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1 First order partial differential equations and the method

of characteristics

Consider the first order PDE

F (x, u(x), Du(x)) = 0, Du(x) = (∂x1u, . . . .∂xnu) . (1.1)

Here, F (x, z, p) denotes a smooth real-valued function of 2n + 1 variables x ∈ Rn, p ∈ Rn

and z ∈ R1, with x = (x1, . . . , xn), p = (p1, . . . , pn).
Transport equation: ∂tu(x, t) + v · u(x, t) = 0, x ∈ Rn, t ∈ R1.
Linear first order equations: b(x) ·Du(x) + c(x)u(x) = 0
Quasilinear first order equations: b(x, u(x)) ·Du(x) + c(x, u(x)) = 0
Fully nonlinear equations: equations which are nonlinear in Du(x), e.g. The eikonal
equation, |∇u(x)|2 = 1.

2 The Laplacian - Laplace’s and Poisson’s equations

2.1 The Newtonian potential in Rn

2.2 Boundary value problems and Green’s functions

2.2.1 Green’s function for the ball in Rn

2.2.2 Green’s function for the upper half plane in R2, Rn

2.3 Single and Double Layer Potentials and their boundary limits

2.4 Boundary integral formulation of the Dirichlet and Neumann
Problems – Interior and Exterior

2.5 Fredholm Operators in Banach Spaces, Solvability of Fred-
holm Integral Equations on C0(S) and the Fredholm Alterna-
tive

2.6 Application of Fredholm Integral Operator Theory to the so-
lution of the Dirichlet and Neumann Problems
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3 Distributions and Fundamental Solutions

1

Definition 3.1 Let C∞0 (Ω) or C∞c (Ω) denote the set of compactly supported C∞ functions.

C∞0 (Ω) = { f : there exists K compact subset of Ω, f(x) ≡ 0, x ∈ Ω−K }

One often denotes C∞0 (Ω) by D(Ω) or D 2. Functions in D are often called test functions.

Definition 3.2 A linear functional, T , on D is linear mapping which associates to any
φ ∈ D a number T [φ], i.e.

T [ λφ+ µψ ] = λ T [φ] + µ T [ψ]

for any λ, µ scalars and any φ, ψ ∈ D.

Examples: (a) Distributions obtained from locally integrable functions: Let f ∈ L1
loc be any

locally integrable function3. Define

Tf [φ] =

∫
Rn
φ(x)f(x) dx (3.1)

Then, Tf is a linear functional on D. For simplicity, we will often write f [φ] instead of Tf [φ].

(b) The Dirac ”delta function”:
δξ[φ] = φ(ξ) (3.2)

defines a linear functional on D.

Continuity of linear functionals on D, notion of distribution

Definition 3.3 Consider an arbitrary sequence of functions {φk} in D, which tend to zero
in the sense of the following two conditions: (a) φk vanish outside a fixed compact subset,
K, of Ω. and (b) For any multi-indx α, limk→∞ ∂

αφk(x) = 0 uniformly in x ∈ K.
A linear functional T is continuous if limk→∞ T [φk] = 0 for any sequence {φk}, which
tends to zero in the above sense. A continuous linear functional on D is called a distribution.
The set of distributions on D(Ω) is denoted by D′(Ω).

Examples: Tf , defined for any locally integrable f and δξ are examples of distributions.

Differentiation of distributions:

1References: Chapter 3, F. John PDEs; Section E of Chapter 0 in G.B. Folland Introduction to PDEs
2Here, Ω is taken to be an open set. A compact set is a set which is a set which is closed and bounded.
3f ∈ L1

loc means that for any compact set C,
∫

C
|f(x)|dx <∞.
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Notation: A multi-index is a vector of non-negative integers α = (α1, . . . , αm) ∈ Nm
0 . The

order of a multi-index is given by |α| ≡ α1 + · · ·+ αm.

∂αf(x) = ∂α1
x1
· · · ∂αmxm f(x1, . . . , xm).

Note that if f, φ ∈ D, then∫
∂αf(x)φ(x) dx = (−1)|α|

∫
f(x) ∂αφ(x) dx, (3.3)

which we can write as
∂α f [φ] = (−1)|α| f [ ∂αφ ]. (3.4)

Equation (3.4) motivates our definition of the derivative of a distribution. Let T ∈ D′. Then,

∂αT [φ] = (−1)|α| T [ ∂αφ ] (3.5)

Distribution solutions to PDEs

Let L denote the linear partial differential operator L =
∑

α∈I aα(x)∂α. Suppose we have a
PDE

Lu = T, (3.6)

where T ∈ D′. Given the above definition of derivative of a distribution, we say that the
PDE has a distribution solution u, provided

u[Ltφ] = T [φ], φ ∈ D. (3.7)

Here, Lt φ =
∑

α∈I (−1)|α|∂α ( aα(x) φ(x) ) denotes the adjoint of the differential operator
L, which satisfies the generalization of (3.3): for φ, ψ ∈ D∫

Lψ(x) φ(x) dx =

∫
ψ(x) Ltφ(x) dx

Fundamental Solutions

Definition 3.4 A fundamental solution of a linear differential operator L with pole at x is
a distribution solution, u, of Lu = δx.

Examples: Laplace Operator L = ∆. Lt = ∆. We have shown that a fundamental
solution for ∆ with pole at x is:

Φ(x− y) =
1

2π
log |x− y|, n = 2

=
1

(2− n)ωn
|x− y|2−n, n ≥ 3

Exercise: In one space dimension, solve

d2Φ

dx2
= δx

where δx denotes the Dirac delta function (distribution).
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4 Introduction to Hilbert Space

Definition 4.1 45

(a) S is a vector space or linear space: u, v ∈ S implies, for all λ, µ scalars that λu+µv ∈
S, plus vector spaces axioms.

(b) S is an inner product space if it is a linear space and there is a function

(·, ·) : S × S → R
u, v ∈ S 7→ (u, v) ∈ R (4.1)

with the following properties

(P1) (u, v) = (v, u)

(P2) (λu+ µv, w) = λ(u, v) + µ(v, w), λ, µ ∈ R.

(P3) (u, u) ≥ 0 and (u, u) = 0 =⇒ u = 0.

Example 1a: S = Rn. u, v ∈ Rn. (u, v) =
∑n

i=1 uivi.

Example 2a: S = C∞(Ω), Ω ⊂ Rn bounded open, (f, g) =
∫

Ω
u(x) v(x) dx.

Definition 4.2 A normed linear space is a vector space equipped with a notion of length,
called the norm, ‖ · ‖, satisfying the following properties

(n1) ‖u‖ = 0 implies u = 0

(n2) ‖λu‖ = |λ| ‖u‖, λ ∈ R

(n3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖

Given an inner product space, S, there is a natural norm, or measure of size of a vector in S

‖u‖ =
√

(u, u) (4.2)

4References: We seek to give the required working knowledge of the basic functional analysis, e.g. Hilbert
space, linear operators, spectral theory, . . . , with a view toward its application to PDEs. See, for example,
(a) L.C. Evans, PDEs, Appendix D on Linear Functional Analysis and Appendix E on Measure and Inte-
gration; (b) F. John, PDEs, Springer 4th Ed., Chapter 4, section 5; G.B. Folland, Introduction to PDEs,
Princeton University Press, Chapter 0. A good text on elementary notions in analysis (convergence, uniform
convergence, integration,. . . is the text: W. Rudin, Principles of Mathematical Analysis, McGraw Hill. a
more advanced text is that of E. Lieb and M. Loss, Analysis, Am. Math. Soc.

5Throughout we will construct spaces of functions, with notions of size and distance within these spaces
defined in terms of integrals. These integrals are assumed throughout to be taken in the Lebesgue sense, an
important extension notion of Riemann integral. Note that if f is integrable in the sense of Riemann, it is
in the sense of Lebesque and the values of these integrals is the same. Appendix E of L.C. Evans PDEs
contains a very terse treatment of measure theory and the Lebesgue integral.
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Any norm satisfies the Cauchy Schwarz inequality

|(u, v)| ≤ ‖u‖ ‖v‖ (4.3)

Example 1b: S = Rn. u, v ∈ Rn. ‖u‖ =
√∑

k=1 |uk|2.

Example 2b: S = C∞(Ω), Ω ⊂ Rn bounded open. ‖u‖2 =
( ∫

Ω
|u(x)|2dx

) 1
2 .

Convergence:
The sequence {uj}j≥1 in S converges to a point u∗ ∈ S provided

lim
j→∞

‖uj − u∗‖ = 0. (4.4)

In this case we say that the sequence {uj}j≥1 converges strongly to u∗ or converges to u∗ in
norm. Later, we shall introduce the notion of weak convergence.

Cauchy sequence:
The sequence {uj}j≥1 in S is called a Cauchy sequence if ‖uj − uk‖ → 0 as j, k →∞.

Completeness:
The normed linear space S is complete if every Cauchy sequence in S converges to some
element of S. A complete normed linear space is called a Banach space. A complete normed
linear space, whose norm derives from an inner product, as in (4.2), is called a Hilbert space.

Completion Theorem: Every normed linear space can be completed. Specifically, if S is
a normed linear space, then it is possible to naturally extend S to a possibly larger set, S̃,
and the norm ‖ · ‖ to be defined on all S̃, in such a way that the set S̃, equipped with the
norm ‖ · ‖. is complete. The completion is constructed by identifying all Cauchy sequences
with points in the extended space S̃. If v ∈ S̃ but v /∈ S, then there is a sequence {vk} in S,
such that ‖vk − v‖ → 0 as k →∞. We say that the space S is dense in S̃.

Example 1c: Let Q denote the set of rational numbers, numbers of the form p/q, where
p and q are integers and q 6= 0. Consider the inner product space S = Qn. u, v ∈ Qn.
‖u‖ =

√∑
k=1 |uk|2, the Euclidean norm. While Qn equipped with this norm is not

complete, Qn has a completion, namely Rn equipped with the norm ‖u‖.
Example 2c: C∞(Ω) is not complete with respect to the norm ‖u‖2 =

∫
Ω
|u(x)|2dx. There

are many important completions of C∞(Ω) with respect to different norms:

(1) The Hilbert Space L2(Ω): The completion of C∞(Ω) with respect to the norm ‖ · ‖2

is called L2(Ω). Since the norm on L2 derives from an inner product, f, g 7→
∫

Ω
fg, L2

is a Hilbert space.
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(2) Sobolev Spaces - Hk(Ω), k ≥ 0: Define the inner product of two functions f, g ∈ H1

by

(f, g)H1 =

∫
Ω

∇f · ∇g + fg dx (4.5)

The H1 Sobolev norm is defined by:

‖u‖2
H1 = (u, u)H1 =

∫
Ω

|∇u(x)|2 + |u(x)|2 dx (4.6)

More generally, for any integer k ≥ 0, define Hk(Ω) to be the completion of C∞(Ω)
with respect to the norm

‖u‖2
Hk =

∑
|α|≤k

∫
Ω

|∂αu(x)|2 dx (4.7)

Note that H0(Ω) = L2(Ω).

(3) Sobolev Spaces - Hk(Rn), k ≥ 0: Replace the bounded open set, Ω, with Ω = Rn.
First consider C∞0 (Rn) and define Hk(Rn) to be the completion of C∞0 (Rn) with respect
to the Hk(Rn) norm:

‖u‖2
Hk =

∑
|α|≤k

∫
Rn
|∂αu(x)|2 dx (4.8)

Remark 4.1 Sobolev spaces are important in analysis of functions largely due to their role
in relating global (integral) properties and local (pointwise) properties. For example, here is
the most elementary

Sobolev inequality: There is a constant K > 0 such that for any f ∈ C∞0 (R) we have

|f(x)|2 ≤ K

( ∫
|f(x)|2 + |f ′(x)|2 dx

)
= K ‖f‖2

H1 (4.9)

Proof: Exercise

Weak convergence: A sequence {uj}j≥1 in H converges to a limit u∗ in H if for all w ∈ H

(uj, w)H → (u∗, w)H (4.10)

Compactness A closed subset, C, of H is compact if any sequence {uj}j≥1 in C has a
convergent subsequence.

Remark 4.2 Any closed and bounded subset of Cn is compact. However, in infinite dimen-
sional spaces, e.g. L2, this is not the case. See section 12.4.

9
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4.1 Representation of Linear Functionals on H
(1) A linear functional on S is a mapping φ : S → R, u 7→ φ(u), such that for all

u, v ∈ S and all scalars λ, µ we have

φ(λu + µv) = λφ(u) + µφ(v).

One sometimes represents the action of φ on a vector u with notation

φ(u) = 〈φ, u〉.

(2) A bounded linear functional is a linear functional for which there is a constant, M > 0,
such that for any u ∈ S

|φ(u)| ≤ M ‖u‖ (4.11)

The set of bounded linear functionals on a Hilbert Space, H, is denoted H∗ and is called the
dual space of H. The smallest constant, M , for which the inequality (4.11) holds is called
the norm of the linear functional φ, ‖φ‖H∗ .

Example 1d: For any vector v ∈ Rn, φ(u) = (u, v) = u · v =
∑n

k=1 ukvk is a bounded linear
functional with norm ‖φ‖(Rn)∗ = ‖v‖Rn . Moreover, it is straightforward to see that given any
linear functional on Rn, φ, there is a unique vector vφ ∈ Rn such that φ(u) = (u, vφ) for all
u ∈ Rn.

What about bounded linear functionals on Hilbert space? Let H denote any Hilbert
space and let v be a fixed vector in H. Then, in analogy with the construction in Example
1d, φ(·) = (·, v) defines a bounded linear functional on H with norm ‖v‖. The joke is that
every bounded linear functional on a Hilbert space is obtained in this way:

Theorem 4.1 Riesz Representation Theorem: Let H denote a Hilbert space and H∗
the set of all bounded linear functionals on H. For any φ ∈ H∗, there is a unique vector
vφ ∈ H, such that

φ(u) = (u, vφ), for any u ∈ H. (4.12)

Furthermore6, ‖φ‖H∗ = ‖vφ‖H.

The proof of this theorem relies on some elementary geometry of Hilbert space, in particular,
the projection theorem.
Proof of the Riesz Representation Theorem: If φ(u) = 0 for every u ∈ H, then we
take vφ = 0. Thus we suppose that φ(q) 6= 0 for some q ∈ H. By linearity, φ(q φ(q)−1) = 1.
The proof can be broken down into a sequence of claims.
Claim 1: Let m = inf{ ‖u‖ : φ(u) = 1 }. The infimum, m, is attained, i.e. there exists
w ∈ H such that φ(w) = 1 and ‖w‖ = m.

We begin with the identity (exercise), which holds for all a, b ∈ H:

Parallelogram Law :
1

4
‖a+ b‖2 +

1

4
‖a− b‖2 =

1

2
‖a‖2 +

1

2
‖b‖2, (4.13)

6H and H∗ are isometrically isomorphic
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which follows by direct computation, using that ‖a‖2 = (a, a).
Now let wk denote a minimizing sequence. Thus, ‖wk‖ ↓ m, as k →∞, φ(wk) = 1. We use
(4.13) to show that {wk} is a Cauchy sequence. Set a = wk and b = wk. Then, (4.13)

1

4
‖wk − wj‖2 =

1

2
‖wk‖2 +

1

2
‖wj‖2 −

∣∣∣∣∣∣∣∣wk + wj
2

∣∣∣∣∣∣∣∣2 ≤ 1

2
‖wk‖2 +

1

2
‖wj‖2 −m2

The latter inequality holds because φ(
wk+wj

2
) = 1, and therefore

∣∣∣∣wk+wj
2

∣∣∣∣ ≥ m. Now let k, j
tend to infinity and we have, since ‖wk,j‖ ↓ m, that ‖wk − wj‖ → 0, i.e. the sequence {wk}
is Cauchy. It therefore has a limit w ∈ H.
Claim 2: The minimizer, w, is unique.

Again this follows from the parallelogram law (4.13). If wA and wB both belong to H with

‖wA‖ = ‖wB‖ = m, we have
∣∣∣∣wA+wB

2

∣∣∣∣2 ≥ m2. Substitution into (4.13) gives:

m2 +
1

4
‖wA − wB‖2 ≤

∣∣∣∣∣∣∣∣wA + wB
2

∣∣∣∣∣∣∣∣2 +
1

4
‖wA − wB‖2 = m2.

This gives a contradiction.

Claim 3: w is orthogonal to the null space of φ, i.e. for all u such that φ(u) = 0, we have
(w, u) = 0.

If φ(u) = 0 then

φ

(
w − (w, u)

(u.u)
u

)
= φ(w) = 1 (4.14)

Since w has minimal norm, ∣∣∣∣∣∣∣∣ w − (w, u)

(u, u)
u

∣∣∣∣∣∣∣∣2 ≥ ‖w‖2.

Expanding and cancelling terms gives |(w, u)|2 ≤ 0 and therefore (w, u) = 0.

Claim 4: w 6= 0.

1 = φ(wk) → φ(w) by continuity of φ. If w = 0 then φ(w) = 0, a contradiction.

Claim 5 and Completion of the Proof:
Define vφ = ‖w‖−2w. Then, for all u ∈ H, φ(u) = (u, vφ).

Let u ∈ H be arbitrary. Recall that by Claims 3 and 4, w 6= 0 and {x : φ(x) = 0} ⊥ w.
Now express u as the sum of two orthogonal components, one in the direction of w and one
lying in the null space of φ.

u = [ u − wφ(u) ] + wφ(u)

(u,w) = (u − wφ(u) , w) + φ(u) (w,w)

Note: (u − wφ(u) , w) = 0 since φ(u − wφ(u)) = 0. Therefore,

(u,w) = φ(u) (w,w) ⇐⇒ (u, vφ) = φ(u), vφ ≡
w

‖w‖2

This completes the proof of the Riesz Representation Theorem.

11
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5 Applications of Hilbert Space Theory to the Exis-

tence of Solutions of Poisson’s Equation

We begin with Poisson’s equation for a function u defined on an open bounded subset Ω of
Rn:

−∆v = f, v |∂Ω = 0 (5.1)

Here, we begin by taking f ∈ C(Ω̄).
We seek a weak formulation of (5.1). That is, we seek a formulation which is satisfied by

classical solutions, i.e. u of class C2(Ω̄) satisfying (5.1). To derive a weak formulation, let
u ∈ C∞0 (Ω) and suppose that v is a classical solution. Now multiply (5.1) by u and integrate
over Ω. Integration by parts, using the Gauss’ divergence theorem and that u vanishes on
∂Ω gives ∫

Ω

uf dx =

∫
Ω

u (−∆v) = −
∫

Ω

∇ · (u∇v) dx +

∫
Ω

∇u · ∇v dx

=

∫
Ω

∇u · ∇v dx. (5.2)

Define

φ(u) =

∫
Ω

u(x)f(x)dx

(u, v)D =

∫
Ω

∇u(x) · ∇v(x) dx

The result (5.2) can be expressed as follows: If v is a classical solution to Poisson’s equation
with zero (Dirichlet) boundary conditions (v(x) = 0, x ∈ ∂Ω), then for all u ∈ C∞0 (Ω), we
have φ(u) = (u, v)D. Note, on the other hand, that φ(u) is well-defined for any u, v ∈ L2(Ω)
and (u, v)D is well-defined if ∇u and ∇v are both in L2(Ω). With the Riesz Representation
Theorem in mind, it is natural to regard (u, v)D as defining an inner product with respect
to which we shall represent the bounded linear functional φ(u).
Toward the correct formulation, we define the

Dirichlet norm on C∞0 (Ω)

‖u‖D =
√

(u, u)D. (5.3)

The key to showing that ‖ · ‖D is indeed a norm is to observe that if ‖u‖D = 0, then u is
identically constant, and because u vanishes on ∂Ω, we must have u ≡ 0.

Next, to put our problem in a Hilbert space setting we define the

Sobolev space H1
0 (Ω), which encodes zero boundary conditions, to be the completion of

the space C∞0 (Ω) with respect to the Dirichlet norm, ‖ · ‖D.

We can now formulate the Weak Dirichlet Problem:

Let f ∈ L2(Ω). Find v ∈ H1
0 (Ω) such that for all u ∈ H1

0 (Ω), we have

(u, v)D =

∫
Ω

∇u(x) · ∇v(x) dx =

∫
Ω

u(x) f(x) dx = φf (u). (5.4)

12
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Theorem 5.1 The weak Dirichlet problem has a unique H1
0 (Ω) solution.

Proof: We have set things up so that the result follows directly from the Riesz Representation
Theorem. The main thing to check is that φ(u) is a bounded linear functional on H1

0 (Ω),
i.e. there exists a constant M > 0, such that

|φ(u)| ≡
∣∣∣∣ ∫

Ω

uf dx

∣∣∣∣ ≤Mf ‖u‖D, (5.5)

for some Mf , depending on f but independent of u. By the Cauchy Schwarz inequality7∣∣∣∣ ∫
Ω

uf dx

∣∣∣∣ ≤ ‖f‖L2 ‖u‖L2

Therefore, to prove that φ(u) is a bounded linear functional and therewith the theorem, we
must prove the:
Poincaré Inequality: Let Ω be an open connected subset in Rn , which lies between two
planes, a distance 2a apart8. There exists a positive constant, pΩ, depending on Ω, such that
for any u ∈ H1

0 (Ω)
‖u‖L2 ≤ pΩ ‖u‖D (5.6)

Note that by the Poincaré inequality, φ(u) is a bounded linear functional on H1
0 (Ω), with

norm bound Mf = pΩ‖f‖2.

Proof of the Poincaré inequality: After possibly rotating the region Ω, we may assume
it lies between the two planes x1 = a and x1 = −a. Note that it suffices to prove the
inequality for u belonging to a dense subset of H1

0 (Ω), u ∈ C∞0 (Ω). Let x = (x1, x
′), with

x′ = (x2, . . . , xn). For fixed u(x), we have

u(x1, x
′) =

∫ x1

−a
∂x1u(ξ1, x

′) dξ1

Squaring and applying the Cauchy-Schwarz inequality, we have

u2(x1, x
′) =

( ∫ x1

−a
1 · ∂x1u(ξ1, x

′) dξ1

)2

≤
( ∫ x1

−a
12 dξ1

)
·
( ∫ x1

−a
|∂x1u(ξ1, x

′)|2 dξ1

)
≤ (x1 + a)

∫ a

−a
|∂x1u(ξ1, x

′)|2 dξ1

7
∫
|fg| ≤ ‖f‖2 ‖g‖2

8Thus we allow domains, more general than bounded domains.

13



5.1 Generalizations of the Weak Dirichlet Problem DRAFT: April 28, 2008

Integration with respect to x1 gives∫ a

−a
|u(x1, x

′)|2 dx1 ≤ 2a2

∫ a

−a
|∂x1u(ξ1, x

′)|2 dξ1

Finally, integation with respect to the remaining n− 1 variables, x′ gives:∫
Ω

|u(x1, x
′)|2 dx1 dξ1dx

′ ≤ 2a2

∫
Ω

|∂x1u(ξ1, x
′)|2 dξ1dx

′

This proves Poincaré’s inequality with pΩ =
√

2a.

5.1 Generalizations of the Weak Dirichlet Problem

We briefly discussed how the forgoing discussion can be generalized from the Laplacian, −∆,
to a treatment of the Dirichlet problem for for more general linear elliptic partial differential
operators, L:

Lv = f, x ∈ Ω, v |∂Ω = 0

(a) L = −∇ · a(x)∇, where a(x) is a smooth function satisfying the strong ellipticity
condition: minx∈Ω̄ a(x) ≥ θ. Define the Dirichlet inner produce

(u, v)a =

∫
Ω

a(x)∇u(x) · ∇v(x) dx.

We then introduce the Dirichlet norm is then ‖u‖H1
a
. Let H1

a denote the completion
of C∞0 (Ω) with respect to ‖u‖H1

a
. Then, we can prove (Exercise using Poincaré’s

inequality!) that φ(u) = (u, f)L2 is a bounded linear functional on H1
a. We can then

apply the Riesz Representation Theorem to show that there exists a unique vφ ∈ H1
a,

such that for all u ∈ H1
a, φ(u) = (u, vφ)a.

(b) More general strongly elliptic operators: L = −
∑

jk ∂xjajk(x)∂xk , where A = (ajk(x))
is a n by n symmetric and positive definite matrix function, whose minimum eigenvalue,
λmin(x) satisfies minx∈Ω̄ λmin(x) ≥ θ > 0, for some θ. Note that example (a) is a special
case with A = δjka(x). Introduce the Dirichlet norm: ‖u‖H1

A
and H1

A, the completion
of C∞0 (Ω) with respect to ‖u‖H1

A
. Then, (Exercise using Poincaré’s inequality)

that φ(u) = (u, f)L2 is a bounded linear functional on H1
A. We can then apply the

Riesz Representation Theorem to show that there exists a unique vφ ∈ H1
A, such that

for all u ∈ H1
A, φ(u) = (u, vφ)A.

(c) Yet more general elliptic operators - elliptic operators with non-symmetric lower order
terms: Garding’s inequality and the Lax-Milgram Lemma (representation theorem,
which generalizes Riesz Rep Th’m, which is applicable to non-symmetric forms).

14
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5.2 Relation between weak and strong (classical) solutions of el-
liptic PDE

For strongly elliptic linear partial differential operators (see 5.1 one has the following impor-
tant theorem, showing that “weak implies strong”.

Theorem 5.2 (Elliptic Regularity Theorem) Consider the Dirichlet problem

Lv(x) = f(x), x ∈ Ω, v(x) = 0, x ∈ ∂Ω, (5.7)

where Ω is an open and bounded subset of Rn with smooth boundary and f ∈ L2(Ω).
Let v ∈ H1

0 (Ω) be a weak solution of Lv = f , where f ∈ C∞(Ω). Then, v ∈ C∞ and
limx→∂Ω, x∈Ω v(x) = 0.

The proof is very technical; see L.C. Evans, PDE, section 6.3.

5.3 Introduction to the Finite Element Method
9

The notion of weak solution of the Dirichlet problem for Poisson’s equation −∆v(x) =
f(x), v(x) = 0, x ∈ ∂Ω (see (5.4) ) motivates The Finite Element Method - (FEM), a
method of central importance in the numerical solution of PDEs. We introduce FEM via a
simple example.

Consider the two-point boundary value problem:

−∂2
xv(x) = f(x), v(0) = v(1) = 0. (5.8)

Above we saw that this can be formulated, in terms of the Weak Dirichlet Problem (5.4),
which we present in modified form as follows.

Define
U = {u : u ∈ C0[0, 1], u ∈ C1

piecewise[0, 1] }. (5.9)

Here, f ∈ C1
piecewise[0, 1] if there are finitely many points 0 < ξ1 < · · · < ξr < 1 such that

f ∈ C1(ξj, ξj+1), j = 1, . . . , r − 1

Our modified form of the weak Dirichlet problem is:
Find u ∈ U such that for all v ∈ U

(∂xu, ∂xv) = (f, v) (5.10)

To obtain the Galerkin or Finite Element Method for the (5.8) we will replace U , by a
finite-dimensional approximation, Uh, which we now construct.

9Reference: Numerical solution of partial differential equations by the finite element method, Claes John-
son, Cambridge 1992
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Partition the interval [0, 1] into subintervals:

[0, 1] = [x0, x1) ∪ (x1, x2) ∪ · · · ∪ (xM−1, xM) ∪ (xM , xM+1] = ∪M+1
j=1 Ij

0 = x0 < x1 < x2 < · · · < xM−1 < xM < xM+1 = 1

The interval lengths in the partition are hj = xj+1−xj. If the points, xj, are equally spaced
than hj = h = (M + 1)−1.

Definition of Uh:

Uh = {u : u linear on Ij, j = 1, . . . ,M + 1, v continuous, u(0) = u(1) = 0 } (5.11)

Proposition: Uh has dimension M and has the basis (spanning set which is linearly inde-
pendent) consisting of the “triangular tent functions” defined by:

ϕj ∈ Uh
ϕj(xi) = δij, (1, i = j; 0, i 6= j)

j = 1, 2, . . . ,M

proof: Let u ∈ Uh. Then, u(x) =
∑M

j=1 ηjϕj(x), where ηj = u(xj). Therefore, the functions
ϕi(x), i = 1, . . . ,M span Uh. It is simple to check they are linearly independent.

The Galerkin / Finite Element Method
Find uh ∈ Uh such that

(∂xvh, ∂xu) = (f, u), for all u ∈ Uh

or equivalently
(∂xvh, ∂xϕj) = (f, ϕj), for all j = 1, . . . ,M (5.12)

Exercise: Using the ideas from our discussion of the Dirichlet’s principle, show that (5.12)
is equivalent to finding uh ∈ Uh, such that

I[vh] = min
u∈Uh

I[u] (5.13)

Implementation of the finite element method
Since vh ∈ Uh, we have that vh(x) =

∑M
k=1 ξkϕk(x), where ξk = vh(xk) is to be determined.

Substitution into (5.12) gives(
M∑
k=1

ξk∂xϕk , ∂xϕj

)
= (f, ϕj), j = 1, . . . ,M.

Equivalently,
A ξ = b, (5.14)
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where A = (aij) denotes the stiffness matrix and b = (bi) denotes the load vector given
by:

aij = ( ∂xϕi, ∂xϕj ) , i, j = 1, . . . ,M

bi = (f, ϕi).

Clearly, A is symmetric.

Computation of and properties of the stiffness matrix

(1) Note that (∂xϕi, ∂xϕj) = 0, |i − j| > 1. Therefore, A is a tridiagonal matrix. The
diagonal and off-diagonal elements are given by:

aii = (∂xϕi, ∂xϕi) = h−1
i + h−1

i+1, ai,i+1 = ai+1,i = (∂xϕi, ∂xϕi+1) = −h−1
i

(2) A is symmetric and positive definite. Symmetry was noted above. Positive definiteness
is seen as follows: For any η ∈ RM

ηT A η =
M∑
i,j=1

ηi (∂xϕi, ∂xϕj)ηj

=

(
M∑
i=1

ηi∂xϕi,
M∑
j=1

ηj∂xϕj

)
= ‖v‖2 ≥ 0.

where v =
∑M

i=1 ηi∂xϕi. Moreover, ηTAη = 0 only if η = 0 because {ϕi : i = 1, . . . ,M}
is a linearly independent set.

Theorem: The finite element method reduces to the solution of the system of M nonhomo-
geneous linear algebraic equations Aξ = b, (5.14), with stiffness matrix, A, and load vector,
b. A is symmetric and positive definite. It is therefore invertible and the system can be
solved for any load vector b.

Special case: Uniform partition of [0, 1]: Here, hj = xj+1−xj = h = (M+1)−1. Therefore,
aii = 2/h and ai,i+1 = ai+1,i = −1/h. Thus,

A =
1

h


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . .
0 . 0 −1 2 −1
0 0 . . . 0 −1 2

 (5.15)
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6 Operators on Hilbert spaces

The setting: complex Hilbert space with inner product, (·, ·)H.

6.1 Bounded operators

Definition 6.1 Bounded linear transformation or bounded linear operator A linear
transformation on H is bounded if there is a constant, C ≥ 0, such that for all x ∈ H,

‖T (x)‖ ≤ C‖x‖ (6.1)

The smallest constant, C, for which (6.1) holds, is called the norm of T and is denoted by
‖T‖,

‖T‖ = sup
x 6=0

‖T (x)‖
‖x‖

= sup
‖x‖=1

‖T (x)‖ (6.2)

We sometime write ‖T‖L(H,H) to explicitly denote the operator norm of T , which maps H to
H, and more generally write,

‖T‖L(H1,H2) = sup
‖x‖H1

=1

‖T (x)‖H2

when speaking of T as an operator between different spaces H1 and H2.

Definition 6.2 (Self-adjoint operator) T : H → H is self-adjoint if

(Tx, y) = (x, Ty), for all x, y ∈ H (6.3)

Example 1: H = Cn, (x, y)Cn =
∑

j xjyj. Linear transformation on Cn: T (x) = Tx,

T = (tij), n by n matrix. T is self-adjoint if T = (tij) = (tji) = T ∗.

T = T ∗ =⇒ ‖T‖ = max{ |λ| : λ ∈ σ(T ) },

where σ(T ) denotes the set of eigenvalues, the spectrum, of the matrix T .

Example 2: H = L2(Rn). Fix τ ∈ Rn. Define Tτf = f(x + τ). By change of variables
‖Tτf‖ = ‖f‖. Thus, Tτ is unitary on L2; ‖Tτ‖ = 1.

Example 3: H = L2(Rn). Define F [f ](ξ) = f̂(ξ) =
∫
e−2πix·ξf(x) dx, the Fourier transform

of f ; see section 12.5. The Plancherel Theorem states: ‖F [f ]‖ = ‖f‖. Thus, F is unitary
on L2; ‖F‖ = 1.

Example 4: H = the set of 1− periodic L2 functions:

L2(S1) = {f : f(x+ 1) = f(x), x ∈ R,
∫ 1

0

|f |2 <∞ }

Define, for n ∈ Z, the Fourier coefficients

F [f ](n) = f̂(n) = (f, φn) =

∫ 1

0

f(z)e−2πinz dz

18
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Parseval - Plancherel Theorem states

‖f‖2
L2(S1) =

∫ 1

0

|f(z)|2dz =
∑
n∈Z

|f̂(n)|2

Thus, the mapping F : L2(S1)→ l2(Z), where l2(Z) is the set of sequences, which are square
summable, is unitary in L2; ‖F‖L(L2(S1);l2(Z)) = 1.

Definition 6.3 An operator T : H → H has finite rank if its range is finite dimensional.

Example 5: Let φ ∈ H, and ‖φ‖H = 1. Define the projection operator

Pφf = (f, φ)H φ

An important example is the family of projection operators, Pj, defined by

Pjf(x) = f̂(j) e2πijx

for any f ∈ L2(S1). Note that the family of operators {Pj} are orthogonal projections. That
is, Pj Pj = P 2

j = Pj and Pj Pk = 0 if j 6= k.

Example 6: Let P(N) = span{ e2πijx : |j| ≤ N }. Let P (N) =
∑
|j|≤N Pj; see the previous

example. The operator d
dx
P (N) maps P(N) to itself. What is its matrix representation with

the respect to the basis { e2πijx : |j| ≤ N }?

6.2 Compact operators

This would be a good time to review the background material on compactness and conver-
gence in section 12.4.

Definition 6.4 Let T : H1 → H2 denote a bounded linear transformation between Hilbert
spaces. T is compact if for any bounded sequence, {uk} in H1, the sequence {T (uk)} has a
convergent subsequence in H2. That is, if for all k, ‖uk‖ ≤M , then there exists a subsequence
{T (ukj)} and a v∗ ∈ H2 such that ‖T (ukj)− v∗‖H2 → 0 as j →∞.

Example 6.1 Finite rank operators are compact. The proof is an exercise, using the com-
pactness of closed and bounded subsets of Cn.

The importance of finite rank operators in the general theory is that any compact operator
in a separable Hilbert space can be approximated arbitrarily well by finite rank operators.

Theorem 6.1 If H is a separable Hilbert space and T is compact, then T is the norm
limit of operators of finite rank. That is, there exists Tj compact and finite rank such that
‖Tj − T‖L(H,H) → 0.

A very important class of operators is the class of Hilbert Schmidt operators:
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Definition 6.5 K(x, y) : S × S → R is a called a Hilbert-Schmidt kernel if∫ ∫
S×S

|K(x, y)|2 dx dy < ∞

We use K(x, y) to generate an operator on the Hilbert space L2(S).

TK [f ](x) =

∫
S

K(x, y) f(y) dy (6.4)

Theorem 6.2 If K(x, y) is a Hilbert-Schmidt kernel, then TK is a compact operator.

Proof: Let {φj(x)}j≥1 denote an orthonormal basis for L2(S). Then, ψjk(x, y) = φj(x)φk(y)
is an orthonormal basis for L2(S×S). Define KN(x, y) to be the “partial sum” approximation
to K(x, y) given by:

KN(x, y) =
∑

j+k≤N

ajkψjk(x, y) (6.5)

Here, ajk =
∫
S

∫
S
K(x, y)φj(x) dx φk(y)dy is the (j, k) Fourier coefficient of K. Then,

‖TK − TKN‖ ≤ ‖K −KN‖L2(S×S) → 0, N →∞

Definition 6.6 Let T denote a bounded operator on H. The resolvent set of T , denoted
ρ(T ), given by

ρ(T ) = {z ∈ C : (T − zI)−1 exists and is a bounded operator on H }. (6.6)

The spectrum of T , denoted by σ(T ), is the complement of ρ(T ):

σ(T ) = C − ρ(T )

Theorem 6.3 (Variant of the Riesz-Schauder Theorem)
Let T denote a compact operator on H.

(1) σ(T ) is discrete

(2) If H is infinite dimensional, then σ(T ) is infinite and consists of eigenvalues accumu-
lating at zero. Thus, 0 ∈ σ(T ).

(3) The eigenvalues of T have finite multiplicity. If λ 6= 0 is an eigenvalue of T , then
dim{x : Tx = λx } is finite.

The following result generalizes the well-known fact that Hermitian symmetric or self-adjoint
n× n matrices have a complete set of eigenvectors that span Cn.

Theorem 6.4 (Hilbert Schmidt Theorem) Let T : H → H be a compact and self-
adjoint operator. Then, there exists an orthonormal basis for H consisting of eigenvectors
of T . That is, there exists {xj}j≥1, Txj = λjxj, (xj, xk) = δjk, such that for any x ∈ H∥∥∥∥∥ x −

N∑
j=1

(x, xj)xj

∥∥∥∥∥
H

→ 0
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7 Applications of compact operator theory to eigen-

function expansions for elliptic operators

By Theorem 5.1, the Dirichlet problem for Poisson’s equation

−∆v = f, x ∈ Ω; u |∂Ω = 0

has a weak H1
0 (Ω) solution, i.e. There exists a unique vf ∈ H1

0 (Ω) such that∫
∇u · ∇vf dx =

∫
uf dx, u ∈ H1

0 (Ω) (7.1)

The solution operator T : f 7→ vf , L2(Ω) → H1
0 (Ω) is a bounded operator. Think of this

mapping as
(−∆D)−1 : f 7→ (−∆D)−1f,

where −∆D denotes the Dirichlet Laplacian, the Laplace operator acting in the space of
functions with zero boundary conditions.

We next view T = (−∆D)−1 as an operator from L2(Ω) to itself and can estimate its
norm.

Setting u = vf in the weak formulation (7.1) we obtain∫
Ω

|∇vf |2dx =

∫
Ω

vffdx.

By the Cauchy Schwarz inequality,∫
Ω

|∇vf |2dx ≤
(∫

Ω

|vf |2dx
) 1

2
(∫

Ω

|f |2dx
) 1

2

.

By the Poincaré inequality (5.6), (‖g‖L2 ≤ pΩ‖∇g‖L2 , for g ∈ H1
0 (Ω)), we have

p−2
Ω ‖vf‖

2
L2 ≤

∫
Ω

|∇vf |2dx ≤ ‖vf‖L2 ‖f‖L2

In other words,
‖Tf‖L2 ≤ p2

Ω ‖f‖L2(Ω); (7.2)

T is bounded on L2 and ‖T‖ ≤ p2
Ω.

We now claim that T is compact and self-adjoint.

Theorem 7.1 The solution operator T : f 7→ Tf = vf , the solution of the Dirichlet problem
for Poisson’s equation is compact and self-adjoint operator for L2(Ω) to L2(Ω). Therefore,
by the Hilbert-Schmidt Theorem 6.4 there exists an orthonormal set of eigenfunctions of T
which is complete in L2(Ω).
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Proof: To show that T is compact, we must show that if fj is a bounded sequence in
L2(Ω), then Tfj has a convergent subsequence. The key tool here is the Rellich compactness
Lemma, Theorem 12.1110

Suppose that fj is a sequence for which there is a constant M such that ‖fj‖L2 ≤ M .
By (7.2)

‖Tfj‖D ≤ p2
Ω ‖f‖L2(Ω) ≤ p2

Ω M (7.3)

Thus, Tfj is a bounded sequence in H1
0 (Ω). By Theorem 12.11, this sequence has an L2(Ω)

convergent subsequence, {Tfjk}.
Next, we verify self-adjointness of T . By the weak formulation of the Dirichlet problem

and the definition of T : ∫
∇Tf · u dx =

∫
f u dx, u ∈ H1

0 (Ω) (7.4)

Setting u = Tg, where g ∈ L2(Ω), we have∫
∇Tf · ∇Tg dx =

∫
f · Tg dx, (7.5)

Similarly, ∫
∇Tg · ∇Tf dx =

∫
g · Tf dx, u ∈ H1

0 (Ω) (7.6)

Therefore, ∫
Tf g dx =

∫
f Tg dx. (7.7)

That is, (Tf, g)L2 = (f, Tg)L2 ; T is self-adjoint. The existence of a complete set of eigen-
functions of T is now a consequence of the Hilbert Schmidt Theorem, Theorem 6.4.

Corollary 7.1 L2(Ω) has an orthonormal basis of eigenfunctions of the −∆, satisfying
Dirichlet boundary conditions.

Proof: Let φj ∈ H1
0 (Ω) denote the orthonormal sequence of eigenfunctions of T . By the

definition of T

⇐⇒ (Tφj, u)D = (φj, u)L2

⇐⇒ (αjφj, u)D = (φj, u)L2

⇐⇒ αj (φj, u)D = (φj, u)L2 , αj real

⇐⇒
∫
∇φj · ∇u dx =

∫
1

αj
φj u dx

Therefore, the eigenfunctions of T are weak solutions of −∆φj = λjφj, λj = 1
αj

, φj ∈
H1

0 (Ω). “Interior” elliptic regularity results ensures that these are, in fact, C∞(Ω). It can

10Theorem: ( Rellich compactness Lemma) Suppose {uj} is a sequence in H1
0 (Ω) such that ‖uj‖H1

0 (Ω) ≤ C.
Then, there exists a subsequence ujk

and an element u∗ ∈ H1
0 such that ‖ujk

− u∗‖L2 → 0 as jk →∞.
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also be shown, using ”boundary” elliptic regularity results that if ∂Ω is sufficiently smooth,
then limx→∂Ω φj(x) = 011.

Moreover, setting u = φj above yields positivity of the eigenvalues

λj =
1

αj
=

∫
Ω

|∇φj|2 dx.

FInally, since αj → 0 as j →∞, λj →∞.

11See L.C. Evans, PDE, section 6.3 for a discussion of interior and boundary elliptic regularity

23



DRAFT: April 28, 2008

8 Introduction to Variational Methods

In these notes we introduce Variational Methods or The Calculus of Variations via two
classical problems:

(1) Dirichlet’s principle, which characterizes the solution of the Poisson equation as
the solution of an optimization (minimization) problem12.

(2) The Rayleigh-Ritz, characterization of the smallest eigenvalue of the Dirichlet prob-
lem for the Laplacian as the solution of a minimization problem13

8.1 Variational Problem 1: Dirichlet’s Principle

We introduce a class of admissible functions, A

A ≡ {w ∈ C2(Ū) : w = g on ∂U } (8.1)

For w ∈ A, define the Dirichlet energy:

I[w] =

∫
U

1

2
|∇w(x)|2 − w(x)f(x)dx

(8.2)

Theorem 8.1 (Dirichlet’s principle14)

(1) If u ∈ A and −∆u = f in U , then

I[u] = min
w∈A

I[w]. (8.3)

(2) Conversely, if u ∈ A and I[u] = minw∈A I[w], then −∆u = f and u = g for x ∈ ∂U .

We have studied, by Hilbert Space - functional analytic methods, the solution of the Dirichlet
problem for Poisson’s equation, for the case g = 0. The above Theorem gives an alternative
characterization of the solution.

8.2 Variational Problem 2: Smallest eigenvalue of −∆

Poincaré inequality15: Let Ω denote a domain in Rn which is open, connected and can be
bounded between two planes. There exists a positive constant, pΩ, depending on the domain
Ω, such that for any u ∈ H1

0 (Ω)∫
Ω

|u|2 dx ≤ pΩ

∫
Ω

|∇u|2 dx. (8.4)

12Section 2.2.5 of L.C. Evans PDEs, pages 42-43
13Section 6.5.1,Theorem 2, We follow an approach to Theorem 2, using the methods of Chapter 8 of L.C.

Evans, PDEs.
14Theorem 17, page 42 of L.C. Evans PDEs
15We established Poincaré’s inequality in our study of weak solutions to Poisson’s equation.
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We proved, in particular, that if Ω is bounded between two planes a distance 2a apart, then
pΩ can be taken to be 2a2.

Question: What is the smallest constant, p∗Ω for which the Poincaré’s inequality holds?
To answer this question, we need to compute

1

p∗Ω
≡ inf

06=u∈H1
0 (Ω)

R[u]

= inf
06=u∈H1

0 (Ω)

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

(8.5)

Remark 8.1 As in Dirichlet’s principle, we have an admissible class of functions,, A =
H1

0 (Ω) in this case, and a functional R[u], defined on A which we seek to minimize.

Suppose the minimium in (8.5) is attained a function u∗ ∈ H1
0 (Ω). Let η ∈ C∞0 (Ω) be fixed.

Then, we have for any ε, u∗ + εη ∈ H1
0 (Ω) and

R[u∗ + εη] ≥ R[u∗]

Thus the function r(ε) = R[u∗ + εη] is minimized at ε = 0. In particular, we must have

d

dε
R[u∗ + εη] |ε=0 = 0. (8.6)

Equation (8.6) can be rewritten equivalently as∫
Ω

∇u · ∇η dx − R(u∗)

∫
Ω

uη = 0

Thus, for any η ∈ C∞0 (Ω) ∫
( −∇u ∇η − R(u∗) uη ) dx = 0 (8.7)

In other words, (u∗, R(u∗)) is a weak solution of the eigenvalue problem

−∆ϕ = λϕ, ϕ = 0, x ∈ ∂Ω. (8.8)

u∗ is an eigenfunction of −∆ with corresponding eigenvalue R(u∗).

We have previously seen that the eigenvalue problem (8.8) has an infinite sequence of
”Dirichlet eigenvalues” λj, with λ0 < λ1 ≤ λ2 . . . , and corresponding eigenfunctions ϕj ∈
H1

0 (Ω) 16. Note that R(ϕλj) = λj and therefore we have λ1 = R(u∗). Borrowing from
terminology in quantum physics, λ1(Ω) is sometimes called the ground state energy and u∗
the ground state eigenfunction. We therefore have the following equivalence

16This we shown by proving that the mapping (−∆)−1 : f 7→ uf = (−∆)−1f which maps f ∈ L2(Ω) to
the weak H1

0 (Ω) solution of the Dirichlet problem is a compact linear operator from L2(Ω) to itself. We then
applied the general spectral theorem for compact self-adjoint operators in Hilbert space.
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Theorem 8.2 (a) λ0(Ω) > 0 is the smallest Dirichlet eigenvalue of the Laplacian, −∆.

(b) λ0(Ω) = minR(u), the minimum of the Rayleigh quotient over u ∈ H1
0 (Ω).

(c) (λ0(Ω))−1 is the best (smallest) constant for which the Poincaré inequality holds, i.e.
for any u ∈ H1

0 (Ω) ∫
Ω

|u(x)|2 dx ≤ 1

λ0(Ω)

∫
Ω

|∇u(x)|2 dx. (8.9)

8.3 Direct methods in the calculus of variations

In both variational problems, we assumed that the minimum of of the Dirichlet energy,
(8.3), and the Rayleigh quotient, R(u) in (8.5) are attained at an admissible function. The
question of whether this is in fact the case is quite subtle. In both problems we have the
following set up:

(a) a functional J [u] defined on an admissible class of functions, A (J [u] = I[u] in varia-
tional problem 1 and J [u] = R[u] in variational problem 2).

(b) J [u] > −∞ for u ∈ A.

Thus, infu∈A J [u] = J∗ exists. In particular, there is a minimizing sequence of functions
uj ∈ A such that J [uj] ↓ J∗.
Exercise 1: Prove that for both Dirichlet’s and Rayleigh-Ritz principles that J [u] has a
lower bound, when u varies over the appropriate admissible set of functions, A.

THE QUESTION: Does the minimizing sequence {uj} converge to some u∗ which is (a)
admissible, i.e. u∗ ∈ A and (b) a minimizer, i.e. J [u∗] = limj→∞ J [uj] = J∗?

The property that {uj} is a minimizing sequence can often be used to conclude some
kind of

(c) uniform upper bound on norms of the functions uj.

The goal is to deduce from (a), (b) and (c) that

(d) the sequence of {uj}, or possibly some subsequence of it, has “good convergence prop-
erties to a limiting admissible function u∗ ∈ A”, for which J [u∗] = j∗.

Assuming this and if we set aside the issue of whether minimizers are C2 functions17, the
arguments of the previous section apply to give variational characterizations to solutions of
PDEs.
For the remainder of these notes, we shall focus primarily on the solution of Variational
Problem 2: Lowest eigenvalue of −∆ and Poincaré’s inequality.

17This is an important and very technical issue. See the discussion in L.C. Evans PDEs, Chapter 8.3
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8.4 Ideas and general discussion

We now turn to the following questions:
(Q1) How do we deduce a uniform bound on norms of the function uj from (a) and (b)?,
and
(Q2) How do we show that, perhaps by passing to some subsequence of the u′js that we
can find a sequence which converges to a function u∗ in the admissible set, at which the
functional attains its minimum.

The approach we take to the existence of solutions of a PDE via the proof that a functional
is minimized is called the direct method in the calculus of variations18.
Exercise 2: Concerning (Q1), prove that if uj is a minimizing sequence for either of the
variational problems in section 8, then there is a constant C, such that ‖uj‖H1

0 (Ω) ≤ C for
all j.

Concerning (Q2), we are interested in when bounds on a sequence of functions imply the
existence of a convergent subsequence. This is the subject of compactness; see section 12.4.

8.5 Compactness and minimizing sequences

Exercise 5: Prove that minimizing sequences for the variational problems in section 8 have
subsequences which converge weakly in H1.

To show that subsequence of any minimizing sequence for the problems of section 8
converge to an admissible minimizer, we use the following key properties:

Property A Weak compactness of minimizing sequences: There is a subsequence {uj} such uj →
u∗ ∈ H1

0 (Ω) weakly.

Property B (Strong) compactness in L2(Ω) of minimizing sequences: There is a subsequence for
which ‖uj − u∗‖2 → 0.

Property C Weak lower semicontinuity of a functional with respect to weak convergence19:∫
Ω

|∇u∗|2 dx ≤ lim inf
j→∞

∫
Ω

|∇uj|2 dx (8.10)

Here’s how Properties A, B and C are used to established the minimum is attained.
Consider variational problem 2 to minimize R(u). Recall that J∗ = 1/p∗Ω > 0 denotes the
positive infimum. By scaling, we can assume that {uj} is such that ‖uj‖2 = 1. Moreover,
it is clear since R(uj) approaches its positive infimum, that ‖∇uj‖2 is bounded. Thus uj
is a bounded sequence in H1

0 (Ω). By weak compactness, there’s a subsequence which we’ll,
for simplicity call uj, which converges weakly to some u∗ ∈ H1

0 (Ω). Furthermore, Rellich’s
Lemma implies there is a subsequence, which we’ll call once again uj which converges strongly
to some u∗. (Note: the weak limit is unique.). By strong convergence in L2 we

| ‖uj‖2 − ‖u∗‖2 | ≤ ‖uj − u∗‖2 → 0

18An excellent introductory reference is the book of Gelfand and Fomin: Calculus of Variations
19This is a special case of the lower semi-continuity of any convex functional with respect to weak conver-

gence. Compare also, with Fatou’s Lemma from basic real analysis.
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Thus, u∗ is admissible, i.e. u∗ ∈ H1
0 (Ω) and ‖u∗‖2 = 1.

By weak lower semicontinuity and the fact that {uj} is a minimizing sequence

J∗ = lim
j
R[uj] = lim inf

j
R[uj] ≥ R[u∗].

But u∗ is admissible, so R[u∗] ≥ J∗ and the minimum is attained R[u∗] = j∗.

What’s left is the Justification of Properties A, B and C:
Property A follows from the above theorem on weak compactness.

Property B is a consequence of the following theorem, which was at the heart of the Hilbert
space approach to the Dirichlet problem and eigenfunction expansions.

Proof of Property C - weak lower semicontinuity: To prove (8.10) we begin with the
following observation:∫

Ω

|∇uk|2 −
∫

Ω

|∇u∗|2 =

∫
Ω

|∇(uk − u∗)|2 + 2

∫
Ω

∇u∗ · ∇(uk − u∗), (8.11)

which is proved by simply expanding ∇(uk − u∗) · ∇(uk − u∗). Dropping the positive term
on the right hand side gives∫

Ω

|∇uk|2 −
∫

Ω

|∇u∗|2 ≥ 2

∫
Ω

∇u∗ · ∇(uk − u∗), (8.12)

Letting k tend to infinity and using that uk tends weakly to u∗ in H1 we see that the term
on the right hand side approaches zero as k →∞. This implies∫

Ω

|∇u∗|2 ≤ lim inf
k→∞

∫
Ω

|∇uk|2.
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9 The Heat / Diffusion Equation

Initial value problem

∂tu = ∆u

u(x, 0) = f(x)

Solution by Fourier transform

∂tû(ξ, t) = −4π2|ξ|2û(ξ, t), û(ξ, 0) = f̂(ξ)

û(ξ, t) = e−4π2|ξ|2t f̂(ξ)

u(x, t) =

∫
e2πiξ·x e−4π2|ξ|2t f̂(ξ) dξ

=

∫
f(y) dy

∫
e2πiξ·(x−y) e−4π2|ξ|2t dξ

=

∫
Kt(x− y) f(y) dy, Kt(z) =

1

(4πt)
n
2

e−z
2/4t

Theorem 9.1 Let f be bounded and continuous on Rn. For t > 0, define

u(x, t) =

∫
Rn

Kt(x− y) f(y) dy ≡ e∆tf. (9.1)

Then,

(a) u ∈ C∞ for any t > 0,

(b) u(x, t) satisfies the heat equation, and

(c) limt→0 u(x, t) = f(x).

Kt(x) is called the fundamental solution for the operator L = ∂t −∆, i.e.

( ∂t −∆ ) Kt(x) = 0, t > 0 lim
t↓0

Kt(x) = δ0,

where δ0 denotes the Dirac delta distribution.

Proof: The explicit construction guarantees that (a) and (b) hold. To prove part (c) we
note from the following properties of Kt(x).

(K1) Kt(x) > 0, t > 0

(K2)
∫
Kt(x) dx = 1, t > 0.

(K3) Let δ > 0 be fixed. Then,

lim
0<t→0

∫
|x−y|≥δ

Kt(y) dy = 0,

uniformly in x.
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We need to show u(x, t)− f(ξ)→ 0 as (x, t)→ (ξ, 0).

| u(x, t) − f(ξ) | =
∣∣∣∣ ∫

Rn
Kt(x− y) ( f(y)− f(ξ) ) dy

∣∣∣∣
=

∫
Rn

Kt(x− y) |f(y)− f(ξ)| dy, (Kt > 0)

=

∫
|x−y|≤δ

Kt(x− y) |f(y)− f(ξ)| dy +

∫
|x−y|>δ

Kt(x− y) |f(y)− f(ξ)| dy

= I1 + I2

Here, we have used property (K1). Estimation of I1: Here, |x−y| ≤ δ: Let ε > 0 be arbitrary.
Using the continuity of f , we can choose δ = δ(ε) so that if |y−ξ| < 2δ then f(y)−f(ξ)| < ε.
By taking |x− ξ| < δ, we have |y − ξ| ≤ |y − x|+ |x− ξ| ≤ 2δ. Thus,

I1 ≤ ε

∫
|x−y|≤δ

Kt(x− y) dy ≤
∫

Rn
Kt(x− y) dy = ε,

where we have used property (K2).
Estimation of I2: Here, |x− y| ≥ δ.

I2 ≤ 2‖f‖L∞
∫
|x−y|≥δ(ε)

Kt(x− y) dy, (9.2)

which tends to zero, as t ↓ 0 uniformly in x, by property (K3).
Thus we have shown

|u(x, t) − f(ξ)| ≤ ε + o(1)

as t ↓ 0, where ε is arbitrary. This proves the theorem.

9.1 Remarks on solutions to the heat / diffusion equation

Let u(x, t) = e∆tf , the solution of the heat equation with initial data f(x).

(1) Instantaneous smoothing and infinite propagation speed f ≥ 0, bounded and of com-
pact support =⇒ for all t > 0, e∆tf ∈ C∞, e∆tf > 0 for all x.
Contrast this with the transport (wave) equation (∂t+ c∂x)u(x, t) = 0 with initial data
u(x, 0) = f(x). The solution,u(x, t) = f(x− ct) is clearly no smoother than the initial
data.

(2) f ≥ 0, u(x, 0) = f ∈ L1 =⇒
∫
u(x, t)dx =

∫
u(x, 0)dx, t > 0.

(3) ‖e∆tf‖L2 ≤ ‖f‖L2 , t ≥ 0. More precisely,

d

dt

∫
|u(x, t)|2 dx = −2

∫
|∇u(x, t)|2 dx (9.3)

(4) |u(x, t)| ≤ C t−
n
2 ‖f‖L1 , t > 0.
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(5) inf f ≤ e∆tf ≤ sup f, t > 0.

(6) The basic properies of e∆t can be proved for e−Lt, where L is a strictly elliptic diver-
gence form operator:

L = −
∑
j,k

∂

∂xj
ajk(x)

∂

∂xk
, (9.4)

where
∑

j,k ajk(x)ξjξk ≥ θ‖ξ|2, where θ > 0 is independent of x and ξ ∈ Rn is arbitrary.

Theorem 9.2 ( Nash (1958) and Aronson (1967) )

e−Ltf =

∫
KL
t (x, y) f(y) dy

and there exist constants a, a′, b, b′ > 0 depending on θ and such that for all x, y,∈ Rn,
KL
t satisfies Gaussian upper and lower bounds:

a′ t−
n
2 exp(−b′ |x− y|

2

t
) ≤ KL

t (x, y) ≤ a t−
n
2 exp(−b |x− y|

2

t
)

9.2 Inhomogeneous Heat Equation - DuHamel’s Principle

Consider the scalar ODE
du

dt
= au + f(t), u(0) = u0

where a denotes a constant. Multiplying by the integrating factor e−at, the resulting equation
can be rewritten as

d

dt
(e−atu(t)) = e−atf(t)

which we can now integrate and conclude:

u(t) = eatu0 +

∫ t

0

ea(t−s) f(s) ds

The formula generalizes immediately to the case u(t) is the solution of the system of
ordinary differential equations:

du

dt
= Au + f(t), u(0) = u0

where A is a constant n× n matrix and f(t) is a n× 1 vector function of t:

u(t) = eAtu0 +

∫ t

0

eA(t−s) f(s) ds (9.5)

Under suitable hypotheses this can be generalized to the case where A is an operator
acting on a Hilbert space and f(t) takes values in a Hilbert space20.

20A. Pazy, Semigroups of linear operators and application to partial differential equations, Springer 1983
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Equation (9.5) is often called DuHamel’s formula or DuHamel’s principle. Applying it
with A = ∆, we obtain that the solution to the inhomogeneous heat equation:

∂tu(t, x) = ∆u(t, x) + f(t, x), u(0, x) = u0(x)

is given by

u(t, x) = Kt ? u0 +

∫ t

0

Kt−s ? f(s) ds, (9.6)

where e∆tg = Kt ? g and Kt denotes the heat-kernel

Kt(z) =
1

(4πt)
n
2

e−
|z|2
4t (9.7)

9.3 Heat equation on a bounded domain, Ω

∂tu = ∆u, (t, x) ∈ (0,∞)× Ω

u(t = 0, x) = f(x)

u(t, x) = 0, x ∈ ∂Ω, t > 0 (9.8)

Solution: From section 7, we have that L2(Ω) is spanned by the complete orthonormal set
of eigenfunctions of −∆, Fj(x), j = 0, 1, 2, . . . with eigenvalues λj > 0:

−∆Fj(x) = λj Fj(x), x ∈ Ω

Fj(x) = 0, x ∈ ∂Ω∫
Fj(x) Fk(x) dx = δjk

We write the solution u(x, t) as a weighted sum of solutions of the form e−λjt Fj(x):

u(x, t) =
∞∑
j=0

aj Fj(x) e−λjt (9.9)

The formal sum (9.9), by construction, solves the heat equation and satisfies the Dirichlet
boundary condition. To complete the solution, it suffices to choose the constants aj so that
the initial condition u(0, x) = f(x) is satisfied:

f(x) = u(0, x) =
∞∑
j=0

ajFj(x)

Since the eigenfunctions Fj form a complete orthonormal set we have

aj = (f, Fj)L2 (9.10)

Therefore,

u(x, t) =
∞∑
j=0

(f, Fj)L2 Fj(x) e−λjt (9.11)
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It is clear from (9.11) and the fact that λ0 < λ1 < . . . , that each term in the expansion
of u(x, t) decays exponentially in t. The dominant behavior of u(t, x) for large t, if a0 6= 0,
is given by

u(t, x) ∼ (f, F0)L2 e−λ0t, (9.12)

where λ0 denotes the smallest eigenvalue of the −∆D, the Laplacian on Ω with Dirichlet
(zero) boundary conditions.

9.4 Energy inequalities and heat equation

Another, more general, approach to time-decay estimates is based on energy inequalities or
energy estimates.

Multiplication of the heat equation by u(t, x) and integration over Ω gives

1

2

d

dt

∫
Ω

u2(t, x) dx = −
∫

Ω

|∇u(t, x)|2 dx (9.13)

By Theorem 8.2 we have the sharp form of Poincaré’s inequality, valid on H1
0 (Ω):∫

Ω

|u(x)|2 dx ≤ 1

λ0(Ω)

∫
Ω

|∇u(x)|2 dx. (9.14)

Therefore, by (9.13)

d

dt

∫
Ω

u2(t, x) dx ≤ −2λ0(Ω)

∫
Ω

|u(t, x)|2 dx (9.15)

Thus, ∫
Ω

u2(t, x) dx ≤ e−2λ0(Ω)t

∫
Ω

u2(0, x) dx

‖u(t)‖L2 ≤ e−λ0t ‖u0‖L2 , (9.16)

consistent with the asymptotic result (9.12).
It is simple to extend this approach to parabolic partial differential equation, in which,

∆ is replaced by a second order strictly ellptic operator.

9.5 The maximum principle for the heat / diffusion equation

9.6 Application: Burger’s equation and Shock Waves

10 The Wave Equation

10.1 One dimensional wave equation

∂2
t u = c2∂2

x (10.1)

Characteristic variables:

ξ = x+ ct, η = x− ct (10.2)
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Wave equation is equivalent to ∂ξ∂η u(ξ, η) = 0.
General Solution

u(x, t) = F (x+ ct) + G(x− ct) (10.3)

consisting of right and left going waves.
Solution to the initial value problem with data:

u(x, 0) = f(x), ∂tu(x, 0) = g(x) (10.4)

D’Alembert’s solution

u(x, t) =
1

2
( f(x+ ct) + f(x− ct) ) +

1

2c

∫ x+ct

x−ct
g(σ) dσ (10.5)

Remarks: Domain of Dependence, Range of Influence, Forward and Backward light cones”
in (x, t)

10.2 Three dimensional wave equation

∂2
t u = c2∆u (10.6)

with initial data u(x, 0) = f(x) and ∂tu(x, 0) = g(x). Introduce the spherical mean of a
continuous function, h on a ball of radius r about a point x:

Mh(x, r) =
1

ωnrn−1

∫
|y−x|=r

h(y) dSy

=
1

ωn

∫
|ξ|=1

h(x+ rξ) dSξ (10.7)

The latter expression for Mh permits extension of Mh to all r ∈ R as an even function. Note
that if h is continuous then

lim
r→0

Mh(x, r) = h(x). (10.8)

Euler-Poisson-Darboux

1

rn−1
∂r r

n−1 ∂r Mh(x, r) = ∆x Mh(x, r) (10.9)

The operator on the LHS, acting of Mh, is the radial part of the n-dimensional Laplace
operator.

Now consider the spherical mean of a solution of the wave equation, Mu(·,t)(x, r). We
have, using (10.9), that

∂2
t Mu(·,t)(x, r) = c2∆r Mu(·,t)(x, r) (10.10)

Remarkably, in the three space dimensions, n = 3, this implies that r Mu(·,t)(x, r) satisfies
the one dimensional wave equation!!

∂2
t

(
r Mu(·,t)(x, r)

)
= c2 ∂2

r

(
r Mu(·,t)(x, r)

)
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with initial conditions

r Mu(·,0)(x, r) = r Mf (x, r), ∂t Mu(·,0)(x, r) = r Mg(x, r) (10.11)

D’Alembert’s formula (10.5) applies and yields an explicit formula for rMu(·,t)(x, r). By
(10.8) limr→0Mu(·,t)(x, r) = u(x, t), and we obtain an expression for u(x, t) in terms of the
data f and g.

The result is

Theorem 10.1 Consider the three-dimensional wave equation with initial data u(x, 0) =
f(x) and ∂tu(x, 0) = g(x). The solution is given by:

u(x, t) = tMg(x, ct) + ∂t ( t Mf (x, ct) )

=
t

4π

∫
|ξ|=1

g(x+ ctξ)dSξ +
∂

∂t

(
t

4π

∫
|ξ|=1

f(x+ ctξ)dSξ

)
=

1

4πc2t

∫
|x−y|=ct

g(y) dSy +
∂

∂t

(
1

4πc2t

∫
|x−y|=ct

f(y) dSy

)
(10.12)

This is Kirchoff’s formula; see Evans, page 73.

Remarks on the solution of the three-dimensional wave equation:

• Loss of pointwise smoothness: In contrast to one-dimensional wave equation, solu-
tion is not as smooth as data in a pointwise sense. This is evident upon differentiating
out the expression for u(x, t) on the second line of (10.12):

u(x, t) =
t

4π

∫
|ξ|=1

g(x+ ctξ)dSξ +
1

4π

∫
|ξ|=1

f(x+ ctξ)dSξ

+
ct

4π

∫
|ξ|=1

ξ · ∇xf(x+ ctξ)dSξ (10.13)

• Conservation of energy and preservation of L2 smoothness: However, there is
a preservation of L2 type regularity

d

dt

∫
(∂tu)2 + c2 |∇u|2 dx = 0 (10.14)

• Diffractive spreading and time decay estimate: f, g of compact support =⇒
|u(x, t)| = O(t−1). This can be seen as follows. Rewrite (10.13) using the change of
variables y = x+ ctξ. Thus, dSy = c2t2dSξ. We obtain:

u(x, t) =
1

4πc2t2

∫
|x−y|=ct

[ tg(y) + f(y) + (y − x) · ∇yf(y) ] dSy (10.15)

Assume f and g are supported within Bρ = {x : |x| < ρ}. Each integral is the form∫
A
h, where h is supported in a ball of radius ρ and A = {y : |x− y| = ct}. Clearly,∣∣∣∣∫

A

h

∣∣∣∣ =

∣∣∣∣∫
A

h 1{h6=0}

∣∣∣∣ ≤ ‖h‖∞ ∫
A

1{h6=0}

= ‖h‖∞ meas(A ∩ {h 6= 0})
≤ ‖h‖∞ meas(A ∩Bρ) ≤ ‖h‖∞ 4πρ2

35



10.3 2D wave equation - Hadamard’s method of descent DRAFT: April 28, 2008

Applying this bound to each term in (10.15) yields the time-decaying upper bound:

|u(x, t)| ≤ K ρ2 t−1 ( ‖g‖∞ + ‖f‖∞ + ‖Df‖∞ ) (10.16)

• Huygen’s principle: Sharp arrival and departure of signals in odd space dimensions,
n = 1, 3.

10.3 2D wave equation - Hadamard’s method of descent

Wave equation in R2: ∂2
t u = (∂2

x1
+ ∂2

x2
)u

View solution to the two-dimensional initial value problem as a solution to the three-
dimensional initial value problem with special data which is constant in x3:

u(x1, x2, x3, 0) = f(x1, x2), ∂tu(x1, x2, x3, 0) = g(x1, x2) (10.17)

Note then that ∂x3u(x1, x2, x3, t) solves the three-dimensional wave equation with zero initial
data. Hence, ∂x3u(·, t) = 0 for all t 6= 0 and u(x1, x2, x3, t) = u(x1, x2, 0, t).

Evaluating Kirchoff’s formula (10.12) we have

u(x1, x2, 0, t) =
1

4πc2t

∫
(y1−x1)2+(y2−x2)2+y23=c2t2

g(y1, y2)dSy

+
∂

∂t

(
1

4πc2t

∫
(y1−x1)2+(y2−x2)2+y23=c2t2

f(y1, y2)dSy

)

We now parametrize the upper / lower hemispheres of the sphere via y3(y1, y2) = ±
√
c2t2 − r2,

where r2 = (y1 − x1)2 + (y2 − x2)2. Then,

dSy =

√
1 +

(
∂y3

∂y1

)2

+

(
∂y3

∂y2

)2

dy1dy2 =
ct√

c2t2 − r2
dy1dy2

Taking into account contributions from both upper and lower hemispheres, we obtain:

Theorem 10.2 Solution of IVP for wave equation in 2 dimensions

u(x1, x2, t) =
1

2πc

∫
r<ct

g(y1, y2)√
c2t2 − r2

dy1dy2 +
∂

∂t

1

2πc

∫
r<ct

f(y1, y2)√
c2t2 − r2

dy1dy2

See, for example, Evans, page 80.

10.4 Principle of causality

Computation of energy flow across light cone - See, e.g. Evans Theorem 6, page 84.
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10.5 Inhomogeneous Wave Equation - DuHamel’s Principle

10.6 Initial boundary value problem for the wave equation

Example 1 :
1-d wave equation defined on x > h(t) where Cauchy data, u(x, 0), ∂tu(x, 0) is given for
t = 0, x ≥ h(0) = 0 and along the curve (moving boundary), i.e. u(h(t), t) prescribed.
Example 2:
Example 1 with h(t) = c0t, c > c0. and u(c0t, t) = cos(ωt). Obtain Doppler effect.
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11 The Schrödinger equation

In this section we introduce the Schrödinger equation in two ways. First, we mention how
it arises in the fundamental description of quantum atomic phenomena. We then show its
role in the description of diffraction of classical waves.

11.1 Quantum mechanics

The hydrogen atom: one proton and one electron of mass m and charge e. The state of the
atom is given by a function ψ(x, t), complex-valued, defined for all x ∈ R3 and t ∈ R. ψ is
often called the wave function.
Let Ω ⊂ R3. |ψ(x, t)|2 dx is a probability measure with the interpretation∫

D

|ψ(x, t)|2 dx = Probability (electron ∈ Ω at time t)

Thus, we require∫
R3

|ψ(x, t)|2 dx = Probability
(
electron ∈ R3 at time t

)
= 1

Given an initial wave function, ψ0

i~ ∂tψ = H ψ

H = − ~2

2m
∆ + V (x) (11.1)

Here, ~ denotes Planck’s constant divided by 2π. The operator H is called a Schrödinger
operator with potential V , a real-valued function determined by the nucleus. For the special
case of the hydrogen atom

H = − ~2

2m
∆ − e2

r
, r = |x| (11.2)

The free electron (unbound to any nucleus) is governed by the free Schrödinger equation
(V ≡ 0):

i~ ∂tψ = − ~2

2m
∆ψ (11.3)

11.2 Diffraction of classical waves

Propagation of waves in a homogeneous medium, described by the classical wave equation
in dimensions n ≥ 2 gives rise to the phenomenon of diffractive spreading of the wave-field.
By considering a class of initial value problems with so-called wave packet initial conditions,
we demonstrate how on “short time scales” waves propagate along classical straight-lined
rays. However, on “long (but finite) time scales” waves propagate according to the (free)
Schrödinger equation.
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Consider the initial value problem for the wave equation:

∂2
t u(x, t) = c2∆ u(x, t)

u(x, 0), ∂tu(x, 0) given

Fourier representation of the solution

u(x, t) =

∫
Rn

e2πiη·x û(η, t) dη

û(η, t) = cos(2πc|η|t) û(η, 0) +
sin(2πc|η|t)

2πc|η|
∂tû(η, 0)

Remark 11.1 It is an interesting (optional) exercise to deduce the finite propagation speed
of signals from the Fourier representation. Note: The Fourier representation of the solu-
tion does not make explicit central features of the solution such as finite propagation speed,
domain of dependence. . . A proof of finite propagation speed, starting with the Fourier rep-
resentation, requires arguments closely related to a Paley-Wiener Theorem from complex
variables. Reference: F. John - PDEs, 4th edition, Springer, 1982, Chapter 5, Section 2.

Multiscale (wave packet) initial data - an example

u(x, 0) = e2πi
x1
ε f(x1, x⊥), ∂tu(x, 0) = 0, (11.4)

where x⊥ = (x2, . . . , xn). We call x1 the longitudinal variable and x⊥ the transverse variables.
We take ε << 1 so that this data is oscillatory (with spatial scale ε) with slowly varying
envelope (with spatial scale of order one).

Theorem 11.1 The solution u(x, t) is a superposition of terms of the following multiple
scale type

u(x, t) ∼ e2πi
x1−ct
ε A(x1 − ct, εt, x⊥) + O(ε2t),

giving a good approximation of the solution for times t ≤ o(ε−2). The pre-factor e2πi
x1−ct
ε is a

plane wave with rapid spatial variation propagating in the x1 direction at speed c. This plane
wave is modulated by an amplitude function, which is more slowly varying. A(x1− ct;T, x⊥)
satisfies the free Schrödinger equation

i∂T A(·;T, x⊥) = −∆⊥ A(·;T, x⊥) (11.5)

governing the diffraction of waves and spreading over energy on time scales t = o(ε−2). Here,
∆⊥ denotes the Laplacian with respect to the transverse variables, x⊥.

11.3 Free Schrödinger - initial value problem

Initial Value Problem
i∂tu = −∆ u, u(x, 0) = f(x) (11.6)

39



11.4 Free Schrödinger in Lp DRAFT: April 28, 2008

Unlike the heat equation, ∂tu = −∆u, which has an exponentially decaying Gaussian fun-
damental solution, the fundamental solution of the Schrödinger equation is a oscillatory
Gaussian with no spatial decay. For this reason, the derivation of the solution to the initial
value problem is more subtle. One approach is to regularize the Schrödinger equation by
adding a small (ε > 0) diffusive term, which we then take to zero (ε→ 0).

Regularized initial value problem Take ε > 0.

i∂tu
ε = −(1− iε)∆ uε, uε(x, 0) = f(x) (11.7)

i∂tû
ε = 4π2(1− iε)|ξ|2û

ûε(ξ, t) = e−4π2(i+ε)|ξ|2t f̂(ξ) (11.8)

uε(x, t) =

∫
Kε
t (x− y) f(y) dy

Kε
t (x) =

∫
e−2πix·ξ e−4π2(i+ε)|ξ|2t dξ

= (4π(i+ ε)t)−n/2 e−
|x|2

4t(i+ε)

For f ∈ L1, we can pass to the limit ε→ 0+ and define the free Schrödinger evolution by:

u(x, t) = ei∆tf =

∫
Kt(x− y) f(y) dy

Kt(x) = (4πit)−n/2 ei
|x|2
4t (11.9)

For f ∈ L2, we can use that the Fourier transform is defined (and unitary) on all L2 to
define, by (11.8),

u(x, t) =
(
e−4π2i|ξ|2t f̂(ξ)

)
(̌x, t) = ei∆tf (11.10)

11.4 Free Schrödinger in Lp

ei∆tf for f ∈ L1(Rn): In this case,

|u(x, t)| =

∣∣∣∣ ∫ Kt(x− y) f(y) dy

∣∣∣∣ ≤ ∫
|f | dy

Therefore, if f ∈ L1(Rn), then ei∆tf ∈ L∞(Rn) for t 6= 0 and

‖ ei∆tf ‖L∞ ≤ |4πt|−
n
2 | ‖f‖L1 (11.11)

ei∆tf for f ∈ L2(Rn): In this case∫
|u(x, t)|2dx =

∫
|û(ξ, t)|2dξ =

∫
|e−4π2i|ξ|2t f̂(ξ)|2dξ =

∫
|f(ξ)|2dξ
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Thus, if f ∈ L2(Rn), then ei∆tf ∈ L2(Rn) and

‖ei∆tf‖L2 = ‖f‖L2 (11.12)

Extension to Lp: Suppose f ∈ Lp(Rn) with 1 ≤ p ≤ 2. Using a theorem of M. Riesz on
interpolation of linear operators21, one can show:

Theorem 11.2 Let 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞, where p−1 + q−1 = 1. If f ∈ Lp(Rn), then
for t 6= 0 ei∆tf ∈ Lq(Rn) and

‖ei∆tf‖Lq ≤ |4πt|−(n
2
−n
q

) ‖f‖Lp (11.13)

11.5 Free Schrödinger evolution of a Gaussian wave packet

Consider the evolution of a Gaussian wave-packet in one-space dimension. Let η0 = 2πξ0.

i∂tu = −∂2
xu

u(x, 0) = eiη0x e−
x2

2L2 = gL,η0(x) (11.14)

Thus u(x, 0) is an oscillatory and localized initial condition with carrier oscillation period
ξ−1

0 or frequency ξ0. Its evolution has an elegant and illustrative form:

Theorem 11.3

u(x, t) = ei∆tgL,η0 =
eiη0(x−η0t)(
1 + 2it

L2

) 1
2

e
− (x−2η0t)

2

2L2(1+2it
L2 ) (11.15)

Proof: The Fourier representation of the solution is:

u(x, t) =

∫
e2πiξxĝL,2πξ0(ξ) dξ (11.16)

Note: ĝL,2πξ0(ξ) = ĝL,0(ξ − ξ0) = (2π)
1
2 L e−2π2L2(ξ−ξ0)2 . Substitution into (11.16) and

grinding away with such tools as completing the square yields the result.

Remarks:

• Phase propagates with velocity η0, the phase velocity

• Energy ∼ |u(x, t)|2 propagates with velocity 2η0, the group velocity

• Solution disperses (spreads and decays) to zero as t ↑. This is seen from the general
estimate (11.11) as well as the explicit solution (11.15).

• However, solution does not decay in L2. The Schrödinger evolution is unitary in L2;
see (11.12).

• Concentrated (sharp) initial conditions (L small) disperse more quickly than spread
out initial conditions (L large). The time scale of spreading is t ∼ L2.

21See Chapter 5 of Introduction to Fourier Analysis on Euclidean Spaces, E.M. Stein and G. Weiss, Prince-
ton 1971
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11.6 The Uncertainty Principle

Recall that |ψ(x, t)|2 has the interpretation of a probability density for a quantum particle
to be at position x at time t. |ψ̂(ξ, t)|2 has the interpretation of a probability density for
a quantum particle to be at momentum ξ at time t.The expected value of an observable or
operator , A, is formally given by22

〈A〉 = (ψ,Aψ) =

∫
ψ̄Aψ (11.17)

Examples

(i) 〈X〉, the average position =
∫
x|ψ(x, t)|2dx.

(ii) 〈Ξ〉, the average momentum =
∫
ξ|ψ̂(ξ, t)|2dξ.

(iii) 〈|X|2〉, the variance or uncertainty in position =
∫
|x|2|ψ(ξ, t)|2dx.

(iv) 〈|Ξ|2〉, the variance or uncertainty in momentum =
∫
|ξ|2|ψ̂(ξ, t)|2dξ.

Theorem 11.4 (Uncertainty Inequality) Suppose xf and ∇f are in L2(Rn). Then,∫
|f |2 ≤ 2

n

(∫
|xf |2

) 1
2
(∫
|∇f |2

) 1
2

or equivalently ∫
|f |2 ≤ 4π

n

(∫
|xf |2

) 1
2
(∫
|ξf̂ |2

) 1
2

(11.18)

Exercise: (a) Prove the uncertainty inequality, using the pointwise identity

x · ∇|f |2 = ∇ · (x|f |2) − n |f |2,

(b) Prove that the inequality (11.18) is sharp in the sense equality is attained for the Gaussian
f(x) = exp(−|x|2/2).

Applying the uncertainty inequality (11.18) to a solution of the Schrödinger equation,
with initial condition ‖ψ(·, 0)‖L2 = 1 and we have,

1 =

∫
|ψ(x, 0)|2dx =

∫
|ψ(x, t)|2dx ≤ 4π

n

(∫
|xψ(x, t)|2

) 1
2
(∫
|ξψ̂(ξ, t)|2

) 1
2

(11.19)

The latter, can be written as

n

4π
≤
√
〈|X|2〉(t)

√
〈|Ξ|2〉(t) (11.20)

and is called Heisenberg’s uncertainty principle.

22We proceed formally, without any serious attention to operator domains etc. For a fully rigorous treat-
ment, see M. Reed and B. Simon, Modern Methods of Mathematical Physics - Volumes 1-4
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12 Background

12.1 Linear Algebra

Solvability of linear systems: A~x = ~b, where A denote an m× n matrix.

Theorem 12.1 (i) The system of m equations in n unknowns: A~x = ~b is solvable if and

only if 〈~z,~b〉 ≡ ~z · ~y = 0 for all ~z such that AT~z = 0. That is, a solution exists if and only

if ~b is orthogonal to the null space of the transpose of A.
(ii) Thus, either A~x = ~b has a unique solution or it has it has an n− r(A) parameter family
of solutions, where r(A) denotes the rank of the matrix A.

The eigenvalue problem: A~x = λ~x

Diagonalization: Let λj, j = 1, . . . , n denote the n eigenvalues of A, a n×n (square) matrix.
This list of eigenvalues may have repetitions. If A has n linearly independent eigenvectors
v1, . . . , vn, then we say that A has a complete set of eigenvectors. Denote by V the n × n
matrix whose jth column in vj. Then, AV = V Λ, where Λ = diag(λ1, . . . , λn), is the di-
agonal matrix with eigenvalues along the diagonal. Note that A = V ΛV −1 or Λ = V −1AV .
We say A is diagonalized by V .

Symmetric matrices: The eigenvalues of a symmetric matrix are real. Moreover, for any
symmetric matrix A, there exists a complete set of eigenvectors v1, . . . , vn, which form an
orthonormal set, i.e. 〈vi, vj〉 = δij. In other words, the matrix V whose columns are the
eigenvectors of A satisfies V TV = V V T , i.e. V is an orthogonal matrix.

12.2 Calculus

Let Ω denote an open subset of Rn and ∂Ω denote its boundary, assumed smooth.

Definition 12.1 Ck(Ω) is the set of all functions f(x), defined on Ω, whose derivatives up
to order k are continuous functions on Ω.

Definition 12.2 A Ck vector field on Rn is a vector function u : Rn → Rn, mapping x ∈ Rn

to u(x) ∈ Rn. Furthermore, the components of uj, j = 1, . . . , n of u are each Ck(Rn). If
k ≥ 1, then the Jacobian matrix of the vector field Dxu(x) is well-defined. It is the matrix
( ∂xiuj(x) ), 1 ≤ i, j ≤ n.

Definition 12.3 Given a C1 vector field on Rn, we can define its divergence:

div u = ∇ · u =
n∑
i=1

∂xiui(x) (12.1)

The following profound generalizations of the fundamental theorem of calculus and the
integration by parts formulae play a very important role in the study of PDEs.
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Theorem 12.2 Gauss-Green Theorem
Let u be a C1 vector field defined on Ω, a subset of Rn with smooth boundary. Then,∫

Ω

∇ · u dx =

∫
∂Ω

u · n dS, (12.2)

where n denotes the unit normal, pointing outward from the region Ω.
Applying (12.2) to the vector field V (x)δij, where V is a scalar C1 function, we obtain:∫

Ω

∂xiV (x) dx =

∫
∂Ω

V ni dS (12.3)

Substitution of U(x) V (x) for V (x) in (12.3) we obtain:

Theorem 12.3 Integration by parts
Let U(x) and V (x) denote scalar C1 functions∫

Ω

∂xiU V dx = −
∫

Ω

U ∂xiV dx +

∫
∂Ω

UV ni dS (12.4)

Theorem 12.4 Change of variables
Suppose f : y 7→ f(y) is a continuous function on the region Ω ⊂ Rn. Let Ω0 denote another
region and F : x 7→ y = F (x) a mapping from Ω0 to Ω, such that (i) F ∈ C1 and (ii) F is
one to one and onto. Then,∫

Ω

f(y) dy =

∫
Ω0=F−1(Ω)

f(F (x)) | detDxF (x) | dx (12.5)

Theorem 12.5 Implicit Function Theorem
Consider a function F : Rn

x ×Rm
σ → Rm, (x, σ) 7→ F (x, σ), where F is sufficiently smooth.

We wish to understand the solution set of F (x, y) = 0. Suppose
(i) Solvability at a point (x0, σ0): F (x0, σ0) = 0.
(ii) Non-vanishing of the Jacobian determinant: Let DσF (x, σ) denote the m by m Jaco-
bian matrix of first partials: ∂σkFl(x, σ), k, l = 1, . . . , n. We assume that Dσ(x0, σ0) is
nonsingular, i.e. det DσF (x0, σ0) 6= 0
Then, defined in an open neighborhood of x0 ∈ Rn , U , is a smooth function, σ = g(x), such
that g(x0) = σ0 and

F (x, g(x)) = 0, for all x ∈ U. (12.6)

Therefore, the equation F (x, σ) = 0, locally defines a surface, which can be represented as a
graph of a function σ = g(x).

Theorem 12.6 The Inverse Function Theorem
Assume f : Rm → Rm is a smooth function and such that
(i) y0 = f(x0)
(ii) The n by n Jacobian matrix, Dxf(x0) is non-singular, i.e. detDxf(x0) 6= 0.
Then, defined in a neighborhood U of y0, there is function g : Rm → Rm, such that x0 = g(y0)
and for all y ∈ U , f(g(y)) = y.
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Proof of the Inverse Function Theorem: Apply the implicit function theorem to the
function F : Rn × Rm → Rm defined by F (x, y) ≡ f(x)− y and the equation F (x, y) = 0.
References: See for example,

(1) R.C. Buck, Advanced Calculus”, McGraw-Hill

(2) Appendix C of L.C. Evans, Partial Differential Equations, AMS - Graduate Studies in
Mathematics, Volume 19

12.3 Local existence theorem for ordinary differential equations
(ODEs)

Consider the system of n− ordinary differential equations:

dx(t)

dt
= f(x(t), t), x(t0) = α, (12.7)

where f is a smooth (sufficiently differentiable) vector function Rn×R1 → Rn (vector field on
Rn). The condition on x(t) at t = t0 is called an initial condition. The differential equation,
together with the initial condition is called the initial value problem or IVP.

When it exists, the solution of the IVP is a function of t as well the initial condition, α.
The following theorem ensures the existence of a local solution of the differential equation,
φ(t;α), which depends continuously on the initial condition, α.

Theorem 12.7 There exists T , which depends on ξ and the details of f , and a function
φ(t;α), defined and smooth for |t− t0| < T∗, such that for |t− t0| < T∗ the function φ(t;α)
satisfies the ODE and initial condition (12.7). Moreover, for any 0 < T < T∗ there is a
positive constant, depending on T , r(T ), such that

max
|t|≤T

‖ φ(t;α)− φ(t; η) ‖ ≤ r(T ) ‖ α− η ‖ (12.8)

Here ‖y‖ denote the norm of a vector in Rn, e.g. the Euclidean norm: ‖y‖2 =
∑n

j=1 |yj|2.

The upper bound, (12.8), on the deviation between trajectories quantifies the continuous
dependence of the solution with respect to initial conditions. In particular, on any fixed
closed interval of existence, as two initial conditions are brought close to each other, the
corresponding solution trajectories become uniformly close.

References: See, for example,

(1) V.I. Arnol’d, Ordinary Differential Equations, MIT Press, 1980

(2) M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear
Algebra, Academic Press, 1974; Chapter 8

(3) E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-
Hill, 1955
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12.4 Compactness and convergence results

The simplest compactnes result, and the one to which many more sophisticated results
reduce, is the classical theorem of analysis of Bolzano and Weierstrass. First, recall that a
subset, X, of Rn is compact if any sequence in {xn} ⊂ X has a convergent subsequence, i.e.
there exists a subsequence {xnk} ⊂ X and x∗ ∈ X such that ‖xnk − x∗‖ → 0 as nk →∞.

Theorem 12.8 (Bolzano and Weierstrass) If X ⊂ Rn is closed23 and bounded24, then X
is compact.

Exercise 3: Note that this theorem does not hold if Rn is replaced by an infinite
dimensional space. Let X = {f ∈ L2(Rn) : ‖f‖2 ≤ 1 }.

(a) Show that X is closed and bounded.

(b) Fix any function f1 ∈ X with ‖f1‖2 = 1. Define fm(x) = mn/2f1(mx). Show that
‖fm‖L2 = 1 and that mnf 2

1 (mx)→ δ0, the Dirac delta distribution, as m→∞. Thus,
no subsequence of fm converges to a limiting f∗ ∈ L2 as m → ∞; the Dirac delta
distribution is not even a function!

Exercise 4: Let X be as in Exercise 3 above and for any m = 0, 1, 2 . . . set gm(x) =
f1(x −m). The sequence {gm} lies in the closed and bounded subset of L2, X. Show that
{gm} does not have a subsequence which converges to an L2 function.

It is therefore clear from the preceding two exercises that boundedness of a se-
quence of functions itself is not sufficient to ensure compactness in the strong sense.
That is, if {xn} is a bounded sequence (for all n ≥ 0, ‖xn‖ ≤ C, this does not imply the
existence of a subsequence xnk which converges in norm.

A second classical result, whose proof uses the Bolzano-Weierstrass theorem shows how (i)
boundedness and (ii) equicontinuity of a sequence implies compactness.

Definition 12.4 Let C(Rn) denote the set of continuous real-valued functions on a Rn and
F denote a subset of C(Rn). The set F is equicontinuous if for any ε > 0, there is a
δ = δ(ε;F ) such that ‖x− y‖Rn < δ implies |f(x)− f(y)| < ε for all f ∈ F .

Theorem 12.9 (Ascoli-Arzela Theorem) If F ⊂ C(Rn) is a family of functions which is
uniformly bounded25 and equicontinuous, then there is a sequence in F which converges
uniformly on any compact subset of X to a function in C(X).

Note that although closed and bounded subsets in a Hilbert space H are not generally
compact, THEY ARE HOWEVER WEAKLY COMPACT:

23X contains all its limit points
24There exists rX > 0 such that X lies within the ball of radius rX about the origin
25There exists MF > 0, such that |f(x)| ≤MF for all x ∈ Rn and f ∈ F
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Theorem 12.10 26 (Weak compactness - special case of Banach -Alagolou ) If {xn} is a
bounded sequence in a Hilbert space H, then there is a subsequence {xnk} and x∗ ∈ H such
that (xnk , y)H → (x∗, y)H for all y ∈ H.

A compactness result, rooted in the Ascoli-Arzela Theorem 12.10 and at the heart of
showing that (−∆D)−1 is a self-adjoint compact operator is

Theorem 12.11 ( Rellich compactness Lemma)27 Suppose {uj} is a sequence in H1
0 (Ω) such

that ‖uj‖H1
0 (Ω) ≤ C. Then, there exists a subsequence ujk and an element u∗ ∈ H1

0 such that
‖ujk − u∗‖L2 → 0 as jk →∞.

12.5 Fourier Transform

Definition: Schwartz class, S(Rn), is defined to be the space of all functions which are
C∞ and which, together with all their derivatives, decay faster than any polynomial rate.
Specifically, if f ∈ S, then for any α, β ∈ Nn

0 , there exists a constant Cα,β such that

sup
x∈Rn

|xα∂βxf(x)| ≤ Cα,β

For f ∈ S define the Fourier transform, f̂ or Ff by

f̂(ξ) = Ff(ξ) =

∫
e−2πix·ξf(x) dx (12.9)

Proposition 12.1 Assume f ∈ S.

(a) f̂ ∈ C∞ and ∂β f̂(ξ) =
[

(−2πix)βf(x)
]

(̂ξ)

(b) ∂̂βf(ξ) = (2πiξ)β f̂(ξ)

(c) f̂ ∈ S. Thus, the Fourier transform maps S to S.

Theorem 12.12 (Riemann-Lebesgue Lemma)
f ∈ L1(Rn) =⇒ limξ→∞ f̂(ξ) = 0.

Proof: Approximate by step functions, for which the result can be checked. Note: no rate
of decay of the Fourier transform is implied by f ∈ L1.

Theorem 12.13 Let f(x) ≡ e−πa|x|
2
, <a > 0. Then,

f̂(ξ) = a−
n
2 e−π

|ξ|2
a (12.10)

The formula (12.10) also extends to <a = 0, a 6= 0.

Proof: Write out definition of f̂ . Note that the computation factors into computing the
Fourier transform of n independent one dimensional Gaussians. For the one-dimensional
Gaussian, complete the square in the exponent, deform the contour using analyticity of the
integrand, and finally use that

∫
R e
−πy2dy = 1.

26See Theorem 3, Appendix D, page 639 of L.C. Evans PDEs
27This is a special case of the more general compactness theorem of Rellich and Kondrachov. For a proof

see L.C. Evans, PDEs; see section 5.2, Theorem 1 on page 272. Its proof relies on the Arzela-Ascoli theorem,
given above.
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12.6 Fourier inversion on S and L2

Definition 12.5 For g ∈ S define ǧ

ǧ(x) ≡
∫
e2πiξ·xg(ξ) dξ = ĝ(−x)

Proposition 12.2 ∫
f̂ g dx =

∫
f ĝ dx (12.11)

Proof: Interchange orders of integration (Fubini’s Theorem)

Remark 12.1 Equation (12.11) is used to define the Fourier transform of a distribution.
Namely, if T is a distribution, then the distribution T̂ is defined to be that distribution whose
action on C∞0 (Rn) functions is:

T̂ (φ) = T [φ̂]

Thus, for example we can compute the Fourier transform of the delta function as follows:

δ̂x[φ] = δx[φ̂] = φ̂(x)

=

∫
Rn
e−2πixyf(y)dy.

Thus, we identify the δ̂x with the L1
loc function e−2πix·y, i.e. δ̂x = e−2πix·y.

Theorem 12.14 Fourier inversion formula Assume f ∈ S. Then,

f ∈ S =⇒ ǧ(x) = f(x), where g(ξ) = f̂(ξ) (12.12)

Proof: We shall prove Fourier inversion in the following sense.

lim
ε→0

∫
e−πε

2|ξ|2 e2πix·ξ f̂(ξ) dξ = f(x)

For any ε > 0 define
φε(ξ) = e2πx·ξ − πε2|ξ|2

whose Fourier transform is

φ̂ε(y) =
1

εn
e−π

|x−y|2

ε2 =
1

εn
g

(
x− y
ε

)
≡ gε(x− y)

Now, ∫
e−πε

2|ξ|2 e2πix·ξ f̂(ξ) dξ =

∫
φε(ξ) f̂(ξ) dξ

=

∫
φ̂ε(y) f(y) dy

=

∫
gε(x− y) f(y) dy → f(x)

as ε ↓ 0 because gε is an approximation of the identity28.

28Approximation of the identity: Let K(x) > 0 and
∫

K(x)dx = 1. Define KN (x) = NnK(Nx), N ≥ 1.
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Theorem 12.15 Plancherel Theorem

f ∈ S =⇒
∫
|f(x)|2 dx =

∫
|f̂(ξ)|2 dξ

That is the Fourier transform preserves the L2 norm on S (‖f̂‖2 = ‖f‖2).

Corollary 12.1 The Fourier transform can be extended to a unitary operator defined on all
L2 such ‖f̂‖2 = ‖f‖2.

Proof: S is dense in L2. If f ∈ L2, there exists a sequence fj ∈ S such that ‖fj − f‖2 → 0.

Define f̂ = limj→∞ f̂j.

Let f be a bounded and continuous function on Rn and consider the convolution

KN ? f(x) =
∫

KN (x− y) f(y) dy (12.13)

Prove: KN ? f(x) → f(x) uniformly on any compact subset, C, of Rn as N ↑ ∞, i.e.
maxx∈C | [KN ? f ](x)− f(x)| → 0.
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