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Abstract

We examine an example of spontaneous symmetry breaking in a double-well waveguide with a symmetric potential. The
ground state of the system beyond a critical power becomes asymmetric. The effect is illustrated numerically, and quantitatively
analyzed via a Galerkin truncation that clearly shows the bifurcation from a symmetric to an asymmetric steady state. This phe-
nomenon is also demonstrated experimentally when a probe beam is launched appropriately into an optically induced photonic
lattice in a photorefractive material.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction from coupled semiconductor lasdf3 to the pattern
dynamics ofDictyostelium discoideum [4]. Of partic-
ular interest is the recent experimental demonstration
of spatial symmetry-breaking instability in the inter-
action of laser beams in optical Kerr med&. For
an overview of the time-honored history of the SSB in
field theory, see the reviev8].

There has recently been a huge amount of activity
msponding author. and many advances in the study qf light dynamics in

E-mail address: kevrekid@math.umass.e@®.G. Kevrekidis). photonic structures, such as materially fabricated pho-

Spontaneous symmetry breaking (SSB) is a ubiqui-
tous phenomenon in modern physics. Manifestations
of the SSB have been found in diverse areas, rang-
ing from liquid crystalg[1] to quantum dot$2], and
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tonic crystals (PCs) and optically induced photonic
lattices in nonlinear media; see, for examfle8].

This is motivated by the enormous potential for ap-
plications ranging from highly tunable telecommuni-
cations elements to cavity QED experiments. Among
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2. Modd and numerical results

Our model is based on (1D) equations that de-
scribe the propagation of light in a photorefractive
crystal[22]; see also the recent exposition#8]. The

many phenomena explored are nonlinear effects asso-1D version makes it possible to demonstrate the SSB

ciated with propagation, localization, and discretiza-
tion of light in optically-induced photonic latticd9],
including the formation of lattice solitons in of#0,

11] and two dimension§l2—-14] and discrete vortex
solitons[15,16].

In this Letter, our aim is to study a prototypi-
cal example of SSB for a setting of the nonlinear
Schrédinger (NLS) type with an effective symmetric
double-well potential, i.e., a prototypical “dual-core”
photonic lattice. As the optical power is increased,
we identify a symmetry-breaking bifurcation in the
system’s ground state, with a transfer of stability to
asymmetric states, with more power concentrated in
one core than in the other. This, generally, resem-
bles theoretically predicted SSB bifurcations in di-
verse dual-core optical systems of more traditional
types, such as dual-core fibers (see R&7]), lin-
early coupledy @ waveguides and dual-core fiber
gratings[18]. We present an analysis using a Galerkin
truncation based on the eigenfunction basis of the
underlying linear double-well problem, which accu-
rately predicts the bifurcation in the present context.

Then, we demonstrate such SSB experimentally in an .

optically-induced waveguide lattice in photorefractive
media. Our method of prediction and analysis of SSB
is quite general. For example, NLS equations of the

in its simplest/most fundamental form. Specifically,
we consider a probe beam that is extraordinarily polar-
ized, while a strong ordinarily polarized beam creates
an effective lattice potential for the probe. Then, the
equation for the spatial evolution of a slowly varying
amplitudeU of the probe beam is

Eo
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In Eqg. (1), z and x are the propagation distance
and transverse coordinate, respectively, is the
wavenumber of the probe beam in the vacuugmis
the refractive index along the extraordinary axig,is

the electro-optic coefficient for the extraordinary po-
larization, Eq is the bias electric field, anty(x) is the
intensity of the ordinarily polarized beam, subject to
modulation in the transverse direction (all intensities
are normalized with respect to the crystal’s dark irra-
diance,l;). Measuringz in units of Zon, and Eg in
units of ]/(kgnjrgg), Eqg. (1) can be cast in a dimen-
sionless form,

Eg
L — - 2
1+ Ip(x) + |U|? @

Nonlinear bound states of E(R) are localized solu-
tions of the formU (x, z) = u(x) exp(i uz), whereu

iU, +Uxx — 0.

Gross—Pitaevskii and nonlinear-Hartree types play a gpeys

fundamental role in the study of Bose—Einstein con-
densatior{19]. In the latter context, a rigorous varia-
tional proof showing that a SSB transition must occur
is given in[20], and a complete study of the SSB tran-
sition in a special one-dimensional (1D) model was
developed in Ref21].

The Letter is structured as follows. In Sectarwe
introduce the NLS model and its connection to the op-
tical lattice problem. The stability of stationary states
and the SSB bifurcation are studied numerically. In
Section3, the finite-mode (Galerkin) approximation
and the prediction of SSB following from it are elab-
orated. Sectiod details the observation of the SSB in
the experiment. Sectioh contains a summary of our
findings and conclusions.

E
_ —02” - A3)
1+ Io(x) + [ul
We consider the case of an effective symmetric

two-hump potential
(x —a)? (x +a)?
Jrod-527))
4

2¢2
corresponding to a superposition of two Gaussian
beams. Solutions to E@3) with Ip(x) given by (4)
were found via the Newton’s method on a finite-
difference grid. The linear stability of the stationary
states is determined by the eigenvalues and eigenvec-
tors, {A, (a, b)} of the linearized equation, obtained

uu.

XX

Io(x) =V [exp(—
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Fig. 1. The symmetry-breaking bifurcation which gives rise to asymmetric solutions {3Baith the potential of Eq(4). The parameters are
€=0.1,Vg= (me) /2~ 1.784,a = 3, andEq = 7.5. The solid and dashed lines in the top subplot of the left panel show the amplitudes of the
symmetric and asymmetric (bifurcating) solutions ys.The bottom subplot displays the unstable real eigenvalue for the symmetric-solution
branch existing past the bifurcation point,.at- —6.94575. The right panel shows, in its top subplots, examples of the symmetric and asym-
metric solutions (solid and thick dashed lines, respectivelyyfetr —6.8 (left) andu = —6.95 (right), respectively. In the latter case (i.e.,
before the bifurcation point), only the symmetric branch (solid line) exists. The background prdfjle: bfs indicated by a dash-dotted line.
The bottom subplots show the respective results of the linear stability analysis around the symmetric solution in the compbex pjandé

the stability eigenvalues. An eigenvalue with a positive real part (in the left panel) implies instability of the solution.

by the substitution ofU(x,z) = expliuz){u(x) + (right). In fact, two asymmetric solutions arise, be-
s[exp(—rz)a(x) + exp(—1*z)b*(x)]} into (1) and lin- ing mirror images of each other, i.e., the bifurcation
earization in the small parametér For very weak is super-critical.

nonlinearity, the profile of the ground state follows The evolution of the stable and unstable station-

the symmetry of the double-well potentigd). We ary solutions was investigated in direct simulations
searched for a symmetry-breaking bifurcation as the of Eq. (2). Fig. 2 displays the results for the un-
optical power of the nonlinear bound stat¥, = stable symmetric solution withh = —6.5 and sta-
ffo‘f lu(x)|2dx was increased. ble symmetric one withy = —6.95. As initial condi-
The results are summarizedHig. 1 (for Eg = 7.5, tions, we took highly accurate numerically obtained

cf. Ref.[23]). The top left panel of the figure shows stationary states perturbed by a uniformly distrib-
the amplitude of the solution as a function of The uted random perturbation of an amplitud®@01. In
solid and dashed lines correspond, respectively, to thethe unstable case, the manifestation of the SSB is
symmetric and asymmetric solutions, the latter bifur- very clear; as a result of the growth of the unsta-
cating from the former (SSB) at a critical powaf. ble eigenmode triggered by the small perturbation,
The bottom left panel displays the real past of the nearly symmetric state with = —6.5 evolves
the most unstable eigenvalue of the symmetric solu- into a stable asymmetric one; see the dashed line in
tion, which shows that the symmetry-breaking bifur- Fig. 2 On the other hand, the stable symmetric ground
cation destabilizes the symmetric solution. This occurs state foru = —6.95 remains unchanged (solid line in
through the appearance of a pair of real eigenvaluesFig. 2).

for N > N, =0.15167, or, equivalently, for > u. =

—6.94575, when the solution’s amplitude (maximum

value of|u(x)|) exceeds @6924. The asymmetric so- 3. Analytical results

lution emerging at the bifurcation point is stable. The

right panel ofFig. 1shows details of the relevant solu- To analytically examine SSB in Eq2), we de-
tions and their stability fope > . (left) andu < u, velop a Galerkin-type method generally applicable to
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Fig. 2. The profile of the field modulu| for the same propaga-
tion distance but different symmetric initial conditions: a stable one
(solid line) for u = —6.95, resulting in the stable symmetric state,
and an unstable one far= —6.5, resulting in the asymmetric state
shown by the dashed line. The potential is the same &siforL

related models. It is convenient to defibix, z) =
u(x, z) expi uz), replacing Eq(2) with

Eo
—Zu.
1+ Io(x) + |ul

Numerics corroborate our expectation that, for suffi-
ciently large separatiom between the potential wells,
the bifurcation occurs at low powers, i.e., when &).

is close to its linear counterpart. It is therefore natural
to seek a representation ofx, z) in terms of the ba-
sis of the eigenfunctions of the double-well potential:

wjp =) 4 1+‘;V§(x)v(f). Numerical solution of

(®)

iUy = pu — Uyy +
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lowing finite-dimensional reduction:

.. 2
ico = (u + wo)co — agolcol“co

— apy(2lexl?co + cfel). (7)
ié1= (u+w1)c1 — apaler®er
— ao1(2lcol?c1 + cicf), 8)

where the overdot stands faf/dz, ay = Ep x
JE2 O WP )11 + Io(x)]2dx, andago ~
0.86302,a01 ~ 0.89647,a11 =~ 0.93958.

Substituting furtherc; = p; exp(i¢;), and taking
into regard the conservation of the total norp§,+
pf = N, we reduce Eqg7) and (8)to a system of two
real ordinary differential equations:

fo = ao1p§p1 SIN(2AP), )
Ad = —Aw + a11p? — agops
+ao1(2+ co2A¢)) (05 — p32). (10)

where A¢ = ¢1 — ¢ and Aw = w1 — wg. Since we
are interested in real solutions of the underlying equa-
tion (5), we will confine our considerations to steady
states withA¢ = 0 (mod 7). Then, from Eq.(10)
one can easily find that no solution bifurcates from
po = 0; however, solutions witly; # 0 can bifurcate
from the symmetric ones Witbg = N andp; = 0.
These are the solutions that we are interested in, as
they may account for the SSB, due to the inclusion of
the odd eigenfunction™® (x) in Eq. (6). The critical
value of the norm at which the bifurcation occurs, is

this equation reveals two localized eigenstates of the found from Egs(9) and (10Xo be

double-well potential with corresponding eigenvalues
wo = 6.95886 andwi = 6.98631. The former eigen-
mode is even and the latter one is odd.

We expect that the bifurcation shownhig. 1 may
occur, in the nonlinear equati@h), atu close to—wo,

N, = (3ao1 — aoo) "} Aw|. (11)

This simple prediction is the main finding of the analy-
sis. One can also find, from Edg) and (8) the critical

and the emerging asymmetric solution may be close Propagation constapi. at which the SSB is expected,

to a superposition of the two above-mentioned local-

ized linear eigenmodes. We explore this possibility by

e = —wo + aoo(3ao1 — aoo) Y Awl. (12)

means of a Galerkin truncation based on these modes:

u(x, 2) = co()v?(x) + c1()v® (v),

(6)

wherecg and ¢; are assumed small. Substitution of
(6) into (5), projecting onto the linear eigenmodes and
retaining leading-order nonlinear terms yields the fol-

Eqgs.(11) and (12finally predict the occurrence of the
bifurcation atN, = 0.01503 andu, = —6.94589, in
remarkable agreement with the numerical simulations
reported above. In particular, the relative errorNp

is considerably less than 1% in the worst case, and the
error in the prediction ofi. is ~ 0.002%.
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4. Experimental results

Experiments were performed in a biased pho-
torefractive crystal (SBN:60, % 5 x 20 mn?) il-
luminated by a partially coherent beam periodically
modulated with an amplitude mask. This spatially
modulated beam is ordinarily polarized, so it expe-
riences only a weak nonlinearity and induces a stable
square waveguide lattice in the biased cryfta|24]

The principal axes of the lattice are oriented in hori-
zontal and vertical directions. A Gaussian beam, split
off from the same laser source, is used as a coher-
ent probe beam. Contrary to the experiments with
discrete solitong12—-14] the probe beam is focused
inter-site, i.e., between two lattice sites in the verti-
cal direction (to avoid any anisotropic effects such as
those from self-bending, since the crystalline c-axis is Fig. 3. Experimental demonstration of SSB in an optically induced
oriented in the horizontal direction). The probe beam photonic lattice. From (a) to (d), shown are the transverse intensity
is extraordinarily polarized, propagating collinearly ~Patterns of the probe beam (initially a fundamental Gaussian beam)
with the lattice through the crystal. The polarization at an intensity l(nor'mallzed to the lattice intensity) of 0.1, 0.2, 0.3
. . . and 0.5. The bias field was kept at 2 kdm, and all other parame-
Conflguratlon is chosen so that the probe would ex- ters were fixed. The left side shows the corresponding vertical beam
perience strong nonlinearity but the induced lattice profiles.
remains nearly undisturbed during propagati2g].
To demonstrate the SSB, all experimental conditions ) ] )
were kept unchanged, except that the intensity of the propagation (_1|stanc¢s, _powerwnl tunnel to qtherwells
probe beam was increased gradually. Typical exper- o_f the p_otentl_al an(_JI is likely to result to antisymmet-
imental results are presented Fig. 3 They were ric configurations S|m_|lar to the ones obsgrve@ﬁ].
obtained with a lattice of 45 um nearest neighbor spac- However, for the relatively short propagation distances
ing. When the intensity of the probe beam is low, its (and th.e initial conditions) examined here, the lattice
energy tunnels into two waveguides symmetrically, as S &ffectively a double-well system.
seen in the transverse patterns of the probe beam in
Fig. 3(a)—(c). Above a threshold value of the input
intensity, the intensity pattern of the probe beam at 5. Conclusion and discussion
output becomes asymmetric, as shownFig. 3(d).
The bifurcation from a symmetric to an asymmetric We have studied numerically and analytically the
output is also clearly visible in the vertical profiles bifurcation from a symmetric to an asymmetric ground
of the probe beam displayed Fig. 3. These results  state in an equation of the NLS type. The equation
are related to the even-mode solitgtg], or the two models the propagation of a probe beam through an
parallel in-phase solitor&5], observed previously in  optically-induced periodic lattice in a photorefractive
optically-induced lattices, which were found to be un- nonlinear crystal. A double-well potential locally ap-
stable. Here we demonstrated a clear bifurcation from proximates the spatial shape of the lattice guiding the
symmetric to asymmetric states due to the SSB, which probe beam. The ground-state profile breaks its sym-
is more relevant to the symmetry-breaking instability metry at a critical powery,. The transition is accom-
of a two-humped, self-guided laser beam, observed in panied by destabilization of the symmetric state. The
a different nonlinear-optical systefB]. It should be threshold,N,, as well as other essential features of
clarified that since in the present setting a periodic lat- the SSB bifurcation, are very well approximated by
tice is present, the system is, strictly speaking, not a the finite mode (Galerkin) approximation based on a
double-well potential. This implies that for very long superposition of the symmetric and antisymmetric lin-
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ear states of the double-well potential. In parallel to

the theoretical analysis, we have reported the experi-
mental observation of these phenomena in optically-

induced photonic lattices in a photorefractive crystal.
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