically for the optimal I . Results are presented in §3.5.
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3.2. Incomplete information solution. When the newsboy has incomplete information, the optimization
problem is given by (10). Since Xt is a geometric Brownian motion, we have Ɛ�"2

F� T �= exp�$2T �, and so (10)
is equivalent to

min
I

{(
1
2l

−V �I�0

)2

+ exp�$2T �Ɛ
[(
H
�I�
T − Ɛ

[
H
�I�
T �� F

T

])2]}
�

In §3.1 we saw how to compute V �I�0 , so now we will focus on the computation of Ɛ��H�I�
T − Ɛ�H�I�

T �� F
T ��

2�.
The following result, whose proof is omitted, will be useful for computations in our setting.

Lemma 3.1. Let Z be a normally distributed random variable with mean 
Z, variance �
2
Z, and CDF +Z�z�.

Then,

Ɛ��Z− I�+�= �Z√
2"

exp
(
− �
Z − I�

2

2�2
Z

)
+ �
Z − I��1−+Z�I���

We first observe that

H
�I�
T − Ɛ

[
H
�I�
T �� F

T

]= 5�R− r�B2T − �R+ b− r�(�DT − I�+ − Ɛ
[
�DT − I�+ �� F

T

])
�

Then, conditional on � F
T , DT is normally distributed with mean 3+4 ln�XT � and variance 52T . Letting +DT �� F

T
�·�

be the corresponding CDF, we then have by Lemma 3.1

G�I� ln�XT �� �= Ɛ
[
�DT − I�+ �� F

T

]
= 52T√

2"
exp

(
− �3 +4 ln�XT �− I�

2

252T

)
+ �3 +4 ln�XT �− I�

(
1−+DT �� F

T
�I�

)
�

Combining this result and the definition of DT , we have that

H
�I�
T − Ɛ

[
H
�I�
T �� F

T

]= 5�R− r�B2T − �R+ b− r���3 +4 ln�XT �+5B2T − I�+ −G�I� ln�XT ����
Finally, since B2T and ln�XT � are independent normally distributed random variables, we can easily compute

Ɛ��H�I�
T − Ɛ�H�I�

T �� F
T ��

2� by numerical integration.

3.3. Static-financial-hedging solution. Suppose now that the newsboy is able to trade in the financial
market only at time t = 0. Under this “buy-and-hold” constraint, the trading gain takes the simple form GT =

�XT −X0�, where 
 represents the number of shares of the risky asset purchased at time t = 0. In this setting,
the newsboy strategy is characterized by the pair �I∗� 
∗� that solves

min

� I

Ɛ

[(
1
2l

− 
�XT −X0�−H�I�
T

)2]
� (21)

Note that we have implicitly assumed in (21) that unlimited borrowing is available. There is no inconsistency
here, however, as the same assumption is also made implicitly when we admit self-financing trading strategies
in the complete and incomplete information problems.
To solve (21), we first compute 
�I�∗ �= argmax
'6

�I��
�( where 6�I��·� is defined consistently with (21).
From the concavity of the objective on 
, it follows that 
�I�∗ is the unique solution to the first-order optimality
condition, that is,


�I�∗ = Ɛ

[(
1
2l

−H�I�
T

)
�XT −X0�

]
�Ɛ��XT −X0�

2��−1

= X0�2l�
−1�exp�
T �− 1�− Ɛ

[
XTH

�I�
T

]+X0Ɛ
[
H
�I�
T

]
X2
0�exp��2
+�2�T �− 2 exp�
T �+ 1�

�

where the second equality uses the fact that Xt is a �
���-geometric Brownian motion. Substituting 
�I�∗ into
the optimization problem (21), the optimal inventory policy I∗ can be found by solving

min
I

Ɛ

[(
1
2l

−H�I�
T

)2]
−

(
X0�2l�

−1�exp�
T �− 1�− Ɛ
[
XTH

�I�
T

]+X0Ɛ
[
H
�I�
T

])2
X2
0�exp��2
+�2�T �− 2 exp�
T �+ 1�

� (22)
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In order to solve this optimization problem, we need to compute first Ɛ�H�I�
T �, Ɛ�H

�I�2

T �, and Ɛ�XT H
�I�
T �. From (17)

and Lemma 3.1, it is straightforward to show that

Ɛ
[
H
�I�
T

] = �R− r�
DT + �r −p�I − �R+ b− r�Ɛ��DT − I�+�

= �R− r�
DT + �r −p�I − �R+ b− r�
(
�DT√
2"

exp
(
− �
DT − I�

2

2�2
DT

)
+ �
DT − I��1−+DT �I��

)
�

where +DT �·� is the CDF of DT . We can also write H�I�2

T as

H
�I�2

T = �R− r�2D2
T + �r −p�2I 2 + 2�R− r��r −p�IDT

+ �R+ b− r��DT − I�+��b+ r −R�DT − �b+R+ r − 2p�I��

Since I ≥ 0, we can show

Ɛ�DT �DT − I�+�=
∫ �

0

[
1−+DT

(
I +√

I 2 + 4x
2

)]
dx�

so that by Lemma 3.1

Ɛ
[
H
�I�2

T

] = �R− r�2(
2
DT

+�2
DT

)+ �r −p�2I 2 + 2�R− r��r −p�I
DT
+ �R+ b− r��b+ r −R�

∫ �

0

[
1−+DT

(
I +√

I 2 + 4x
2

)]
dx

− �R+ b− r��b+R+ r − 2p�I
(
�DT√
2"

exp
(
− �
DT − I�

2

2�2
DT

)
+ �
DT − I��1−+DT �I��

)
�

Finally, it remains to compute the covariance term

Ɛ
[
XTH

�I�
T

]= �R− r�Ɛ�XTDT �+ �r −p�IƐ�XT �− �R+ b− r�Ɛ�XT �DT − I�+��
Using the definition of DT = 3 +4 ln�XT �+5B2T , it follows that

Ɛ�XT DT � = Ɛ�XT �3 +5B2T ��+4Ɛ�XT ln�XT ��
= 3Ɛ�XT �+4Ɛ�XT ln�XT ��
= 3X0 exp�
T �+4

(
X0 ln�X0�+X0

(

+ 1

2
�2

)
T exp�
T �

)
�

On the other hand, Lemma 3.1 and some straightforward manipulations imply

Ɛ�XT �DT − I�+� = Ɛ�XT �3 +4 ln�XT �+5B2T − I�+�
= X0 exp�
T �Ɛ��DT +4�2T − I�+�

= X0 exp�
T �
�DT√
2"

exp
(
− �
DT +4�

2T − I�2
2�2

DT

)

+X0 exp�
T ��
DT +4�2T − I��1−+DT �I −4�2T ���

Again, we can now solve the optimization problem (22) numerically and compute the optimal ordering
level, I∗, and static-hedging strategy 
∗ = 
�I∗�∗ .

3.4. No-financial-hedging solution. When no financial hedging is allowed, the problem is

min
I

Ɛ

[(
1
2l

−H�I�
T

)2]
≡max

I

{
1
l
Ɛ
[
H
�I�
T

]− Ɛ
[
H
�I�2

T

]}
�

The solution to this problem is a a special case of the analysis of the static-hedging model of the previous
section. Again, we can now solve numerically for the optimal ordering level, I∗.
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3.5. Numerical results. To conclude the newsboy example, we will present some computational results that
compare the four alternative modes of operation. The parameter values that we use are:

R= $1�000� r = $200� b= $300� p= $500� T = 2 years� l= 10−6� and

3 = 200� 5= 100 (Table 1 only)� 4= 100� X0 = 1�0� 
= 0�1 (Table 2 only)� � = 0�2�

In Table 1, we compare the root mean squared error (RMSE) and the optimal ordering level, I∗, as a function
of the market price of risk, $=
/� . The RMSE is defined by

RMSE �= Ɛ

[(
1
2l

−H�I∗�
T −GT �
∗�

)2]1/2
�

with the understanding that GT ≡ 0 when there is no hedging allowed. As we can see, the RMSE decreases
with $ for all four modes of operation. As we expect, the CI solution has the smallest RMSE while the
no-hedging solution has the largest. For small values of $, the four solutions are quite similar, but as $ increases,
the CI and II solutions outperform the static-hedging and no-hedging solutions by a considerable margin. An
important observation that follows from the results in Table 1, specifically comparing the static-hedging and
II solutions, is that to fully take advantage of the financial markets we need to use dynamic hedging strategies.
Of course, if the static hedge was allowed to buy and sell derivatives at t = 0 in addition to the underlying
security, then its performance could improve considerably, e.g., Haugh and Lo [17].
In terms of the optimal ordering level, I∗, the no-hedging and static-hedging solutions order more than the

CI and II solutions, and the amount increases with $. In contrast, the ordering level for the CI and II solutions
decrease with $.
Table 2 displays the RMSE and I∗ as a function of 5. Recall that 5 is a measure of the dependency between

the operational profit, H�I∗�
T , and the nonfinancial noise, B2t . In general, both the RMSE and I∗ increase with 5.

For small values of 5, the CI and II solutions are similar, but as 5 increases, the advantage of the CI model
becomes more pronounced as we would expect. It is interesting to observe that in this setting, the complete
information newsboy orders more than his incomplete information counterpart.
We would not draw any hard conclusions from these results, however, since no attempt was made to fit the

parameters to real data. Indeed, had we done this, we would often expect the ordering quantity, I∗, to be higher
for the CI and II solutions than for the no-hedging solution. As mentioned earlier, we would also expect this to
occur if we worked with an EMM, �, rather than the physical measure, � , thereby removing any profit motive
for trading in the financial markets.

4. A production example. In this example, we consider the case of a simple production facility that man-
ufactures a single product between times 0 and T for retail at time T . The purpose of this example is to
demonstrate that the class of problems which are amenable to our analysis is not restricted to the class of
newsboy problems. As a result, we do not focus here on the strengths or weaknesses of the model, but, instead,
we concentrate on solving the two associated hedging problems.

Table 1. RMSE and optimal ordering level, I ∗, as a function of the market price of risk, $=
/� .

RMSE Optimal ordering level I ∗

$ No hedging Static Incomplete Complete No hedging Static Incomplete Complete

0.0 468�244 468�037 461�523 458�068 288 289 266 274
0.2 464�468 452�965 443�593 440�376 296 291 265 273
0.4 460�696 418�987 394�555 391�414 305 295 260 271
0.6 456�926 380�974 325�142 321�994 314 300 252 265
0.8 453�160 346�430 248�909 245�818 322 307 236 253
1.0 449�397 317�417 177�911 175�123 331 315 210 229
1.2 445�637 293�706 120�179 117�570 339 323 179 190
1.4 441�881 274�435 78�519 75�327 348 333 147 138
1.6 438�129 258�705 53�423 47�767 356 343 123 91
1.8 434�380 245�760 41�927 33�172 365 353 114 60
2.0 430�635 235�002 38�205 27�651 373 364 114 45
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Table 2. RMSE and optimal ordering level, I ∗, as a function of 5.

RMSE Optimal ordering level I ∗

5 No hedging Static Incomplete Complete No hedging Static Incomplete Complete

50 424�719 367�922 336�563 335�819 267 254 235 238
70 437�673 380�016 346�045 344�522 284 271 245 250
90 451�572 393�034 356�245 353�696 301 289 253 262
110 466�220 406�833 367�000 363�221 318 305 260 274
130 481�505 421�310 378�212 373�027 334 322 266 285
150 497�345 436�386 389�808 383�077 350 338 272 295
170 513�677 451�992 401�736 393�342 366 353 276 304
190 530�447 468�072 413�951 403�786 381 368 279 314
210 547�610 484�573 426�414 414�400 396 383 281 323
230 565�159 501�451 439�101 425�166 411 397 284 332
250 582�963 518�667 451�979 436�055 426 411 285 339

As before, we assume that there are two independent Brownian motions, B1� t and B2� t , and a stock price
process that is a function of B1� t only. In particular, we will assume that the stock price, Xt , again follows a
geometric Brownian motion so that

dXt =
Xtdt+�XtdB1� t �
The amount of inventory, It , held by the company at time t satisfies

dIt = �aXt + b�dt� (23)

Again, and without loss of generality, we assume that the risk-free interest rate is zero. We also assume that
I0 = W0 = 0. The scalars a and b in (23) are controls that are chosen by the manufacturer at date t = 0. In
principle, we could formulate the problem where the drift of It was controlled stochastically, but it would then
be necessary to solve this problem numerically (see Appendix B).
At time T , the IT units of the product are sold at a per unit price of R�XT �B2� T � IT � where we assume

R�XT �B2� T � IT �=R0 +5B2� T +4XT − IT � (24)

The per unit production cost is constant and equal to C0. This leads to a time T profit

H
�a�b�
T = [

A+5B2� T +4XT − I �a�b�T

]
I
�a�b�
T � (25)

where A �=R0 −C0.
Remarks. (i) In this example, we have assumed that all of the time T inventory, IT , is sold. This assumption

is commonly made in the operations literature and the random sale price, R�XT �B2� T � IT �, then represents the
average or clearance price at which the inventory is sold. This assumption reflects the situation where all excess
inventory is ultimately sold, either through discounts or for its salvage value. Note that we have modelled the
(inverse) market demand as a linear function of I where the intercept, A+5B2� T +4XT , is a random variable
that depends on the financial market as well as on the nonfinancial noise, B2� T .
(ii) There are two different types of financial hedging that take place in this example. The first type is the

hedging that takes place when the manufacturer trades in the financial markets, as we have discussed throughout
the paper. The second type is the hedging that implicitly takes place when the manufacturer adjusts the rate of
production in such a way that it depends on the state of the financial market. This rate of production depends
on the control, a, as may be seen from (23). In practice, most manufacturers base their operating decisions in
part on the prevailing economic conditions and we have captured this effect in (23).
We now proceed to solve the hedging and operations problems for the CI and II models. In order to compare

their solutions, we again compute the solution for the case where there is no possibility of trading in the financial
markets. We also mention at this point that the computations required for this example are straightforward and
require little more than evaluating a large number of integrals. For the sake of brevity, we omit most of the
details here.

4.1. Complete information solution. The first step in finding the solution to the complete information
model is to determine the intrinsic value process, Vt = 
Ɛ�H�a�b�

T � �t�, which is straightforward given the
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representation (25). It is given by

V
�a�b�
t = H�a�b�

t + �T − t�
[
�aXt + b��A+5B2� t − 2It�+4bXt +

2a2X2
t

�2

]

− �T − t�2�b2 + 2abXt�+X2
t

(
e�

2�T−t�− 1
�2

)(
4a− 2a2

�2

)
� (26)

The next step is to determine the GKW decomposition of Vt under �� with respect to X. In particular, we can
apply Itô’s lemma to our expression for V �a�b�t in (26) to write

V
�a�b�
t = V �a�b�0 +

∫ t

0
)�a�b�s dXs +

∫ t

0
*�a�b�s dB2� s � (27)

The only terms that we need from (27) to solve the manufacturer’s hedging problem are *�a�b�t and V �a�b�0 . They
are easily found and are given by

*
�a�b�
t = 5[I �a�b�t + �T − t��aXt + b�

]= 5
[
a
∫ T

0
Xs∧t ds+ bT

]
(28)

V
�a�b�
0 = T

[
�aX0 + b�A+4bX0 +

2a2X2
0

�2

]
− T 2�b2 + 2abX0�+X2

0

(
e�

2T − 1
�2

)(
4a− 2a2

�2

)
�

At this point, we now substitute for V0 and *s in (14) and solve the optimization program in (15). That is, we
minimize A�a�b�T with respect to �a� b�.
We now show that this optimization problem is well posed. Since *�a�b�

2

t and V �a�b�0 are easily seen to be
quadratic functions of a and b, it follows that minimizing A�a�b�T with respect to � reduces to optimizing a
polynomial of degree four. Now observe that

Ɛ
[
*
�a�b�2

t

]= 52�a2Var�Yt�+ �aƐ�Yt�+ bT �2� with Yt �
∫ T

0
Xs∧t ds� (29)

Since the first summand in (29) goes to infinity with �a�, we can clearly limit a to a compact set in R. Given this
restriction on a, a similar argument now implies that we can also restrict b to a compact set. Since our problem
can therefore be stated as minimizing a continuous function over a compact set, a solution is guaranteed and
our problem is well posed. Similar arguments may be used to guarantee that the incomplete information and
no-hedging problems are also well posed. In each case, we use standard numerical software to find the optimal
values �a∗� b∗�.

4.2. Incomplete information solution. The II hedging problem is to solve

V
�a�b�
T =min

GT
Ɛ

[(
H
�a�b�
T +GT −

1
2l

)2]
subject to Ɛ�"F� T GT �= 0 (30)

and the � F
T measurability of GT . As before, "F� T is the SPD that we use for pricing � F

T -measurable contingent
claims, and GT is the gain from trading in the financial market. Following the steps of §2.2, we find that

G∗
T =

1
2l

− Ɛ
[
H
�a�b�
T �� F

T

]+ exp�−$2T �
[
Ɛ
[
"F� T Ɛ

[
H
�a�b�
T �� F

T

]]− 1
2l

]
"F� T � (31)

We then substitute for G∗
T in (30) to get the following optimization problem

min
a�b

{(
1
2l

−V �a�b�0

)2

+ exp�$2T �Ɛ
[(
H
�a�b�
T − Ɛ

[
H
�a�b�
T �� F

T

])2]}
� (32)

Furthermore, by noticing that Ɛ�It �� F
T �= It for all t ∈ �0� T �, it follows that
Ɛ
[
H
�a�b�
T �� F

T

]=AIT +4XT IT − I 2T �
Therefore, the expectation on the second summand in (32) becomes

Ɛ
[(
H
�a�b�
T − Ɛ

[
H
�a�b�
T �� F

T

])2] = 52Ɛ��B2� T IT �2�= 52T Ɛ�I 2T �
= 2a2X2

05
2T

(
exp��2
+�2�T �− 1
�
+�2��2
+�2�

)

+ 2aX05
2T

(
exp�
T �− 1




)(
bT − aX0


+�2

)
+ b252T 3�
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Finally, we determine the optimal values of a and b solving (32) numerically. As before with the complete
information model, this is a simple optimization problem involving a polynomial of degree four.

4.3. No-financial-hedging solution. For comparison purposes, we also compute the optimal solution to the
manufacturer’s problem when there is no possibility of hedging directly using the financial markets. In this case,
the problem is simply

min
a�b

Ɛ

[(
H
�a�b�
T − 1

2l

)2]
� (33)

which is again easily solved explicitly since H�a�b�
T is a quadratic function of a and b.

4.4. Numerical results. In this section, we describe two numerical experiments that are merely intended to
demonstrate the methodology at work. In particular, we do not claim that the model or the model parameters
are representative problems that arise in practice. They do demonstrate, however, that it is often possible for the
optimal complete and incomplete objective functions to be very close, as we claimed earlier.
The following parameter values were used for both experiments:

R0 = $1�000� C0 = $500� 1/�2l�= 750�000� 4= 10� X0 = $100� and T = 1 year�

Varying the market price of risk. In the first experiment, we set 5= 100 and allow the market price of
risk, $ = 
/� , to vary between 0 and 2. At each value of $, we solve the complete information, incomplete
information, and no-hedging problems. The root-mean-squared errors are plotted against $ in Figure 1. As
expected, the complete information solution is superior to the incomplete information solution which, in turn, is
superior to the no-hedging solution.
An interesting feature of this experiment (also present in the newsboy example) is that as $ increases from 0,

a nonhedging motivation is introduced for trading in the financial markets. That is, when $ = 0, the only
motivation for trading is to reduce variance since expected returns from trading are identically 0. However, as
$ increases, then expected returns are no longer 0, and the manufacturer may prefer to trade in the markets to
increase his expected profit. As a result, he may simultaneously choose to produce a smaller quantity of the
product. As discussed in §2, this would generally be an unattractive solution if it was to be used on a repeated
basis. However, such a solution might be very appropriate on a one-off basis if, for whatever reason, it is very
important to attain the target level of profits, 1/�2l�, at time T . This, for example, might be due to the availability
of an attractive investment opportunity at time T that requires a substantial initial investment, W . Due possibly
to various market frictions, it may be the case that the manufacturer cannot or does not wish to raise part of W
in the capital markets. In such a scenario, it may well be appropriate to trade in the financial markets between
dates 0 and T in an attempt to raise the required outlay of W internally.
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Figure 1. Varying the market price of risk.
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Figure 2. Varying the influence of nonfinancial noise.

Varying the influence of nonfinancial noise. In the second experiment, we set 
 = 0�1, � = 0�2 and
allow 5 to vary between 0 and 200. Note that in varying 5, we are varying the impact of the nonfinancial
noise, B2� t on the production process in (23). Again, we solve the complete information, incomplete information,
and no-hedging problems for each value of 5. The root mean squared errors are plotted against 5 in Figure 2
and once again, the complete information solution is superior to the incomplete information solution which, in
turn, is superior to the no-hedging solution.

5. Conclusions and further research. In this paper, we have studied the problem of dynamically hedging
the operating profits of a nonfinancial corporation. The central modelling insight was to view the operations
and facilities of the corporation as an asset in the corporation’s portfolio. Taking this view enabled us to pose
the problem as one of financial hedging in incomplete markets. This problem has been studied extensively
in the recent literature in mathematical finance. Using this modelling framework, we demonstrated how to solve
the more general problem of simultaneously optimizing over both the operating and hedging policies of the
corporation. Different informational assumptions regarding whether or not the operational state variables were
observable gave rise to different solution techniques. Finally, we solved some simple but commonly encountered
problems that arise in operations and supply chain management.
There are a number of possible future research directions. First, it would be interesting to generalize the

results of this paper to more general price processes and utility functions. To some extent, this may already be
possible using some of the recent results from mathematical finance that generalize from mean-variance hedging
to hedging with more general utility functions. Similarly, there is also recent work that explores dropping the
requirement that the mean-variance trade-off be deterministic in the complete information model. We expect
that some of these recent developments, together with future research in mathematical finance, will enable us to
solve ever more complex and realistic problems. Other hedging techniques such as local risk minimization (e.g.,
Schweizer [31]) might also prove useful in this regard.
Second, it would be interesting to apply the mean-variance hedging methodology of this paper to other

problems in operations and supply chain management. This methodology is not restricted to the two sample
problems that we solved in this paper; they only served to demonstrate that solving such problems is indeed
feasible. Future research should examine other classes of problems. In particular, we are currently exploring
the possibility of applying these techniques to problems where corporations do not act in isolation, but instead
compete with, and write contracts with, one another.
Finally, it would also be interesting to solve problems where risk aversion is modelled through constraints

rather than through a risk-averse utility function in the objective. Such formulations have a number of advantages
(e.g., Caldentey and Haugh [3]) and would also be more appropriate in many operations contexts.
We have barely discussed in this paper the issue of corporate preferences. Unfortunately, it is not clear what

an appropriate utility function for a corporation is, and exactly what types of risks should be hedged. Indeed,
there does not appear to be universal agreement among economists regarding these questions. However, as others
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have pointed out (e.g., Duffie and Richardson [12]), using a mean-variance objective should often be a good
first approximation. Moreover, as our ability to solve more complex dynamic hedging problems grows, then so
too might our understanding of corporate preferences and the particular risks they should hedge.

Appendix A. Proof of Theorem 2. For notational convenience, we will suppress the dependence of the
various terms on �. Define the process Nt �= �Vt +G∗

t +W0 − 1/�2l��2. Using Itô’s lemma, it follows that

dNt = 2
(
Vt +G∗

t +W0 −
1
2l

)
�dVt + dG∗

t �+ d�V +G∗� V +G∗�t�

where �X�X�t is the quadratic variation process (e.g., Protter [29]) associated with Xt . Using the definition of Vt
and G∗

t , we then obtain

Nt = N0 + 2
∫ t

0

(
Vs +G∗

s +W0 −
1
2l

)(
*s dB2� s −$s

(
Vs +G∗

s +W0 −
1
2l

)
dB1� s

)

+
∫ t

0

(
*2t −$2s

(
Vs +G∗

s +W0 −
1
2l

)2)
ds�

Now, taking expectations, cancelling all martingales terms, and using Fubini’s theorem together with the deter-
ministic mean-variance assumption, we obtain

At = Ɛ�Nt�= Ɛ�N0�+
∫ t

0
�Ɛ�*2s �−$2s As�ds�

which immediately implies the ordinary differential equation

d
dt
At +$2t At = Ɛ�*2t ��

Finally, we use the integrating factor exp�
∫ t
0 $

2
s ds� and the boundary condition A0 = �V0���+W0 − 1/�2l��2 to

obtain the desired result. �

Appendix B. In this appendix, we study the solution of the optimization problem in (15) for the special
case in which the operational payoff, H���

T , is Markovian in the following sense: We assume there exists a
twice-continuously differentiable function, f �x� y�, and a controlled operational process, Yt , such that

H
���
T = f �XT �YT �� where X and Y satisfy the SDEs

dXt = 
Xtdt+�XtdB1� t� and

dYt = 5�Xt� Yt? ��dt+4�Xt� Yt? ��dB2� t�
where we assume that 5, 4, and � satisfy sufficient regularity conditions that guarantee the existence and
uniqueness of solutions to the SDEs and control problem. (See, for example, Øksendal [26].)
Many well-known operational problems can be modelled with such a formulation. For example, in a capacity-

planning problem, we continuously adjust capacity, Yt , in �0� T � to meet a demand that is realized at time T .
The profit function is H���

T = f �XT �YT � and it depends on available capacity and the state of the financial mar-
kets/economy, XT . More generally, Yt would have dimension greater than 1 with some components representing
uncontrollable operational noise.
In this case, we know that there exists a tracking function V �t� x� y� defined as V �t�Xt� Yt� �= 
Ɛ�H���

T � �t�
which satisfies


����V �t� x� y�= 0� V �T � x� y�= f �x� y��
where 
���� is the infinitesimal generator of �Xt� Yt� at time t under �� when �t = �. It is defined by


����h�t� x� y�� ht�t� x� y�+5�x� y?��hy�t� x� y�+
1
2
�42�x� y?��hyy�t� x� y�+ x2�2hxx�t� x� y���

for any test function, h�t� x� y� ∈ C1�2�2. (It is the martingale property of V �t�Xt� Yt� that implies

����V �t� x� y�= 0. Note also that since Xt is a �� martingale, there is no hx term in the definition of 
����.)
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The function V also defines the Galtchouk-Kunita-Watanabe (GKW) decomposition of H���
T in equation (13)

as follows:

H
���
T = V �0�X0� Y0�︸ ︷︷ ︸

V
���
0

+
∫ T

0
Vx�t�Xt� Yt�︸ ︷︷ ︸

)
���
t

dXt +
∫ T

0
4�Xt� Yt? �t�Vy�t�Xt� Yt�︸ ︷︷ ︸

*
���
t

dB2� t � (B.1)

Based on this decomposition and the identity V ���0 = 
Ɛ�f �XT �YT ��, the problem of selecting the optimal opera-
tional strategy � reduces (see (14)) to

V ∗�X0� Y0� = inf
�∈�

{(
1
2l

−W0 − 
Ɛ0�f �XT �YT ��
)2

+
∫ T

0
exp�$2t�Ɛ0��4�Xt� Yt? �t�Vy�t�Xt� Yt��

2�dt
}

(B.2)

subject to 
����V �t� x� y�= 0� V �T � x� y�= f �x� y� (B.3)

dXt =
Xt dt+�Xt dB1� t (B.4)

dYt = 5�Xt� Yt? �t�dt+4�Xt� Yt? �t�dB2� t � (B.5)

This is a nonstandard control problem, as its objective (B.2) depends on the tracking process V �t� x� y� that
solves the backward PDE in (B.3). In addition, the presence of a quadratic term on 
Ɛ�f �XT �YT �� in the objective
prevents us from applying directly the principle of dynamic programming, at least in its elementary form.
Fortunately, we can handle this problem using the following modified version of (B.2)–(B.5):

V �X0� Y0�A� = inf
�∈�

{∫ T

0
exp�$2t�Ɛ��4�Xt� Yt? �t�Vy�t�Xt� Yt��

2�dt
}
+
(
1
2l

−W0 −A
)2

(B.6)

subject to 
����V �t� x� y�= 0� V �T � x� y�= f �x� y�� (B.7)

dXt =
Xt dt+�Xt dB1� t (B.8)

dYt = 5�Xt� Yt? �t�dt+4�Xt� Yt? �t�dB2� t (B.9)


Ɛ�f �XT �YT ��= A� (B.10)

Since this modified optimization problem (B.6)–(B.10) is more constrained that the original problem (B.2)–(B.5),
it follows that V �X0� Y0�A�≥ V ∗�X0� Y0� for every A ∈�. This inequality uses the convention V �X0� Y0�A�=�
if the modified problem is infeasible. We define B � 'A ∈ �� V �X0� Y0�A� < �( to be the corresponding
feasible set.
If the original problem (B.2)–(B.5) admits an optimal control �∗, then letting A∗ � 
Ɛ�f �XT �YT ��∗��� (where

Yt��
∗� is the resulting Yt process under �

∗), it follows that V �X0� Y0�A
∗� = V ∗�X0� Y0�. Therefore, under the

assumption that the original problem admits a solution �∗, we can compute V ∗�X0� Y0� solving the auxiliary
problem

V ∗�X0� Y0�=min
A∈B

V �X0� Y0�A��

In order to compute V �X0� Y0�A�, we relax constraint (B.10) to obtain the following control problem that we
can solve using dynamic programming:

V �X0� Y0�A�&� = inf
�∈�

{∫ T

0
exp�$2t�Ɛ��4�Xt� Yt? �t�Vy�t�Xt� Yt��

2�dt+&(
Ɛ�f �XT �YT ��−A)
}

+
(
1
2l

−W0 −A
)2

(B.11)

subject to 
����V �t� x� y�= 0� V �T � x� y�= f �x� y�� (B.12)

dXt =
Xt dt+�Xt dB1� t (B.13)

dYt = 5�Xt� Yt? �t�dt+4�Xt� Yt? �t�dB2� t � (B.14)

Note that the problem formulated in (B.11) to (B.14) can be solved numerically by working backwards from
time T . The distinguishing feature of this particular control problem is the presence of the PDE in (B.12) that
is simultaneously solved backwards in time.
Solving our original control problem then amounts to solving for the optimal pair, �A∗�&�A∗��. This can be

done by means of an iterative procedure, though, in general, this would be very time consuming. Note that there
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is a trade-off between solving the problem using this method, i.e., the GKW approach, and a direct approach
based on the HJB equation. The latter approach needs to solve for both the trading strategy and the operating
strategy, whereas the former approach only needs to solve for the operating strategy. Moreover, after substituting
for the optimal trading strategy (in terms of the value function and its partial derivatives), the HJB-based PDE
might be very complex and difficult to solve (even numerically). On the other hand, the GKW approach has the
added complexity of needing to find �A∗�&�A∗�� as well as numerically solving the PDE in (B.12). This would
appear to be very computationally demanding and we expect that it would be unlikely to offer an advantage
over the direct HJB approach. However, to make a conclusive statement regarding the merits of one approach
over the other would require more problem-specific information.
If we are willing to accept approximate solutions, however, then it is possible that the GKW approach can

provide a distinct advantage. For example, we can eliminate �A�&�A�� from the problem formulation if we
approximate the quadratic expression in 
Ɛ0�f �XT �YT �� that appears in the objective function with a linear
expression in 
Ɛ0�f �XT �YT ��. Moreover, it is possible that in some circumstances the GKW decomposition (B.1)
will already be available to us or easy to compute analytically. We would then no longer need to solve numerically
the PDE in (B.12), and so the GKW approach would become even more attractive.

Appendix C. We now prove Theorem 3. This is quite straightforward and the main technical difficulty arises
from the nonapplicability of the standard form of Itô’s lemma due to the nondifferentiability of the newsboy
profit at Dt = I . In the proof, we will suppress the explicit dependence of the various processes on I .
Proof of Theorem 3. (a) First, recall that the process Ht�Dt� was defined by replacing DT with Dt in

equation (17). The newsboy profit is not differentiable at Dt = I and so the standard form of Itô’s lemma does
not apply. We address this problem by using a perturbation of Ht , which is C1 everywhere and C2 almost
everywhere. Specifically, following Chung and Williams [6], we define for C > 0

HC
t �Dt� �= �R− r�Dt + �r −p�I − �R+ b− r� fC�Dt��

where

fC�x�=



0 if x≤ I − C
�x− I + C�2/4C if I − C≤ x≤ I + C
x− I if x≥ I + C�

Note that fC�x� converges to �x− I�+ pointwise as C ↓ 0. Given the differentiability of HC
t �Dt� we can apply

Itô’s lemma to obtain

HC
T �DT �=HC

t �Dt�+
∫ T

t
�R− r − �R+ b− r�f ′

C�Ds��dDs − �R+ b− r��42�2 +52�
∫ T

t

1��Ds − I � ≤ C�
4C

ds�

where 1�E� is the indicator function of the event E, f ′
C�x� is the first derivative of fC�x� with respect to x, and

dDs = 4
dXs
Xs

− 1
2
4�2 ds+5dB2s�

Since HC
t �Dt� is �t measurable and Xt and B2t are martingales under �� , we can write the following decompo-

sition for V Ct �= 
Ɛ�HC
T �DT � ��t�

V Ct = HC
t −

1
2
4�2

∫ T

t
�R− r − �R+ b− r�
Ɛ�f ′

C�Ds� ��t��ds

− �R+ b− r��42�2 +52�
∫ T

t

1
4C


Ɛ�1��Ds − I � ≤ C� ��t�ds� (C.1)

To compute the conditional expectation inside the integrals, we note that

Ds = 3̃ +4
(

− 1

2
�2

)
s+4�B1t +5B2t +4��B1s −B1t�+5�B2s −B2t� for s ≥ t�

In addition, under �� , the conditional distributions of �B1s − B1t� and �B2s − B2t� given �t are normal with
mean −$�s− t� and 0, respectively, and common variance, s− t. It follows then that, under �� , the conditional
distribution of Ds given �t is also normal with mean Dt− 1

24�
2�s−t� and variance �42�2+52��s−t�. We denote
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by �+Ds ��t �·� the corresponding cumulative probability distribution. Then, we can rewrite the decomposition of V Ct
as follows:

V Ct = HC
t −

1
2
4�2

∫ T

t
�R− r − �R+ b− r�
Ɛ�f ′

C�Ds� ��t��ds

− �R+ b− r��42�2 +52�
2

∫ T

t

�+Ds ��t �I + C�− �+Ds ��t �I − C�
2C

ds� (C.2)

We now use (C.2) to show that (19) of Theorem 3 holds for a fixed value of t. First, it is clear that limC↓0HC
t �x�=

Ht�x� pointwise in x. Second, we see from the definition of V Ct that

lim
C↓0
V Ct = lim

C↓0

Ɛ�HC

T �DT � ��t�= 
Ɛ�HT �DT � ��t�= Vt�
where the second equality follows from the dominated convergence theorem and since limC↓0HC

T �x� = HT �x�
pointwise in x. Third, we need to show that

lim
C↓0

∫ T

t


Ɛ�f ′
C�Ds� ��t�ds =

∫ T

t

(
1− �+Ds ��t �I�

)
ds� (C.3)

Towards this end, observe that

�
Ɛ�f ′
C�Ds� ��t�� =

∣∣∣∣1− �+Ds ��t �I + C�+ 
Ɛ
[
�Ds − I + C�

2C
1��Ds − I � ≤ C� ��t

]∣∣∣∣
≤ 1+P��Ds − I � ≤ C�≤ 2�

Since 
Ɛ�f ′
C�Ds� ��t�→ 1− �+Ds ��t �I� almost surely, the dominated convergence theorem now applies immediately

to give (C.3). Finally, we must show

lim
C↓0

∫ T

t

[ �+Ds ��t �I + C�− �+Ds ��t �I − C�
2C

]
ds =

∫ T

t
6̂Ds ��t �I�ds� (C.4)

However, observe, first, that

0≤ fC�s� �=
�+Ds ��t �I + C�− �+Ds ��t �I − C�

2C

≤
∫ I+C

I−C
dx

2Cc
√
s− t =

1

c
√
s− t =� h�s�

for some constant, c. Now, since
∫ T
t
h�s�ds <�, we can again apply the dominated convergence theorem to

obtain (C.4).
We have therefore shown that, for a fixed t, (19) holds almost surely. The countability of the rationals then

implies (19) holds almost surely for all rational t ∈ �0� T �. The continuity of Vt and the processes on the
right-hand side of (19) now establish that (19) holds for all t ∈ �0� T � almost surely.
(b) Let

VT = V0 +
∫ t

0
)s dXs +

∫ t

0
*s dB2� s and V CT = V C0 +

∫ t

0
)Cs dXs +

∫ t

0
*Cs dB2� s

be the GKW compositions, respectively, of VT and V
C
T with respect to X under �� . (It is easily checked that both

V CT and VT are square �� -integrable martingales, as the GKW decomposition requires.) While we know from
part (a) that V CT → VT almost surely as C→ 0 and that V C0 → V0, it is easy to check that convergence also takes
place in L2����. Let L2�X� denote the set of �t-adapted processes, 6, with a finite norm

�6� �= 
Ɛ
[(∫ T

0
6s dXs

)2]
=
∫ T

0


Ɛ�62
s �ds <��

L2�B2� is similarly defined. We can easily find *Cs as it is given (uniquely as an element of L
2�B2�) by GV

C
s /GB2� s .

Now let *∗s denote the process defined by the right-hand side of (20). It may be checked that for C sufficiently
small, both *∗s and *Cs are uniformly bounded functions in �s�Ds� and that *Cs converges pointwise to *∗s . It
therefore follows immediately by the Itô isometry that *Cs converges to *∗s in L2�B2� and that, equivalently,∫ T
0 *

C
s dB2� s converges in L

2���� to ∫ T
0 *

∗
s dB2� s . This in turn, however, implies that

∫ T
0 )

C
s dXs also converges in

L2����. But the Itô isometry implies that the linear subspace '∫ T0 6s dXs� 
Ɛ�∫ T0 �6s�2 ds� <�( is closed in L2����,
implying in particular that limC→0

∫ T
0 )

C
s dXs →

∫ T
0 )

∗
s dXs in L

2���� for some adapted process )∗
s . But then the

uniqueness property of the GKW decomposition implies that )∗
s =)s in L2�X� and *∗s = *s in L2�B2�. �
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