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Abstract

Globalization helped reshape supply chains and the boundaries of firms in favor
of outsourcing. Now, even vertically integrated firms procure substantially from
external suppliers. We study a procurement model in which vertical integration
grants a downstream customer the option to source internally, which is advanta-
geous because it sometimes avoids paying a markup, but disadvantageous because
it discourages investments in cost reductions by independent suppliers. The trade-
off is a solution to Williamson’s puzzle of selective intervention; the integrated firm
can do the same as the two stand-alone entities, and can sometimes do better by
intervening selectively, but this ability to do better discourages cost-reduction by
independent suppliers. The investment-discouragement effect is more likely to out-
weigh the markup-avoidance benefits of vertical integration if the upstream market
is more competitive, as is so in a more global economy.
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1 Introduction

A dramatic transformation of American manufacturing occurred at the end of the twen-
tieth century, away from vertical integration and toward outsourcing (Whitford, 2005).
By the 1990’s, outsourcing was widespread, to the point that even vertically integrated
firms relied heavily on independent suppliers (Atalay, Hortacsu, and Syverson, 2014).
This transformation increasingly went hand in hand with offshoring, as foreign outsourc-
ing increased from 15% in 1997 to 23% in 2007, even though the outsourced share of
material expenditures remained around 75% (Magyari, 2016). The rise of outsourcing
and the trend toward offshoring gives renewed salience to the puzzle of selective inter-
vention posed by Williamson (1985): Why can’t a merged firm do everything that two
separate firms can do, and do strictly better by intervening selectively?

The recent evidence suggests the wide prevalence of a “make and buy” sourcing strat-
egy, that is, an integrated firm’s reliance both on internal and external procurement of
material inputs. For example, Atalay, Hortacsu, and Syverson (2014) show that about
50% of vertically integrated U.S. manufacturing firms don’t source from their upstream
unit. Magyari (2016) shows that the frequency of make-and-buy within industrial cat-
egories for representative U.S. manufacturing firms was above 40% between 1997 and
2007, and above 70% in the transportation equipment sector. These facts suggest that
vertical integration creates the opportunity but not the necessity to procure internally.

Accounting for a make-and-buy sourcing strategy requires embedding vertical inte-
gration in a multi-lateral supply setting. We build a procurement model that gives a
vertical integrated firm the option to source internally or from an independent supplier,
with its choice depending on which is more cost effective. The advantage of vertical
integration is that the ability to source internally avoids paying a markup to indepen-
dent suppliers. The disadvantage is that a sourcing distortion in favor of internal supply
discourages the independent suppliers from non-contractible investments in cost reduc-
tion. This tradeoff between markup avoidance and investment discouragement answers
Williamson’s puzzle of selective intervention. At the same time, multi-lateral settings
generate make-and-buy behavior by integrated firms.

The general procurement environment we have in mind is motivated by Whitford
(2005)’s description of customer-supplier relationships that shifted and blurred the bound-
aries of firms, as original equipment manufacturers increasingly relied on independent
suppliers for both production and design of specialized parts. In our model, a“customer”
seeks to commercialize a new product, or to improve (or expand distribution of) an ex-
isting one in a downstream market for which the design of a specialized input or process
potentially has significant cost consequences. The customer has access to a group of
qualified suppliers with different ideas and capabilities, who invest in product and pro-
cess design to prepare proposals for supplying the input. The customer selects the most
attractive supply source, and a vertically integrated customer has the option to source
internally if its production cost is below the price of external procurement.
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Automobile manufacturing is a good example of this kind of procurement environ-
ment. A typical procurement cycle for a new automobile model includes a development
phase during which blueprints are created, followed by production phase based on fixed
blueprints for component inputs. Importantly, independent suppliers’ design investments
are not contractible during the development phase, even though input specifications are
contractible at the production phase. Calzolari, Felli, Koenen, Spagnolo, and Stahl
(2015, pp. 22-23) elaborate as follows:

In series production, suppliers work with existing blueprints and completely
designed (or existing) tools to produce the part in question. The product
and services can be clearly specified through contracts, determining in de-
tail, for example, acceptable failure rates and delivery conditions. None of
this is possible in the model-specific development phase. While the desired
functionality of a part can be described, highly complex interfaces with other
parts (often under development simultaneously) cannot be specified ex ante.
Blueprints for the part do not exist at the beginning of the design phase;
indeed they are the outcome of such a phase.

Our model captures this contracting dichotomy between design and production by
assuming potential input suppliers invest unobservable effort to develop and propose
acceptable cost-reducing designs to meet an input requirement of a customer, and, as
a result of this design effort, the supplier gains private information about the cost of
producing the input according to those particular specifications.1 For simplicity, the
model assumes that all acceptable proposed designs have the same functionality, thus
abstracting from the possibility that design efforts result in observable quality differences.

The model reveals the following benefits and costs of vertical integration. On the
one hand, there are rent seeking and possible efficiency advantages of internal sourcing
from avoiding a markup otherwise paid to independent suppliers. Markup avoidance
shifts rents away from lower-cost independent suppliers by distorting the sourcing deci-
sion, and may also increase efficiency because the project is pursued whenever its value
exceeds the cost of internal sourcing. On the other hand, vertical integration has a dis-
advantageous “discouragement effect” on the investment incentives of the independent
suppliers. Because the procurement process is tilted in favor of internal sourcing, inde-
pendent suppliers are less inclined to make cost-reducing investments in the preparation
of proposals. Furthermore, it is socially costly for the integrated firm to compensate for
discouragement effect by increasing its own ex ante investment, and, if the cost of the
investment discouragement effect outweighs the benefit of markup avoidance advantages,
then the customer has reason to divest its internal supply division as a way to commit
to a level playing field.

1Our model is also relevant for an array of other applications. For example, the customer could
be PepsiCo, who required a special sort of potatoes as input for its expanding potato chip business in
China, and had the option of integrating with local producers or of sourcing externally from independent
suppliers (Tap, Lu, and Loo, 2008). Alternatively, the customer could be AT&T, who needed to procure
telecommunications equipment from an upstream industry, including Ericsson and Nortel, as well Lucent
which AT&T originally owned but eventually divested (Lazonick and March, 2011).
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We use a specific basic model to weigh these tradeoffs of vertical integration. There is
a buyer who procures a fixed input from a set of upstream suppliers via a tender. Prior
to the tender, all suppliers make cost-reducing investments that shift the support of the
distribution from which costs are drawn. Absent integration, all suppliers then bid in a
first-price auction, and the buyer selects the supplier with the lowest bid. For tractabil-
ity, the basic model assumes inelastic demand, a quadratic cost of investment, and an
exponential distribution of production costs. Under vertical integration, the buyer and
one of the suppliers are under common ownership. The tender is still a first-price reverse
auction, but now the integrated supplier is preferred supplier, producing whenever cost
of internal supply is less than the lowest bid from the remaining independent suppli-
ers. Otherwise, the integrated customer sources from the independent supplier with the
lowest bid.

Keeping investments fixed, vertical integration is always profitable as it allows the
buyer to shift rents from independent suppliers by avoiding to pay the bid markup when-
ever she sources internally. Vertical integration is also detrimental to social welfare in
the model with inelastic demand, because the lowest cost supplier does not produce the
input when an independent supplier draws the lowest cost but bids above the cost of the
integrated supplier. In contrast, in the absence of vertical integration, production is al-
ways efficient because the unique equilibrium of the first-price auction is symmetric and
monotone. Moreover, as in Rogerson (1992), the socially optimal investments, given that
sourcing is efficient, are always an equilibrium outcome with non-integration. Because
it distorts the buyer’s sourcing decision, vertical integration also moves the incentives to
invest in cost reductions away from the social optimum. In equilibrium, the integrated
supplier overinvests, while the independent suppliers underinvest, compared to both the
first-best social optimum and to a second-best solution to the social planner’s problem,
which takes sourcing distortions as given and maximizes welfare over investments. Be-
cause investment costs are convex, the additional costs that accrue to the integrated
firm from this excessive investment in equilibrium can be large enough to outweigh the
benefits from integration.

Our theory of make-and-buy sensibly predicts that greater upstream competition
disfavors vertical integration. The basic model yields two comparative variants of this
hypothesis. First, an increase in the number of symmetric upstream suppliers reduces the
rents of the independent sector, making the markup avoidance benefit of vertical integra-
tion less compelling. Second, holding the number of suppliers constant, less uncertainty
about upstream costs reduces ex post supplier heterogeneity, similarly squeezing markups
and reducing the rents of independent suppliers. That more outsourcing opportunities
encourages vertical divestiture is broadly consistent with hand-in-hand trends toward
outsourcing and offshoring. That divestiture is more attractive in a less uncertain envi-
ronment is consistent with the idea that vertical divestiture occurs in maturing industries
in which the prospects for dramatic cost reduction are falling.

Our theory builds on previous literature while differing in significant ways. Vertical
integration in our model effectively establishes a preferred supplier, tendering a bid after
all independent suppliers have submitted their bids. The allocative distortions from a
preferred suppler are similar to those in the first-price auction model of Burguet and
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Perry (2009).2 However, due to endogenous investments in cost reduction in our model,
the preferred supplier in equilibrium has a more favorable cost distribution than the
independent suppliers.3

Our emphasis on multilateral supply relationships, and particularly our argument
that vertical integration is motivated by rent-seeking, is reminiscent of Bolton and Whin-
ston (1993).4 The Bolton-Whinston model assumes an efficient bargaining process under
complete information to allocate scarce supplies. Vertical integration creates an “outside
option” of the bargaining process that for given investments only influences the division
of rents. In contrast, our model features incomplete information about costs, and, for
given investments, vertical integration affects the sourcing decision as well as the division
of rents. Moreover, in our model the rent-seeking advantage of vertical integration leads
to ex post sourcing distortions, which in turn distorts ex ante investments relative to the
first best. In contrast, in the Bolton-Whinston model, the integrated downstream firm
overinvests to create a more powerful outside option when bargaining with independent
customers, but the ex post allocation decision is efficient conditional on investments.
Consequently, the two models give rise to starkly different conclusions. For the case that
corresponds to the unit-demand model featured in our basic model, Bolton and Whin-
ston (1993) finds that non-integration is never an equilibrium market structure although
it is social efficient.5

Following Williamson (1985), the property rights literature based on the Grossman
and Hart (1986) model typically views vertical integration as a “make or buy” decision in
a bilateral setting, focusing on how agency problems inside an integrated firm compare
with contracting problems across separate firms.6 As Cremer (2010) explains, the key to

2Bikhchandani, Lippmann and Reade (2005) analyze second-price auctions. As Burguet and Perry
(2009, p. 284) observe, “a second-price auction is not an appropriate model for a market when the buyer
has no ability to design and commit to rules of trade,” while a first-price auction is a natural model
for a market in which “suppliers make price offers to the buyer, who then simple decides which offer to
take.”

3Burguet and Perry (2009) assumes fixed identical cost distributions. Burguet and Perry (2014), Lee
(2008), and Thomas (2011) study the right of first refusal (or vertical merger) in cases of two suppliers
with exogenous asymmetric cost distributions, whereas we endogenize the asymmetry with unobservable
investments. Bag (1997) and Che, Iossa, and Rey (2015) study the optimal use of favoritism in auction
design to incentivize unobservable investments by suppliers, assuming that the buyer can commit to a
procurement mechanism prior to investments. In contrast, we assume that a procurement mechanism
is not contractible until after relationship-specific investments are sunk, due to an inability sufficiently
to describe acceptable designs ex ante. Arozamena and Cantillon (2004) study procurement auctions
preceded by observable investments, and Tan (1992) compares first-price and second-price procurement
auctions preceded by unobservable cost-reducing investments. Neither consider preferred providers.

4See Farrell and Katz (2000) for a related model of integration in systems markets. Integration also
occurs in a multilateral setting in the models of Riordan (1998) and Loertscher and Reisinger (2014),
focusing on possible foreclosure effects of vertical integration.

5See Proposition 5.2 in Bolton and Whinston (1993), where λ = 1 corresponds to our unit demand
case.

6See Hart (1995) for an overview of the Grossman and Hart (1986) property rights theory of the
firm. Antras (2013) surveys how this theory has influenced the International Trade literature on global
sourcing by multinational firms. Hart and Moore (1990) provide a multi-lateral generalization of the
Grossman and Hart (1986) setup, but like Grossman and Hart (1986) and Bolton and Whinston (1993)
maintain the assumption that bargaining is efficient.
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these theories is that the “principal does not quit the stage” after vertical integration,
meaning that contracts between the owner (principal) and managers are unavoidably
incomplete. Thus, anticipating expropriation by an owner who is unable to commit, an
employee-manager has lower powered incentives to invest in the relationship than does
an independent owner-manager. This approach to understanding vertical integration is
most compelling for evaluating incentive tradeoffs surrounding the vertical acquisition
of owner-managed firm. As observed by Williamson (1985), however, a tradeoff between
vertical integration and arms length contracting is more elusive when a separation of
ownership and control prevails irrespective of the identity of the owner.

Our model allows for a separation of ownership and control by interpreting the invest-
ment cost function as the cost to a risk-neutral owner of inducing a risk-averse manager
to undertake a given level of effort (Grossman and Hart, 1983). Thus, by placing the
make-or-buy problem in a multilateral setting, by abstracting from any asymmetry in
the agency problems for vertically integrated and independent suppliers, and by distin-
guishing the vertical integration decision from the sourcing decision (i.e. allowing for
“make and buy”), our model identifies a vertical integration tradeoff between markup
avoidance and investment discouragement. If, however, the vertical integrated firm had
a less favorable investment cost function, perhaps due to more a more severe agency
problem inside the firm, then this additional cost of integration would also weigh in the
balance.7

If the vertically integrated firm simply replicated the way it produced before inte-
grating, the profit of the integrated entity would just equal the joint profit of the two
independent firms. However, just like Williamson (1985) argued, it can do strictly bet-
ter than that because it can now avoid paying the markup for procuring from outside
suppliers whenever the cost of internal supply is below the lowest bid of the outside
suppliers. In this sense, the vertically integrated firm’s flexibility to change its behavior
after integration is to its short-run benefit. This contrasts sharply with the previous
literature, where the vertically integrated firm’s inability to commit may render inte-
gration unprofitable (Cremer, 2010). But it raises the question why vertical integration
would not always be profitable in our model. The answer is that, because the integrated
firm favors internal sourcing, the independent suppliers incentives to invest in cost re-
duction are diminished. This investment discouragement effect can be strong enough to
dominate the benefits from vertical integration. It is exactly the opportunistic ability
of the vertically integrated firm to do better than it does without integration that ulti-
mately may hinder it from so doing, because this ability changes the investment behavior
of the outside suppliers, which is outside the control of the integrated firm. Thus the
relative disadvantage of the vertically integrated firm in our model stems not from its
inability to make commitments to its managers, but rather its inability to commit not
to source internally when it is attractive to do so. This critical assumption makes most
sense for procurements environments, like automobile manufacturing, involving compet-

7Our model assumes that the expected production cost associated with a firm-specific design is known
inside the firm, but is unobserved by outside parties. As discussed by Riordan (1990), such information
is proprietary to the firm, and not contractible across firms. The property rights theory provides some
foundations for this assumption (Hart 1995, Riordan 1990).
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ing complex designs that cannot be described in advance sufficiently to be contractible
(Grossman and Hart, 1983), that are not easily comparable, and for which expected pro-
duction costs are unverifiable. Similarly, the difficulties of describing and verifying efforts
and resources spent on superior designs for complex products make ex ante investment
non contractible.

Our solution to the puzzle of selective intervention might be interpreted as joining
the rent-seeking theory of the firm with the property-rights theory (Gibbons, 2005).
Emphasizing the standard assumption of efficient ex post bargaining in the property
rights literature, Gibbons (2005, p. 205) summarizes the difference between the two
theories as follows: “[I]n the property rights theory, the integration decision determines
ex ante investments and hence total surplus, whereas in the rent-seeking theory, the
integration decision determines ex post haggling and hence total surplus.” Our version
of the rent-seeking theory builds on Burguet and Perry (2009) to explain how a preferred
integrated supplier creates a sourcing distortion, and hence changes the magnitude of
the joint surplus of an upstream industry and a downstream customer.8 Our version
of the property rights theory builds on Riordan (1990) to explain how inefficient ex
post sourcing changes ex ante investments which also determine the joint surplus.9 To
our knowledge, our paper is the first to combine these two opposing perspectives in an
integrated model of the costs and benefits of vertical integration.

Lastly, the multilateral setting at the heart of our model suggests a formalization of
Stigler (1951)’s interpretation of Adam Smith’s dictum that “the extent of the market
is limited by the division of labor.” In our setup, if the extent of the market, measured
by the number of suppliers, is small, there is a strong incentive for the customer to
integrate vertically, and to source internally only when profitable. As the extent of
market increases, the incentive for internal sourcing diminishes, and the division of labor,
measured by the frequency of outsourcing, increases.

The remainder of our paper is organized as follows. Section 2 lays out the basic

8This theory is reminiscent of an older industrial organization literature that focuses on how vertical
integration changes the exercise of market power. This literature, surveyed by Perry (1989), has different
strands. For example, backward vertical integration is motivated by a downstream firm’s incentive to
avoid paying above-cost input prices. In the double markups strand, vertical integration of successive
monopolies improves efficiency by reducing the final price to the single monopoly level. In the variable
proportions strand, a non-integrated firm inefficiently substitutes away from a monopoly-provided input,
and vertical integration corrects this input distortion. In our model, while alternative suppliers offer
substitute inputs, there is no input distortion because upstream market power is symmetric.

9The property rights literature focuses on how vertical integration matters for relationship specific
investments, typically under the assumption of efficient bargaining, which of course implies efficient
sourcing ex post. Williamson (1985) argues that asset specificity, incomplete contracts, and opportunism
conspire to undermine efficient investments. Grossman and Hart (1986) and Hart and Moore (1990)
formalize the argument by modeling how asset specificity and incomplete contracting cause a holdup
problem that diminishes the investment incentives of the party lacking control rights over productive
assets, while Bolton and Whinston (1993) add that vertical integration may cause investment distortions
motivated by the pursuit of bargaining advantage. Riordan (1990) argues in a different vein, not
assuming efficient bargaining, but still consistent with Cremer (2010)’s interpretation of contemporary
theories, that the changed information structure of a vertically integrated firm creates a holdup problem
because the owner cannot commit to incentives for the employee-manager. The basic technological
assumptions in our model extend those of Riordan (1990) to a multilateral setting.
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model of procurement and vertical integration. Section 3 analyzes equilibrium bidding
and investment with and without vertical integration, derives a condition for vertical in-
tegration to be jointly profitable for an upstream supplier and the downstream customer,
performs first- and second- best welfare analyses, and develops intuition for our conclu-
sion that vertical integration is unprofitable if the upstream market is sufficiently com-
petitive. Section 4 analyzes bargaining games that determine the vertical market struc-
ture endogenously. Section 5 explores the robustness of the rent-avoidance/investment-
discouragement tradeoff by relaxing assumptions and extending the model in various
ways: alternative cost distributions, interpreting the cost of investment as an agency
cost, elastic demand, reserve prices, and second-price auctions. Section 6 concludes, and
proofs are in the Appendix.

2 Basic Model

There is one downstream firm, called the customer, who demands a fixed requirement of a
specialized input for a project, and there are n upstream firms, called suppliers, capable
of providing possibly different versions of the required input. Each of the suppliers
makes a non-contractible investment in designing the input by exerting effort before
making a proposal. Ex ante, that is, prior to the investment in effort, a supplier’s cost
of producing the input is uncertain. Ex post, that is after the investment, every supplier
privately observes his cost realization. More effort shifts the supplier’s cost distribution
downward in the sense of first-order stochastic dominance, reducing the mean.

In the basic model, we assume that the customer’s demand is inelastic. More precisely,
we suppose the buyer has a willingness to pay v, and consider the limiting case as v goes to
infinity. This implies that in equilibrium the customer buys the input from the cheapest
supplier. This formulation captures in the extreme the idea that the likely value of the
downstream good is very large relative to the likely cost of the input. This might be so
for a highly valuable and differentiated downstream product. In Section 5, we extend the
model to allow for elastic demand by assuming that the customer’s value for the project
is random.

There are two possible modes of vertical market organization. The customer either is
independent of the n suppliers, which is referred to as “non-integration,” or is under com-
mon ownership with one of the suppliers, which is referred to as “integration.”Allowing
the customer to combine with only one supplier serves to focus the analysis on vertical
rather than horizontal market structure.

Timing We begin by studying a two-stage game in which the vertical market structure
– integration or non-integration – is given at the outset and common knowledge.

Stage 1: In stage 1, all suppliers i simultaneously make non-negative investments xi,
i = 1, .., n. The cost of investment x is Ψ(x) = a

2
x2, where a > 0 is a given parameter.

The effect of investment xi on costs is that it shifts the mean of the distribution G(.)
with support [β − xi,∞) from which i’s cost of production ci will be drawn in stage 2.
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Specifically, we assume that

G(ci + xi) = 1− e−µ(c+xi−β).

where µ > 0 and β > 0 are parameters of the exponential distribution.10

The distribution of the minimum cost with n suppliers with a vector of investments
x = (x1, ...xn) satisfying x1 ≥ x2... ≥ xn is, for c ≥ β − xn,

L(c;x) = 1−
n
∏

i=1

[1−G (c+ xi)] = 1− e−nµ(c−β)−µ
∑n

i=1 xi (1)

and, for c ∈ [β − xj , β − xj+1] with j ≥ 1, it is

L(c;x) = 1− e−jµ(c−β)−µ
∑j

i=1 xi.

If the investments are symmetric, that is, if xi = x for all i, then the minimum cost
distribution is

L(c+ x, n) ≡ 1− [1−G (c+ x)]n = 1− e−nµ(c+x−β).

All distribution functions are defined on an extended support, so that, for example,
G(c + x) = 0 and L(c + x, n) = 0 for all c ≤ β − x. The investment xi and the cost
realization ci are private information of supplier i. The mean-shifting investments in our
basic model are the same as in the Laffont and Tirole (1993) model of procurement. In
contrast to the typical Laffont-Tirole model, however, supplier heterogeneity is realized
after investments, and the realized cost is the private information of the supplier.

Stage 2: In stage 2, the customer solicits bids from the suppliers in a reverse auction.
For now, we assume that there is no reserve price, which can be justified on the ground
that the precise input specifications are non-contractible ex ante, and the buyer cannot
commit to reject a profitable offer. All suppliers i, i = 1, .., n, privately observe their ex
post costs ci.

Under non-integration, each supplier bids a price bi in a first-price auction. The
bids b = (b1, .., bn) are simultaneous. The customer selects the low-bid supplier. Under
integration, supplier 1 and the customer are under common ownership. The remaining
n− 1 independent suppliers simultaneously each submit a bid bi. The customer sources
internally if c1 ≤ min{b−1}, and purchases from the low-bid independent supplier if
min{b−1} ≤ min{c1}. In Section 4, we endogenize the market structure by analyzing a
bargaining model by adding an initial stage in which the buyer makes take-it-or-leave-it
offers for acquiring or divesting the supply unit.

Section 5 considers robustness to various extensions: non-quadratic cost of invest-
ment, different parametric cost distributions, downward sloping demand, reserve prices,
and agency problems inside the firm. Many of our results and, more importantly, the
general nature of the tradeoffs between non-integration and vertical integration depend

10By choice of monetary units, one can normalize either the parameter µ or a.
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neither on exponential cost distributions nor on quadratic investment costs. However, the
comparison of the benefits and costs of alternative organizations of procurement requires
parametric functional forms, and the quadratic-exponential specification is particularly
convenient.

What it means exactly to put the customer and supplier 1 under common ownership
is a matter of interpretation. In the spirit of the property-rights theory of the firm
(Grossman and Hart 1986, Hart and Moore 1990), one can think of the customer as
having control rights over a downstream production process, and vertical integration
as the acquisition of those control rights by one of the suppliers, who thus gains the
ability to exclude rivals from supplying the customer. Admittedly, under the assumption
of inelastic demand, it is awkward to imagine control rights with infinite value, but
the awkwardness is removed by allowing for downward-sloping demand. Alternatively,
one can think of the customer as acquiring the assets of an upstream supplier. This
interpretation seems deficient because it abstracts from the problem of motivating the
integrated supplier to invest, but the apparent deficiency is remedied by interpreting the
cost of investment to include agency costs.

3 Analysis

We now turn to the equilibrium analysis of our basic model and derive the conditions
under which either vertical integration or non-integration is the most profitable organi-
zational structure. We first derive the equilibrium bidding function of the independent
suppliers, which is independent of the vertical market structure. Then we derive in turn
the equilibrium investments under non-integration and vertical integration, respectively.
In Section 3.4, we compare the benefits and costs of vertical integration relative to non-
integration from the perspective of the customer and the integrated supplier. Section
3.5 studies the planner’s investment problem under first- and second-best scenarios, and
Section 3.6 develops intuition for the results. Throughout the analysis of the baseline
model, we assume that µ

a
< n

n−1
, which guarantees that a symmetric equilibrium exists.

3.1 Bidding

Bidding under Non-Integration The equilibrium bidding function bNI(c) under
non-integration when all n independent suppliers invest the same amount x is well known
from auction theory. The auction being a first-price procurement auction, bNI(c) is equal
to the expected value of the lowest cost of any of the n− 1 competitors, conditional on
this cost being larger than c. That is

bNI(c) =

∫∞
c
ydL(y + x, n− 1)

1− L(c+ x, n− 1)
= c+

1

µ(n− 1)
.

The constant hazard rate of the exponential results in constant markup bidding.
Given that we confine attention to symmetric equilibria, the focus on symmetric

investments x for the equilibrium bidding function is without loss of generality: supplier
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i’s deviation to some xi 6= x will not be observed by any of its competitors, and any
bidder i’s equilibrium bid does not depend on its own distribution, only on its own cost
realization. Consequently, if i deviates to some xi < x, it will optimally bid according
to bNI(c) for any possible cost realization. On the other hand, if xi > x, i’s optimal bid
will simply be bNI(β − x) for all c ∈ [β − xi, β − x] and bNI(c) for all c > β − x.

Bidding under Vertical Integration Vertical integration effectively establishes a
preferred supplier, who serves to limit the market power of non-integrated suppliers as
in Burguet and Perry (2009). Let x1 be the equilibrium investment level of the integrated
supplier and x2 be the symmetric investment level of all independent suppliers.

The equilibrium bidding function bI(c) of the independent suppliers is then such that

c = argmax
z

{

[bI(z)− c] [1−G(bI(z) + x1)][1−G(z + x2)]
n−2

}

.

As G is exponential and assuming x1 ≥ x2, bI(c) is such that

c = argmax
z

{

[bI(z)− c] e−µ(bI (z)+(n−2)z)k
}

,

where k = e−µ(x1+(n−2)x2−(n−1)β) is a constant (that is, independent of z and bI(z)). The
first-order condition, evaluated at z = c, is

[b′I(c)− µ(bI(c)− c)(b′I(c) + n− 2)]
[

e−µ(bI (c)+(n−2)c)k
]

= 0.

Imposing the bounded-markup condition limc→∞ bI(c)/c = 1, this differential equation
has the unique solution

bI(c) = c+
1

µ(n− 1)
. (2)

Observe that bI(c) = bNI(c). That is, provided x1 ≥ x2, equilibrium bidding by the
independent suppliers does not change with the vertical market structure.

Below we will show that there is an equilibrium satisfying x1 ≥ x2. Showing that
x1 ≥ x2 in equilibrium is straightforward as unilateral deviations from a prescribed
equilibrium level x1 will not be observed by the non-integrated suppliers and will thus not
affect equilibrium bidding off the equilibrium path. As with non-integration, downwards
deviations xi < x2 by i = 2, .., n will never induce i to bid differently from what bI(c)
prescribes. If the independent supplier i invested more than x2, he will, obviously, bid
according to bI(ci) for all ci ≥ β − x2 for nothing changes in his optimization problem
at the bidding stage compared to the case where xi = x2. If xi > x2, cost realizations
ci < β − x2 occur with positive probability. For these realizations, the optimal bidding
for i is as described in the following lemma.

Lemma 1 Under vertical integration, for cost realizations ci < β−x2, bidder i’s optimal
bid b(ci) satisfies

b(ci) =







bI(β − x2) if β − x2 ≥ ci ≥ β − x2 − 1
µ
n−2
n−1

ci +
1
µ

if β − x2 − 1
µ
n−2
n−1

≥ ci ≥ β − x1 − 1
µ

β − x1 otherwise

10



if all other independent suppliers invest x2 and the integrated supplier invests x1 with
x1 ≥ x2.

The bidding function b(ci) is useful for analyzing deviations from a candidate equilibrium
in which independent suppliers invest symmetrically. For cost draws close to but below
β−x2, a supplier who deviated at the investment stage submits the bid bI(β−x2), which
guarantees that i never loses to an independent supplier. For smaller costs, supplier i
competes only against the integrated supplier by bidding ci+

1
µ
, provided ci+

1
µ
> β−x1.

Otherwise, i bids the lowest possible cost of the integrated supplier β − x1.

3.2 Non-Integration

The expected profit at the investment stage under non-integration of supplier i when
investing xi while each of the n − 1 competitors invests x, anticipating that he will
bid according to bNI(ci) when his cost is ci with ci ≥ β − x, and bNI(β − x) whenever
ci < β − x is

ΠNI(xi, x) =

∫ ∞

β−x

[bNI(c)− c][1−G(c+ x)]n−1dG(c+ xi) +

∫ β−x

β−xi

[bNI(β − x)− c]dG(c+ xi)−
a

2
x2i

= xi − x− 1

µ

n− 2

n− 1
+
n− 1

µn
e−µ(xi−x) − a

2
x2i

for xi ≥ x, and

ΠNI(xi, x) =

∫ ∞

β−xi

[bNI(c)− c][1 −G(c+ x)]n−1dG(c+ xi)−
a

2
x2i

=
1

µn(n− 1)
e−µ(n−1)(x−xi) − a

2
x2i

for xi < x. The first-order condition for a symmetric equilibrium with xi = x∗ is thus

∂ΠNI(x
∗, x∗)

∂xi
=

1

n
− ax∗ = 0,

yielding x∗ = 1
an

as investment levels in any candidate symmetric equilibrium. That is,
in equilibrium, marginal costs of investment are equal to expected market shares. This
result – that marginal costs of investment are equal to market shares – holds much more
generally than for the exponential distribution and quadratic cost functions we assume
here. By the envelope theorem, it holds for any symmetric equilibrium in a model with
mean shifting investments.

The equilibrium expected procurement cost to the customer under non-integration
equals the expected low bid. Given symmetric investment levels x, the formula for the
equilibrium expected procurement cost is

PCNI(x) =

∫ ∞

β−x

b(c)dL(c+ x, n) = β − x+
1

µn
+

1

µ(n− 1)
,

11



where β − x + 1
µn

is the expected cost production cost given investments x and 1
µ(n−1)

is the markup. Evaluating at the equilibrium value under non-integration, that is at
x = 1

an
, we thus get the equilibrium value of expected procurement cost of the customer

and the expected profit of a representative supplier as follows:

Lemma 2 In symmetric equilibrium under non-integration, the expected procurement
cost PC∗

NI of the customer is

PC∗
NI = β − 1

an
+

1

µn
+

1

µ(n− 1)
,

and the expected profit of a representative supplier is

Π∗
NI =

1

µn(n− 1)
− 1

2an2
.

Symmetric equilibrium exists if and only if µ
a
< n

n−1
. In this equilibrium, the procurement

cost PC∗
NI and the suppliers’ equilibrium profit Π∗

NI decrease in n.

These formulas have very intuitive interpretations. Expected procurement costs
PC∗

NI are equal to the expected cost of production plus the markup. A supplier’s ex-
pected equilibrium profit Π∗

NI is equal to the markup, times the probability of winning,
minus the investment costs.

3.3 Vertical Integration

We now turn to the equilibrium analysis when the customer is vertically integrated with
supplier 1. The integrated firm’s maximization problem is now to choose its investment
x1 to minimize the sum of expected procurement costs and investment costs a

2
x21, denoted

PCI(x1, x2), anticipating that the n−1 independent suppliers invest x2 and bid according
to bI(c) and that it will source externally if and only if the lowest bid of the independent
suppliers is below its own cost realization c1. The expected procurement cost given
x1 ≥ x2 is

PCI(x1, x2) =
a

2
x21 +

∫ ∞

β−x1

c1dG(c1 + x1)

−
∫ ∞

β−x2+
1

µ(n−1)

∫ c1− 1
µ(n−1)

β−x2

[

c1 −
(

c2 +
1

µ(n− 1)

)]

dL(c2 + x2, n− 1)dG(c1 + x1)

= β − x1 +
1

µ
− 1

µ

n− 1

n
e−µ(x1−x2)− 1

n−1 +
a

2
x21,

which consists of the expected cost of production β − x1 +
1
µ
if the customer always

sourced internally, minus the cost savings from procuring externally 1
µ
n−1
n
e−µ(x1−x2)− 1

n−1 ,

plus the effort cost ax21/2. A necessary condition for PCI(x1, x2) to be minimized over
x1 is therefore that

−1 +
n− 1

n
e−µ(x1−x2)− 1

n−1 + ax1 = 0. (3)

12



Notice that the second-order condition for a minimum is −µn−1
n
e−µ(x1−x2)− 1

n−1 + a ≥ 0.

Since e−µ(x1−x2)− 1
n−1 ≤ 1, a sufficient condition for this to be the case is µ

a
≤ n

n−1
, our

maintained assumption guaranteeing existence of a symmetric equilibrium under non-
integration.

Consider next a representative non-integrated supplier. Given investments x1 by the
integrated supplier and x2 by the n− 2 competing independent suppliers, the expected
profit ΠI(xi, x1, x2) of an independent supplier i when investing xi ≤ x2 is

ΠI(xi, x1, x2) =
1

µn(n− 1)
e−µ(x1−x2)− 1

n−1
+µ(n−1)(xi−x2) − a

2
x2i . (4)

As shown in the Appendix, the derivative of the expected profit function with respect
to xi is continuous at x2. Therefore, a necessary condition for a symmetric equilibrium
(symmetric in the investment level x2 of the independent suppliers) with x1 ≥ x2 is

∂ΠI(xi, x1, x2)

∂xi
|xi=x2 =

1

n
e−µ(x1−x2)− 1

n−1 − ax2 = 0. (5)

The following lemma characterizes the equilibrium investments x1 and x2 given by
the first-order conditions and derives their comparative statics with respect to µ and n.

Lemma 3 The equilibrium values for x1 and x2, given by the first-order conditions (3)
and (5), are

x1 =
1

an
+
n− 1

n
∆I(n, µ) and x2 =

1

an
− 1

n
∆I(n, µ), (6)

where ∆I(n, µ) = x1 = x2 is the unique non-negative solution to

a∆I = 1− e−µ∆I− 1
n−1 . (7)

For any n, aggregate investments add up to 1/a, i.e. x1 + (n − 1)x2 = 1/a. Moreover,
x1 increases in µ and decreases in n.

Observe that Lemma 3 implies that

x1 > x∗ > x2.

This distortion in equilibrium investments is one of the keys to the following results.
Evaluating PCI(x1, x2) and ΠI(x1, x2) at the equilibrium investment levels, we get

that the expected equilibrium procurement cost PC∗
I ≡ PCI(x1, x2) and the expected

equilibrium profit Π∗
I ≡ ΠI(x1, x2) of an independent supplier are as follows:

Lemma 4 A symmetric equilibrium under integration exists if a symmetric equilibrium
exists under non-integration. The expected cost of procurement of the integrated firm is

PC∗
I = β +

a− µ

µ
x1 +

a

2
x21

while the expected of profit of a non-integrated supplier is

Π∗
I =

1

µ(n− 1)
ax2 −

a

2
x22,

where x1 and x2 are defined by (7) and (6).
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3.4 Comparison

Vertical divesture, or non-integration, is mutually profitable for the customer and an
integrated supplier if PC∗

I + Π∗
NI > PC∗

NI . The supplier profit under non-integration
Π∗

NI can be thought of as part of the opportunity cost of vertically integrated procure-
ment. This amounts to assuming that the integrated firm can sell its supply unit to an
independent outside supplier, thereby increasing the number of non-integrated suppliers
from n− 1 to n.

Proposition 1 Assuming a symmetric equilibrium exists under non-integration, dives-
ture of the vertically integrated supplier is jointly profitable if and only if

Φ :=
a

2

(

n− 1

n

)2

(∆I)2 +
n− 1

n

(

a− µ

µ
+

1

n

)

∆I − 1

µn
> 0. (8)

where ∆I = ∆I(n, µ) is the positive solution to (7).

Figure 1 illustrates Proposition 1 for the normalization a = 1.11 It shows that the benefits
of divestiture increase as n increase when vertical integration is the more profitable
organization structure, and that the benefits from divestiture stay positive once they
are positive. Divestiture also becomes more attractive as µ increases. This is intuitive
because higher µ means a lower variance and therefore less rents accruing to independent
suppliers. Finally, for µ ≤ 1/2, vertical integration dominates divestiture for any n.

Μ=0.25

Μ=0.5

Μ=0.75

Μ=1

10 20 30 40
n

-0.020

-0.015

-0.010

-0.005

F

Figure 1: Φ evaluated at µ ∈ {0.25, 0.5, 0.75, 1} and a = 1 as a function of n.

To appreciate this result, it is important to understand the powerful advantages of
vertical integration. With inelastic demand and quadratic effort cost, the aggregate
investment in effort is the same under non-integration and integration. This follows
because the equilibrium marginal costs of effort are equal to market shares which sum

11To see that the normalization is innocuous, observe that (7) can be solved for a∆I as function of
n and µ/a, and therefore aΦ is a function of n and µ/a. The relevant range of parameters for which a
symmetric equilibrium exists under non-integration is µ

a
≤ n

n−1 .
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to one. Furthermore, since the exponential distribution has a constant hazard rate, the
distribution of minimum production cost is more favorable under vertical integration.
The support of the minimum cost distribution is the union of the supports of the cost
distributions of the integrated and independent suppliers, and depends only on aggregate
investment on the support of an independent firm. Because the additional investment of
the integrated firm shifts its support downward, however, the minimum cost distribution
shifts to the left. On top of that advantage of vertical integration, the integrated firm
self-sources in some instances, thereby avoiding paying a markup and further reducing
its procurement cost compared to non-integration.

From this perspective, the downside to vertical integration might seem more modest.
Because the cost of effort is convex, the total effort cost increases as the same total in-
vestment is redistributed from independent suppliers to the integrated supplier. In other
words, even though the vertically integrated firm fully compensates for the investment
discouragement of the independent suppliers, it does so at a higher cost. The proposition
shows that the higher total investment cost can be enough to substantially offset and
even outweigh the benefits of vertical integration.

Notice that a “revealed preference argument” that the customer can do no worse by
changing its conduct under vertical integration does not apply to this situation because
of the response of the independent suppliers. Even though the integrated firm could keep
its investment at the pre-integration level but chooses not to, and the integrated firm
could source its requirements the same way as under non-integration but chooses not to,
the other firms nevertheless reduce their investments in equilibrium. All we can conclude
from revealed preference is that, given that the other firms reduce their investments, the
integrated buyer prefers more to less investment, but this does not allow us to conclude
that it is better off with integration.

3.5 Planner’s Problem

First-Best It is instructive to compare equilibrium outcomes with those that would
obtain if a social planner made the investment and sourcing decisions. The planner’s
objective is to minimize the total expected cost. Since the planner would always select
the supplier with the lowest realized cost, the expected production cost is

EC(x) =

∫ ∞

c(x)

cdL(c;x),

where x = (x1, .., xn) and and c(x) = β −min{x1, .., xn}. The planner’s problem then is

min
x

EC(x) +
a

2

n
∑

i=1

x2i . (9)

Proposition 2 The solution to the planner’s problem (9) is symmetric and satisfies
xFB
i = 1

an
for all i = 1, .., n if and only if µ ≤ a. For µ > a, the socially optimal

investments are asymmetric and satisfy xFB
1 = 1

an
+ n−1

n
∆FB and xFB

i = 1
an

− 1
n
∆FB for

i = 2, .., n, where ∆FB is the unique positive number satisfying

a∆FB = 1− e−µ∆FB

.

15



Observe that the planner’s problem has a unique solution. Notice also that ∆FB = 0
at µ = a and that ∆FB increases in µ for µ > a.12 The symmetric solution corresponds
to the symmetric equilibrium investments under non-integration, which exists for µ

a
<

n
n−1

. In other words, the symmetric equilibrium under non-integration exists even for a
parameter range – for 1 < µ

a
< n

n−1
– for which it is not socially optimal. In contrast,

the asymmetric solution differs from the equilibrium investment levels under vertical
integration in that in equilibrium the difference between investments is larger than would
be socially optimal, that is ∆I > ∆FB holds. This difference is driven by the sourcing
distortion under vertical integration.

Second-Best Likewise, it is of interest to look at the second-best scenario, according
to which the planner can choose the investment level x1 for the integrated supplier and
the investment levels x2 for the n− 1 independent suppliers, taking as given that there
is a sourcing distortion resulting from the markup 1

µ(n−1)
. Denote by xSB1 and xSB2 the

solution values to the planner’s second-best problem and let ∆SB ≡ xSB1 − xSB2 .

Proposition 3 The solution to the planner’s second-best problem ∆SB is given by the
unique positive number satisfying

1− n

n− 1
e−µ∆SB− 1

n−1 = ∆SB

and satisfies 0 < ∆SB < ∆I .

That is, in equilibrium there is excessive investment by the integrated supplier and too
little little investment by the independent suppliers even relative to the second-best
solutions. However, because ∆SB > 0, the symmetric equilibrium investment levels
under non-integration are not socially optimal if there is a sourcing distortion because
the buyer has a preferred supplier.

3.6 Discussion

The unique solution to the planner’s first-best investment problem coincides with the
symmetric equilibrium outcome under non-integration when supplier heterogeneity is
sufficiently great, that is, when µ is small. Despite the social undesirability of vertical
integration, however, the buyer has the incentive to rely exclusively on outside supply
only when heterogeneity in the upstream industry is not too great and when the upstream
market is not too concentrated. The general intuition for this result is that, by creating
a preferred supplier, vertical integration squeezes the profits of the upstream sector by
avoiding paying markups, and this benefit dominates the higher production costs that
result from sourcing distortions and the reallocation of suppliers’ investments in cost
reduction. More precisely there is a positive incentive for vertical integration if the

12To see that ∆FB = 0 at µ = a, notice that in this case the equality a∆ = 1 − e−µ∆ can be written
as z = 1 − e−z with z = a∆, which only holds if z = 0. An easy way to see that ∆FB increases in µ
for µ ≥ a is to observe that the function a∆ is trivially independent of µ while the function 1 − e−µ∆

increases in µ. Thus, the fixed point ∆FB must increase in µ.
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reduction in rents paid to the independent firms exceeds the increase in the total cost of
production.

To deepen this intuition, re-consider the second-best planning problem, in which
supplier 1 is a preferred supplier of the sort studied by Burguet and Perry (2009), and
suppose that the planner is able to reallocate investments away from the independent
sector, toward the preferred supplier. Normalizing a = 1, the total amount of investment
equals one, and ∆ = 0 corresponds to symmetric investments equal to xi = 1

n
for

i = 1, ...n, while 1 ≥ ∆ > 0 corresponds to an investment of x1 = 1
n
+ n−1

n
∆ for

the preferred supplier and x2 = 1
n
− 1

n
∆ for each of the independent suppliers. We

restrict attention to those circumstances in which symmetric investments are first-best,
i.e. 0 < µ ≤ 1, and focus on the boundary case µ = 1. In the boundary case, any lesser
degree of supplier heterogeneity – that is, any larger values of µ – would lead the social
planner to an asymmetric solution under first-best. That is, the planner would designate
one of the suppliers to invest more in cost reduction than the others. For this boundary
case, figure 2 illustrates the costs and benefits of establishing a preferred supplier as a
function of ∆ for the case with n = 4.

0.2 0.4 0.6 0.8
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Figure 2: Profitability of Vertical Integration for µ = 1 and n = 4.

First, observe that ∆ = 0 corresponds to the Burguet and Perry (2009) model in
which the preferred supplier has the same cost distribution as independent suppliers.
Given the sourcing distortion, the planner has an incentive to reallocate investments
toward the preferred supplier, resulting in asymmetric cost distributions. Holding the
sourcing distortion constant, the planner’s incentive to reallocate is shown by the down-
ward sloping concave curve in figure 2, which has the functional form

K(∆) = 1− e−µ∆− 1
n−1 −∆.

This curve graphs the difference between the marginal return to investment by the pre-
ferred supplier and the marginal return to investment of an independent supplier at a
given allocation ∆. We interpret K(∆) to measure the ”efficiency effect” of a small in-
vestment re-allocation, that is, the marginal reduction in expected total production cost
given the market shares of the preferred supplier and the independent firms.
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Second, notice that K(∆) also indicates the difference in private incentives for invest-
ment under vertical integration. If K(∆) > 0, then a vertically-integrated supplier has a
unilateral incentive to invest more, and an independent supplier has a unilateral incentive
to invest less, whereas if K(∆) < 0 the opposite is true. The equilibrium difference in
investment levels ∆I occurs precisely at the point such that K(∆I) = 0. In other words,
equilibrium under vertical integration is equivalent to establishing a preferred supplier
and reallocating investments such that the efficiency effect is zero.

Third, consider how investment reallocations impact expected total production cost
if market shares are not held constant. A sourcing distortion in favor of a preferred
supplier raises total cost by sometimes shifting production to the more costly preferred
provider. The overall consequences of an investment reallocation on production cost
depend on the magnitudes of this sourcing effect and the efficiency effect. The tradeoff
between the two effects is demonstrated in figure 2 with the convex curve labeled C(∆),
which graphs the increase in total cost that results from creating a preferred supplier
and reallocating investment so that the preferred supplier invests ∆ more each of the
others. This cost distortion relative to the first-best has the following functional form:

C(∆) =
1

µ

(

1− e−µ∆− 1
n−1

)

+
n− 1

2n
(∆− 1)2 − 1

µn
− n− 1

2n
.

For ∆ < ∆I , the efficiency effect and sourcing effect have opposite signs. The efficiency
effect dominates for sufficiently small ∆, and C(∆) declines to its minimum at ∆ = ∆SB

where the two effect exactly balance, while for ∆I > ∆ > ∆SB the adverse sourcing
effect overcomes the beneficial efficiency effect to push up total cost. For ∆ > ∆I , both
effects are negative. Therefore, ∆SB solves the second-best planning problem.

Fourth, consider the extent to which the creation of a preferred supplier squeezes the
profits of its competitors. The sourcing distortion reduces rents paid to non-preferred
suppliers by avoiding a markup whenever the cost of the preferred supplier is below the
lowest bid. Furthermore, the profits are squeezed further as investment is reallocated
toward the preferred supplier, as illustrated by the curve labeled R(∆). The functional
form for the boundary case yields a relatively flat curve:

R(∆) = − 1

µn

(

1− e−µ∆− 1
n−1

)

− n− 1

2n2
(∆− 1)2 +

n− 1

2n2
.

In other words, the creation of a preferred supplier has a significant profit squeezing
effect, but the magnitude of the effect is not very sensitive to an investment reallocation.
Observe that R(∆) = − 1

n
C(∆)− 1

µn
.

Finally, consider the incentive for vertical integration versus non-integration. Inte-
gration is profitable for the buyer and supplier 1 if and only if C(∆) +R(∆) ≥ 0, which
occurs for values of ∆ below a critical value ∆̂. Establishing a pure preferred supplier
in an industry with symmetric investments, and therefore symmetric cost distributions,
is always profitable, i.e. C(0) < −R(0), as shown by Burguet and Perry (2009). Asym-
metric cost distributions resulting from increasingly reallocating investments toward the
preferred supplier, however, eventually turn the tide against vertical integration, because
the cost distortion rises much faster than rents are reduced. The net cost C(∆) +R(∆)
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intersects the horizontal axis at a critical investment allocation ∆̂ above which the ad-
vantages of creating a preferred supplier with a superior cost distribution are outweighed
by higher investment costs. The investments rise with reallocation because of the con-
vexity of the investment cost function. Therefore, the profitability of vertical integration
compared to non-integration depends on whether the equilibrium point (∆I) occurs to
the right or to the left of ∆̂. Figure 2 illustrates a particular upstream market structure
in which the equilibrium intersection occurs to the left of ∆̂, and so vertical integration
is profitable.

Figure 2 is drawn for a concentrated upstream industry (n = 4) in which high markups
make the returns from reducing rents very high relative to the cost penalty resulting
from sourcing distortions. As the number of suppliers increases, the C(∆) + R(∆)-
curve and the K(∆)-curve both shift upward, but the latter more so. Eventually the
equilibrium value of ∆, ∆I , moves to the right of ∆̂, and non-integration becomes the
preferred vertical structure. The reason for this is that, while there is not much rent to
be squeezed in an unconcentrated industry, there nevertheless is a relatively large cost
penalty from vertical integration because of a still significant sourcing distortion and
resulting investment reallocation. This point is illustrated in figure 3 for n = 12.
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Figure 3: Profitability of Non-Integration for µ = 1 and n = 12

In fact, there is a threshold value n̂ such that vertical integration is preferred for
n > n̂, and non-integration is preferred for n < n̂. The threshold value n̂ can be
computed as follows. Let ∆̂(n, µ) be the value of ∆ for which C(∆) + R(∆) = 0 and
substitute ∆̂(n, µ) into the function K(∆) to define the function K̂(n, µ) = K(∆̂(n, µ)).
The value n̂ is then defined as the number (if it exists) satisfying K̂(n̂, µ) = 0. The
function K̂(n, µ) is illustrated in figure 4 for three different value of µ. For µ = 1,
n̂ ≈ 8.78, so non-integration is preferred when there are 9 or more upstream suppliers.
For µ = 1/3, K̂(n, µ) < 0 for all n ≥ 2, implying that vertical integration is always the
buyer’s preferred market structure. This is another way to state the result in Proposition
1.
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Figure 4: The function K̂(n, µ) for µ ∈ {1/3, 2/3, 1}.

4 Endogenous Market Structure

We now analyze bargaining games in which the market structure is determined endoge-
nously. We first analyze an acquisition game.

Acquisition Game The starting assumption is that the underlying parameters are as
above and common knowledge. At the outset, the market structure is non-integration.
The customer then makes sequential take-it-or-leave-it offers ti to the independent sup-
pliers i = 1, .., n. The sequence in which offers are made is pre-determined but since
suppliers are symmetric ex ante this is arbitrary. Without loss of generality, we assume
that supplier i receives the i-th offer. If i accepts, the acquisition game ends and the
game with vertical integration analyzed above ensues. If firm i < n rejects, the customer
makes the offer ti+1 to firm i+ 1. If supplier n receives an offer but rejects it, the game
with non-integration analyzed above ensues.

The equilibrium behavior is readily determined. Suppose first that Φ(n, µ) < 0. That
is, vertical integration is jointly profitable. Then the subgame perfect equilibrium offers
are ti = Π∗

I for i < n and tn = Π∗
NI . On and off the equilibrium path, these offers are

accepted. Notice that in order for supplier n to accept the offer he receives, he must
be offered tn ≥ Π∗

NI because the alternative to his rejecting is that the game with the
non-integrated market structure ensues, in which case he nets Π∗

NI . Anticipating that
the last supplier would accept the offer if and only if he is offered Π∗

NI , the alternative
for any supplier i < n when rejecting is that the ensuing market structure will be
non-integration if Φ < 0 and integration, with i as an independent supplier netting Π∗

I

otherwise. Therefore, it suffices to offer ti = Π∗
I to i with i = 1, .., n − 1, provided

tn = Π∗
NI . But as the latter is only a credible threat if Φ(n, µ) ≤ 0, it follows that

vertical integration is more profitable than the necessary (and sufficient) condition for
it to be an equilibrium outcome suggests: Φ(n, µ) ≤ 0 must be the case for integration
to occur on the equilibrium path, but if Φ(n, µ) ≤ 0, the profit of integration to the
customer is actually strictly larger than −Φ(n, µ) because she has to pay less than Π∗

NI

on the equilibrium path.
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Lastly, if Φ(n, µ) > 0, vertical integration is not jointly profitable and the customer
will only make offers that will be rejected (e.g. ti ≤ 0 for all i would be a sequence of
such offers).

Divestiture Game Suppose now that the initial market structure is vertical integra-
tion and that the customer and the integrated supplier jointly would be better off with
non-integration (i.e. Φ(n, µ) > 0). Assuming the customer can make an offer to an
outsider who is willing to pay any price that allows him to break even, the customer can
sell her supply unit at the price Π∗

NI .

Bargaining with Externalities The acquisition process involves bargaining with ex-
ternalities: A supplier’s reservation price for selling is different when he is assured that
if he does not sell no other supplier will sell, and if he has no such assurance. This reser-
vation price is given by the profit under non-integration, that is, when the supplier does
not sell, minus the reduction in profits when another supplier sells. In our acquisition
game with sequential take-it-or-leave-it offers, this is reflected by the higher offer the
last supplier receives (off the equilibrium path), for whom the reduction in profits is zero
if he does not accept the offer because no other offer will be made subsequently. The
equilibrium in this acquisition game is unique because of the sequential nature of moves
and the power of subgame perfection. For the same reason, the equilibrium outcome
remains unique when Φ(n, µ) > 0 even though equilibrium no longer is simply because
any sequence of offers that will be rejected are part of an equilibrium. Notice also that in
our acquisition and divesture games, the equilibrium conditions are such that whenever
there is an incentive to integrate, there is no incentive to divest, and conversely.

Of course, alternative bargaining procedures are conceivable. For example, following
Jehiel and Moldovanu (1999) one could consider a second-price auction in which all
suppliers simultaneously submit bids, and the bidder with the lowest bid wins and is
paid the second-lowest bid. Suppose first that the buyer has the right to reject all
offers but does not set a reserve. If Φ(n, µ) < 0, the unique equilibrium outcome is
such that the buyer acquires a supply unit at the price Π∗

I essentially because of the
standard Bertrand (or second-price auction) arguments. In contrast, when Φ(n, µ) >
0 > Φ̂(n, µ) := PC∗

I +Π∗
I −PC∗

NI the equilibrium outcome is no longer unique. Observe
that −Φ̂(n, µ) is the profit from vertical integration accruing to the buyer when he
only has to pay the price Π∗

I instead of Π∗
NI to acquire the supply unit.13 This game

now has two equilibrium outcomes. In every equilibrium leading to the first one, every
supplier submits such a high bid that it will be rejected by the buyer, and no acquisition
occurs just like in the acquisition game with sequential take-it-or-leave-it offers. However,
there are also equilibria in which two or more suppliers submit bids equal to Π∗

I and
the buyer selects one of these lowest price bidders at random. For suppliers, however,
these equilibria are Pareto dominated by any equilibrium in which no acquisition occurs.
Suppose now that the buyer can commit to a reserve price R with the usual meaning
that the buyer is committed to buy from (one of the lowest) bidders whenever the lowest

13It can be shown that Φ̂(n, µ) can be negative or positive as a function of µ and n. In fact, the
emerging picture is very similar to figure 1 except that all curves are slightly shifted downwards.
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bid is at or below R but not otherwise. For Φ̂(n, µ) < 0, the buyer always acquires a unit
at the price Π∗

I . By setting the reserve R = Π∗
NI , the buyer induces the suppliers to bid

very aggressively. Notice that under the condition Φ̂(n, µ) < 0 < Φ(n, µ), this requires
the buyer to set a reserve above her willingness to pay.14

Finally, interpreting integration as forward integration by a supplier, it is natural to
assume that the sellers bid for the right to acquire the downstream unit, with the buyer
selling to the supplier with the highest bid. The equilibrium conditions for acquisition
to occur, and the scope for multiplicity of equilibrium outcomes, are the same as in the
second-price auction without a reserve just described.15

5 Extensions

In this section, we study a number of extensions to demonstrate robustness of the main
insights derived from the model with inelastic demand, exponentially distributed costs,
quadratic costs of effort, and no reserve price.

5.1 Alternative Cost Distributions

Generalized Shifting Support Model The exponential cost distribution is conve-
nient because it allows a closed form solution of the bid function under vertical inte-
gration. More generally, consider a cost distribution of the form G(c + x) with support
[β − x,∞) and density g(c + x), satisfying limc→∞ cg(c + x) = 0. The shifting-support

model has the convenient property that ∂G(c+x)
∂x

= g(c+ x). Thus, cost-reducing invest-
ment maintains the shape of the cost distribution while shifting its support downward.

Equilibrium bidding under non-integration with symmetric suppliers can be derived in
the usual way. Suppose n suppliers have the same cost distribution G(c+x), and consider
a representative firm with cost realization c when rival bidders use an invertible bid
strategy b(c). A representative firm i chooses bi to maximize (bi−c)[1−G(b−1(bi)+x)]

n−1.
Therefore, a symmetric equilibrium bidding strategy bNI(c) satisfies

c = argmax
z

{

[bNI(z)− c] [1−G(c+ x)]n−1} ,

or, equivalently,

bNI(c) = c+

∫∞
c

[1−G(z + x)]n−1 dz

[1−G(c+ x)]n−1 .

14This reflects the insight of Jehiel and Moldovanu (1999) that with negative externalities in a sale
auction, the seller may optimally set a reserve below his value.

15Somewhat intriguingly, whenever acquisitions occur in equilibrium for a broader range of parameter
values than divestures occur, there is a potential Ponzi scheme inherent in the model. For example, with
a reserve price and a second-price auction, the buyer could buy at the price Π∗

I and would be willing

and able to sell at the price Π∗
NI under the condition Φ̂(n, µ) < 0 < Φ(n, µ), suggesting that with such

bargaining procedures the model would need to be extended to rule out the existence of money-pumps.
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Note that bNI(c) is an increasing function and is indeed invertible on the support of G(·).
Assuming that first-order conditions are necessary and sufficient for equilibrium invest-
ments, it is straightforward that each independent supplier invests x = 1

an
in equilibrium.

Under vertical integration with investment x1 by the integrated supplier and x2 by
each independent supplier, the equilibrium bidding function bI(c) satisfies

bI(c) = c+

∫∞
c
(1−G(z + x2))

n−2(1−G(bI(z) + x1))dz

(1−G(c+ x2))n−2(1−G(bI(c) + x1))
.

Letting L(c+ x, n) ≡ 1− [1−G(c+ x)]n denote the distribution of the minimum order
statistic with n independent suppliers, equilibrium investments satisfy16

ax2 =
1

n− 1

∫ ∞

−∞
[1−G(bI(c) + x1)]dL(c + x2, n− 1)

and

ax1 =

∫ ∞

−∞
G(bI(c) + x1)dL(c+ x2, n− 1).

As we show in Proposition 4 below, the shifting support model retains the “adding-up
condition” a(n− 1)x2 + ax1 = 1.

Difficulties with this more general formulation arise because the bidding function
under vertical integration does not in general admit a closed form solution, which makes it
challenging to characterize procurement costs under vertical integration. The exponential
case is exceptional because it yields a constant markup bidding function for any n ≥ 2.

Uniform Special Case A model in which G is a uniform distribution and n is equal
to 2 is another special case that admits a closed form solution for bI . That is, suppose
that given investment xi supplier i’s costs are uniformly distributed on [β−xi, 1+β−xi].
Facing a competing supplier who invests x ≥ xi, an independent bidder bids according
to

b(c) =
c+ 1 + β − x

2

for c ∈ [β − x, 1 + β − x] and submits an arbitrary bid b > 1 + β − x for c > 1 + β − x
with and without integration.

For n = 2, vertical integration reduces procurement costs relative to the symmetric
equilibrium under non-integration, which exists whenever a ≥ 1.17A numerical analysis
of the uniform case for larger values of n requires nesting a numerical solution for the
bidding function, which has no closed form solution under vertical integration because
the cost distributions differ. Figure 5 plots the benefits from non-integration minus the
payoff from vertical integration, Φ(n), as a function of n for a = 1.75.

An intuitive conjecture is that vertical integration has the advantage of squeezing
(rather than just avoiding) markups. Analysis of the shifting support exponential model

16The equilibrium condition for integrated firm uses the fact that the marginal return to cost reduction
when b is the minimum bid of the independent sector is G(b+ x1).

17See the Online Appendix for details.
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Figure 5: Profitable Non-integration for Uniformly Distributed Costs.

has already shown that this intuition is not correct in general, as markups are constant in
that case.18 For the uniform case, equilibrium bid markups indeed decrease with vertical
integration seemingly in line with the intuition. However, closer analysis reveals that
the reason for this is the effect of vertical structure on equilibrium investments because,
keeping investments fixed, the vertical structure does not affect equilibrium bidding.19

Figure 6 depicts the equilibrium bids given equilibrium investments.

integration

nonintegration

45 degree line

0.2 0.4 0.6 0.8
c
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0.4
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bid

Figure 6: Equilibrium bidding with uniformly distributed costs.

18For the case of a fixed cost distribution with a convex decreasing inverse hazard rate, Burguet
and Perry (2009) argue that a right of first refusal granted to a preferred supplier is profitable in part
because it causes independent suppliers to bid more aggressively. The exponential cost distribution is a
limiting case, in which the hazard rate is constant and the bid distribution does not change with vertical
integration, consistent a more basic markup avoidance motive for granting a right of first refusal.

19To see this, notice that in a standard first-price procurement auction with n bidders and costs
independently drawn from the uniform distribution with support [c, c] the equilibrium bidding function
is β(c) = c/n + (n − 1)c/n. With one integrated supplier whose bid is equal to his realized cost c1
and n − 2 competing independent suppliers who all bid according to βI(c) = α0 + α1c, satisfying the
the boundary condition βI(c) = c (which implies α0 = c(1 − α1)), the optimal bid of a representative

independent bidder i, bi, solves the problem of maximizing (1/α1)
n−2 (1/(c− c))n−1 (c− bi)

n−1(bi− ci),
yielding bi = c/n+ (n− 1)ci/n. The second-order condition is readily seen to be satisfied.
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Fixed-Support Exponential Model Another interesting alternative cost distribu-
tion is an exponential distribution with fixed support. For an arbitrary investment x,
let

G(c; x) = 1− e−µx(c−β)

be the distribution of costs where µ > 0 and β ≥ 0. In contrast to our baseline shifting
support exponential model, in the fixed support exponential model investment shifts
the scale parameter µx rather than the location parameter β, thereby shifting both the
mean, 1

µx
− xβ, and the standard deviation, 1

µx
, of the cost distribution. The fixed sup-

port exponential cost distribution function has an appealing interpretation: production
requires some design effort, and greater design effort reduces the frequency of high cost
outcomes. We maintain the assumption that the cost of investment is quadratic, i.e.
Ψ(x) = a

2
x2 with a > 0. We set a = 1 and µ = 1, which is without loss of generality by

appropriately choosing units of measurement for c and x. We also set β = 0 to simplify
derivations.

Equilibrium bids by independent suppliers are again a constant markup on cost.
The difference from the baseline model is that the markups depend endogenously on
investments. In the case of non-integration the bid function is

bNI(c) = c+
1

(n− 1)xNI
,

where xNI is the symmetric investment of n independent suppliers. In the case of vertical
integration, the bid function is

bI(c) = c +
1

x1 + (n− 2)x2
,

where x1 is the investment of the integrated supplier and x2 the symmetric investment
of the n− 1 independent suppliers.

Equilibrium investments are derived from first-order conditions as before. In a sym-
metric equilibrium of the non-integrated environment, each of the suppliers invests an
amount equal to 1 over the cube root on n2, that is, xNI = 1

3
√n2 . For the integrated

environment, let z = x2

x1
. The symmetric best response investments can be written as

functions of z, x1 = x1(z) and x2 = x2(z), respectively. Equilibrium investments are
then given by x1 = x1(z(n)) and x2 = x2(z(n)), where z(n) is the unique fixed point to
the equation20

z =
x2(z)

x1(z)
.

A simple graphical analysis shows that z(n) is increasing in n.
Under non-integration, the equilibrium (expected) procurement cost of the buyer as

a function of symmetric supplier investments xNI is

PCNI =

∫ ∞

0

bNI(c)dG(c;nxNI) =
2n− 1

n(n− 1)xNI

20The closed forms of the functions x1(z) and x2(z) and the equation determining the fixed point z(n)
are given in the appendix.
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and the (expected) profit of a supplier is

ΠNI =

∫ ∞

0

[bNI(c)− c][1−G(c; (n− 1)xNI)]dG(c; xNI)−
1

2
x2NI =

1

n(n− 1)xNI
− 1

2
x2NI .

Substituting xNI(n) into these expressions yields equilibrium values of procurement cost
and profits as functions of the number of suppliers

PCNI(n) =
2n− 1

(n− 1) 3
√
n

and ΠNI(n) =
n + 1

2n(n− 1) 3
√
n
.

Procurement cost under vertical integration can be expressed as a function of x1 and
z:

PCI =

∫ x1

0

cdG(c; x1) +
1

2
x21

−
∫ ∞

1
x1+(n−2)x2

∫ c1− 1
x1+(n−2)x2

0

[c− bI(c)]dG(c; (n− 1)x1z)dG(c1; x1)

=
1

x1
+

1

2
x21 −

(n− 1)ze−
1

1+(n−2)z

1 + (n− 1)z
.

Substituting x1 = x1(z(n)) and z = z(n) yields procurement cost PCI(n) as a function
of n. Since z(n) lacks a closed form solution, so does PCI(n).

Divestiture is more profitable than vertical integration if

Φ(n) ≡ PCI(n) + ΠNI(n)− PCNI(n)

is positive. Figure 7 shows that Φ(n) < 0 if and only if n < 10. Thus, as in the baseline
model, non-integration and a complete reliance on outsourcing is more profitable than
vertical integration if the upstream market is sufficiently competitive.
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Figure 7: The benefit from divestiture, Φ(n) for the fixed-support exponential model.

It is also interesting to compare the independent bid functions under integration and
non-integration. The difference in markups is

∆b(n) =
1

(x1(z(n)) + (n− 2)x2(z(n))
− 1

((n− 1)xNI(n))
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Figure 8 shows that ∆b(n) < 0 if and only if n < 6. That is, the equilibrium markup
is lower under vertical integration if and only if upstream competition is limited. Sur-
prisingly, vertical integration fails to reduce markups for more competitive upstream
market structures. The reason is an additional negative consequence of the investment
discouragement effect: reduced investment by independent suppliers increases cost het-
erogeneity, causing the independent firms to bid less aggressively.
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Figure 8: The function ∆b(n).

Furthermore, it can be shown that the adding-up property fails in this case and that
vertical integration always decreases total investment, i.e. x1(z(n)) + (n− 1)x2(z(n)) <
nxNI(n).

5.2 Investment Cost Functions

A quadratic cost of investment function is convenient for our analysis because, in the
shifting support model, it implies the adding-up condition. Normalizing a = 1, equi-
librium investments in cost reduction sum to 1 under both non-integration and integra-
tion. This “adding-up” result follows because, in equilibrium, each supplier equates the
marginal cost of its investment to its expected market share (i.e. probability of produc-
tion). Since the marginal cost is equal to the level of investment under the quadratic
specification, and since market shares sum to 1 under inelastic demand, it follows im-
mediately that total investment must equal 1. Consequently the equilibrium effect of
vertical integration on investments is only to reallocate investment from the independent
supply sector to the integrated supplier, while holding total investment constant.

Now consider a more general marginal cost of investment function ψ(x). The sym-
metric equilibrium investment x under non-integration satisfies

ψ(x) =
1

n
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while the equilibrium investment conditions under vertical integration become

ψ(x2) =
1

n− 1

∫ ∞

−∞
[1−G(b(c) + x1)]dL(c+ x2, n− 1),

ψ(x1) =

∫ ∞

−∞
G(b(c) + x1)dL(c + x2, n− 1)

and
(n− 1)ψ(x2) + ψ(x1) = 1. (10)

Thus equilibrium aggregate investment depends on the shape of the effort cost function.21

Proposition 4 Aggregate effort under vertical integration is the same, higher or lower
than without vertical integration if, respectively, ψ′′(x) = 0, ψ′′(x) < 0 or ψ′′(x) > 0 for
all x ≥ 0.

Equilibrium investments under vertical integration depart from those under non-
integration in two important ways. First, if ψ′′(x) 6= 0, then equilibrium aggregate effort
is either higher or lower under vertical integration. Second, even assuming ψ′′(x) = 0
so that aggregate effort is fixed, vertical integration redeploys effort to the integrated
supplier, which is inefficient if µ ≤ a in the shifting support exponential model. This
misallocation increases total cost because the marginal cost of effort is increasing.

Using the exponential distribution with a shifting support and assuming an invertible
marginal cost of investment function, the equilibrium difference in investments ∆ =
x1 − x2 under vertical integration solves

∆ = ψ−1(1− n− 1

n
e−µ∆− 1

n−1 )− ψ−1(
1

n
e−µ∆− 1

n−1 )

and equilibrium investments are

x1 = ψ−1(1− n− 1

n
e−µ∆− 1

n−1 ) and x2 = ψ−1(
1

n
e−µ∆− 1

n−1 ).

To illustrate how the tradeoffs between vertical integration and non-integration change
with the shape of the cost of investment function, consider

ψ(x) =

{

x for x ≤ 1
n

x+ γ(x− 1
n
)2 for x > 1

n

This marginal cost function adds a quadratic component to the linear marginal cost
function for investment levels above equilibrium investment under non-integration, 1

n
.

The exponential-quadratic model corresponds to γ = 0. In that model, if µ = 1, vertical
integration raises procurement costs for n ≥ 8. If γ = 1, however, non-integration is
preferred for n > 6. Thus, a more steeply rising marginal cost above the efficient level
of investment reduces the attractiveness of vertical integration, because the equilibrium
cost-reduction by the integrated firm fails to compensate for the discouragement effect
of the sourcing distortion on the investments of the independent sector.

21Observe that in the derivation of (10) no specific assumption on G was used. Therefore, Proposition
4 does not hinge on the distribution being exponential.
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5.3 Agency Problems

So far we have abstracted from agency problems inside the firm. A conceptually straight-
forward way to introduce agency costs into the model is to assume a separation of own-
ership and control for suppliers. Specifically, suppose that the owner of an upstream
firm is a risk-neutral principal who delegates cost reducing effort to a risk-averse agent.
The utility function of the agent is U(w)−Ψ(x), where U(w) is a strictly increasing and
concave function of the wage w and Ψ(x) is the increasing and convex cost of effort. The
principal sets the wage as a function of the realized cost, i.e. w = w(c). To implement a
particular effort x, the principal chooses a wage function to minimize the expected wage
subject to an incentive constraint and a participation constraint (Grossman and Hart,
1983). The solution to this problem determines an expected cost, C(x), that incorporates
agency cost. The key point is that the same agency problem exists under non-integration
and vertical integration. Thus, the comparative organization analysis can proceed along
the same lines as before, replacing Ψ(x) by C(x).

While the exponential cost distribution puts considerable structure on the agency
problem, the usual first-order approach to solve a principal-agent problem (Rogerson,
1985) does not apply. This is true for the shifting-support model because out-of-support
observations are perfectly informative and, slightly more subtly, for the fixed-support
model because large cost observations become extremely informative as the likelihood
ratio goes to infinity. In such cases, the principal can get arbitrarily closely to a first-best
outcome, and the agency cost goes to zero.

A tractable model to account for a positive agency cost is the truncated fixed-support
exponential model, in which given effort x the costs are distributed on the interval [0, T ]
according to the density xe−cx/(1 − e−Tx) with mean E[c] = 1

x
+ T

1−eTx , where T > 0 is
the given point of truncation. It can be shown that this specification satisfies Jewitt’s
(1988) sufficient conditions for the first-order approach to be valid when T and x are
not too large and when U(w) exhibits constant relative risk aversion with a coefficient
larger than one half. Intuitively, small values of T and x make the density more uniform,
so that no single observation is particularly informative. (The distribution is exactly
uniform for x = 0.) For a given value of x, the first-order condition for w(c) for cost
realization c is

1

U ′(w(c))
= λ+ γ

[

1

x
− c+

T

1− eTx

]

= λ+ γ [E[c]− c] ,

where λ and γ are Lagrange-multipliers. For U(w) = lnw, which corresponds to a
CRRA utility function with a coefficient of relative risk aversion of one, the optimal
linear contract

wx(c) = λ+ γ

[

1

x
− c+

T

1− eTx

]

= λ+ γ [E[c]− c]

is linear in realized cost. The cost-of-effort function that is relevant for the principal’s
investment decision, denoted C(x), is the variable expected cost of inducing the agent
to exert effort x. This function is given as C(x) = E[wx(c)−w0], where the expectation
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is taken using the density xe−cx/(1− e−Tx) and where w0 is the reservation wage of the
agent.22 Thus,

C(x) = λ∗(x)− w0,

where λ∗(x) is the solution value of the Lagrange-multiplier associated with the individual
rationality constraint. This function is convex in x for a number of natural specifications.
Figure 9 displays C(x) when the agent’s cost of effort function is Ψ(x) = x2/2 for x ≤ 0.5
as a dashed line, the utility of his outside option is 0 and T = 5. Rather than being
disjoint from our model, agency-problems can thus be accounted for by adjusting (and
endogenizing) the investment cost function, if necessary with appropriate adjustments
in the cost distributions. Moreover, the near perfect fit of the quadratic approximation
ax2/2 to the endogenous investment cost function C(x) suggests that the first-order effect
of agency problems is similar to increasing the cost coefficient a in the exogenous cost
function Ψ(x). Recall that in the shifting support exponential model larger values of a
have the same effect as decreases in µ, which tend to favor vertical integration because
they increase cost variance and thereby suppliers’ rents. Thus, a natural conjecture is
that agency effects tend to favor integration as well because they decrease investments
and thereby increase suppliers’ rents.23
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Figure 9: The endogenous investment cost function (dashed) and its quadratic approxi-
mation (solid).

5.4 Elastic Demand

While inelastic demand is a useful simplifying assumption that helps illuminate the main
tradeoffs between non-integration and integration, it is of course more realistic for the
buyer to abandon the project entirely if costs are prohibitively high. Fortunately, it is

22If the value of the agent’s outside option is u, w0 is such that ln(w0) = u. Because the value of the
outside option is 0, even hiring an agent who exerts zero effort involves a fixed cost of 1.

23Because we have not expanded the full equilibrium analysis to the truncated fixed support exponen-
tial model, this remains a conjecture. An obstacle to expanding the equilibrium analysis to this setup
is that it does not appear to permit closed-form solutions for the equilibrium bidding function under
integration.
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reasonably straightforward to generalize the analysis to allow for a downward sloping
demand curve.

Setup We now assume that the customer has value v for the input, drawn from an
exponential probability distribution F (v) = 1− e−λ(v−α) with support [α,∞). The mean
of the exponential distribution is α + 1

λ
and can be interpreted to indicate the expected

profitability of the downstream market. The variance, which is 1
λ
, can be interpreted to

indicate uncertainty about product differentiation. This model converges to the inelastic
case as λ→ 0. The customer learns the realization of v before making the purchase (or
production) decision.

Under vertical integration, the investment x1 in cost reductions is made before the
customer learns the realized v. Independent suppliers know F but not v. All other
assumptions regarding timing and investment costs are as in Sections 2 and 3. In par-
ticular, the cost of exerting effort x is a

2
x2 and given investment xi supplier i’s cost is

drawn from the exponential distribution 1 − e−µ(c+xi−β) with support [β − xi,∞) for
all i = 1, .., n and with µ ≤ a. To simplify the equilibrium analysis, we impose the
parameter restriction

β − α ≥ µ

a(λ+ nµ)
− 1

λ+ (n− 1)µ
, (11)

which makes sure that under non-integration the lowest equilibrium bid is always larger
than the lowest possible draw of v. Observe that the righthand side in (11) is negative,
so that β ≥ α is sufficient for the condition to be satisfied.24

Bidding As in the inelastic demand case, the bidding function is the same with or
without vertical integration. The bidding function with elastic demand is denoted as
bE(c) and given by

bE(c) = c+
1

λ+ µ(n− 1)
(12)

for c ≥ α− 1
λ+(n−1)µ

.25

Profits Consider first non-integration when the symmetric investments of the indepen-
dent suppliers are x. The profit ΠB

EN(x) accruing to the buyer is

ΠB
EN(x) = n

∫ ∞

bE(β−x)

∫ y(v)

β−x

[v − bE(c)][1−G(c+ x)]n−1dG(c+ x)dF (v),

24Our analysis can be extended beyond the specific parametrization satisfying (11) and beyond the
case where v is drawn from an exponential distribution. However, these generalizations come at the
costs of added complexity, which do not appear to be outweighed by sufficient benefits of additional
insights.

25To see that bE(c) is also the bidding function under integration, notice that the customer will buy
from the independent suppliers if and only if the lowest submitted bid b is less than v̂ = min{v, c1},
where v is the customer’s realized value and c1 the cost draw of the integrated supplier. The distribution
of v̂ is 1−(1−F (v̂))(1−G(v̂+x1)). For our exponential specifications, the probability that b ≤ v̂ is thus
1− e−(µmax{v̂+x1−β,0}+λmax{v̂−α,0}). Arguments that are analogous to those that led to the expression
(2) can then be invoked to conclude that bE(c) is also the bidding function under integration.
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where y(v) = v − 1
λ+µ(n−1)

denotes the inverse of the bidding function bE(c).

The expected profit ΠEN(xi, x) of an independent supplier under non-integration who
invests xi while each of the other suppliers is expected to invest x with xi ≤ x is26

ΠEN(xi, x) =

∫ ∞

bE(β−xi)

∫ y(v)

β−xi

[bE(c)− c][1−G(c+ x)]n−1dG(c+ xi)dF (v)−
a

2
x2i .

With integration, the buyer’s profit is

ΠB
EI(x1, x2) =

∫ ∞

α

∫ max{v,β−x1}

β−x1

[v − c1]dG(c1 + x1)dF (v)

+

∫ ∞

β−x1

(1− F (c1))

∫ max{y(c1),β−x2}

β−x2

[c1 − bE(c2)]dL(c2 + x2, n− 1)dG(c1 + x1)

+

∫ ∞

α

(1−G(v + x1))

∫ max{y(v),β−x2}

β−x2

[v − bE(c2)]dL(c2 + x2, n− 1)dF (v)− a

2
x21.

This profit is computed by deriving the expected profit from internal sourcing, which
is done in the first line in the above expression, by then adding the cost savings from
sourcing from the independent supplier with the lowest bid, which is captured in the
second line, and by finally adding in the third line the expansion effect of external
sourcing that arises whenever c1 > v and bE(min{cj}) < v with j 6= 1.

Given its own investment xi, investments x2 ≥ xi by all other non-integrated suppliers
and x1 by the integrated supplier, the expected profit ΠEI(xi, x1, x2) of an independent
supplier under vertical integration is

ΠEI(xi, x1, x2) =

∫ ∞

β−xi

[bE(c)− c][1− F (bE(c))][1−G(bE(c) + x1)][1−G(c+ x2)]
n−2dG(c+ xi)

− a

2
x2i .

Equilibrium Investments Under non-integration, the necessary first-order condi-
tions for the symmetric equilibrium investment x is

x =
1

a

µ

λ+ nµ
e−λ[ 1

λ+(n−1)µ
+β−α−x]. (13)

With vertical integration, the vertically integrated supplier invests x1 and all n − 1
independent suppliers invest x2 satisfying

x1 = x2 +
1

a

µ

λ+ µ
e−µ(x1−x2)

[

eµ(β−α−x2) − e−λ(β−α−x2)− λ+µ
λ+(n−1)µ

]

(14)

and

x2 =
1

a

µ

λ+ nµ
e−λ(β−α−x2)−µ(x1−x2)− λ+µ

λ+(n−1)µ (15)

according to the necessary first-order conditions for equilibrium. We assume that the
second-order conditions are satisfied.

26For xi = x + ε with ε > 0 small, the expected profit function has a different functional form.
However, the profit function ΠEN (xi, x) is continuously differentiable at xi = x.
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Profitability of Non-Integration Evaluating (13), (14) and (15) numerically we
can determine the buyer’s and the independent suppliers’ equilibrium profits under non-
integration and vertical integration. Denoting these equilibrium payoffs with an asterisk,
the analogue for the case of elastic demand to the function Φ(n, µ) defined in (8) is

ΦE(n, µ, α, λ, β) := ΠB∗
EN +Π∗

EN − ΠB∗
EI .

Figure 10 contains contour sets of ΦE(n, µ, α, λ) = 0 for different values of n in (α, λ)-
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Figure 10: ΦE(n, µ, α, λ) = 0 for selected parameters.

space with µ = 1 and β = 0. Non-integration is profitable for a given n for values of α
and λ below the corresponding curve.

Social Welfare Effects In the baseline model with inelastic demand, non-integration
is always socially optimal because it minimizes the sum of expected costs of production
and investment although it is not always an equilibrium outcome. In contrast, with
elastic demand vertical integration has an additional, socially beneficial effect because it
increases the market demand by inducing production for realizations of costs and values
for which there is no production under non-integration, (and because it decreases the
lowest cost of production by increasing investment by the integrated supplier).

The numerical analysis for the shifting support exponential model with elastic de-
mand, displayed in Figure 11, reveals that vertical integration is better than non-
integration when n is small. As before Φ is the private benefit from divesture while
∆W is the difference between social welfare under divesture and under vertical integra-
tion. The figure plots Φ and ∆W for β = 0 and a = 1. The figure illustrates a substantial
range of upstream market structures for which vertical integration is privately optimal
but socially inefficient.

5.5 Reserve Prices

A simple first-price auction models a standard pattern of commercial negotiations that
requires minimal commitments. Suppliers make offers and the customer accepts the best
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Figure 11: Φ and ∆W as function of n without reserves.

offer. Such a transparent procurement process also is consonant with our motivation
that suppliers compete on ideas as well as price, i.e. suppliers innovate on the design of
the input in order to reduce costs. In such a setting, our analysis demonstrates a tradeoff
between extracting rents and motivating investments of independent suppliers.

If the required input were more standardized, so that acceptable designs were con-
tractible, then the customer plausibly could exercise monopsony power by committing to
a reserve price. For the case of inelastic demand, a positive reserve price is suboptimal
under non-integration, because the risk of failing to procure the input is disastrous. A
reserve price is valuable under vertical integration, however, because the monopsonist
is able to fall back on internal sourcing if independent suppliers cannot beat the re-
serve price. Thus, the ability to set a credible reserve price option appears to favor
vertical integration under inelastic demand. Nevertheless, as we show below, a similar
benefit-cost trade-off emerges, albeit with more stringent conditions for the superiority
of non-integration.

We perform the analysis of the effect of reserve prices within our baseline model with
inelastic demand, exponentially distributed costs, and a quadratic cost of effort function
with a = 1. Suppose that the vertically integrated customer commits to a reserve price r
after learning the cost of internal supply c1. Given the symmetric equilibrium investment
of independent firms x2, the optimal reserve price satisfies

c1 = r +
G(r + x2)

g(r + x2)
≡ Γx2(r)

while the symmetric bidding function b(c, r) depends on the reserve price r according
to27

b(c, r) = c +
1

µ(n− 1)

[

1− e−µ(n−1)(r−c)
]

.

In equilibrium, the vertically integrated firm chooses its own investment x1 to min-
imize expected procurement cost given x2, and each independent supplier invests to

27In the exponential case, the virtual cost function Γx2
(r) is strictly increasing in r for given x2, and

therefore invertible. We denote its inverse by Γ−1
x2

(c1) The bid function b(c, r) solves the usual necessary
differential equation for optimal bidding with the boundary condition b(r, r) = r.

34



maximize expected profit given x1 and x2. The optimal reserve given c1 ≥ β − x2 then
satisfies

r(c1) := Γ−1
x2
(c1). (16)

Total equilibrium procurement cost (net of investment cost) is equal to the expected cost
of internal supply, denoted Ex1 [c1] = β − x1 +

1
µ
, minus the expected cost savings from

sourcing externally:

Ex1 [c1]−
∫ ∞

β−x2

∫ r(c1)

β−x2

[c1 − b(c, r(c1)]dL(c + x2, n− 1)dG(c1 + x1). (17)

Assuming x1 > x2, the expected profit of a representative independent firm choosing
x in the neighborhood of x2 is equal to the expected value of the markup times the
probability of winning the auction:

∫ ∞

β−x2

∫ r(c1)

β−x

[b(c, r(c1))− c][1− L(c + x2, n− 2)]dG(c+ x)dG(c1 + x1)

In equilibrium each independent supplier chooses x = x2.
28

The condition for non-integration to be preferred to vertical integration is similar to
before. The difference between expected procurement costs under vertical integration and
under non-integration must be less than expected supplier profit under non-integration.
Figure 12 graphs the difference Φ as a function of n for µ = 1 and compares it to the case
without reserves, depicted also in Figure 1. The curve is shifted to the right compared
to the base model in which there is no reserve price. Although an optimal reserve price
does lower procurement costs under vertical integration, non-integration nevertheless is
preferred for n sufficiently large.
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Non-Reserve

8 10 12 14 16 18 20
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-0.004

-0.002

0.002

F

Figure 12: The function Φ with and without reserves for µ = 1.

28We computes the equilibrium investments levels (x1, x) solving the necessary first-order conditions,
presuming the appropriate second-order conditions are satisfied.
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Elastic Demand with Reserve The analysis with elastic demand can also be ex-
tended to account for optimal reserves. Under non-integration, the optimal reserve will
be a function of the realized value v and will be given by the function r(.) defined in
(16). With vertical integration, the optimal reserve will be given by the same function
r(.), which is now evaluated at v̂ := min{c1, v}. Because of continuity, it is intuitive
that, with elastic demand and optimal reserves, non-integration will be profitable in the
neighborhood of the parameter region for which it is profitable with perfectly inelastic
demand and a reserve, that is, for values of λ close to zero. This intuition is corrobo-
rated by numerical analysis. Figure 13 plots the buyer’s gain from non-integration with
reserves, denoted ΦER, and her gain from non-integration without reserves, ΦE , as a
function of λ for n = 16 and α = β = 0.
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0.2 0.4 0.6 0.8 1.0
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F

Figure 13: ΦER and ΦE as function of λ.
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Figure 14: Φ and ∆W as function of n with reserves.

Figure 14 plots the social welfare effects of and the private incentives for divestiture
for elastic demand when the customer can set a reserve. Comparing Figure 11 to Figure
14 reveals that the ability to set a reserve hardly matters for the social welfare effects
but increases the private benefits from vertical integration, thereby increasing the range
in which vertical integration is an equilibrium outcome but not socially desirable.
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5.6 Second-price auctions

Of course, we can also extend our model to allow for second-price auctions if we assume,
as in the previous subsection with reserves, that the input is sufficiently standardized, so
that paying the winner the second lowest bid is meaningful. Without reserves, vertical
integration has no effect on the joint surplus of the customer and the integrated supplier,
as observed by Bikhchandani, Lippmann and Reade (2005) in the context of preferred
suppliers. Consequently, it will not affect investments. Furthermore, a second-price
auction with an optimally chosen reserve price has the same outcomes as a first-price
auction.29

6 Conclusion

We develop a “make and buy” theory of vertical integration according to which vertical
integration creates the opportunity, but not the necessity, to source inputs internally.
The comparative theory of non-integration and vertical integration features a key tradeoff
between markup avoidance and investment discouragement. In our two-stage model of
procurement, upstream suppliers make relationship-specific investments in cost reduction
before bidding to supply an input requirement to a downstream customer. Since neither
the investment nor the cost realization are observable, independent suppliers exercise
some degree of market power by bidding above-cost prices. By unifying the customer
and one of the suppliers under common ownership, vertical integration improves their
joint profits because it enables the customer to avoid the markup by sourcing internally,
keeping investments fixed. Moreover, if the procurer’s demand is elastic, integration
increases efficiency and further increases profits, keeping investments fixed, because the
markup avoidance also leads to an output expansion. Therefore, just like in Williamson
(1985)’s famous puzzle of selective intervention, an integrated firm can do the same as
the separate entities do, and sometimes it can do strictly better. This would seemingly
lead to the conclusion that vertical integration is inevitably profitable.

In our model, however, vertical integration is not always profitable because it changes
the incentives to invest for the suppliers, making equilibrium investment levels smaller for
non-integrated suppliers and larger for the integrated supplier. Thus vertical integration
effectively reallocates investment away from independent suppliers and toward the inte-
grated supplier. Such a reallocation raises total investment costs because the marginal
cost of investment is increasing. The discouragement effect on cost-reducing investments
of independent suppliers can be so costly for the integrated firm that it outweighs the
aforementioned benefits from vertical integration. Not only does vertical integration
change the behavior of the integrated entity in the way suggested by Williamson, but,
exactly because it does so, it also changes the behavior of the non-integrated firms. Put
differently, vertical integration occurs within a competitive procurement environment,

29Because equilibrium bidding is straightforward under a second-price auction, one might think that
a modeling approach based on second-price auctions has computational advantages. However, because
typically the optimal reserve cannot be expressed in closed form, one still needs to compute expected
profits in equilibrium numerically, so that the gains in tractability are limited.
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and depending on how this environment’s behavior is affected by vertical integration,
vertical integration or non-integration may be the procurer’s preferred organizational
structure.

The usual statement of Williamson’s puzzle interprets the vertical integration decision
in a narrow bilateral context, implicitly holding constant the conduct of outside parties.
All that seems to matter for the decision are the incentives of the manager of the supply
division and the ability of the integrated firm to adapt to the external environment.
Accounting for the investment response of independent suppliers, however, creates a
tradeoff between the advantages of markup avoidance on the one hand, and the cost
disadvantage of realigned investment incentives on the other. In this multilateral setting,
the puzzle vanishes. The tradeoff favors vertical integration in some circumstances, and
vertical divestiture in others.

Our procurement model is motivated by the idea that specialized suppliers make
non-contractible investments in cost-reducing product and process design, consistent
with Whitford (2005)’s description of the type of customer-supplier relationships that
emerged in manufacturing at the end of the 20th century. Whitford (2005) calls the
new organizational form “contested collaboration”, colorfully describing it as a“waltz”
whereby customer-supplier pairs cooperate gracefully on cost-reducing design innova-
tions, but contest awkwardly over price. The investment stage of our model captures in
a stylized way that an original equipment manufacturer outsources cost-reducing design
innovations, while bidding in a procurement auction against a preferred supplier captures
in a stylized way that supply negotiations do not always proceed efficiently. From this
perspective, vertical divestiture is a commitment to a level playing field that encourages
independent suppliers to invest in cost reduction.

Our theory of make-and-buy sourcing helps explain a trend toward non-integration
in an increasingly global economy marked by faster technological change and shorter
product cycles. As original equipment manufacturers improve products incorporating
new technologies and functions, the costs of specialized inputs become crucial for pro-
ductivity. Our theory predicts that vertical divesture is under certain circumstances an
attractive strategy to encourage cost-reducing investments by independent suppliers as it
shifts rents in their direction. The conditions favoring vertical divestiture include a mod-
erate cost variance across a greater number of potential suppliers, and greater demand
uncertainty. These conditions contribute to reducing supplier markups, thus weakening
the markup avoidance advantages of vertical integration. By increasing the competitive-
ness of upstream markets, globalization strengthens the attraction of non-integration.
Recent narrowing of labor cost advantages in China and elsewhere can be interpreted as
decreases in upstream competition, favoring more vertical integration going forward.

Our theory also helps explain the documented prevalence of external sourcing in
American manufacturing even by vertically integrated firms. In our model, a vertically
integrated firm chooses to source externally whenever doing so can meet its input re-
quirements less expensively than self supply. A high variance of costs across potential
upstream suppliers with differing design and process approaches is consistent with sub-
stantial external sourcing by downstream manufacturers, including those who have the
option to source internally. Our theory is also broadly consistent with Stigler’s (1951)
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idea that vertical integration becomes less attractive as upstream industries mature and
become more competitive.

A promising direction for further research is to explore how repeated interaction
alters the tradeoff between markup avoidance and investment discouragement. Our one-
shot procurement model plausibly captures a procurement environment with infrequent
repeated interactions due to relatively long product cycles. A shorter product cycle,
however, provides scope for relational contracting to improve incentives.

Embedding the present setup with a single customer into a larger market environ-
ment is another promising research direction. In particular, if independent suppliers
have other potential customers that benefit from the suppliers’ investments, vertical in-
tegration could lead to competitive harm as it will still diminish the incentives to invest
of independent suppliers. This might lead to a raising-rivals’ costs theory of vertical
foreclosure in the spirit of Ordover, Saloner, and Salop (1992).
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Appendix

We provide short proofs of our formal results in this Appendix and detailed proofs in an
Online Appendix. The exception is the proof of Proposition 2, which we provide in full
detail here as it appears of sufficient independent interest. The Mathematica files used
to numerically generate Figures 5 through 9 are also available online.

Proof of Lemma 1: The optimal bid on the interval [β − x1, bNI(β − x2)] solves
maxb(b − ci)(1 − G(b + x1)). The solution is b∗(ci) = ci +

1
µ
if ci ≥ β − x1 − 1

µ
, and

b∗(ci) = β−x1 otherwise. For b
∗(ci) to be on the interval [β−x1, bNI(β−x2)], it further

has to be the case that ci ≤ β − x2 − n−2
µ(n−1)

. Otherwise, the optimal bidding strategy is

bNI(ci). �

Proof of Lemma 3: That x1 and x2 are as described in (6) follows immediately from
the first-order conditions (3) and (5) and the definition of ∆I(n, µ). To see that a non-
negative solution to (7) exists and is unique, observe that both sides of the equation are

increasing in ∆. The lefthand side of a∆ = 1 − e−µ∆− 1
n−1 is linear in ∆ and equal to

0 at ∆ = 0 while the righthand side is concave and positive for any finite n at ∆ = 0.
Therefore, a non-negative solution exists and is unique. The derivative of the lefthand
side is a while the derivative of the righthand side with respect to ∆ is µ(1−a∆). Because
of the aforementioned properties, at ∆ = ∆I(n, µ) we have a − µ(1 − a∆) > 0. This
implies that the derivative ∆I(n, µ) with respect to µ is

∂∆I(n, µ)

∂µ
=

∆I(n, µ)(1− a∆I(n, µ))

a− µ(1− a∆I(n, µ))
> 0,

while its derivative with respect to n is

∂∆I(n, µ)

∂n
= − 1

(n− 1)2
1− a∆I(n, µ)

a− µ(1− a∆I(n, µ))
< 0.

This implies that x1 increases in µ and decreases in n.
Notice from (7) that a∆I(n, µ) < 1. This is equivalent to ∆I(n, µ) < 1/a and implies

that x2 > 0. That adding up holds follows immediately. Jointly, x2 > 0 and adding up
imply x1 < 1. �

Proof of Lemma 2: The necessary conditions have been derived in the main text. The
second-order condition is satisfied if and only if µ

a
< n

n−1
. Furthermore,

∂PC∗
NI

∂n
=

(µ− a)(n− 1)2 − an2

µan2(n− 1)2

is negative if and only if µ
a
< 1 + n2

(n−1)2
, and

∂Π∗
NI

∂n
=
µ(n− 1)2 − an(2n− 1)

µan2(n− 1)2
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is negative if and only if µ
a
<

(

1 + n
n−1

)

. �

Proof of Lemma 4: The arguments in the main text imply that PC∗
I and Π∗

I are the
equilibrium payoffs of the integrated firm and the independent suppliers with ∆ = ∆I

given by (7) and x1 and x2 given by (6). Furthermore, first-order conditions are satisfied
by construction. So it remains to verify that these conditions are sufficient.
Case 1: For xi < x2, using (4),

∂2ΠI(xi, x1, x2)

∂x2i
=
µ(n− 1)

n
e−µ∆− 1

n−1
+µ(n−1)(xi−x2) − a ≤ 0

if and only if
µ

a
≤ n

(n− 1)(1− a∆)
.

Since a∆ < 1, this second-order condition is always satisfied if the necessary and sufficient
condition for the existence of a symmetric equilibrium under non-integration holds.

Case 2: Let x̂ = x2 +
n−2

µ(n−1)
and consider deviations by i such that such that ci ∈

[β − x̂, β − x2] occur with positive probability, and no lower ci can occur. From Lemma
1, the optimal bid for cost realizations in this interval is β−x2+ 1

µ(n−1)
, and for xi ∈ [x2, x̂],

the profit function for the deviating supplier i is

ΠI(xi, x1, x2) = e−µ∆− 1
n−1

[

xi − x2 −
n− 2

µ(n− 1)
+ e−µ(xi−x2)

n− 1

µn

]

− a

2
x2i .

The deviator’s profit function is concave in xi, and maximized at xi = x2 on this interval
if and only if

µ

a
<

n

(n− 1)(1− a∆)
.

Case 3: For xi ∈ [x̂, x1+
1
µ
], defining y := µ(xi−x2)− n−2

n−1
, we can express the deviator’s

profit as

Π̂I(y, x1, x2) =
1− a∆

µ

[

e−y−n−2
n−1

n− 1

n
+

1

2

[

ey − e−y
]

]

− a

2

(

1

µ

[

y +
n− 2

n− 1

]

+
1

an
(1− a∆)

)2

,

for y ∈ [0, µ∆+ 1
n−1

]. This function is decreasing in y for all y ∈ [0, µ∆+ 1
n−1

].

Case 4: For xi > x1 +
1
µ
, the expected profit of a deviating non-integrated supplier is

ΠI(xi, x1, x2) =
1

µ

n− 1

n
e−µ∆− 1

n−1
−µ(xi−x2) +

1

2µ
e−µ(xi−xi)+1

[

1− e−2(µ∆− 1
n−1

)
]

+ xi − x1 −
1

µ
− a

2
x2i ,

which is decreasing in xi if
µ
a
≤ n

n−1
. �

Proof of Proposition 1: Inserting the expressions obtained in Lemmas 2 and 4 yields

PC∗
I +Π∗

NI = β +
a− µ

µ
x1 +

a

2
x21 +

1

n

[

1

µ(n− 1)
− 1

2an

]

.
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As PC∗
NI = β − 1

an
+ 1

µ
2n−1
n(n−1)

, vertical divestiture is thus jointly profitable if and only if

β +
a− µ

µ
x1 +

a

2
x21 +

1

n

[

1

µ(n− 1)
− 1

2an

]

> β − 1

an
+

1

µ

2n− 1

n(n− 1)
,

which, after substituting x1 =
1
an

+ n−1
n
∆I is equivalent to the inequality in the proposi-

tion. �

Proof of Proposition 2: Substituting the expressions for the exponential case gives
us the following expression for the expected production cost:

EC(x) = µ
n

∑

j=1

je−µXj

∫ β−xj+1

β−xj

ce−jµ(c−β)dc =
n

∑

j=1

Sj,

where Xj :=
∑j

i=1 xi, xn+1 := −∞, and

Sj := e−µ(Xj−jxj)

[

β − xj +
1

jµ
−

(

β − xj+1 +
1

jµ

)

e−jµ(xj−xj+1)

]

.

It follows then that

∂EC(x)

∂xj
= µe−µ(Xj−jxj)(β − xj)− µ

n
∑

i=j

Si

for all j = 1, .., n and

∂EC(x)

∂xj
− ∂EC(x)

∂xj+1

= −1

j
e−µ(Xj−jxj)(−1 + e−µ(xj−xj+1))

for all j < n.
Finally,

∂Sn

∂xn
= µ(n− 1)e−µ(Xn−nxn)

(

β − xn +
1

nµ

)

and the derivative of EC(x) with respect to xn is

∂EC(x)

∂xn
=
∂Sn

∂xn
+
∂Sn−1

∂xn
= −1

n
e−µ(Xn−nxn).

Using the first-order condition for xn, we get the boundary condition

1

n
e−µ(Xn−nxn) = axn. (18)

We now analyze the second-order conditions for a cost minimum. At symmetry, i.e.
with xi = x for all i, the second partials of the total cost TC(x) := EC(x) + a

2

∑n
i=1 x

2
i

are
∂2TC(x)

∂x2n
= −µn− 1

n
+ a and

∂2TC(x)

∂xn∂xn−1
=
µ

n
.
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Thus, at a symmetric solution the Hessian matrix has a − µn−1
n

on the main diagonal
and µ

n
everywhere else. Thus, it is positive semi-definite, and therefore a local minimum,

if and only if a ≥ µ.
We next show that the symmetric solution is also a global minimum whenever it is a

local minimum. Subtracting ∂TC(x)
∂xi

from ∂TC(x)
∂xi+1

and simplifying yields for i = 1, .., n− 2

with n > 2 a system of first-order difference equations

1

i
e−µXi

[

eiµxi+1 − eiµxi
]

= a(xi+1 − xi) (19)

with the boundary condition (18) and the constraints xi ≥ xi+1. Notice that the sym-
metric solution xi =

1
an

for all i = 1, .., n is always a solution of this system. We are now
going to show that for a ≥ µ it is the unique solution.

Notice first that the right-hand side of (19) is, trivially, linear in xi+1 with slope a.
The left-hand side of (19) is increasing and convex in xi+1 with slope µ at symmetry. Fix
then an arbitrary x1. Provided µ ≤ a, x2 = x1 is the unique solution to (19). Iterating
the argument, we get that xi = x1 is the unique solution to (19) for all i = 1, .., n − 1.
Notice then that the left-hand side of (18) is convex and increasing in xn with slope µn−1

n

at symmetry. Since µ ≤ a implies µn−1
n
< a, where a is the slope of the right-hand side

of (18), it follows that symmetry, i.e. xn = x1, is the unique solution to (18). But at
symmetry, (18) implies xn = 1

an
. Thus, for µ ≤ a, xi =

1
an

for all i = 1, .., n is the unique
solution.

We now characterize the planner’s solution for the case µ > a. We first prove a
more general “adding-up” result.30 The distribution L(c;x) of the minimum cost c given
investments x is given as

L(c;x) = 1−
n
∏

i=1

(1−G(c+ xi))

with support [c(x),∞); see also (1). The expected cost of production is EC(x) =
∫∞
c(x)

cdL(c;x) and total cost is TC(x) = EC(x) + a
2

∑n
i=1 xi.

Integrating
∫∞
c(x)

cdL(c;x) by parts we get EC(x) = c(x)+
∫∞
c(x)

[1−L(c;x)]dc. Taking
the derivative of EC(x) with respect to xi gives

∂EC(x)

∂xi
= −

∫ ∞

c(x)

g(c+ xi)
n
∏

j 6=i

(1−G(c+ xj))dc,

where g(c+ xi) is the derivative of G(c+ xi). At an optimum, we have ∂EC(x)
∂xi

+ axi = 0
for all i. Adding up over all i yields

−
∫ ∞

c(x)

n
∑

i=1

g(c+ xi)

n
∏

j 6=i

(1−G(c+ xj))dc+ a

n
∑

i=1

xi = 0. (20)

30The argument that follows does not depend on the cost distribution being exponential.
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Observe then that dL(c;x) =
∑n

i=1 g(c + xi)
∏n

j 6=i(1 − G(c + xj))dc. Thus, (20) can be
written as

−
∫ ∞

c(x)

dL(c;x) + a

n
∑

i=1

xi = 0.

Since
∫∞
c(x)

dL(c;x) = 1, this implies that at an optimum investments always add up to

a constant, that is
n

∑

i=1

xi =
1

a
. (21)

Next we show that the planner’s asymmetric solution consists of two different invest-
ment levels only. Let k1 = max{i|xi = x1}. The difference equation (19) then implies

ak1(xk1+1 − x1) = e−µk1x1
(

eµk1xk1+1 − eµk1x1
)

= eµk1(xk1+1−x1) − 1.

Letting ∆1 = k1(x1 − xk1+1) this is the same as

a∆1 = 1− e−µ∆1 > 0. (22)

Next let k2 = max{i|xi = xk1+1} and let ∆2 = k2(xk1 − xk2). Then (19) implies

a∆2 = e−µ∆1
(

eµ∆2 − 1
)

.

This equation has two possible solutions: (i) ∆2 = 0 and (ii) ∆2 > 0. Solution (i) implies
k2 = n. The adding-up constraint (21) implies ∆1 =

1
a
−nxn and the boundary condition

(18) and (22) imply anxn = e−µ(1/a−nxn). Thus, the solution with ∆2 = 0 is admissible.
Next we show that the other solution, i.e. (ii), is not.

To see this, observe that equalities (18) and (22) and the adding-up constraint (21)
imply

1 ≥ a(nxn +∆1) = 1− e−µ∆1 + e−µ(1/a−nxn),

where the inequality is strict if ∆2 > 0. But this implies

e−µ∆1 ≥ e−µ(1/a−nxn),

which in turn implies 1/a− nxn ≤ ∆1. Taken together, this implies

∆1 + nxn =
1

a
.

That is, ∆1 and nxn add up to 1/a. Thus, ∆2 > 0 would violate the adding-up constraint.
Hence, we conclude that ∆2 = 0 and thus k2 = n.

The final step shows that k1 = 1. We show that by assuming to the contrary that there
are k > 1 suppliers who invest x1 and then showing the reallocating ε/(k − 1) > 0 from
each of them to supplier 1 decreases total costs. Using a change of variables y = β − c,
the part of total costs affected by this reallocation of investment can be shown to be

µe−µ(x1+ε)

∫ −x2+
ε

k−1

−x1

ye−µydy + (k − 1)µe−µ(k−1)x2+x1

∫ −x3

−x2+
ε

k−1

ye−µydy

+
a

2

[

(x1 + ε)2 + (k − 1)(x2 + ε/(k − 1))2
]

.
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Taking the derivative with respect to ε, evaluated at x1 = x2 = x and ε = 0, gives

µxe−µx

[

e−µkx − k

k − 1
e−µx

]

< 0.

Thus, this reallocation of investments decreases total costs. This is a contradiction to
k > 1 being optimal. �

Proof of Proposition 3: Taking the sourcing distortion 1
µ(n−1)

as given, the expected
cost of production given investment levels x1 and x2 under the second-best scenario,
denoted ECSB(x1, x2), is

ECSB(x1, x2) = µ

∫ β−x2+
1

µ(n−1)

β−x1

ce−µ(c+x1−β)dc+ µ

∫ ∞

β−x2+
1

µ(n−1)

ce−µ(c+x1−β)e−µ(n−1)(c− 1
µ(n−1)

+x2−β)dc

+ µ(n− 1)

∫ ∞

β−x2

ce−µ(c+ 1
µ(n−1)

+x1−β)e−µ(n−1)(c+x2−β)dc.

The first integral captures those cost realizations of the integrated supplier for which
this supplier produces with probability 1. The second integral represents the instances
in which the integrated supplier produces when the lowest cost draw of the independent
suppliers is sufficiently high but not otherwise. The last integral covers those cost realiza-
tions for which the independent supplier with the lowest cost draw produces. Integrating
and simplifying yields

ECSB(x1, x2) = β − x1 +
1

µ
− 1

µ
e−µ(x1−x2)− 1

n−1 .

At an optimum,

∂ECSB(x1, x2)

∂x1
+ ax1 = −1 + e−µ(x1−x2)− 1

n−1 + ax1 = 0

and
∂ECSB(x1, x2)

∂x2
+ (n− 1)ax2 = −e−µ(x1−x2)− 1

n−1 + (n− 1)ax2 = 0.

Taking the difference then gives

a(x1 − x2) = 1− n

n− 1
e−µ(x1−x2)− 1

n−1 .

The solution ∆SB to the equation a∆ = 1− n
n−1

e−µ∆− 1
n−1 cannot be 0 because n

n−1
e−

1
n−1 <

1 for any finite n ≥ 2.

To see that ∆SB < ∆I , recall that ∆I is the positive solution to a∆ = 1− e−µ∆− 1
n−1 .

The left-hand side of both equations being the same (and increasing in ∆) and the right-
hand side of either equation being decreasing in ∆ but being strictly smaller for the
equation that determines ∆SB, the result follows. �
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Proof of Proposition 4: Under nonintegration, equilibrium effort is given by ψ(x∗) =
1
n
. On the other hand, rewriting the consolidated equilibrium condition with vertical

integration, (10), as n−1
n
ψ(x2) +

1
n
ψ(x1) = 1

n
, it follows from Jensen’s inequality that

(n−1)x2+x1 = nx∗ if ψ′′ = 0 and (n−1)x2+x1 > nx∗ if ψ′′ < 0 and (n−1)x2+x1 < nx∗

if ψ′′ > 0. �

Derivation of the bidding function bE(c) in (12) Under non-integration, given
symmetric investments x, the revelation principle requires that a symmetric equilibrium
bidding strategy b(c) be such that

c = argmax
z

{

[b(z)− c] [1− F (b(z))] [1−G(c+ x)]n−1} .

For F and G exponential, this condition implies that

bNI(c) =

{

c + 1
(n−1)µ

−
[

1
(n−1)µ

− 1
λ+(n−1)µ

]

e−(n−1)µ(ĉ−c) if c ≤ α− 1
λ+(n−1)µ

c+ 1
λ+(n−1)µ

if c > α− 1
λ+(n−1)µ

.

For integration, a similar analysis yields the same result. �
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Equilibrium investments under integration in the fixed support model For a
given z > 0, the integrated supplier optimally invests

x1(z) =
3

√

1− (n− 1)z[3 + z(2z − 6) + 2n(4 + (n− 3)z)]e−
1

1+(n−2)z

[1 + (n− 2)z][1 + (n− 1)z]2

and the independent suppliers symmetrically invest

x2(z) =
3

√

z2e−
1

1+(n−2)z

[1 + (n− 1)z]2
.

Dividing x2(z) by x1(z) and simplifying yields the fixed point

z = 3

√

√

√

√

z2

[1 + (n− 1)z]2e
1

1+(n−2)z − (n−1){3z+z2[(2z−6)+4n+n(n−3)z]}
1+(n−2)z

.

49


