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Abstract

We study a buyer’s incentives to source internally or externally in a

stylized model of procurement. In stage one, all suppliers invest in cost

reductions. In stage two, the suppliers compete in prices. In stage three,

the buyer selects a supplier or abandons the project. Vertical integration

gives the buyer the option to source internally, which is advantageous for

the buyer as it avoids a markup payment, but disadvantageous insofar

as this option discourages investments by independent suppliers. Just as

suggested by Williamson’s puzzle of selective intervention, the integrated

firm can do exactly the same as the two stand alone entities, and can

sometimes do better. But this ability to do better has detrimental in-

centive effects for the behavior of non-integrated suppliers. For a model

with exponential distributions of costs and valuations and quadratic in-

vestment costs, we derive conditions under which these detrimental effects

outweigh the advantageous effects of vertical integration.
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1 Introduction

Pressures of a global economy forced a dramatic transformation of American

manufacturing at the end of the twentieth century, away from vertical inte-

gration and toward outsourcing. The emergent customer-supplier relationships

shifted and blurred the boundaries of firms, as original equipment manufactur-

ers increasingly relied on independent suppliers for both the production and the

design of specialized parts. In his case study of durable metal manufacturing,

Whitford (2005) describes colorfully the new organizational form as "contested

collaboration," whereby a customer-supplier pair cooperate gracefully on cost-

reducing design innovations, but contest awkwardly over price. As another case

in point, consider Pepsi’s problem of procuring potatoes to satisfy the require-

ments of its Chinese potato chip business as described by a Harvard Business

School case (Lu, Tao and Loo, 2008). When Pepsi introduced Lay’s potato chips

in China in 1997, it needed domestic potatoes with particular characteristics.

The raw potatoes had to be large, round, low in sugar and water, and unbruised.

Since Chinese agriculture initially was not well adapted to the task, Pepsi both

integrated into farming potatoes itself and developed a network of independent

farmers to meet its requirements. As Pepsi’s potato chip business in China

grew, so did its need for potatoes. The case raises several interesting questions.

Why did Pepsi outsource when it had the ability to produce internally? As its

potato chip business grew, how did Pepsi choose between internal sourcing and

outsourcing to meet incremental procurement requirements? Did Pepsi have

reason to consider divesting its potato farming assets?

The Pepsi potato chip problem illustrates a general scenario in which such

questions are pertinent. Imagine a "customer" who is looking to commercialize

a new product or improve (or to expand distribution of) an existing one in a

downstream market for which the design of a specialized input process poten-

tially has significant cost consequences. The customer has access to a group of

qualified suppliers with different ideas and capabilities who invest in product

and process design to prepare proposals for supplying the input. The customer

selects the most attractive supply source or abandons the project if it is not

commercially viable. A vertically integrated customer has the option to source

internally if that is more cost effective.

Vertical integration has a tradeoff in this setup. On the one hand, there

are efficiency and rent-seeking advantages from avoiding a markup when the

input is sourced internally. Markup avoidance increases efficiency because the

project is pursued whenever its value exceeds the cost of internal sourcing, and

also shifts rents away from lower cost independent suppliers by distorting the

sourcing decision. On the other hand, vertical integration has a disadvanta-

geous "discouragement effect" on the investment incentives of the independent

suppliers. Because the procurement process is tilted in favor of internal sourc-

ing, independent suppliers are less inclined to make cost-reducing investments

in preparation of proposals. It is costly for the integrated firm can compensate

by increasing its own ex ante investment, and, if the net investment discourage-

ment effect outweighs the markup avoidance advantages, then the customer has
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reason to divest its internal division as a way to commit to a level playing field.

This is the tradeoff we study.

We examine the interplay between outsourcing and vertical integration and

the implications for cost reduction in a stylized model of procurement. The

model uses exponential distributions to parameterize cost and demand uncer-

tainty, and a linear marginal cost of investment to parameterize opportunities

for cost reduction. A key feature of the model is that the customer has a limited

ability to commit to the procurement process. We formalize this by modelling

procurement as a three stage game. In stage one, potential suppliers invest in

cost reduction. These investments shift independent probability distributions

over costs. In stage two, the independent suppliers observe costs and quote

prices. In stage three, the customer either selects a source or abandons the

project.

As the input has a specialized design and a complex production process, the

buyer is not able to make any prior commitments about the sourcing decisions

at stage three, except the commitment to be vertically integrated or not. Non-

integration in our model is equivalent to a commitment to a first-price auction

with an unobservable reserve price equal to the buyer’s realized value for the

project, and vertical integration can be understood as a commitment to an

even lower unobservable reserve price due to the additional option of sourcing

internally when the realized cost of the integrated supplier is below the low-price

bid of the independent suppliers.

The model abstracts from agency problems inside the firm and instead fo-

cuses on how vertical integrations alters sourcing and investment incentives.

The research issue is to determine how market structure matters for the ef-

ficiency and profitability of partial vertical integration compared to complete

outsourcing. While the model is stylized and the parametric assumptions re-

strictive, the model nevertheless is quite rich and the parameters have relevant

economic interpretations.

Our analysis identifies a tradeoff between complete outsourcing and partial

vertical integration, and demonstrates that under particular market conditions

vertical divestiture of upstream assets is a profitable strategy. Under condi-

tions such that independent suppliers invest symmetrically, vertical integration

improves the investment incentives of the integrated supplier but diminishes

the incentives of independent suppliers. The reason for discouragement of in-

vestment by independent firms is that the integrated firm is biased in favor of

its own supply division because it avoids paying a markup on cost by sourc-

ing internally. If the investment discouragement effect of vertical integration

is sufficiently detrimental, then the integrated firm benefits from divesting its

supply division in order to encourage independent firms to invest more in cost

reduction when preparing proposals.

The efficient pattern of investments depends on supply conditions. Within

the confines of our exponential-quadratic model, if cost heterogeneity is suffi-

ciently large relative to opportunities for cost reduction, then symmetric invest-

ments by suppliers is socially optimal. This result is intuitive sensible. When

there are many symmetric suppliers and the cost variance is high, it is likely
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to be costly to concentrate investment on a particular supplier, because the

favored supplier is likely have a significantly higher cost draw than the oth-

ers. The magnitude of the symmetric investment will also depend on demand

conditions.

The profitability of vertical divesture depends on both demand and sup-

ply conditions. Under conditions such that symmetric investment is socially

efficient, vertical divestiture is a profitable organizational strategy only when

cost heterogeneity is not too great and there are sufficiently many suppliers,

and when the expected value of the project or demand volatility are sufficiently

great. These results also are intuitively sensible. First, if supplier investments

are important for cost reduction, then the investment discouragement effect of

vertical integration can be detrimental. Second, since a highly valuable project

is rarely abandoned under non-integration, vertical integration can have only a

very limited market expansion benefit in this case. Third, less demand uncer-

tainty reduces markups by making demand more elastic, and thus diminishes the

rent-seeking incentive for vertical integration. Fourth, more upstream compe-

tition squeezes markups, and thus also diminishes the rent-seeking incentive for

vertical integration. Fifth, if cost heterogeneity is too great, then the resulting

high markups make irresistible the rent-seeking incentive for vertical integration,

even though the resulting sourcing distortions raise investment costs.

The relatively recent trend toward outsourcing gives renewed salience to

the puzzle of selective interventions posed by (Williamson, 1985). Why can’t

a merged firm do everything the two separate firms can do, and do strictly

better by intervening selectively? Most recent theories of vertical integration

frame the problem in bilateral terms, focusing on how agency problems inside

an integrated firm compare with contracting problems across separate firms. As

Cremer (2010) explains, the key to these theories is that the "principal does

not quit the stage" after vertical integration, meaning that contracts between

the owner (principal) and managers unavoidably are incomplete. Thus, fear-

ing expropriation by an owner who is unable to commit to fair treatment, an

employee-manager has low-powered incentives to invest in the relationship.

The current theories are most compelling for evaluating incentive tradeoffs

surrounding the vertical acquisition of an owner-managed firm. As observed

by Williamson (1985), however, the explanation for vertical integration is more

elusive when a separation of ownership and control prevails and diminishes in-

centives both upstream and downstream irrespective of the identity of the owner

Our approach is to view the procurement problem in multilateral terms by em-

bedding Williamson’s puzzle in a broader market context while abstracting from

agency problems inside the firm. Like in most contemporary theories, the prin-

cipal does not quit the stage in our theory either. However, the problem with

vertical integration in our model is not an inability of the owner to make com-

mitments to managers, but rather an inability of the vertically integrated firm

to make credible commitments to independent firms on whom it wants to rely

for expertise.

If the vertically integrated firm simply replicated the way it procured before

integrating, the profit of the integrated entity would just be equal to the joint
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profit of the two independent firms. However, just like Williamson (1985) ar-

gued, it can do strictly better than that because it can now avoid paying the

markup for procuring from outside suppliers whenever the cost of production

of the integrated supplier is below the lowest bid of the outside suppliers. In

this sense, the vertically integrated firm’s flexibility to change its behavior after

integration is to its benefit. This seems to contrast sharply with the existing

literature, where the vertically integrated firm’s inability to commit may render

integration unprofitable (Cremer 2010). But it raises the question why vertical

integration would not always be profitable in our model. Essentially, the answer

is that, because the integrated firm procures differently, the incentives for the

outside suppliers to invest in cost-reduction decrease. Depending on parameters,

this effect can be so strong that it dominates all the benefits from integration.

Therefore, it is exactly the ability of the vertically integrated firm to do better

than it does without integration that ultimately may hinder it from so doing

because this ability changes the investment behavior of the outside suppliers,

which is outside the control of the integrated firm.

That vertical market structure matters for relationship-specific investments

is well known. Williamson (1985) argues that asset specificity, incompete con-

tracts, and opportunism conspire to undermine efficient investments. Grossman

and Hart (1986) and Hart and Moore (1990) echo the sentiment by modeling

how asset specificity and incomplete contracting causes a holdup problem that

diminishes the investment incentive of the party lacking control rights over pro-

ductive assets. Riordan (1990) argued in a different vein, but still consistent

with Cremer’s interpretation of contemporary theories, that the changed infor-

mation structure of a vertically integrated creates a holdup problem because

the owner cannot commit to incentives for the employee-manager. Bolton and

Whinston (1993) added that vertical integration may cause investment distor-

tions motivated by the pursuit of a bargaining advantage.

The basic technological assumptions in our model extend those in Riordan

(1990) to a multilateral setting. A supplier makes a non-contractible investment

that determines a cost realization prior to price determination. The realized

cost is the private information of the supplier under non-integration, but is ob-

served by the owner-customer under vertical integration. However, there are

two differences. First, our model abstracts from the internal hold-up problem

by assuming that the integrated firm is able to control the investment of its up-

stream division. Second, by explicitly placing the vertical integration problem

in a multilateral setting, we are able to model how the investment incentives of

independent suppliers change with vertical divestiture. This extension is key

to identifying a new tradeoff between markup avoidance and investment incen-

tives, and to articulating conditions under which vertical divestiture becomes

an attractive organizational strategy.

Our emphasis on multilateral supply relationships and our argument that

vertical is motivated partly by rent-seeking is reminiscent of Bolton and Whin-

ston (1993). Bolton and Whinston (1993) considers how forward integration

enables an upstream supplier to extract rents from independent downstream

customers who make relationship-specific investments, whereas our model turns
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the incentives around to consider how backward integration reduces the rents of

upstream suppliers who make relationship specific investments in cost reduction.

While the direction of vertical integration is mainly a matter of interpretation,

there are other important differences between the models. First, the models

make different assumptions about information and the procurement mechanism.

The Bolton-Whinston (BW) model assumes efficient bargaining process under

complete information to allocate scarce supplies. Vertical integration creates

an "outside option" of the bargaining process that for given investments only

influences the division of rents. In contrast, our model features incomplete

information about cost reduction and realized value in a competitive procure-

ment process, and for given investments vertical integration impacts the sourcing

decision as well as the division of rents. Second, the logic of the investment dis-

tortions arising from vertical integration is different as a result of the difference

in procurement mechanisms. In the BW model, the integrated downstream

firm overinvests to create a more powerful outside option when bargaining with

independent customers, but the ex post allocation decision is efficient condi-

tional on investments. In other words, ex post allocation is distorted relative to

the first best only because of the ex ante investment distortions. In our model,

investments are efficient conditional on the allocation decisions, and the causal-

ity of distortions is reversed. The rent-seeking advantage of vertical integration

leads to ex post sourcing distortions, which in turn create ex ante investment

distortions relative to the first best.

Furthermore, our conclusions differ from those of Bolton and Whinston

(1993). Bolton and Whinston (1993) argue there are strong bilateral incen-

tives for partial vertical integration precisely when non-integration is the more

socially efficient market structure. The reason for this conclusion is that, as long

as the outside option of internal sourcing is binding, the investment disincen-

tives of the independent firm do not matter for the profits of the integrated firm.

In contrast, we demonstrate that vertical integration can be privately disadvan-

tageous when the symmetric outcomes of non-integration are attractive from a

social efficiency perspective, and the reason is that the investment disincentives

of the independent sector very much matter for the profits of the integrated firm.

Thus our theory of the private incentives for outsourcing versus partial vertical

integration is novel and quite different from the one proposed by Bolton and

Whinston (1993), even though the theories share an emphasis on multilateral

procurement relationships.

Vertical integration in our model effectively establishes a preferred supplier,

who serves to limit the market power of non-integrated suppliers as in Burguet

and Perry (2009). The integrated firm avoids giving away rents by allocating

production to its upstream division whenever its cost is below the low bid. These

allocation distortions from a preferred suppler are similar to those analyzed by

Burguet and Perry (2009). Our model goes further by analyzing the conse-

quences for investment in cost reduction. As result of endogenous investments,

the preferred supplier has a more favorable cost distribution than the indepen-

dent suppliers in our model, in contrast to the Burguet and Perry model which

assumes identical cost distributions. Obviously, endogenous investments are an
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additional dimension along which to consider the consequences of a preferred

supplier. Our model also extends the Burguet-Perry framework to allow for

demand uncertainty.

Our model also relates to an older industrial organization literature in which

vertical integration is motivated by a downstream firm’s incentive to integrate

backwards in order to avoid paying above-cost prices to upstream suppliers of

inputs (Perry, 1989). In the double markups literature, vertical integration

of successive monopolists achieves greater efficiency by reducing the markup

to the single monopoly level. In the variable proportions literatures, a non-

integrated firm inefficiently substitutes away from a monopoly-provided input at

the margin, and vertical integration of the downstream customer with monopoly

supplier corrects the resulting variable proportions distortions. In our model,

the alternative suppliers can be viewed as substitute inputs for producing the

final good, but, because symmetric suppliers have the same degree of market

power under non-integration in our model, there is no distortion in the input

choice. Nevertheless, the downstream firm still has an incentive to integrate

backward to avoid paying above cost for the input when it procures internally,

the result of which is a sourcing distortion. In this sense, our theory turns the

logic of the variable proportions literature on its head. At the same time, a

lower input price expands the market by increasing the probability that the

downstream project succeeds similarly to the double markup literature. The

resulting ambiguity from these two effects for economic efficiency is reminiscent

of the social welfare ambiguity in the variable proportions literature.

The rest of the paper is organized as follows. Section 2 lays out our model

of vertical market structure, demand, and technology. Section 3 examines so-

cial efficiency from the perspective of a benevolent social planner. Section 4

characterizes equilibrium sourcing and investments for a non-integrated mar-

ket structure, and Section 5 does the same for a vertically-integrated market

structure. Section 6 identifies conditions under which vertical divesture is an

attractive organizational strategy, and Section 7 concludes. Proofs are in the

Appendix.

2 Market structure model

2.1 Overview

There is a downstream firm, the customer, who demands a fixed requirement of

a specialized input for a project. The returns from the project are uncertain,

depending, for example, on realized demand conditions in a downstream market

in which the customer is launching a differentiated product.

There are  downstream firms, the suppliers, capable of providing possibly

different versions of the required input. Each of the suppliers makes a non-

contractible investment in designing the input by exerting effort before making

a proposal. Ex ante, that is, prior to the investment in effort, a supplier’s cost

of producing the input is uncertain. Ex post, that is after the investment, the
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supplier privately observes the realized cost. More effort shifts the supplier’s

cost distribution downward in the sense of first-order stochastic dominance, and,

more specifically, shifts mean cost downward.

There are two possible modes of vertical market organization. The customer

either is independent of the  suppliers, which we refer to as "non-integration",
or is under common ownership with one of the suppliers, which is referred to

as "integration". Restricting attention to limited partial integration serves to

focus the analysis on vertical rather than horizontal market structure.1

2.2 Demand

The customer has value  for the input, drawn from a probability distribution

 () with support on [∞). The mean of the distribution might be inter-

preted to indicate the expected profitability of the downstream market, and the

variance might be interpreted as indicating uncertainty about product differen-

tiation.

The special case of inelastic demand corresponds to the limit of a sequence

of distributions such that  () → 0 for all   ∞. For example, the inelastic

case occurs as a limit of exponential distributions as the rate parameter goes to

zero (see below). Inelastic demand is a leading case in our analysis of incentives

for vertical divestiture. The inelastic case captures in the extreme the idea

that the likely value of the downstream good is very large relative to the likely

cost of the input. This might be so for a highly valuable and differentiated

downstream product.

2.3 Costs

Supplier  makes a non-negative investment , and draws a production cost 
from a probability distribution (;) with support on the interval [()∞).
If investment only shifts the mean of the distribution, then

(;) = ( + ; 0) ≡ 0( + )

and

() = (0)−  ≡  − 

Thus, mean-shifting investment is the same as in the Laffont and Tirole (1993)

model of procurement. In contrast to the typical Laffont-Tirole model, however,

the realized cost is the private information of the supplier.

1A more ambitious analysis could also consider horizontal consolidations that bring ad-

dition suppliers under common ownership, but a thorough analysis along such lines needs a

richer model of downstream market structure to consider adequately the antitrust issues. If

the upstream industry were diversified horizontally into supplying other downstream firms in

the same market or into other markets entirely, then a horizontal consolidation of the industry

would attract antitrust scrutiny.
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The distribution of the minimum cost with  suppliers with a vector of

investments x = (1 ) is

(;x) = 1−
Y
=1

[1− (;)]

with support [(x)∞) with (x) = min{(1) ()}. If the investments are
symmetric, then

(;x) = 1− [1−0 (+ )]
 ≡ 0(+ )

The investment cost function is Ψ() is increasing and convex.

2.4 Procurement

The customer solicits bids from the suppliers in a reverse auction. There is

no reserve price because the precise input specifications are non-contractible ex

ante, and the buyer cannot commit to reject a profitable offer. Each supplier

simultaneously makes an ex ante effort choice  privately observes its ex post
cost .
Under non-integration, each supplier bids a price . The bids are simul-

taneous. The customer selects the low-bid supplier if min{1 } ≤ , and
otherwise cancels the project.

Under integration, the first supplier is owned by the customer. The re-

maining  − 1 independent suppliers simultaneously each bid a price . The

customer sources internally if 1 ≤ min{ 2 }, purchases from the low-

bid independent supplier if min{1 } ≤ min{1 }, and cancels the project
otherwise.

2.5 Exponential-quadratic model

If demand uncertainty is captured by an exponential distribution, then

 () = 1− −(−)

with   0. The mean and standard deviation of exponential demand are

respectively + 1
 and

1
 . The special case of inelastic demand case corresponds

to the limiting distribution as  → 0, as the mean and variance both become
infinite.

Similarly, if mean-shifting cost uncertainty is exponential, then

0() = 1− −(−)

and positive effort by supplier  shifts the cost distribution according to

0( + ) = 1− −(+−)
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If the investment cost function is quadratic, then

Ψ() =


2
2 

with   0. The parameter  is the slope of the linear marginal cost of effort
function, and thus indicates the scope for cost reduction.

3 Social Efficiency

3.1 Planning problem

The social planner chooses investments and allocates production to maximize

expected social surplus.

An ex post efficient allocation awards production to the low cost supplier if

min{1 } ≤ , and cancels the project otherwise. Therefore, the expected
surplus from an ex post efficient allocation given investments is

(x) =

∞Z


∞Z
(x)

max{ −  0}(;x) ()

Ex ante efficient investments maximize the expected net surplus from ex post

efficient allocations. Thus the planner’s problem is to maximize

 (x) = (x)−
X
=1

Ψ()

3.2 Symmetric investments

Proposition 1 Assume mean-shifting investments. (a) A symmetric solution

to the planner’s problem satisfies:

Ψ0() =
1



∞Z


0( + ) ()

if

 ≥  − 

and

Ψ0() =
1



∞Z
−

[1−  ()]0(+ )

otherwise. (b) In the exponential-quadratic model, there exists a symmetric

solution to the planner’s problem if  ≤ . The symmetric solution satisfies

1− 

+ 
(−−) = 

10



if  ≥  − , and


+ 
−(−−) = 

otherwise.

Part (a) states that the planner equates marginal cost of effort to the proba-

bility that the project is not canceled (“expected production”). There are two

cases, which only matters for expressing expected production as a simple inte-

gral. Part (b) provides a simple sufficient condition for a symmetric solution

in the exponential-quadratic case, and provides parametric characterizations of

the first-order conditions for optimality in each of the two cases.

The result that symmetric investments are socially optimal when cost het-

erogeneity is high is intuitive. The variance of the minimum order statistic is

high when  is small. Spreading investments across suppliers is wasteful ex post,
because only one supplier is selected. Obviously, if the most efficient supplier

were known in advance, then it would be optimal to concentrate investment on

that supplier. But with cost uncertainty it is a risky bet to concentrate invest-

ment, because a neglected supplier might end up with a much better efficiency

draw. For this reason, the planner diversifies her bet by investing symmetri-

cally. If instead the cost variance were low, then it would be much less risky to

concentrate investment. It is striking in the exponential-quadratic model that

this tradeoff does not depend on the number of suppliers.

3.3 Inelastic demand

In the limiting case of inelastic demand (→ 0), the project is never canceled.
Integrating by parts, the solution to the planner’s problem in part (a) can be

written alternatively as

Ψ0() =

∞Z


[1−  ()]0( + ) + 0(+ )

Therefore, inelastic demand corresponds to Ψ0() = 1, and in the quadratic
case  = 1

 . In the inelastic-exponential-quadratic (IEQ) case, it can be shown

that symmetric investments are social optimal if and only if  ≤ .

3.4 Asymmetric investments

TBD: When is it optimal for the planner to concentrate investment on a single

supplier?

4 Outsourcing

4.1 Procurement game

The timing of the procurement under nonintegration is as follows:
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1. Suppliers simultaneously choose investments  and observe costs .

2. Suppliers simultaneously submit bids .

3. The customer either selects the low-bid supplier, or cancels the project.

The payoff of the buyer is  − ̂, the payoff of a supplier is ̂ − ̂ − Ψ(̂) if
selected, and −Ψ() otherwise. This is an extensive form game in which sup-

pliers choose investments in the first stage, and submit bids in the second stage.

The appropriate equilibrium concept is subgame perfection. Since the invest-

ments are unobserved, the normal formal of the game has firms simultaneously

choosing an investment and bidding strategy. We focus on symmetric equilibria,

by which we mean equilibria in which all firms choose the same investment level

 at the first stage, so that all firms draw their costs independently from the

same distribution 0(+ ) and accordingly employ the same bidding function
() at the second stage.

4.2 Bidding

The structure of equilibrium bidding given symmetric investments  is well
understood from Burguet and Perry (2009). Consider the bidding incentives of

a representative firm with cost realization  when rival bidders use an invertible
bid strategy (). A representative bidder chooses  to maximize ( − )[1 −
 ()][1−(−1();)]−1. Therefore, a symmetric equilibrium bidding strategy
() is such that

 = argmax


n
[()− ] [1−  (())] [1−(;)]

−1o


For the exponential case, we obtain the following closed form solution:

Lemma 2 Letting ̂ := − 1
+(−1) , the symmetric equilibrium bidding func-

tion given symmetric investments  is

() = +
1

+ (− 1)+
∙

1

(− 1) −
1

+ (− 1)
¸ h
1− −(−1)max{̂−0}

i


Observe that for  ≥ ̂, () has a constant markup 1
+(−1) , that is, () =

 + 1
+(−1) . Notice also that although the optimal bid is independent of the

level of investment , the expected profit at the optimal bid is decreasing in .
The bidding function in the lemma only applies to the support of the sym-

metric equilibrium cost distribution. To characterize the equilibrium invest-

ment, however, it is necessary (at least implicitly) to consider unilateral devi-

ations from equilibrium investment. A unilateral decrease of investment obvi-

ously is unproblematic, because the support of the deviant’s cost distribution

remains in the equilibrium support, and a unilateral increase of investment, say

from  to 0, it is straightford to deal with. If the deviant gets a cost realization
 ∈ [ − 0−) low enough to completely ignore rivals, then it would bid the
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monopoly price  + 1
 ≤ ( − ). Otherwise, constrained by possible compe-

tition from a very low cost rival, it would just match the minimum equilibrium

bid ( − ).

4.3 Symmetric equilibrium

4.3.1 Inefficient cancelation

Attention is focused on the case in which at a symmetric equilibrium there is a

positive probability of cancelation for all possible cost realization. This means

that the lower bound of the bid distribution exceeds the lower bound of the

value distribution, i.e. ( − ) ≥ . The purpose of imposing this restriction
is that it enables us to work with a constant markup bid function.

4.3.2 Profits

Assuming (−) ≥  in a symmetric equilibrium in which each supplier invests
, the expected profit of the customer is

Π() = 

∞Z
(−)

−1()Z
−

[ − ()][1−0(+ )]−10(+ ) ()

and the expected profit of a representative supplier is

() =

∞Z
(−)

−1()Z
−

[()− ][1−0(+ )]−10(+ ) ()−Ψ()

4.3.3 Investment

Each supplier chooses an investment to maximize profit given the investments of

its rivals. This gives rise to an equilibrium first-order condition for symmetric

investments.

Proposition 3 Assume mean-shifting investments. (a) In symmetric equilib-

rium the investment of each firm solves

Ψ0() =

∞Z
−

[1−  (())] [1−0(+ )]−1 0(+ )

assuming

( − )  

at the solution. (b) In the exponential-quadratic model, a symmetric equilib-

rium satisfying ( − )   exists if

1

+ (− 1) +  −  ≥ 

[+ ]


13



The symmetric bid function is

() = +
1

+ (− 1)
and the parameter restriction reduces to

1

+ (− 1) +  −  ≥ 

If the parameter restriction holds, then symmetric investment solves

 =
1





+ 
−[

1
+(−1)+−−]

The equilibrium first-order condition for symmetric investment in part (a) equates

marginal cost to each supplier’s share of the probability of production. The

condition departs from the first-order condition that solves the planner’s prob-

lem because the bid markup compromises the viability of the project. As a

result of the production distortion, symmetric equilibrium investment is below

the socially efficient level. Part (b) details the parameter restriction for the

exponential-quadratic model, and provides a parametric characterization of the

investment level for the exponential-quadratic model. The parameter restric-

tion puts an upper bound on  − . The bound is illustrated in Figure 1 for

different values of  and  (setting  = 1 and  = 085)

4.3.4 Inelastic-exponential-quadratic (IEQ) case

As → 0 the existence condition for the exponential-quadratic model converges
to

 −  ≥ 1



∙
− 



(− 1)
¸

The right-hand-side is negative whenever symmetric investments solve the plan-

ners problems, so that the condition says  −  cannot be too negative. This

condition assures a symmetric equilibrium satisfying ( − ) ≥ . More

generally, as  → 0, no restriction on  −  is necessary for the existence of
a symmetric equilibrium. A symmetric equilibrium with  → 1

 exists in the

limit if and only if  ≤ 
(−1) . In the limit, a symmetric non-integration

equilibrium is equal to the solution to the planners problem. Thus in the IEQ

case, a symmetric non-integration equilibrium is efficient whenever symmetric

investments solve the planner’s problem.

The equilibrium expected procurement cost to the buyer under nonintegra-

tion equals the expected low bid. Given symmetric investment levels , the
formula is

 =

Z ∞
−

()0(+ ) = 

Z ∞
−

−(+−)+
1

(− 1)
=  − +

1


+

1

(− 1) 
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Evaluated at the equilibrium value  = 1
 , we thus get

 =  − 1


+
1



2− 1
(− 1) 

and the expected profit of a representative supplier is

Π =
1

(− 1) −
1

2

1

2


5 Vertical integration

5.1 Procurement game

Under vertical integration, the customer owns supplier 1. Vertical integration

effectively establishes a preferred supplier, who serves to limit the market power

of non-integrated suppliers as in Burguet and Perry (2009). The procurement

game is the same as under non-integration, except the customer has the option

of producing internally. The timing is a follows.

1. Suppliers simultaneously choose investments  and observe costs .

2. Independent suppliers simultaneously submit bids .

3. The customer accepts the low bid, produces internally, or cancels the

project.

If ̂ = min{2 } is the low bid, then the payoff of the buyer is  − ̂ with
outsourcing,  − 1 with internal sourcing, and 0 with project cancellation. A
supplier receives ̂ − ̂ − Ψ(̂) if selected, and −Ψ() otherwise. We focus

on subgame perfection equilibria in which independent supplier invest and bid

symmetrically.

5.2 Bidding

Given investments 1 by the integrated supplier and symmetric investments 2
by all other non-integrated firms, the symmetric equilibrium bidding function

() is such that

 = argmax


n
[()− ] [1−  (())][1−(();1)] [1−(;2)]

−2o


For the exponential case, bidding by the independent sector for vertical inte-

gration is the same as under integration if the integrated firm has a greater

investment.

Lemma 4 With exponential distributions, the symmetric equilibrium bidding

function given investments 1 and 2 with 1 ≥ 2 is

() = +
1

+ (− 1)
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if 2 ≤  − + 1
+(−1) . For 2   − + 1

+(−1) , it is

() = +
1

+ (− 1)+
∙

1

(− 1) −
1

+ (− 1)
¸ h
1− −(−1)max{̂−0}

i


where ̂ := − 1
+(−1) .

Our analysis focuses on the equilibrium case in which the integrated supplier

invests 1 and the  − 1 independent suppliers symmetrically invest 2, and
( − 2) ≥ max{  − 1}. This allows us to work with the same constant

markup bid function as before.

5.3 Distribution of procurement costs

The probability that procurement costs are less or equal to () for  ∈ [ −
2∞) is

 (;1 2) = 1− [1−0(() + 1)][1−0(() + 2)]
−1
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5.4 Profits

Assuming ( − 2) ≥  ≥  − 1 in equilibrium, the expected profit of the
integrated firm is2

Π̂(1 2) =

∞Z
(−2)

−1()Z
−2

[ − ()] (;1 2) ()

+

∞Z
(−2)

(−2)Z
−1

( − )0(+ 2) ()

+

(−2)Z


Z
−1

( − )0(+ 2) ()

−Ψ(1)

and the expected profit of a representative independent supplier is

̂(1 2) =

∞Z
(−2)

−1()Z
−2

[()−][1−0(()+1)][1−0(+2)]−20(+2) ()−Ψ(2)

5.5 Investment incentives

Proposition 5 Assume mean-shifting investments. (a) In equilibrium, if in-

dependent suppliers invest symmetrically, then the investment of the integrated

2An equivalent expression is

Π̂(1 2) = (− 1)
∞

(−2)

−1()
−2

[ − ()][1−0(() + 1)][1−0(() + 2)]
−20(+ 2) ()

+

∞



−1

( − )0(+ 1) ()

−
∞

(−2)


(−2)

( − ){1− [1−0(
−1() + 2)]

−1}0(+ 1) ()

−Ψ(1)
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and independent suppliers solve

Ψ0(1) =

∞Z
−2

[1−  (())] [1−0(+ 2)]
−1

0(() + 1)

+

(−2)Z


[1−  ()] 0(+ 1) +0(+ 1)

Ψ0(2) =

∞Z
−2

[1−  (())] [1−0(() + 1)] [1−0(+ 2)]
−2

0(+ 2)

assuming

( − 2) ≥  ≥  − 1

at the solution. (b) In the exponential-quadratic model, if (i)

1

+ 

1





+ 
−

+
+(−1)

(ii)
1





+ 
−

+
+(−1) ≥  − 

and (iii)
1

+ 
− 1

+ (− 1) ≥  − 

then there exists an equilibrium in which the independent suppliers bid and invest

symmetrically and

( − 2) ≥  ≥  − 1

The equilibrium bid function is

() = +
1

+ (− 1)
and the equilibrium investments of the integrated supplier and an independent

supplier satisfy

1 = 2 +
1





+ 
−(1−2)

h
(−−2) − −(−−2)−

+
+(−1)

i
and

2 =
1





+ 
−(−−2)−(1−2)−

+
+(−1) 

Observe that condition (i) in part (b) will be satisfied, for example, if  ≤ .
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5.6 IEQ case

As → 0, the project is never canceled and demand is inelastic. The equilibrium
investments satisfy

1 =
1


+

− 1

∆

2 =
1


(1− ∆)

and

∆ =
1



³
1− −∆−

1
−1
´


The equation for ∆ has a unique positive solution as a function of   and ,
and therefore (1,2) has a unique solution as a function of  and .
The expected procurement cost of the vertically integrated firm equals the

expected price paid to the independent suppliers, plus the expected production

cost of self supply, plus the investment cost of the integrated supplier. The

simplified formula is

 =  +
− 


1 +



2
21

where 1 is the equilibrium investment the integrated supplier as determined

by the solution for ∆.

6 Profit comparisons

6.1 Stability of vertical integration

We refer to an ownership structure as "unstable" if there exists a bilateral

acquisition or divesture that makes both parties to the transaction better off.

In order to focus on vertical rather than horizontal market structure, we rule

out transactions that consolidate the upstream industry. In particular, we

focus on whether there is mutual incentive for the vertically integrated firm to

divest its upstream division to an independent owner. Furthermore, we restrict

attention to environments for which symmetry is a unique equilibrium under

non-integration. In these circumstances, vertical integration is unstable if the

profit of the vertically integrated firm is less than the sum of profits of the

customer and a representative supplier under symmetric non-integration.

6.2 IEQ case

We consider the limiting case in the exponential-quadratic model as  → 0
and  = 1. In the limit, the mean and variance of the value of project go to

infinity, and at the limit demand for the required input is inelastic. Thus, the

limiting case is equivalent to a model in which the project is consummated with

probability one, and the customer seeks to minimize expected procurement cost.
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Formally, in the IEQ case, vertical integration is unstable if the profit of

a representative supplier in a symmetric equilibrium under non-integration ex-

ceeds the difference in procurement costs between vertical integration and non-

integration. If this is so, then the vertically integrated firm has the incentive

to divest its upstream assets to a willing independent supplier and to procure

its requirements under non-integration. Substituting the definitions of procure-

ment cost and independent supplier profit for the IEQ case, the condition for

unstable vertical integration as → 0 is equivalent to

Φ(  ) ≡ [
− 


(  ) +



2
(  )2]− [ 2− 1

(− 1) −
1


] + [

1

(− 1) −
1

2

1

2
]

=
− 


(  ) +



2
(  )2 − 2


− 1
2

1

2
+
1


 0

with  = (  ) determined by

 =
1



∙
∆+

1


(1−∆)

¸
and

∆ =
1



h
1− −∆−

1
−1
i


Vertical divesture is profitable in the IEQ case if Φ(  )  0. Figure 2

graphs Φ(  1) as function on  for different values of  By continuity, the
same qualitative conclusions hold for the elastic demand case assuming  is not
too large. This is supported in the numerical analysis that follows below.

Proposition 6 In the exponential-quadratic model with  = 1,  sufficiently
small, and  close to 1, vertical integration is stable when  is small and vertical
integration is unstable when  is sufficiently large, while for  close to 0 vertical
integration is stable for any .

TBD: Relax  = 1

6.3 Intuition

To appreciate this result, it is important to understand the powerful advan-

tages of vertical integration in the IEQ case. With mean-shifting investment,

inelastic demand and quadratic effort cost, the aggregate investment in effort

is the same under non-integration and integration. This follows because the

equilibrium marginal costs of effort are equal to market shares which sum to

one. Furthermore, since the exponential distribution has a constant hazard

rate, the distribution of minimum production cost is more favorable under ver-

tical integration. The support of minimum cost distribution is the union of the

supports of the cost distributions of the integrated and independent suppliers,

and depends only on aggregate investment on the support of an independent

firm. Because the additional investment of the integrated firm shifts its sup-

port downward, however, the minimum cost distribution shifts to the left. On
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top of that advantage of vertical integration, the integrated firm self-sources

in some instances, thereby avoiding paying a markup and further reducing its

procurement cost compared to non-integration.

From this perspective, the downside to vertical integration might seem more

modest. Because the cost of effort is convex, the total effort cost increases as

the same total investment is redistributed from independent suppliers to the

independent supplier. In other words, even though the vertically integrated

firm fully compensates for the investment discouragement of the independent

suppliers, it does so at a higher cost.

Notice that a "revealed preference argument" that the customer can do no

worse by changing its conduct under vertical integration does not apply to this

situation because of the response of the independent suppliers. Even though

the integrated firm could keep its investment at the pre-integration level but

chooses not to, and the integrated firm could source its requirements the same

as under nonintegration but chooses not to, the other firms nevertheless reduce

their investments in equilibrium. All we can conclude from revealed preference

is that, given that the other firms reduce their investments, the integrated buyer

prefers slightly more to less investment, but this does not allow us to conclude

that it is better off with integration.

6.4 Curvature of the cost of effort

TBD: We have demonstrated the instability of vertical integration for the

quadratic case, which is neutral in the inelastic demand case in the sense that

vertical integration redistributes the same total amount of investment as under

nonintegration. If the cost function were even more convex, however, then total

investment would be less, and the instability of vertical integration even more

pronounced.

6.5 Numerical analysis

Figure 3 graphs the customer’s profit under vertical integration relative to the

profits from divesture and non-integration for various cases of the exponential-

quadratic model. The number of firms is  ∈ {5 10 15}, cost parameters are
 ∈ {035 085},  = 0, and  = 1, and the demand parameters are  ∈ [−1 0]
and  ∈ (0 1]. The demand parameter region is well within the bounds for

the constraint ( − ) ≥  under non-integration, as provided for in Proposi-
tion 2(b) and illustrated in Figure 1. It also can we verified numerically that

the parameter constraints of Proposition 3(b) hold in this demand region, so

the investment formulas of both Propositions 2(b) and 3(b) are applicable for

computing the profit comparison.

Part (a) of the figure sets  ∈ 085 and  = 10 to illustrate a subset of
demand parameter region for which vertical integration is the more profitable

organization. The profitable vertical integration region is where the profit

comparison plane (blue) rises above the zero plane (red). In this region, the

difference in customer profits between integration and non-integration exceeds
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the divested value of the supply division of the integrated firm. Vertical divesti-

ture is the more profitable organizational strategy, however, if  is sufficiently
close to 0, consistent with Proposition 4. It can also be seen that vertical di-

vestiture is profitable for much higher values of  for negative  near 0, i.e. if
 −  is not too positive. This could be illustrated even more dramatically for
small positive values of  that remain consistent with all the constraints (but
is not in the graph for economy of exposition.)

The other parts of the figure illustrate comparative static effects. Part (b)

increases cost heterogeneity by reducing  to 035 while Part (c) instead keeps
 at 085 but reduces  to 5. For both parameter changes, vertical integration
becomes stable over the entire demand parameter region under consideration.

As discussed above, a high degree of heterogeneity results in high markups under

non-integrtion, which makes the markup avoidance benefit of vertical integration

very valuable. The higher markups resulting from fewer competitors similary

increases markups similarly and enhances the relative profitability of vertical

integration. Finally, Part (d) increases  to 15 which diminishes the markup
avoidance benefit of vertical integration.

In summary, these numerical analyses show that the comparative static con-

clusions for the IEQ case are robust to allowing demand to be elastic.

6.6 Bargaining models

TBD: Discuss simple models of acquisition and divestiture.

7 Conclusion

We study a simple, stylized model of procurement and vertical integration in

which relationship-specific investments by suppliers decrease expected produc-

tion costs and procurement occurs via a first-price auction without a reserve

price. For given investments, vertical integration improves the profits of the

procurer because it enables it to avoid paying the markup over costs it must

pay absent integration. Moreover, if the procurer’s demand is elastic, integra-

tion increases efficiency and further increases profits, keeping investments fixed,

because the markup avoidance also leads to an output expansion. Therefore,

just like in Williamson (1985)’s famous puzzle of selective intervention, an inte-

grated firm can do the same as the separate entities do, and sometimes it can

do strictly better. This would seemingly lead to the conclusion that vertical

integration is inevitably profitable. This prediction is puzzling because it is at

odds with the empirical observations, which include the recent trend towards

outsourcing.

However, in our model, and we would argue in the real world, vertical inte-

gration is not always profitable because it changes the incentives to invest for the

suppliers, making optimal investment levels smaller for non-integrated suppliers

and larger for the integrated supplier. Thus vertical integration effectively real-

locates investment away from independent suppliers and toward the integrated
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supplier. Such a reallocation raises total investment costs because the marginal

cost of investment is increasing. This change-of-equilibrium-investments effect

can be so strong that it outweighs the afore mentioned benefits from vertical

integration. Not only does vertical integration change the behavior of the inte-

grated entity in the way suggested by Williamson, but, exactly because it does

so, it also changes the behavior of the non-integrated firms. Put differently,

vertical integration occurs within a competitive environment, and depending on

how this environment’s behavior is affected by vertical integration, insourcing

or outsourcing may be the procurer’s preferred organizational structure.

Williamson’s puzzle interprets the vertical integration decision in a narrow

bilateral context, implicitly holding constant the conduct of outside parties. All

that seems to matter for the decision are the incentives of the manager of the

supply division and the ability of the integrated firm to adapt to the external

environment. Accounting for the investment response of independent suppliers,

however, creates a tradeoff between the advantages of markup avoidance on the

one hand, and the cost disadvantage of realigned investment incentives on the

other. In this multilateral setting, the puzzle vanishes. The tradeoff favors ver-

tical integration in some circumstances, and vertical divestiture and outsourcing

in others.

Our procurement model is motivated by the idea that specialized suppliers

make non-contractible investments in cost-reducing product and process design,

consistent with Whitford (2005)’s description of the type of customer-supplier

relationships that emerged in manufacturing at the end of the 20th century.

The model predicts that vertical divesture is under certain circumstances an

attractive strategy to encourage these investments by independent suppliers.

These conditions favoring vertical divestiture include an increase in the number

of potential suppliers, greater cost heterogeneity, and greater demand volatility.

Each of these conditions contributes to reducing supplier markups, thus weaken-

ing the markup avoidance advantages of vertical integration. These predictions

help explain the trend away from vertical integration and toward outsourcing in

an increasingly uncertain global economy marked by rapid technological change

and short product cycles.
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9 Appendix

9.1 Proof of Proposition 1

9.1.1 Planner’s problem

The planner chooses x = (1 ) to maximize (x)−
P

=1Ψ(). Extending

(x) =

∞Z


max{(x)}Z
(x)

( − )(;x) ()

=

∞Z


max{(x)}Z
(x)

(;x) ()

=

∞Z
(x)

[1−  ()](;x)

by integration by parts, where  () is defined in the usual manner on an ex-
tended support if necessary. The first-order condtions are

Ψ0() =
(x)



With mean-shifting investments

(x)


=

∞Z


max{−}Z
−

Y
=1 6=

[1−0(+ )](+ ) ()

=

∞Z
−

[1−  ()]
Y

=1 6=
[1−0(+ )](+ )
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9.1.2 Adding up

Summing the first-order conditions for mean-shifting investments gives

X
=1

Ψ0() =
X
=1

(x)



=
X
=1

∞Z
−

[1−  ()]
Y

=1 6=
[1−0(+ )](+ )

=

∞Z
(x)

[1−  ()]
X
=1

Y
=1 6=

[1−0(+ )]0(+ )

=

∞Z
(x)

[1−  ()](;x)  1

where the 0(+ ) and corresponding densities 0(+ ) are defined on an
extended support as necessary.

9.1.3 Symmetric solution

At a symmetric solution, x = ( ), assuming  ≥  − ,

(x) =

∞Z


Z
−

( − )0(+ ) ()

=

∞Z


Z
−

0(+ ) ()

by integration by parts. Furthermore,

( )


=

∞Z


+Z


0()


 ()

=

∞Z


0( + ) ()

by a change of variables.

Similarly, if  −  ≥ , then

( )


=

∞Z
−

 ()0(+ )

This proves part (a).
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9.1.4 Exponential-quadratic model

Symmetric solution Without loss of generality 1 ≥ 2 ≥ , define

 =
X

=1



There are three possible cases: either (1)  ≥  − , or (2)  −  ≥ 1, or (3)
 ≥ − ≥ +1 for some   . In each case, the solution to the first-order

conditions of the Planner’s Problem must be symmetric if  ≥ .

Part (1)  ≥  − 

(x)


= 

∞Z


−(+)++−

+

Z
−

−+−

+

−Z
−−1

−(−1)+(−1)−−1



+

−+1Z
−

−+−

Therefore, for  = 1   − 1

(x)


− (x)

+1
= 

−+1Z
−

−+−

=
1


−(−)[1− −(−+1)]

and, consequently, the differenced first-order conditions for the exponential-

quadratic model imply

( − +1) =
1


−(−)[1− −(−+1)]

Given , this equation obviously has a solution at −+1 = 0. Furthermore,
since the slope of the LHS in ( − +1) is  and the slope of the RHS is
−(−)−(−+1) and decreasing, if  = , then there is no strictly
positive solution if  ≥ . Provided this condition holds, iteration establishes

that  = 1 is the unique solution to the simplified difference equation for all
 = 1   for an arbitrary 1.
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Part (2)  −  ≥ 1

(x)


= 

∞Z
−

−(+)++−

+

−Z
−−1

−[+(−1)]++(−1)−−1



+

−+1Z
−

−(+)++−

Therefore,

(x)


− (x)

+1
= 

−+1Z
−

−(+)++−

= +−

−+1Z
−

−(+)

= − 

+ 
+− [−(+)(−+1) − −(+)(−)]

= − 

+ 
+−−[+)] [(+)+1 − (+) ]

= − 

+ 
(−)− [(+)+1 − (+) ]

= − 

+ 
(−+)−(−)[(+)(+1−) − 1]

=


+ 
−(−−)−(−)[1− −(+)(−+1)]

and, consequently, the differenced first-order conditions for the exponential-

quadratic model imply

( − +1) =


+ 
−(−−)−(−)[1− −(+)(−+1)]

Given , this equation obviously has a solution at −+1 = 0. Furthermore,
since the slope of the LHS in ( − +1) is  and the slope of the RHS is
(−)−(−)−[+)](−+1) and decreasing, if  = , then there is no
strictly positive solution if

 ≥ −(−−)

Provided this condition holds, iteration establishes that  = 1 is the unique
solution to the simplified difference equation for all  = 1   for an arbitrary
1.
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Notice that  −  −  ≥ 0 implies −(−−)  1. Therefore,  ≥  is
sufficient for a symmetric solution.

Part (3)  ≥  −  ≥ +1 for    For  = 1 − 1, the analysis in
Part I implies

( − +1) =
1


−(−)[1− −(−+1)]

and for  =  − 1, the analysis in Part II implies

( − +1) =


+ 
−(−−)−(−)[1− −(+)(−+1)]

Iterating from a given 1,  ≥  is sufficient for a symmetric solution at each
step.

Characterization

Part (1)  −  ≥  The "boundary condition" for an optimal solution

is Ψ0() =
(x)


, which if  −  ≥  in the exponential-quadratic model
becomes

 = 

∞Z


−(+)++−+ 

Z
−

−+−

= +−

∞Z


−(+)+ −

Z
−

−

= − 

+ 
+− [0− −(+)]− 1


− [− − −(−)]

=


+ 
(−)− − 1


(−)− [1− −(−−)]

= [


+ 
− 1


](−)− +

1


−(−)

Multiplying through by , simplifying, and rearranging, the boundary condition
becomes

−(−)
∙
1− 

+ 
−(−+)

¸
= 

At a symmetric solution, the boundary condition becomes

1− 

+ 
−(+−) = 
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Part (2)  ≥  −  The boundary condition is Ψ0() =
(x)


, which if

 ≥ −  in the exponential-quadratic model becomes

 = 

∞Z
−

−(+)++−

= +−

∞Z
−

−(+)

= − 

+ 
+− [0− −(+)(−)]

=


+ 
+−−(+)(−)

=


+ 
−(−−)−(−)

At a symmetric solution, the boundary condition becomes

 =


+ 
−(−−)

9.2 Proof of Lemma 2

For  and  exponential, a representative supplier’s problem becomes

max

(()− )−max{()−0}−(−1))(+−)

Taking the derivatives with respect to  separately for the cases () ≤  and
()  , evaluated at  = , gives, respectively, the first-order conditions

0()− (− 1)[()− )] = 0

and

0()− [0() + (− 1)][()− )] = 0

Imposing the boundary constraint (̂) = ̂ for some arbitrary ̂ for the former
gives the unique solution

() = +
1

(− 1) + (−1)

for  ≤ ̂ for some constant  (that remains to be determined) while imposing
the boundary condition lim→∞(()− ) = 0 on the latter yields the unique
solution

() = +
1

+ (− 1)

Setting (̂) =  gives us ̂ as stated in the lemma. Standard arguments imply
that the equilibrium bidding function has to be continuous everywhere. As the
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functions  and  are continuous for  ≤ ̂ and  ≥ ̂, we are left to insure
that (̂) = (̂), which will then determine . Imposing this equality gives
us

1

+ (− 1) =
1

(− 1) + (−1)̂

implying

 = −
∙

1

(− 1) −
1

+ (− 1)
¸
−(−1)̂

Plugging  back into (), we get

() = +
1

(− 1) +
∙

1

(− 1) −
1

+ (− 1)
¸
−(−1)(̂−)

To see that we can write the bidding function () as stated in the lemma,
observe that for  ≥ ̂ it is identical to () and for  ≤ ̂ it is identical to
().

9.3 Proof of Proposition 3

9.3.1 Necessary condition with mean-shifting investment

Suppose a representative firm were to deviate and choose  +  instead of .
The deviant would have cost distribution (;+ ) = 0(+ + ). For  ≥
 − , the deviant would still follow the equilibrium bidding strategy () if it
expects its rivals to do likewise; similarly, rivals also would follow the equilibrium

bidding strategy because the deviation is unobserved. For −   ≥ −−,
the deviant would bid ( − ) assuming  is not too large. Therefore, the ex
post profit of the deviant with cost realization  ≥  − −  is

() =

½
[()− ][1−(;)]−1[1−  (()] if  ≥  − 
[( − )− − ][1−  (( − )] if  ≤  − 



Given the optimality of (), the envelope theorem implies

 0() =
½ −[1−(;)]−1[1−  (()] if    − 

−[1−  (( − )] if    − 

Using a change of variables, the ex ante (expected) profit of the deviant

Π() =

∞Z
−

(− )(;)− 

2
(+ )2

where  is the symmetric equilibrium investment and a small positive deviation

investment   0. The same function also describes ex ante profit for a negative
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deviation   0. Furthermore, the function is differentiable at  = 0. Therefore
the symmetric equilibrium first-order condition is

−
∞Z

−
 0()(;)−  = 0

or, equivalently,

 =
1



∞Z
−

[1−(;)]−1[1−  (()](;)

9.3.2 Necessary conditions for a symmetric equilibrium in the exponential-

quadratic model

Using the properties of exponential distributions, ( − )−   0 implies

()−  =
1

+ (− 1)
and

1−  (()) = −[+
1

+(−1)−]

Furthermore,

() = 1− −(+−)

and

0() = −(+−)

Therefore,

 =
1



∞Z
−

[−[+
1

+(−1)−]][−(+−)]

=



−


+(−1)++(−)

∞Z
−

−(+)

=


(+ )
−


+(−1)−(−−)

and

 =


(+ )
−


+(−1)−(−−)

Observe that the term in the exponent is positive under the condition for con-

stant markup bidding. Therefore,  ≤ 
+ in as symmetric equilibrium.
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Let ∆ ≡  − − . Then

∆ =  − − 

(+ )
−


+(−1)−∆ (1)

The right-hand-side increasing and concave in ∆; it equals −− 
(+) when

∆ = − 1
+(−1) , and goes to  −  as ∆ → ∞. The equation has a unique

solution on the domain [− 1
+(−1) ∞) if

 −  

∙


(+ )
− 1

+ (− 1)
¸

(2)

TBD: Confirm when this condition is also necessary, e.g.



(+ )
≤ 1

Condition (2) is an “if and only" condition for the existence of a symmetric

equilibrium with ( − )   under the parameter restriction  ≤ + .
(Observe that this restriction is always satisfied if we impose   .) To see
this, observe that the LHS of (1) is less than its RHS at ∆ = − 1

+(−1) if and
only if (2) is satisfied. Moreover, at ∆ = − 1

+(−1) , the derivative of the RHS

is 
(+ , which is less than 1 (the derivative of the LHS) under the additional

parameter restriction. Thus, if this additional parameter restriction is satisfied

but (2) is not, then there is no point of intersection of the LHS and the RHS on

the domain [− 1
+(−1) ∞).

9.3.3 Sufficient conditions for a symmetric equilibrium in the exponential-

quadratic model

The best response of a representative firm () to a symmetric investment by
rivals (̄) satisfies

 =

∞Z
−

[1−  (())][1−0(+ ̄)]−10(+ )

=

∞Z


[1−  ((− ))][1−0(+ ̄− )]−10()

= −[+(−1)]
∞Z


[1−  (())][1−0(+ ̄)]−10()

which is equivalent to

[+(−1)] =

∞Z


[1−  (())][1−0(+ ̄)]−10()
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The left-hand-side is a non-negative and increasing convex function of , equal
0 at  = 0 and going to ∞ as  → ∞. The right-hand-side is a positive and

decreasing function of ̄. If follows that a unique best response is a continuously
decreasing function of ̄. Furthermore, a fixed point of this response function
exists and is a symmetric Nash equilibrium.

9.4 Proof of Lemma 4

Notice that in a first-price auction, () ≥  will always hold. Therefore, there
are a priori four cases to consider:

i) ( − 2)  max{  − 1}
ii)   ( − 2)   − 1
iii)  − 1  ( − 2)  
iv) min{  − 1}  ( − 2)
However, assuming 1 ≥ 2, we are left we cases i) and ii).\
The proof proceeds along similar lines as the one of Lemma 2. For  and 

exponential and 1 ≥ 2, a representative non-integrated supplier’s problem is

max

(()− )−max{()−0}−(()+1−)−(−2))(+2−)

Taking the derivatives with respect to  separately for the cases () ≤  and
()  , evaluated at  = , gives, respectively, the first-order conditions

0()− [0()+ (− 2)][()− )] = 0

and

0()− [(+ )0() + (− 2)][()− )] = 0

Imposing the boundary constraint (̂) = ̂ for some arbitrary ̂ for the former
gives the unique solution

() = +
1

(− 1) + (−1)

for  ≤ ̂ for some constant  (that remains to be determined) while imposing
the boundary condition lim→∞(()− ) = 0 on the latter yields the unique
solution

() = +
1

+ (− 1)

Setting (̂) =  gives us ̂ = − 1
+(−1) as in Lemma 2. Standard arguments

imply that the equilibrium bidding function has to be continuous everywhere.

As the functions  and  are continuous for  ≤ ̂ and  ≥ ̂, we are left to
insure that (̂) = (̂), which will then determine . Imposing this equality
gives us

1

+ (− 1) =
1

(− 1) + (−2)̂
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implying

 =

∙
1

+ (− 1) −
1

(− 1)
¸
−(−1)̂

Plugging  back into (), we get

() = +
1

(− 1) +
∙

1

(− 1) −
1

+ (− 1)
¸
−(−1)(̂−)

To see that we can write the bidding function () as stated in second part
of the lemma, observe that for  ≥ ̂ it is identical to () and for  ≤ ̂ it is
identical to (). Finally, notice that for 2 ≤  − + 1

+(−1) ,  ≥ ̂ so ()

is as stated in the first part of the lemma in this case.

9.5 Proof of Proposition 5

9.5.1 Investment incentives of integrated firm

Marginal increase in procurement value Assuming mean-shifting invest-

ments, assuming ( − 2) ≥  ≥  − 1, the equilibrium gross value of pro-

curement to the customer is

 (1 2) =

∞Z
(−2)

{1−[1−0(+1)][1−0(−1()+2)]−1} ()+
(−2)Z


0(+1) ()

and the marginal value of investment is

(1 2) =

∞Z
(−2)

[1−0(
−1() + 2)]

−10( + 1)() +

(−2)Z


0( + 1) ()

=

∞Z
(−2)

[1−0(
−1() + 2)]

−10( + 1) () +

(−2)Z


0( + 1) ()

Marginal reduction in procurement cost

35



Conditional marginal effects The expected procurement cost condi-

tional of  ≥ ( − ) is

(;1 2) =

−1()Z
−2

() (;1 2) +

( )Z
−1

0( + 1)

= (− 1)
−1()Z
−2

()[1−  (())][1−0( + 2)]
−20( + 2)

+

−1()Z


()[1−0( + 2)]
−10(() + 1) +

()Z


0( + 1)

= (− 1)
−1()Z
−2

()][1−0( + 2)]
−20( + 2)

−
−1()Z


0()[1−0( + 2)]
−10(() + 1)

+[1−0(
−1() + 2)]

−10( + 1)−
()Z


0(+ 1)

where

 (;1 2) = 1− [1−0(() + 1)][1−0( + 2)]
−1
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Therefore, the conditional marginal return of investment by the integrated firm

is

(;1 2) = −
−1()Z
−2

0()[1−0(
−1() + 2)]

−10(() + 1)

+[1−0(
−1() + 2)]

−1[1− 0(
−1() + 2)]

−1 −
( )Z


0(+ 1)

= −
−1()Z
−2

[1−0(
−1() + 2)]

−10(() + 1)

+[1−0(
−1() + 2)]

−10(+ 1)−0(( − 2) + )

= −(− 1)
−1()Z


0(() + )[1−0( + 2)]
−20( + 2)−

0( + 1)[1−0(
−1() + 2)]

−1 + [1−0(
−1() + 2)]

−10( + 1)

= −(− 1)
−1()Z


0(() + )[1−0( + 2)]
−20( + 2)

−[1−0(
−1() + 2)]

−1[0( + 1)− 0( + 1)]

The expected procurement cost conditional on ( − ) ≥  ≥  is

(;1 2) =

Z
−1

0( + 1)

= 0( + 1)−
Z

−1

0( + 1)

and the corresponding marginal return to investment is

(;1 2) = 0( + 1)−0( + 1)

Unconditional marginal effect Therefore, if ( − 2)     − 1
equilibrium expected procurement cost is

Θ(1 2) =

∞Z


(;1 2) ()
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and the marginal effect of investment by the integrated supplier is

Θ(1 2) =

∞Z


() ()

= −(− 1)
∞Z

(−2)

−1()Z
−2

0(() + 1)[1−0(+ 2)]
−20(+ 2) ()

−
∞Z

(−2)

[1−0(
−1() + 2)]

−1[0( + 1)− 0( + 1)]} ()

−
( )Z


[0( + 1)− 0( + 1)] ()

= −(− 1)
∞Z



[1−  (())]0(() + 1)[1−0(+ 2)]
−20(+ 2)

−
∞Z

(−2)

[1−0(
−1() + 2)]

−1[0( + 1)− 0( + 1)]} ()

−
(−2)Z


[0( + 1)− 0( + 1)] ()

= −(− 1)
∞Z



[1−  (())]0(() + 1)[1−0(+ 2)]
−20(+ 2)

−
∞Z

(−2)

[1−0(
−1() + 2)]

−10( + 1) ()−
(−2)Z


0( + 1) ()

+[1−0(
−1() + 2)]

−10( + 1)] () +

( )Z


0( + 1)] ()

Marginal return from investment Therefore, the net marginal value of
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investment for the integrated supplier is

(1 2)−Θ(1 2)
= (− 1)

Z ∞
−2

[1−  (())]0(() + )[1−0(+ 2)]
−20(+ 2)

+

∞Z
(−2)

[1−0(
−1() + 2)]

−10( + 1) () +

(−2)Z


0( + 1) ()

= (− 1)
Z ∞
−2

[1−  (())]0(() + )[1−0(+ 2)]
−20(+ 2)

+

Z ∞
−2

[1−0( + 2)]
−10(() + ) (() +

(−2)Z


0( + 1) ()

= (1−  (( − 2)))0(( − 2) + )

+

Z ∞
−2

[1−  (())][1−0( + 2)]
−10(() + 1)

+

Z (−2)



0(() + 1)()

=

Z ∞
−2

[1−  (())][1−0( + 2)]
−10(() + 1)

+

(−2)Z


[1−0( + 1)] () +0(+ 1)

In equilibrium, this is equated to marginal investment cost Ψ0(1).

9.5.2 Investment incentives of independent suppliers

By analogy to our previous analysis for a symmetric non-integrated equilibrium,

each of the − 1 independent suppliers symmetrically equates its marginal cost
of investment toZ ∞

−2
[1−  (())][1−(()][1−0(+ 2)]

−20(+ 2)

9.5.3 Exponential-quadratic model

For the exponential case, the first-order condition for an independent supplier

simplifies to

2 =
1





+ 
−(−−2)−(1−2)−

+
+(−1) (3)
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Furthermore, it is not hard to show thatZ ∞
−2

[1−  (())][1−0( + 2)]
−10(() + 1)

=

Z ∞
−2

[1−  (())][1−0(() + 1)][1−0(+ 2)]
−20(+ 2)

which means for the exponential case

1 − 2 =
1



⎡⎢⎣ (−2)Z


[1−0( + 1)] () +0(+ 1)

⎤⎥⎦
=



(+ )

h
1− −(−−2)−

+
+(−1)+(2−1)

i
+



(+ )

h
1− (−−1)

i
 (4)

Numerical Computations For the numerical computations, it is useful to

re-arrange (3) to get

−(1−2) = 2
(+ )


(−−2)+

+
+(−1) 

which after taking logs gives us

1 − 2 = − 1


∙
ln(2) + ln

µ
(+ )



¶
+ ( − − 2) +

+ 

+ (− 1)
¸


(5)

Inserting this expression for 1 − 2 into (4) we get an equation that depends
on 2 only:

− 1



∙
ln(2) + ln

µ
(+ )



¶
+ ( − − 2) +

+ 

+ (− 1)
¸

=


+ 

∙
1− 2

(+ )



¸
+



+ 

∙
1− 2

(+ )


−(+)(−+2)+

+
+(−1)

¸


Uniqueness of the best response functions In analogy to the arguments

used in the proof of Proposition 3, the best response of a representative nonin-

tegrated supplier () to a symmetric investment by the nonintegrated rivals (̄)
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and the integrated supplier (1) satisfies

 =

∞Z
−

[1−  (())][1−0(() + 1)][1−0(+ ̄)]−10(+ )

=

∞Z


[1−  ((− ))][1−0((− ) + 1)][1−0(− + ̄− )]−10()

= −[+(−1)]
∞Z


[1−  (())][1−0(() + 1)][1−0(+ ̄)]−10()

which is equivalent to

[+(−1)] =

∞Z


[1−  (())][1−0(() + 1)][1−0(+ ̄)]−10()

The left-hand-side is a non-negative and increasing convex function of , equal
0 at  = 0 and going to ∞ as  → ∞. The right-hand-side is a positive and

decreasing function of ̄. It follows that a unique best response is a continuously
decreasing function of ̄. Furthermore, a fixed point  = ̄ of this response
function exists and is a symmetric best response.

To establish uniqueness of the best response of the integrated firm to any

2 ≥ 0, observe first that the lefthand side of (4) is trivially linear in 1 and
equal to 0 at 1 = 2. The righthand side, in contrast, is increasing and concave
in 1 and greater than 2 at 1 = 2. This can be established, for example, by
inspecting the equality preceding (4). Moreover, at 1 = 0, the lefthand side is
−2 ≤ 0 while the righthand side is positive. This follows from inspecting the

righthand side of the equality preceding (4). Therefore, for any 2 ≥ 0 there is a
unique best response 1(2). Moreover, this best response satisfies 1(2)  2.

Equilibrium Existence The proof that an equilibrium of the form described

in the proposition exists given the parameter restrictions imposed in the propo-

sition rests on the following properties of the best response functions:

1. 2( − ) ≥  − 

2. 2(1) is decreasing in 1 for 1 ∈ [ −  1]

3. 2(1)  0

4. 1(2) ≥ 2 for all 2 ∈ [0  − + 1
+(−1) ]

5. 1(0) ≤ 1.
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Given that the best response functions 1(2) and 2(1) derived above are
continuous, these properties then imply that the best response functions have

a fixed point on the set [0  − + 1
+(−1) ]× [ −  1]. We now establish

these properties in turn.

1. Evaluating the lefthand side and the righthand side of the equation that

defines 2 at 2 =  −  and 1 =  − , we get

 −  ≤ 1




+ 
−

+
+(−1) (6)

under the parameter restrictions we imposed. Moreover, taking derivatives we

get

1 
+ 

+ 




−

1
+(−1) 

where 1 is the derivative of the lefthand side of (6) and +
+


 
− 1
+(−1) is

the derivative of the righthand side of (6) evaluated at 1 = 2 =  − . This
means that 2( − )   −  because the conditions imply that at  −  we
are to the left of the first point of intersection of the linear lefthand side and

the increasing and convex righthand side.

2. Taking the total derivative of 2(1) defined in (3) with respect to 1
gives

2
1

= − 2
1− (+ )2

 (7)

This is negative if 2(1) 
1

+ . Evaluating next 2(1) at the lower bound
for 1, i.e. at 1 =  − , we get exactly the same conditions that emerge in
Proposition 3. By the same logic as there it now follows that the best response

2 is smaller than −+ 1
+(−1) . Thus, −+ 1

+(−1)  1
+ is sufficient

for 2(1) to be decreasing in 1 for 1 ≥  − .
3. 2(1)  0 follows because 2 is positive.

4. 1(2) = 2+
1



+

(−−1(2)
h
1− −(+)(−−2+

1
+(−1) )

i
, where

the term in brackets is positive if and only if 2 ≤  − + 1
+(−1) .

5. Plugging 2 = 0 into 1(2) gives 1(0) =
1



+

−(1(0)−(−)[1 −
−(1(0)−(−))

h
1− −(+)(−+

1
+(−1)

i
, which is less than 1.

9.6 Proof of Proposition 6

Observe that

Φ( ) =
1



∙
1− (− 1)∆

µ
1− +



2

µ
− 1

∆ +

2



¶¶¸
because ∆ =


−1

¡
 − 1



¢
. Evaluated at  = 1, we get

Φ( 1) =
1

22
[2− (− 1)∆ [(− 1)∆ + 2]] 
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Observe that Φ( 1) is decreasing in∆ and equal to 0 at∆ =
1−+√1−32+23

(−1)2 :=

∆̂(). Therefore, vertical integration is stable if and only if ∆  ∆̂(). For
 = 2, we get ∆̂(2)  1, which is sufficient to prove the result because∆ ∈ [0 1]
for any . (Moreover, for  = 3, one gets ∆ = 073  082 = ∆̂(3).)
The following argument will be used in the remainder of this proof: Because

the lefthand side of the equation ∆ = 1− −∆−
1

−1 is linearly increasing in

∆ while the righthand side is increasing and concave in ∆ , the positive root

∆ of this equation is larger than  whenever   1−−− 1
−1 holds and smaller

than  whenever   1 − −−
1

−1 holds. Therefore, showing that ∆̂()  ∆

is equivalent to showing that ∆̂()  1− −∆̂()−
1

−1 . This is, for example, the

case for  = 9 10 11 .
To prove the statement for  close to 0, observe first that the sign of Φ( )

is the same as the sign of 1
 − (1 − )( − 1) − 

2 ( − 1)( + 1),
whose sign, as  goes to 0, is the same as the sign of 1 − ( − 1)∆ . It thus

suffices to show that lim→0∆ 
1

−1 . But this is certainly the case because
1

−1  1− −1(−1) holds for any  ≥ 2. This completes the proof.
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ü The difference in procurement costs do vanish, but for large m vanish from above
Plot@8Z3@n, 0.25D - Z2@n, 0.25D, Z3@n, 0.50D - Z2@n, 0.50D,

Z3@n, 0.75D - Z2@n, 0.75D, Z3@n, 1D - Z2@n, 1D<, 8n, 2, 100<D
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ü Thus for sufficiently large n and m vertical integration is less profitable.
In[98]:= Plot@8-F@n, 0.25D, -F@n, 0.50D, -F@n, 0.75D, -F@n, 1D<, 8n, 5, 40<D
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Constraints
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Upper bound on a

In[444]:= X@l_, n_, m_D :=
1

l + Hn - 1L * m
+ b -

m

l + n * m

In[445]:= X@1, 15, 0.85D
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Plot as function of l for different values of n
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In[98]:= Plot3D@8xnon@a, lD, Constraint3@a, lD<, 8a, -0.1, 0.1<,
8l, 0.01, 1<, PlotStyle Ø 8Red, Green<, AxesLabel Ø 8a, l<D
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