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Abstract: We study the evolution of the energy (mode-power) distribution for a class of
randomly perturbed Hamiltonian partial differential equations and derive master equa-
tions for the dynamics of the expected power in the discrete modes. In the case where
the unperturbed dynamics has only discrete frequencies (finitely or infinitely many) the
mode-power distribution is governed by an equation of discrete diffusion type for times
of order O(ε−2). Here ε denotes the size of the random perturbation. If the unperturbed
system has discrete and continuous spectrum the mode-power distribution is governed by
an equation of discrete diffusion-damping type for times of order O(ε−2). The methods
involve an extension of the authors’ work on deterministic periodic and almost periodic
perturbations, and yield new results which complement results of others, derived by
probabilistic methods.

1. Introduction

The evolution of an arbitrary initial condition of linear autonomous Hamiltonian partial
differential equation (Schrödinger equation),

i∂tφ = H0φ, (1)

where H0 is self-adjoint operator, can be studied by decomposing the initial state in
terms of the eigenstates (bound modes) and generalized eigenstates (radiation or contin-
uum modes) of H0. The mode amplitudes evolve independently according to a system
of decoupled ordinary differential equations and the energy or power in each mode, the
square of the mode amplitude, is independent of time. If the system (1) is perturbed

i∂tφ = (H0 +W(t))φ, (2)

whereW(t) respects the Hamiltonian structure (W ∗ = W ), then the system of ordinary
differential equations typically becomes an infinite coupled system of equations, so-
called coupled mode equations. IfW(t) has general time-dependence (periodic, almost



2 E. Kirr, M.I. Weinstein

periodic, random,...), the solutions of the coupled mode equations can exhibit very com-
plex behavior. Of fundamental importance is the question of how the mode-powers evolve
with t . Kinetic equations, which govern their evolution are called master equations [25,
5] and go back to the work of Pauli [20]. A general approach to stochastic systems is
presented in [17, 19, 18, 13]; see also [1, 7, 8]. Master equations have been derived in
many contexts in statistical mechanics, ocean acoustics and optical wave-propagation
in waveguides.

We present a theory of power evolution for (2), for a class of perturbations, W(t),
which are random in t . Our theory handles the case whereH0 has spectrum consisting of
bound states (finitely or infinitely many discrete eigenvalues) and radiation modes (con-
tinuous spectrum). It is a natural extension of the analysis in our work on deterministic
periodic, almost periodic and nonlinear systems; see, for example, [9, 11, 10, 24]. Our
approach is complementary to the probablistic approach of [7, 8, 19, 18, 13]. The model
we consider is well-suited to the study of the effects of an “engineered” perturbation
of the system, e.g. a prescribed train of light pulses incident on an atomic system, or
prescribed distribution of defects encountered by waves propagating along a waveguide;
see below. We also give very detailed information on the energy transfer between the
subsystems governed by discrete “oscillators” and continuum “radiation field”.

In particular, we study the problem

i∂tφ = ( H0 + εg(t)β ) φ, (3)

where ε is small, and H0 and β are self-adjoint operators on the Hilbert space H. H0
is assumed to support finitely or infinitely many bound states. For example, H0 =
−� + V (x), where V is smooth and sufficiently rapidly decaying as |x| → ∞. β is
assumed to be bounded. g(t) is a real valued function of the form of a sequence of
short-lived perturbations or “defects” which are identical; see Fig. 1. Our methods can
treat both the case when the “defects” are not identical and more general perturbations,
e.g. W(t, x) = β(t, x). For the sole purpose of simplifying the presentation we con-
sider the separable caseW(t) = g(t)β(x), with g(t) a sequence of identical short-lived
perturbations, see below.

Models of the above type arise naturally in many contexts. Among them are the
interaction between an atom and a train of light pulses [22, and references therein] , a
field of great current interest in the control of quantum systems. Such trains of localized
perturbations also model sequences of localized defects along waveguides, see [15, 16],
introduced by accident or design. In the context of atomic systems, the pulse forms
considered in this article correspond to a sequence of identical pulses applied at random
times. In the context of single frequency propagation in waveguides, the perturbation
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Fig. 1. Train of short lived perturbations or “defects”. The onset time for the nth defect, tn, is given by (5)
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corresponds to a sequence of identical defects, occurring at random distances along the
waveguide. In fact, many defects arising in fabrication of waveguides are systematic,
and can be modeled in this way. As mentioned above, the methods presented in this arti-
cle can be extended to treat the case where g(t) is a random sequence of non-identical
defects; see also Remark 3.1.

We construct g(t) as follows. Start with g0(t), a fixed real-valued function with sup-
port contained in the interval [0, T ] and let {dj }j≥0 be a nonnegative sequence. Define

g(t) =
∞∑

n=0

g0(t − tn), where (4)

t0 = d0,

tn = (d0 + T )+ (d1 + T )+ · · · + (dn−1 + T )+ dn, n ≥ 1 (5)

denotes the onset of the nth defect.
Note that, if the sequence {dj }j≥0 is periodic then g(t) is periodic. In this case,

the system (3) has already been analyzed by time-independent methods [27] or, more
recently and under less restrictive hypothesis, in [9, 11]. For {dj }j≥0 quasiperiodic or
almost periodic (see [2, 4] for a definition) the situation is more delicate. In [11] we treat
a general class of almost periodic perturbations of the form:

W(t) =
∑

j≥0

cos(µj t)βj , (6)

with appropriate “small denominator” hypotheses on the frequencies {µj }. We leave it
for a future paper [10] to consider the case of almost periodic {dj }j≥0 and to explore
the connection with the results in [11]. We note that a particular case has already been
treated in [12, Appendix E].

The model we consider is very different from the ones studied by probabilistic meth-
ods. For example, in [1] and [17] the numbers d0, d1, . . . , are equal to a fixed constant
and g0(t) is random while in our model d0, d1, . . . , are random and g0(t) is fixed.
Moreover, the probabilistic approach required a perturbation which is a strongly mixing
stochastic process with mean zero, E(W(t)) = 0, ∀t > 0, see [18] and also [7, 8, 13, 17,
19]. In our model E(W(t)) = E(g(t))β is genuinely time dependent unless g0 is trivial,
g0(t) ≡ 0. Of course one can add the mean to the deterministic part which becomes
non-autonomous. The deterministic problem has now a complex evolution which is only
understood in special cases, see [11, 23, 27] and references therein. Consequently it is
hard if not impossible to apply the probabilistic results.

The paper is divided in two parts. The first part treats stochastic perturbations of
Hamiltonian systems with discrete frequencies and the second part extends these results
to the case where the unperturbed system has discrete and continuous frequencies. The
stochastic perturbation is of order ε and then the vector P(τ) ∈ �1, whose components
are the expected values of the squared discrete mode amplitudes (mode-powers), sat-
isfies on time scales t = O(ε−2) or equivalently τ = O(1), the master equations of
diffusion or diffusion-damping type. Specifically, ifH0 has only discrete spectrum (finite
or infinite) then

∂τP (τ) = −BP(τ), B ≥ 0 (7)

which has the character of a discrete diffusion equation, i.e.
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∑

k

Pk(τ ) =
∑

k

Pk(0),
d

dτ
P · P = −〈P,BP 〉 ≤ 0. (8)

If H0 has both discrete and continuous spectra, then

∂τP (τ) = (−B − �)P (τ), B ≥ 0, � = diag(γk) > 0 (9)

for which
∑

k

Pk(τ ) ≤ e−γ τ
∑

k

Pk(0), (10)

where γ = mink γk .
In Sects. 2 and 3 we study (3) under the hypothesis that H0 has no continuous spec-

trum (i.e. no radiation modes) and in Sect. 4 we generalize to the case where H0 has
discrete and continuous spectrum. In Sect. 2 we present the main hypotheses onH0 and
g0(t) and study the effect of a single short-lived perturbation. In Sect. 3 we present our
hypotheses on d0, d1, . . . , and analyze the effect of a train of perturbations (3-4). We
show that if d0, d1, . . . , are independent random variables with certain distributions,
see Hypothesis (H4) and Examples 1 and 2, diffusion occurs in the expected value for
the powers of the modes. Specifically, if we start with energy in one mode, then, on
a time scale of order 1/ε2, one can expect the energy to be distributed among all the
modes. In Sect. 4 we analyze Eq. (3) under the hypothesis thatH0 has both discrete and
continuous spectrum (i.e. supports both bound modes and radiation modes). We prove
a result similar to the nonradiative case but now bound state-wave resonances lead to
loss of power. The effect of our randomly distributed deterministic perturbation is very
similar to the one induced by purely stochastic perturbations, see [1, 13, 19], but quite
different from the effects of time almost periodic perturbations, see [9, 11].

Notation.

1) 〈x〉 = √
1 + x2.

2) Fourier Transform:

ĝ(ξ) =
∫ ∞

−∞
e−iξ t g(t) dt. (11)

3) We write ζ + c.c. to mean ζ + ζ̄ , where ζ̄ denotes the complex conjugate of ζ .
4) w′ denotes the transpose of w.
5) q� denotes the integer part of q.

2. Short-Lived Perturbation of a System with Discrete Frequencies

In this section we consider the perturbed dynamical system

i∂tφ(t) = H0φ(t)+ εg0(t)βφ(t, x), (12)

where H0 has only discrete spectrum and g0(t) is a short-lived (compactly supported)
function. We study the effect of this perturbation on the distribution of energy among
the modes of H0. Here and in Sect. 4 we are extending the results in [23] to multiple
bound states but under an additional assumption, see (18).
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Hypotheses on H0, β and g0(t).

(H1) H0 is a self adjoint operator on a Hilbert space H. It has a pure point spectrum
formed by the eigenvalues : {λj }j≥1 with a complete set of orthonormal eigen-
vectors: {ψj }j≥1 :

H0ψj = λjψj , 〈ψi, ψj 〉 = δij . (13)

(H2) β is a bounded self adjoint operator on H and satisfies ‖β‖ = 1.
(H3) g0(t) ∈ L2(R) is real valued, has compact support contained in [0, T ] on the

positive real line and its L1-norm, denoted by ‖g0‖1 is 1. Thus its Fourier trans-
form has L∞-norm bounded by 1.

Note that one can always take ‖β‖ = 1 and ‖g0‖1 = 1 by setting ε = ‖g0‖1 · ‖β‖,
thus incorporating the size of g0β in ε. Therefore, under assumptions (H2-H3), ε in
(12) measures the actual size of the perturbation in the L1(R,H) norm. Our results are
perturbative in ε and are valid for ε sufficiently small.

By the standard contraction method one can show that (12) has an unique solution
φ(t) ∈ H for all t ∈ R.Moreover, because bothH0 and g0(t)β are self adjoint operators,
we have for all t ∈ R :

‖φ(t)‖ = ‖φ(0)‖. (14)

We can write φ(t) as a sum of projections onto the complete set of orthonormal eigen-
vectors of H0 :

φ(t, x) =
∑

j

aj (t)ψj (x). (15)

By Parseval’s relation

∑

j

∣∣aj (t)
∣∣2 = ‖φ(t)‖2 ≡ ‖φ(0)‖2. (16)

Now (12) can be rewritten as

i∂tak(t) = λkak(t)+ εg0(t)
∑

j

aj (t)〈ψk, βψj 〉, k ∈ {1, 2 . . . }, (17)

where 〈·, ·〉 denotes the scalar product in H.
Hence Eq. (12) is equivalent to a weakly coupled linear system in the amplitudes:

a1, a2, . . . , (17).
Since the perturbation size is ε we expect, in general, that the change in energy in the

kth mode, |ak(t)|2 − |ak(0)|2, to be of order ε. However with a suitable random initial
condition we can prove more subtle behavior.

Suppose that there exists an averaging procedure applicable to the amplitudes: a1,

a2, . . . of the solutions of (12), denoted by

a(t) �→ E(a(t)) ∈ C.
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We now state a fundamental result, applied throughout this paper, for a single defect
which is compactly supported in time:

Theorem 2.1. Assume the conditions (H1)-(H3) hold and the initial values for (12) are
such that

E

(
aj (0)ak(0)

)
= 0 whenever j �= k. (18)

Then for all t > sup{s ∈ R | g0(s) �= 0} and k ∈ {1, 2, . . . } we have

Pk(t)− Pk(0) = ε2
∑

j

|αkj |2|ĝ0(−�kj )|2(Pj (0)− Pk(0))+ O(ε3), (19)

where

Pk(t) ≡ E

(
|ak(t)|2

)

denotes the average power in the kth-mode at time t , αkj ≡ 〈ψk, βψj 〉, ĝ0 denotes the
Fourier transform of g0 and �kj ≡ λk − λj .

Note that (19) can be written in the form:

Pk(t) = TεPk(0)+ O(ε3), (20)

where

Tε = I − ε2B; B ≥ 0, (21)

I is the identity operator (matrix) and B is given by

B = (
bkj

)
1≤k,j , bkj =

{−|αkj |2|ĝ0(−�kj )|2, for j �= k,∑
l,l �=k |αkl |2|ĝ0(−�kl)|2, for j = k

. (22)

In Sect. 3 we will discuss and use the properties of B and Tε.

Proof of Theorem 2.1. In the amplitude system, (17), we remove the fast oscillations by
letting

ak(t) = e−iλktAk(t). (23)

Note that by (16)

∑

j

∣∣Aj(t)
∣∣2 ≡ ‖φ(0)‖2. (24)

Now (17) becomes

i∂tAk(t) = εg0(t)
∑

j

αkj e
i�kj tAj (t), (25)
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where

�kj ≡ λk − λj , (26)

αkj ≡ 〈ψk, βψj 〉 = αjk. (27)

The above system leads to the following one in product of amplitudes, Ak(t)Al(t):

∂t (Ak(t)Al(t)) = iεg0(t)
∑

j

αjle
i�jl tAk(t)Aj (t)

−iεg0(t)
∑

j

αkj e
i�kj tAj (t)Al(t). (28)

In the particular case k = l we have the power equation for each mode:

∂t |Ak(t)|2 = iεg0(t)
∑

j

αjke
i�jktAk(t)Aj (t)+ c.c. . (29)

Note that the sum in (29) commutes with time integral and expected value operators.
This is due to (24) and the dominant convergence theorem, see for example [6]. Indeed
consider

fm(t) =
m∑

j=1

αjke
i�jktAk(t)Aj (t)g0(t).

From (15) we have for all t ∈ R,

lim
m→∞ fm(t) = 〈φ(t), βψk〉ak(t)g0(t).

From (24) and the Cauchy-Schwarz inequality |〈a, b〉| ≤ ‖a‖ ‖b‖, we have for all t ∈ R,

|fm(t)| ≤ ‖φ(0)‖2|g0(t)|. (30)

The right-hand side of (30) is integrable and the dominant convergence theorem applies.
A similar argument is valid for expected values. Therefore, from now on, we are going
to commute both time integrals and expected values with summations like the one in
(29).

We integrate (29) from 0 to t > sup{s ∈ R | g0(s) �= 0} and integrate by parts the
right-hand side. The result is:

|Ak(t)|2 − |Ak(0)|2 = iε
∑

j

αjk

∫ t

0
g0(s)e

i�jksAk(s)Aj (s)+ c.c.

= −iε
∑

j

αjk

∫ ∞

s

g0(τ )e
i�jkτ dτAk(s)Aj (s)

∣∣s=t
s=0 + c.c. (31)

+iε
∑

j

αjk

∫ t

0

∫ ∞

s

g0(τ )e
i�jkτ dτ∂s

(
AkAj

)
(s)ds + c.c. .
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The boundary terms are

−iε
∑

j

αjk

∫ ∞

s

g0(τ )e
i�jkτ dτAk(s)Aj (s)

∣∣s=t
s=0 + c.c.

= iε
∑

j

αjkĝ0(−�jk)Ak(0)Aj (0)+ c.c., (32)

where ĝ0 denotes the Fourier Transform of g0; see (11). Note that upon taking the
average, using (18) and the fact that ĝ0(0) is real, these boundary terms vanish.

Into the last term in (31) we substitute (28):

iε
∑

j

αjk

∫ t

0

∫ ∞

s

g0(τ )e
i�jkτ dτ∂s

(
AkAj

)
(s)ds =

= +|ε|2
∑

j,p

αjkαkp

∫ t

0

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�kpsAp(s)Aj (s)ds

−|ε|2
∑

j,q

αjkαqj

∫ t

0

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�qj sAk(s)Aq(s)ds. (33)

We again integrate by parts both terms in (33):

iε
∑

j

αjk

∫ t

0

∫ ∞

s

g0(τ )e
i�jkτ dτ∂s

(
AkAj

)
(s)ds

= −|ε|2
∑

j,p

αjkαkp

∫ ∞

u

g0(s)e
i�kps

∫ ∞

s

g0(τ )e
i�jkτ dτdsAp(u)Aj (u)

∣∣u=t
u=0

+|ε|2
∑

j,q

αjkαqj

∫ ∞

u

g0(s)e
i�qj s

∫ ∞

s

g0(τ )e
i�jkτ dτdsAk(u)Aq(u)

∣∣u=t
u=0

+|ε|2
∑

j,p

αjkαkp

∫ t

0

∫ ∞

u

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�kpsds∂u
(
ApAj

)
(u)du

−|ε|2
∑

j,q

αjkαqj

∫ t

0

∫ ∞

u

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�qj sds∂u
(
AkAq

)
(u)du.(34)

Note that the boundary terms calculated at “u = t ′′ are zero since t > sup{s ∈
R | g0(s) �= 0}. Upon taking the expected value and using (18) the only boundary terms
contributing are the ones for which u = 0 and j = p in the second row of (34):

∑

j

|αkj |2
∫ ∞

0

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�kj sdsE
(
|Aj(0)|2

)
+ c.c.

=
∑

j

|αkj |2E

(
|Aj(0)|2

)
· 2�

∫ ∞

0

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�kj sds, (35)
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and the ones for which u = 0 and q = k in the third row of (34):

∑

j

|αkj |2
∫ ∞

0

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�kj sdsE
(
|Ak(0)|2

)
+ c.c.

=
∑

j

|αkj |2E

(
|Ak(0)|2

)
· 2�

∫ ∞

0

∫ ∞

s

g0(τ )e
i�jkτ dτg0(s)e

i�kj sds. (36)

To compute (35-36) we use the lemma:

Lemma 2.1. If g0(t), t ∈ R is real valued and square integrable with compact support
included in the positive real line then for all λ ∈ R the following identity holds:

2�
∫ ∞

0

∫ ∞

s

g0(τ )e
iλτ dτg0(s)e

−iλsds = |ĝ0(−λ)|2.

Proof. For any λ ∈ R we have:

I (λ) ≡ 2�
∫ ∞

0

∫ ∞

s

g0(τ )e
iλτ dτg0(s)e

−iλsds

= 2
∫ ∞

0

∫ ∞

s

g0(τ )g0(s) cos[λ(τ − s)]dτds.

As (s, τ ) �→ g0(τ )g0(s) cos[λ(τ − s)] is symmetric with respect to the diagonal τ = s,

I (λ) =
∫ ∞

0

∫ ∞

0
g0(τ )g0(s) cos[λ(τ − s)]dτds

= 1

2

∫ ∞

0

∫ ∞

0
g0(τ )g0(s)

(
eiλτ e−iλs + e−iλτ eiλs

)
dτds

= |g0(−λ)|2.
��

Into the triple integral terms of (34) we again substitute (28). Then one can show that
the 1-norm of this correction vector is dominated by |ε|3 ‖g0‖3

1 ‖β‖3 ‖φ(0)‖2. Hence,
it is of order O(|ε|3).

Thus, after applying Lemma 2.1 to (35–36) and using (31) we arrive at the conclusion
of Theorem 2.1. ��

3. Diffusion of Power in Discrete Frequency (Nonradiative) Systems

In the previous section we calculated the effect of a single defect on the mode-power
distribution. In this section we show how to apply this result to prove diffusion of power
for the perturbed Hamiltonian system, (2), where g(t) is a random function of the form
(4), defined in terms of a random sequence {dj }j≥0. In particular, the sequence {dj }j≥0
will be taken to be generated by independent, identically distributed random variables.
This will result in a mixing the phases of the complex mode amplitudes, after each defect.

We assume that (H1-H3) are satisfied. The following hypothesis ensures that (18)
holds before each defect, thus enabling repeated application of Theorem 2.1.
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(H4) d0, d1, . . . are independent identically distributed random variables taking only
nonnegative values and such that for any l ∈ {0, 1, . . . } and j �= k ∈ {1, 2 . . . } we have

E

(
ei(λj−λk)dl

)
= 0,

where E(·) denotes the expected value.
Clearly (H4) requires the eigenvalues to be distinct but aside from these we claim that

for any finitely many, distinct eigenvalues λ1, λ2, . . . , λm there exist a random variable
satisfying (H4).

Example 1 (finitely many bound states). Given λ1, λ2, . . . , λm distinct choose the ran-
dom variables dl, l = 0, 1, . . . to be identically distributed with distribution d :

d =
∑

1≤j<k≤m
djk,

where djk are independent random variables such that the distribution of djk is either
uniform on the interval [0, 2π/|λj−λk|] or djk takes each of the values 0 andπ/|λj−λk|
with probability 1/2. In any case, for any j ′ �= k′ ∈ {1, 2, . . . }

E

(
e
i(λj ′−λk′ )d

)
= E




∏

1≤j<k
e
i(λj ′−λk′ )djk



 =
∏

1≤j<k
E

(
e
i(λj ′−λk′ )djk

)
= 0

since E

(
e
i(λj ′−λk′ )dj ′k′

)
= 0.

(H4) does not restrict us to a system with finitely many bound states:

Example 2 (infinitely many bound states). Let the quantum harmonic oscillator in one
dimension:

H0 = −�
2

2
∂2
x + ω2x2, x ∈ R,

be the unperturbed Hamiltonian. Then λn = �ω(n + 1/2), n = 0, 1, 2, . . . , see for
example [14]. Note that (H4) holds provided that we choose dl, l = 0, 1, . . . to be
identically and uniformly distributed on the interval [0, 2π/(�ω)].

Note on degenerate eigenvalues. As discussed above (H4) cannot be satisfied in the
caseH0 admits degenerate eigenvalues. However, at least in some cases, our theory can
be applied. In general the degeneracy is a consequence of the symmetries ofH0, i.e. the
existence of a self-adjoint operator, sayL, commuting withH0, [L,H0] = 0. To recover
our results it is sufficient to assume that β, the “space-like” part of the perturbation,
respects the symmetry, i.e. commutes with L. One can now factor out L, i.e. work on
the invariant subspaces of L where H0 is nondegenerate. Along the lines of Example
2 one can consider the quantum harmonic oscillator in three dimensions which has a
spherically symmetric Hamiltonian and degenerate eigenvalues, see for example [14].
If β is spherically symmetric then it only couples bound states with the same angular
momentum. Hence the problem reduces to subsystems consisting of bound states with
the same angular momentum but different energy, therefore nondegenerate. The choice
we made in Example 2 will satisfy (H4) in each of the subsystems.
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3.1. Power diffusion after a fixed (large) number of defects.

Theorem 3.1. Consider Eq. (12) with g of the form (4). Assume (H1-H4) hold. Then the
expected value of the power vector after passing a fixed number of perturbations “n”
satisfies

P (n) = T nε P (0)+ O(nε3), (37)

where Tε is given in (21),

P
(n)
k = E(|ak(t)|2), k = 1, 2, . . . , (38)

tn−1 + T ≤ t ≤ tn, (t ranging between the nthand (n+ 1)stdefects.

Proof. We will prove the theorem by induction on n ≥ 0, the number of defects tra-
versed. For n = 0 the assertion is obvious. Suppose now that for n ≥ 0 we have

P (n) = T nε P (0)+ O(nε3). (39)

We will show

P (n+1) = T n+1
ε P (0)+ O

(
(n+ 1)ε3

)
(40)

by applying Theorem 2.1 to (39). In order to apply Theorem 2.1 we need to verify that
(18) is satisfied before the n+ 1st defect. Specifically, we must verify that for any pair
k �= j ,

E
(
ak(tn+1)āj (tn+1)

) = E

(
ak

(
nT + ∑n+1

k=0dk

)
aj

(
nT + ∑n+1

k=0dk

))

= 0. (41)

Using the fact that dn+1 is independent of d0 + d1 + . . .+ dn, and (H4) we have:

E

(
akaj

(
nT + ∑n+1

k=0dk

))
= E

(
akaj

(
nT + ∑n

k=0dk
)
ei(λj−λk)dn+1

)

= E
(
akaj

(
nT + ∑n

k=0dk
))

E

(
ei(λj−λk)dn+1

)
= 0.

Thus (41) holds and all the hypotheses of Theorem 2.1 are now satisfied. By applying it
and using (39) we have

P (n+1) = TεP
(n) + O(ε3)

= Tε

(
T nε P (0)+ O(nε3)

)
+ O(ε3)

= T n+1
ε P (0)+ O((n+ 1)ε3).

Hence (39) implies (40). This concludes the induction step and the proof of Theorem
3.1 is now complete. ��

In the next two corollaries we describe the asymptotic behavior of the vector of
expected powers when the number of defects n tends to infinity. Note that after a
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possible reordering of the eigenvectors ψ1, ψ2, . . . , of H0, the operator B given by
(22) might look like1:

B = diag
[
B1, B2, . . . , Bq, . . .

]
, (42)

where B1, B2, . . . , Bq, . . . are square matrices (linear operators) of dimensions m1,

m2, . . . , mq, . . . , 1 ≤ mq ≤ ∞, q = 1, 2, . . . . In linear algebra terms this means that
B is reducible. In terms of the dynamical system (37) generated by Tε = I − ε2B it
means that, after a possible reordering, the firstm1 bound states ofH0 are isolated from
the rest. The same is valid for the nextm2 bound states, etc. To understand the evolution
of the full system it is sufficient to analyze each of the isolated subsystems separately.
They all evolve according to (37) with Tε = I − ε2Bq and Bq given by (22) but the
indices span only a subset of the eigenvectors ψ1, ψ2, . . . ofH0. The main difference is
that now Bq is irreducible. In what follows we are focusing on one such subsystem and
drop the index q.

Corollary 3.1. If the subsystem has a finite number of bound states, say m, then

lim
n→∞P

(n) =





P(0), if n � ε−2

e−BτP (0) if n = τε−2

E
m
(1, 1, . . . , 1)′, if ε−2 � n � |ε|−3

, (43)

where E = P1(0)+ P2(0)+ . . .+ Pm(0) is the expected total power in the subsystem
and it is conserved.

Proof. We use the following properties of the irreducible matrix B:

(B1) B is self adjoint and B ≥ 0;
(B2) 0 is a simple eigenvalue for B with corresponding normalized eigenvector

r0 = 1√
m
(1, 1, . . . , 1)′ . (44)

These properties are proved in the Appendix.
Let β0 = 0, β1, β2, . . . , βm−1 be the eigenvalues of B counting multiplicity, and let

r0, r1, . . . , rm−1 be the corresponding orthonormalized eigenvectors. By (B1) and (B2)
β1, β2, . . . , βm−1 are strictly positive. Let

R = [
r0, r1, . . . , rm−1

]

be the matrix whose columns are orthonormalized eigenvectors of B and let R′ be its
transpose. Then

R′BR = diag
[
β0, β1, β2, . . . , βm−1

]
,

R′R = I = RR′.

It follows that

T nε =
(
I − ε2B

)n = R
[
R′

(
I − ε2B

)
R
]n
R′

= R diag
[
(1 − ε2β0)

n, (1 − ε2β1)
n, . . . , (1 − ε2βm−1)

n
]
R′.

1 For such a decomposition to occur it is sufficient that H0 and β have common invariant subspaces
H1 ⊂ H,H2 ⊂ H, . . . ,Hq ⊂ H, . . . .
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We now study limn→∞ T nε for the three asymptotic regimes of (43). Note that for 0 ≤
k ≤ m− 1 we have:

lim
n→∞,ε2n→0

(1 − ε2βk)
n = 1,

lim
n→∞,ε2n=τ

(1 − ε2βk)
n = e−βkτ ,

lim
n→∞,ε2n→∞

(1 − ε2βk)
n = 0, βk > 0,

lim
n→∞,ε2n→∞

(1 − ε2βk)
n = 1, βk = 0. (45)

Consequently,

lim
n→∞T

n
ε =






R diag[1, 1, . . . , 1]R′ = I if n � ε2

R diag
[
e−β0τ , e−β1τ , . . . , e−βm−1τ

] = e−Bτ if n = τε−2

R diag[1, 0, 0, . . . , 0]R′ = projection onto r0 if ε−2 � n � |ε|−3
, (46)

where r0 is defined in (44).
Substitution of (46) into (37) completes the proof of Corollary 3.1. ��

Corollary 3.2. If the subsystem has an infinite number of bound states, then

lim
n→0

P (n) =
{
P(0), if n � ε−2

e−BτP (0) if n = τε−2 . (47)

For n � ε−2 the limit in �2 is 0, while the limit in �1 does not exist. More precisely,
although the total power in the subsystem is conserved,

∞∑

k=1

P
(n)
k = E, ∀n ≥ 0, (48)

{P (n)} does not converge in �1 due to an energy transfer to the high modes. In particular,
for any fixed N ≥ 1:

lim
n→∞

∞∑

k=N
P
(n)
k = E,

lim
n→∞

N∑

k=1

P
(n)
k = 0. (49)

We note that similar results have been obtained in [1] but for different types of random
perturbation.

Corollaries 3.1 and 3.2 show that, on time scales of order 1/ε2, the dynamical system
is equivalent with

∂τP (τ) = −BP(τ). (50)

Moreover the definition of −B in (22) together with −B ≤ 0 and e−B unitary on �1

implies that the flow (50) is very much like that of a discrete heat or diffusion equation.
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In conclusion the number of defects encountered should be comparable with 1/ε2 to
have a significant effect. Once they are numerous enough, the defects diffuse the power
in the system. If the number of defects is much larger than 1/ε2 the power becomes
uniformly distributed among the bound states.

Remark 3.1. The asymptotic picture described above remains valid even when the “de-
fects” are not identical, that is when (4) is replaced by g(t) = ∑

n gn(t − tn) with gn
real valued functions satisfying (H3). In this case the coupling matrix B(n) for the nth

defect is given by (22) with g0 replaced by gn while the corresponding transmission
matrix is T (n)ε = I − ε2B(n).As in Theorem 3.1 the expected power after n defects will
be P (n) = T

(n−1)
ε T

(n−2)
ε · · · T (0)ε P (0)+ O(nε3). Moreover, for n � ε2 or n � ε2 the

results of Corollaries 3.1 and 3.2 hold. For n ∼ ε2 the limit might not exist in general.
There are exceptions though. One is when gn converges in L2(R) to a certain shape
denoted by g0 as n → ∞. Another one is when gn is an almost periodic sequence in
which case we denote by g0 its mean, see [2]. It would be interesting to understand what
happens when the shapes gn are random. We speculate that a diffusion matrix B can still
be computed using the technique in [17].

Remark 3.2. Hypothesis (H4) is important. If we do not assume (H4) then the correction
term for each defect is of size ε, since the boundary terms (32) no longer vanish. Con-
sequently the correction term in the main result (37) is O(nε) which on the “diffusion
time scale” n ∼ ε−2 is very large.

Proof of Corollary 3.2. In the case of an infinite number of bound states, B has the
following properties, see the Appendix:

(B1∞) B is a nonnegative, bounded self adjoint operator on �2 with spectral radius less
than or equal to 2;

(B2∞) 0 is not an eigenvalue for B;
(B3∞) B is a bounded operator on �1 with norm ‖B‖1 ≤ 2;
(B4∞) For |ε| ≤ 1 the operator Tε = (

I − ε2B
)

transforms positive vectors (i.e. all
components positive) into positive vectors and conserves their �1 norm.

We are going to focus first on �2 results. Based on the spectral representation theorem,
see [21], we have for any Borel measurable real function f :

f (B) =
∫ 2

0
f (s)dµ(s). (51)

Here dµ(s) is the spectral measure induced by B. Note that B2∞ implies the continuity
of µ(s) at zero.

Now

T nε =
(
I − ε2B

)n =
∫ 2

0

(
1 − ε2s

)n
dµ(s)

and

lim
n→∞ T

n
ε = lim

ε→0

∫ 2

0

(
1 − ε2s

)n
dµ(s)

=
∫ 2

0
lim
ε→0

(
1 − ε2s

)n
dµ(s). (52)
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For the last equality we used the dominant convergence theorem with |1 − ε2s|n ≤ 1
for 0 ≤ s ≤ 2, |ε| ≤ 1 and

∫ 2
0 1dµ(s) = I. Using (45), with s replacing βk , we have

that (52) becomes

lim
n→∞ T

n
ε =






∫ 2
0 1dµ(s) = I if n � ε2
∫ 2

0 e
−sτ dµ(s) = e−Bτ if n = τε−2

µ(0+)− µ(0) = 0 if ε−2 � n � |ε|−3
, (53)

where we used (51) and the continuity of µ(s) at zero.
Plugging (53) in (37) gives the required results in �2.

For the results in �1 we use series expansions:

(
I − ε2B

)n = I +
(
n

1

)
ε2(−B)+

(
n

2

)
ε4(−B)2

+ . . .+
(
n

n

)
ε2n(−B)n. (54)

Since ‖B‖1 ≤ 2, (see property B3∞), the finite series above is dominated in the �1

operator norm by:

1 + 2ε2
(
n

1

)
+ (2ε2)2

(
n

2

)
+ . . .+ (2ε2)n

(
n

n

)
= (1 + 2ε2)n ≤ e2nε2

. (55)

As n → ∞ the series in (55) becomes infinite. However, as long as n ≤ τ/ε2, τ > 0
fixed, the sum in (55) is finite and hence that in (54) is convergent. Now for each
k = 1, 2, . . . , the (k + 1)st term in the series (54) has the property:

lim
n→∞

(
n

k

)
ε2k(−B)k =

{
0 if n � ε−1

τ k

k! (−B)k if n = τε−2 .

Hence by the Weierstrass criterion for absolutely convergent series we have:

lim
n→∞ T

n
ε = lim

n→∞

(
I − ε2B

)n

=
{

I − 0 + 0 − . . . = I if n � ε−1

I − τB + (τB)2

2! − (τB)3

3! + . . . = e−τB if n = τε−2 . (56)

It remains to prove that as n → ∞, ε2n → ∞, {P (n)} does not converge in �1. Let
P (0) ∈ �1 ∩ �2 denote a vector with positive components, and consider the sequence:

P (n) = T nε P
(0) ∈ �1 ∩ �2. (57)

By the third part of (53), ‖P (n)‖2 → 0. Assume now that there exists P ∈ �1 such that
‖P (n)−P ‖1 = 0. Since both �1 and �2 convergence imply convergence of each compo-
nent, we deduce thatP = 0. On the other hand, byP (n) = TεP

(n−1), n=1,2, . . . and

property B4∞, we deduce thatP (n) is a positive vector for which ‖P (n)‖1 = ‖P (0)‖1
def=

E > 0 for all n ≥ 0. Consequently P is a nonnegative vector with ‖P ‖1 = E > 0, a
contradiction. The proof of the corollary is now complete. ��
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3.2. Power diffusion after a fixed (large) time interval and a random number of defects.
As pointed out in its statement, Theorem 3.1 is valid when one measures the power vector
after a fixed number of defects “n′′ regardless of the realizations of the random variables.
That is after each realization of d0, d1, . . . the power vector is measured in between the
nth and the (n + 1)st defect. Averaging the measurements over all the realizations of
d0, d1, d2, . . . gives the result of Theorem 3.1. What happens if one chooses to measure
the power vector at a fixed time “t ′′ (i.e. a fixed distance along the fiber)? The answer is
given by the next theorem:

Theorem 3.2. Consider Eq. (12) with g of the form (4). Assume that (H1-H4) are sat-
isfied and that all random variables d0, d1, . . . , have finite mean, variance and third
momentum. Fix a time t, 0 ≤ t � 1/|ε|3. Then the expected value of the power vector
at a fixed time P(t) satisfies

P(t) = T nε P (0)+ O(max{tε3, ε4/5}), (58)

where n = t/(T +M)� denotes the integer part of t/(T +M), T is the common time
span of the defects and M is the mean of the identically distributed random variables
d0, d1, . . . .

Corollary 3.3. In this setting, the conclusions of Corollaries 3.1, 3.2 and Remark 3.1
hold with n replaced by t.

Proof of Theorem 3.2. As before, let P (k) be the expected power vector after exactly
“k′′ defects. Denote byN the random variable counting the number of “defects” up until
the fixed time t , i.e.

(N − 1)T + d0 + . . .+ dN−1 < t ≤ NT + d0 + . . .+ dN, (59)

and let δ(ε) denote the integer, which grows as ε decreases:

δ̃=max

{
1.39

(
ρ

σ 2(T +M)

)2/5

ε−6/5,
σ

T +M

√
n log

(
ε−2

)+
(

σ

T +M

)2

log
(
ε−2

)}

δ = δ̃� + 1, (60)

where M,σ 2, respectively ρ are the mean, variance and the centered third momen-
tum, of the identically distributed variables d0, d1, d2, . . . , and n is the integer part of
t/(T +M). Note that for t ∼ ε−3 or smaller δ � ε−2. The choice of δ(ε) is explained
below.

The proof consists of three stages:

1. P(t) = P (n+δ) + O(ε)+ O(δε2),
2. P (n+δ) = P (n) + O(δε2),
3. P (n) = T nε P (0)+ O(nε3),

where n = t/(T +M)�. The last stage is simply Theorem 3.1.
For the second stage one applies again the previous theorem to get:

P (n+δ) = T δε P
(n) + O(δε3).

Now Tε = I − O(ε2) and since δ � ε−2 stage two follows.
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The first stage is the trickiest.Without loss of generality we can assume that t/(T+M)
is an integer. Indeed, for n = t/(T +M)� we have

P(t)− P(n(T + d)) = O (ε(T +M)) = O(ε),

an error which is already accounted for in this stage.
Suppose first n − δ ≤ N ≤ n + δ, i.e. we condition the expected values to the

realization of |N − n| ≤ δ. The condition restricts only the realizations of d0, d1, . . . dN
leaving the realizations of dN+1, . . . dn+δ arbitrary; see (59). Hence, as in stage two, the
conditional expected values satisfy:

P (n+δ) = P (N+1) + O(δε2).

In addition

P (N+1) = P(t)+ O(ε),

since there are at most 2 defects of size ε from “t ′′ up until after the (N + 1)th defect.
Until now we have

P (n+δ) = P(t)+ O(ε)+ O(δε2), |N − n| ≤ δ. (61)

Let p(t) denote the power vector

p(t) =
(
|a1(t)|2, |a2(t)|2, . . .

)
.

Recall that by definition P(t) = E(p(t)) and the total power in the system (12) is
conserved, i.e.

‖p(t)‖1
def=

∑

k

|ak(t)|2 ≡ ‖p(0)‖1, t ∈ R. (62)

Moreover, by (61) and (62) we have

P(t) = E (p(t) : |N − n| ≤ δ)+ E (p(t) : |N − n| > δ)

= P (n+δ) + O(δε2)+ O(ε)+ O (‖p(0)‖1Prob(|N − n| > δ)) . (63)

We claim that for δ given by (60)

Prob(|N − n| > δ) = O(ε)+ O(δε2). (64)

Indeed, since t = n(T +M),

Prob(|N − n| > δ) = Prob

(
n+δ∑

k=0

(T + dk) ≤ t

)
+ Prob

(
n−δ∑

k=0

(T + dk) > t

)

= Prob

(∑n+δ
k=0(T + dk)− (n+ δ)(T +M)

σ
√
n+ δ

≤ − δ(T +M)

σ
√
n+ δ

)

+ Prob

(∑n−δ
k=0(T + dk)− (n− δ)(T +M)

σ
√
n− δ

>
δ(T +M)

σ
√
n− δ

)
. (65)
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We are going to show how the choice (60) implies

Prob

(∑n−δ
k=0(T + dk)− (n− δ)(T +M)

σ
√
n− δ

>
δ(T +M)

σ
√
n− δ

)
≤ ε

2
+ δε2

2
. (66)

The other half of (65):

Prob

(∑n+δ
k=0(T + dk)− (n+ δ)(T +M)

σ
√
n+ δ

< −δ(T +M)

σ
√
n+ δ

)
≤ ε

2
+ δε2

2
(67)

is analogous.
Depending on the size of n one has either:

0.8ρ

σ 3
√
n− δ

≤ δε2

2
(68)

or:

0.8ρ

σ 3
√
n− δ

>
δε2

2
. (69)

If (68) holds, which corresponds to large n, we use the central limit theorem with the
Van Beek rate of convergence, see [6]:

Prob

(∑n−δ
k=0(T + dk)− (n− δ)(T +M)

σ
√
n− δ

>
δ(T +M)

σ
√
n− δ

)

≤ 1√
2π

∫ ∞
δ(T+M)
σ
√
n−δ

e−x
2/2dx + 0.8ρ

σ 3
√
n− δ

.

This together with (68), the inequality

1√
2π

∫ ∞

a

e−x
2/2dx ≤ e−a2/2

2
,

and the fact that δ ≥ σ
(T+M)

√
n log ε−2 implies δ(T+M)

σ
√
n−δ ≥ 2 ln ε−1, proves (66) for the

case (68). If (69) holds then we apply the Chebyshev inequality:

Prob

(∑n−δ
k=0(T + dk)− (n− δ)(T +M)

σ
√
n− δ

>
δ(T +M)

σ
√
n− δ

)
≤ σ 2(n− δ)

δ2(T +M)2
≤ δε2

2
,

where the latter inequality follows from (69) and

δ ≤ 1.39

(
ρ

σ 2(T +M)

)2/5

ε−6/5.

From (65), (66) and (67) we get relation (64). The latter plugged into (63) proves the
first stage.

Finally, the three stages imply Theorem 3.2 provided that both ε and δε2 are dom-
inated by Cmax{nε3, ε3/4}, for an appropriate constant C > 0. This follows directly
from ε ≤ 1 and (60). The proof is now complete. ��
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4. Diffusion of Power in Systems with Discrete and Continuous Spectrum

Thusfar we have considered systems with Hamiltonian, H0, having only discrete spec-
trum. We now extend our analysis to the case whereH0 has both discrete and continuous
spectrum. Continuous spectrum is associated with radiative behavior and this is mani-
fested in a dissipative correction to the operator (21), entering at O(ε2). Therefore, the
dynamics on time scales n ∼ ε−2 is characterized by diffusion of energy among the
discrete modes and radiative damping due to coupling of bound modes to the “heat
bath” of radiation modes.

The hypotheses on the unperturbed HamiltonianH0 are similar to those in [11]. There
is one exception though, the singular local decay estimates are replaced by a condition
appropriate for perturbations with continuous spectral components, see Hypothesis (H7’)
below. For convenience we list here and label all the hypotheses we use:

(H1’)H0 is self-adjoint on the Hilbert space H. The norm, respectively scalar product,
on H are denoted by ‖ · ‖, respectively 〈·, ·〉.

(H2’) The spectrum of H0 is assumed to consist of an absolutely continuous part,
σcont(H0), with associated spectral projection, Pc, spectral measure dm(ξ) and a dis-
crete part formed by isolated eigenvalues λ1, λ2, . . . , λm (counting multiplicity) with an
orthonormalized set of eigenvectors ψ1, ψ2, . . . , ψm, i.e. for k, j = 1, . . . , m,

H0ψk = λkψk, 〈ψk,ψj 〉 = δkj ,

where δkj is the Kronecker-delta symbol.
(H3’) Local decay estimates on e−iH0t . There exist self-adjoint “weights”, w−, w+,

number r1 > 1 and a constant C such that

(i) w+ is defined on a dense subspace of H and on which w+ ≥ cI , c > 0,
(ii) w− is bounded, i.e. w− ∈ L(H), such that Range(w−) ⊆ Domain(w+),

(iii) w+ w− Pc = Pc and Pc = Pc w− w+ on the domain ofw+ and for all f ∈ H
satisfying w+f ∈ H we have

‖w−e−iH0tPcf ‖ ≤ C 〈t〉−r1‖w+f ‖, t ∈ R.

The hypotheses on the perturbation are similar to the ones used in the previous sections
for discrete systems, namely:

(H4’) β is a bounded self adjoint operator on H and satisfies ‖β‖ = 1. In addition
we suppose that β is “localized”, i.e.w+β andw+βw+ are bounded on H, respectively
on Domain(w+).

(H5’) g0(t) ∈ L2(R) is real valued, has compact support contained in [0, T ] on the
positive real line and itsL1-norm, denoted by ‖g0‖1 is 1. Therefore its Fourier transform,
ĝ0 is smooth and ‖ĝ0‖∞ ≤ 1.

(H6’) d0, d1, . . . are independent identically distributed random variables taking
only nonnegative values, with finite mean, M, and such that for any l ∈ {0, 1, . . . } and
j �= k ∈ {1, 2 . . . , m} we have

E

(
ei(λj−λk)dl

)
= 0,

where E (·) denotes the expected value.
Define the common characteristic (moment generating) function for the random vari-

ables d0 + T , d1 + T , . . . ,

ρ(ξ) ≡ E

(
e−iξ(d0+T )

)
= E

(
e−iξ(d1+T )

)
= · · · . (70)
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Note that ρ is a continuous function on R bounded by 1. Then (H6’) is equivalent to

ρ(λk − λj ) = 0

for all j �= k ∈ {1, 2, . . . , m}.
We require an additional local decay estimate:
(H7’) There exists the number r2 > 2 such that for all f ∈ H satisfying w+f ∈ H

and all λk, λj , k, j = 1, . . . , m we have:

‖w−e−iH0t ρ(H0 − λk)ĝ0(H0 − λk)ĝ0(λj −H0)Pcf ‖ ≤ C‖g0‖2
1

〈t〉r2 ‖w+f ‖, t ∈ R.

Here ĝ0 denotes the Fourier Transform, see (11), and the operators ρ(H0 −λ)Pc, ĝ0(λ−
H0)Pc are defined via the spectral theorem:

ρ(H0 − λ)Pc =
∫

σcont(H0)

ρ(ξ − λ)dm(ξ)

= e−i(H0−λ)TE

(
e−i(H0−λ)dl

)
, l = 1, 2, . . . , (71)

ĝ0(λ−H0)Pc =
∫

σcont(H0)

ĝ0(λ− ξ)dm(ξ)

=
∫ T

0
g0(t)e

−i(λ−H0)tPcdt, (72)

where dm(ξ) is the absolutely continuous part of the spectral measure of H0.

Remark 4.1. Conditions implying (H7’). IfH0 = −�+V (x) is a Schrödinger operator
with potential, V (x), which decays sufficiently rapidly as x tends to infinity, then either

E

(
eiλj dl

)
= 0, l = 0, 1, . . . and j = 1, 2 . . . , m (73)

or

ĝ0(λj ) = 0, j = 1, . . . , m (74)

imply (H7’), provided the mean and variance of the random variables d0, d1, . . . , are
finite. Note that (73) is equivalent to adding the threshold, λ0 = 0, of the continuous
spectrum to the set of eigenvalues {λk : k = 1, 2, . . . , m} for which (H6’) must
hold. Hypothesis (74) means that the perturbation should not induce a resonant coupling
between the bound states and the threshold generalized eigenfunction associated with
λ0 = 0.

In analogy with the case of discrete spectrum, we write the solution of (2) in the form

φ(t, x) =
m∑

j=1

aj (t)ψj (x)+ Pcφ(t, x).

Recall that the expected power vector P(t) is defined as the column vector

P(t) = (E(a1a1(t)),E(a2a2(t)), . . . ,E(amam(t))) .
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We denote by

P (n) = P(t), tn−1 + T ≤ t < tn

the expected power vector after n ≥ 1 defects (note that P(t) is constant on the above
intervals).

We will show that the change in the power vector induced by each defect can be
expressed in terms of a power transmission matrix

Tε = Tdisc,ε − ε2 diag[γ1, γ2, . . . , γm]

= I − ε2B − ε2 diag[γ1, γ2, . . . , γm]. (75)

Recall that Tdisc,ε = Tε = I − ε2B, displayed in (21–22), is the power transmis-
sion matrix for systems governed by discrete spectrum. Each damping coefficient γk >
0, k = 1, 2, . . . , m results from the interaction between the corresponding bound state
and the radiation field. In contrast to the results in [11], there are no contributions from
bound state - bound state interactions mediated by the continuous spectrum; these terms
cancel out by stochastic averaging.

Remark 4.2. For sufficiently small ε we have:

‖Tε‖1 = 1 − ε2 min{γ1, γ2, . . . , γm} < 1. (76)

The damping coefficients are given by:

γk= lim
η↘0

∥∥∥∥ĝ0(H0 − λk)

√
I−|ρ(H0 − λk − iη)|2 (I − ρ(H0 − λk − iη))−1 Pc[βψk]

∥∥∥∥
2

> 0, (77)

for all k = 1, 2, . . . , m. Here the operators which are functions of H0 are defined via
the spectral theorem and I is the identity on H.

Remark 4.3. XYZ. When the pulses are not identical, see Remark 3.1, one can still prove
the existence of γk ≥ 0. However, we can recover formula (77) only in the cases when
the shapes gn converge to a fixed one denoted by g0 or form an almost periodic sequence
with mean g0.

The following theorem is a generalization of our previous result on the effect of a
single defect on the mode-power distribution, adapted to the case where the Hamiltonian
has both discrete and continuous spectrum:

Theorem 4.1. Consider the Schrödinger equation

i∂tφ = H0φ + g(t)βφ, (78)

where g(t) is a random function, defined in terms of g0(t), given by (4). Assume that
hypotheses (H1’-H7’) hold. Consider initial conditions for (2) such that w+Pcφ0 ∈ H.
Then there exists an ε0 > 0 such that whenever |ε| ≤ ε0 the solution of (2) satisfy:

P (n+1) = TεP (n) + O
(
ε3
)

+ O
(

ε

〈nT 〉r
)
, n = 0, 1, 2, . . . , (79)

where the matrix Tε is given in (75) and r = min{r1, r2 − 1} > 1.
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By applying this theorem successively we get the change over n ≥ 1 defects:

P (n) = T n
ε P (0)+

n−1∑

k=0

T k
ε

(
O(ε3)+ O

(
ε

〈(n− k)T 〉r
))

. (80)

Using ‖Tε‖1 < 1 and

∞∑

n=1

〈nT 〉−r < ∞

we can conclude that the last correction term in (80) is of order O(ε).2 As for the other
correction term we have two ways in computing its size. The first is based on ‖T k

ε ‖1 < 1,
and gives

n−1∑

k=0

T k
ε O(ε3) = O(nε3).

The second is based on

n−1∑

k=0

‖T k
ε ‖1 ≤ (1 − ‖Tε‖1)

−1 ≤ 1

γ ε2 ,

where γ = min{γ1, γ2, . . . , γm}, and gives

n−1∑

k=0

T k
ε O(ε3) = O(εγ−1).

We have proved the following theorem:

Theorem 4.2. Under the assumptions of Theorem 4.1, the expected power vector after
n defects, n = 1, 2, . . . , satisfies:

P (n) = T n
ε P (0)+ O

(
min(εγ−1, nε3)

)
+ O(ε).

Here, Tε is the diffusion/damping power transmission matrix given in (75).

Moreover, the argument we used in the proof of Theorem 3.2 now gives

Theorem 4.3. Under the assumptions of Theorem 4.1, the expected power vector at a
fixed time t, 0 ≤ t < ∞ satisfies:

P(t) = T n
ε P (0)+ O(ε4/5). (81)

Here, n is the integer part of t/(T +M), T is the common time span of the defects and
M is the mean of the identically distributed random variables d0, d1, . . . .

The nicer form of the correction term in (81) compared to (58) is due to the fact that
min(tε3, ε/γ ) is now dominated by O(ε4/5).

2 One can actually show that
∑n−1
k=0 T k

ε O
(

ε
〈(n−k)T 〉r

)
= O

(
min

{
ε,

〈nT 〉−r
εγ

})
.However, asn → ∞

the other correction term dominates and the result of Theorem 4.2 cannot be improved.
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In analogy with Corollary 3.1 we have, in the present context, the following limiting
behavior:

Corollary 4.1. Under the assumption of Theorem 4.1 the following holds:

lim
t→∞P(t) =






P(0), if t � ε−2

e−(B+�)τP (0) if t = τε−2

0, if t � ε−2, ε → 0
, (82)

where B is displayed in (22) and

� = diag
[
γ1, γ2, . . . , γm

]
> 0.

Proof. Since Tε = I − ε2(B + �) and B + � is self adjoint with

B + � ≥ min{γk : k = 1, 2, . . . m} > 0

we have

lim
n→∞ T (n)

ε =





I, if n � ε−2

e−(B+�)τ if n = τε−2

0 if n � ε−2, ε → 0
. (83)

This follows from writing Tε in the basis which diagonalizes B + � and using the fact
that all eigenvalues of B + � are strictly positive, see the proof of Corollary 3.1.

Clearly, (83) and Theorem 4.3 imply the conclusion of the corollary. ��
Note that on time scales of order 1/ε2 the dynamical system is now equivalent to:

∂τP (τ) = (−B − �)P (τ),

where −B is a diffusion operator, see the discussion after relation (50), while −� is a
damping operator.

It remains to prove Theorem 4.1.

Proof of Theorem 4.1. Consider one realization of the random variables d0, d1, . . . . For
this realization the system (2) is linear, Hamiltonian and deterministic. It is well known
that such systems have an unique solution, φ(t), defined for all t ≥ 0 and continuously
differentiable with respect to t. Moreover

‖φ(t)‖ ≡ ‖φ0‖. (84)

We decompose the solution in its projections onto the bound states and continuous
spectrum of the unperturbed Hamiltonian:

φ(t, x) =
m∑

j=1

aj (t)ψj + Pcφ(t) = φb(t)+ φd(t), (85)

where φb and φd are, respectively, the bound and dispersive parts of φ:

φb(t) =
m∑

j=1

aj (t)ψj ,

φd(t) = Pcφ(t), (86)
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and

〈φb(t), φd(t)〉 ≡ 0. (87)

Note that (84) and (87) imply

‖φb(t)‖ ≤ ‖φ0‖, ‖φd(t)‖ ≤ ‖φ0‖, (88)

for all t ≥ 0. Consequently,

|ak(t)| ≤ ‖φ0‖, (89)

for all t ≥ 0.
By inserting (85) into (2) and projecting the later onto the bound states and continuous

spectrum we get the coupled system:

i∂tak(t) = λkak(t)+ εg(t) 〈ψk, βφb(t)〉 + εg(t) 〈ψk, βφd(t)〉 , (90)

i∂tφd(t) = H0φd(t) + εg(t)Pcβφd(t) + εg(t)Pcβφb(t), (91)

where k = 1, 2, . . . , m. Duhamel’s principle applied to (91) yields

φd(t) = e−iH0t φd(0)− iε

∫ t

0
g(s)e−iH0(t−s)Pcβφd(s)ds

−iε
∫ t

0
g(s)e−iH0(t−s)Pcβφb(s)ds. (92)

In a manner analogous to the one in [3] we are going to isolate φd in (92). Consider the
following two operators acting on C(R+,Domain(w+)) respectively C(R+,H), the
space of continuous functions on positive real numbers with values in Domain(w+)
respectively H:

K+[f ](t) =
∫ t

0
g(s)w−e−iH0(t−s)Pcβw+f (s)ds, (93)

K[f ](t) =
∫ t

0
g(s)w−e−iH0(t−s)Pcβf (s)ds. (94)

Then, by applying the w− operator on both sides of (92) we get:

w−φd(t) = w−e−iH0t φd(0)− iεK+[w−φd ](t)− iεK[φb](t). (95)

On C(R+,H) we introduce the family of norms depending on α ≥ 0 :

‖f ‖α = sup
t≥0

〈t〉α‖f (t)‖ (96)

and define the operator norm:

‖A‖α = sup
‖f ‖α≤1

‖Af ‖α. (97)

The local decay hypothesis (H3’) together with (H4’) and (H5’) imply:

Lemma 4.1. If 0 ≤ α ≤ r1 then there exists a constant Cα such that

‖K+‖α ≤ Cα,

‖K‖α ≤ Cα.
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Proof of Lemma 4.1. Fix α, 0 ≤ α ≤ r1 and f ∈ C(R+,Domain(w+)) such that
‖f ‖α ≤ 1. Then

〈t〉α‖K+[f ](t)‖ = 〈t〉α
∣∣∣∣
∫ t

0
g(s)w−e−iH0(t−s)Pcβw+f (s)ds

∣∣∣∣

≤ 〈t〉α
∫ t

0
|g(s)|‖w−e−iH0(t−s)Pcw−‖ · ‖w+βw+‖ · ‖f (s)‖ds

≤ 〈t〉αC‖w+βw+‖
∫ t

0

|g(s)|
〈t − s〉r1 ‖f (s)‖ds,

where we used (H3’). Furthermore, from ‖f ‖α ≤ 1 and ‖w+βw+‖ bounded, we have

〈t〉α‖K+[f ](t)‖ ≤ C〈t〉α
∫ t

0

|g(s)|
〈t − s〉r1〈s〉α 〈s〉α‖f (s)‖ds

≤ C〈t〉α‖f ‖α
∫ t

0

|g(s)|
〈t − s〉r1〈s〉α ds

≤ C〈t〉α
∑

{j :tj<t}

∫ min(t,tj+T )

tj

|g(s)|
〈t − s〉r1〈s〉α ds.

By the mean value theorem
∫ min(t,tj+T )

tj

|g(s)|
〈t − s〉r1〈s〉α ds = 〈t − t̃j 〉−r1〈t̃j 〉−α‖g0‖1,

for some

tj ≤ t̃j ≤ min(t, tj + T ). (98)

Hence

〈t〉α‖K+[f ](t)‖ ≤ C〈t〉α
∑

{j :t̃j<t}
〈t − t̃j 〉−r1〈t̃j 〉−α. (99)

We claim that
∑

{j :t̃j<t}
〈t − t̃j 〉−r1〈t̃j 〉−α ≤ Dα〈t〉−α (100)

for some constant Dα independent of t. This is a consequence of the fact that we are
computing the convolution of two power-like sequences. For a more detailed proof we
decompose the sum into two, first running for t̃j ≤ t/2 and the second for t/2 < t̃j ≤ t.

For the former we have:

∑

{j :t̃j<t/2}
〈t − t̃j 〉−r1〈t̃j 〉−α ≤

〈
t

2

〉−r1 ∑

{j :t̃j<t/2}
〈t̃j 〉−α

≤
〈
t

2

〉−r1 ∑

{j :jT <t/2}
〈jT 〉−α (101)

≤
〈
t

2

〉−r1
Dα

〈
t

2

〉max(0,1−α)
≤ Dα〈t〉−α,
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since r1 > max(1, α) and t̃j ≥ tj ≥ (j − 1)T , see (H3’), the hypotheses of this lemma,
respectively (98) and (5). The remaining part of the sum is treated similarly:

∑

{j :t/2<t̃j≤t}
〈t − t̃j 〉−r1〈t̃j 〉−α ≤

〈
t

2

〉−α ∑

{j :t/2<t̃j≤t/2}
〈t − t̃j 〉−r1

≤
〈
t

2

〉−α ∑

{k:kT<t/2}
〈kT 〉−r1 (102)

≤
〈
t

2

〉−α
D ≤ Dα〈t〉−α,

since r1 > 1 and t − t̃j ≥ kT , where k is such that tk+j = max{tp : tp ≤ t}, see (98)
and (5).

Now (101) and (102) imply (100) which replaced in (99) proves the required estimate
for the K+ operator. For the K operator the argument is completely analogous. ��

We are going to use Lemma 4.1 for α = 0 and α = r1. For C0 and Cr1 defined in the
lemma, let

CK = max
{
C0, Cr1

}
.

Then, for ε such that CKε < 1, the inverse operator (I − iεK+)−1 exists and it is
bounded in the norms (97) for α = 0 and α = r1. Then (95) implies:

w−φd(t) = (
I − iεK+)−1

[
w−e−iH0t φd(0)

]
(t)− iε

(
I − iεK+)−1

K[φb](t)

= O
(〈t〉−r1‖w+φd(0)‖

) − iεK[φb] + O
(
ε2‖K[φb]‖

)
. (103)

Thus we have expressed the dispersive part, φd(t) as a functional of the bound state part,
φb(t). Substitution of (103) into (90) gives, for k = 1, 2, . . . :

∂tak(t) = −iλkak(t)− iεg(t)

m∑

j=1

aj (t)
〈
ψk, βψj

〉

−ε2g(t) 〈w+βψk,K[φb](t)〉 (104)

+εg(t)
(
O(‖w+φd(0)‖〈t〉−r1)+ O

(
ε2‖K[φb]‖

))
k = 1, 2, . . . , m.

In particular (104) implies

ak(tn) = eiλk(tn−tl )ak(tl)+ ε

n−1∑

p=l
eiλk(tn−tp)Dp(d0, d1, . . . , dp), (105)

for all k = 0, 1, . . . m, n ≥ 2 and l < n. Here each constant Dp depends on the real-
ization of d0, d1, . . . dp and does not depend on the realization of any other random
variable. In addition allDp are uniformly bounded by a constant depending only on CK
above and the initial condition φ(0). Hence

ak(tn) = e−iλk(tn−tl )ak(tl)+ O(ε|n− l|) (106)

for all n, l = 0, 1, 2, . . . , and k = 1, 2, . . . , m.
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We multiply both sides of (104) with ak , then add the resulting equation to its complex
conjugate. Then we integrate from tn to tn + T and obtain for k = 1, 2, . . . , m

akak(tn + T )− akak(tn) = R1 + R2 + R3, (107)

where

R1 = −iε
m∑

j=1

〈ψk, βψj 〉
∫ tn+T

tn

g(t)ak(t)aj (t)dt + c.c., (108)

R2 = −ε2〈w+βψk,
∫ tn+T

tn

g(t)ak(t)K[φb](t)dt〉 + c.c., (109)

R3 = O
(
ε〈tn〉−r1

) + O
(
ε3
)
. (110)

If we neglect the R2 and R3 in (107) we are left with R1, which is precisely the
expression associated with the power transfer in systems with discrete spectrum; see
Sect. 2. Moreover R3 has norm asserted in (79). So, it remains to show of R2 that

E

(
〈w+βψk,

∫ tn+T

tn

g(t)ak(t)K[φb](t)dt〉 + c.c.

)

= γkP
n
k + O(〈nT 〉−r )+ O(ε), (111)

where γk is given by (77) and r = min{r1, r2 − 1} > 1.
We use integration by parts. Let

K̃[φb](t) ≡
∫ t

tn+T
g(s)e−iλk(s−tn)K[φb](s)ds, tn ≤ t ≤ tn + T , (112)

and note that K[φb](tn + T ) = 0. Lemma 4.1 together with

g(s) = g0(s − tn), tn ≤ s ≤ tn + T , (113)

imply the existence of a constant C with the property:

‖K̃[φb](t)‖ ≤ C‖g0‖2
1 = C, (114)

uniformly in tn ≤ t ≤ tn + T . Define

Ak(t) = ak(t)e
iλk(t−tn), (115)

for k = 1, 2, . . . , m. Note that

Ak(tn) = ak(tn). (116)

From (104) we have

|∂tAk(s)| ≤ C |ε| |g0(s − tn)| (117)
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for some constant C independent of s and tn ≤ s ≤ tn + T . Now

∫ tn+T

tn

g(t)ak(t)K[φb](t)dt=
∫ tn+T

tn

Ak(t)∂t K̃[φb](t)dt

=−ak(tn)K̃[φb](tn)−
∫ tn+T

tn

∂tAk(t)K̃[φb](t)dt (118)

=ak(tn)
∫ tn+T

tn

g(t)eiλk(t−tn)K[φb](t)dt + O(ε).

To further rewrite (118) we note that for tn ≤ t ≤ tn + T ,

K[φb](t) =
m∑

j=1

∫ t

tn

aj (s)g(s)w−e−iH0(t−s)Pcβψjds

+
n−1∑

l=0

m∑

j=1

∫ tl+T

tl

aj (s)g(s)w−e−iH0(t−s)Pcβψjds. (119)

An integration by parts similar to the one above and use of (113) leads to:

∫ tl+T

tl

aj (s)g(s)w−e−iH0(t−s)Pcβψjds

= aj (tl)

∫ tl+T

tl

g(s)e−iλj (s−tl )w−e−iH0(t−s)Pcβψjds + O
(

ε

〈t − tl − T 〉r1
)

= aj (tl)w−ĝ0(λj −H0)e
−iH0(t−tl )Pcβψj + O

(
ε

〈t − tl − T 〉r1
)
, (120)

and

∫ t

tn

aj (s)g(s)w−e−iH0(t−s)Pcβψjds

= aj (tn)

∫ t

tn

g(s)e−iλj (s−tn)w−e−iH0(t−s)Pcβψjds + O(ε). (121)

By plugging (120–121) in (119) we get

K[φb](t) =
m∑

j=1

aj (tn)

∫ t

tn

g(s)e−iλj (s−tn)w−e−iH0(t−s)Pcβψjds

+
m∑

j=1

n−1∑

l=0

aj (tl)w−ĝ0(λj −H0)e
−iH0(t−tl )Pcβψj + O(ε), (122)

where to estimate the error we used the fact that the series
∑
l〈t−tl−T 〉−r1 is convergent

and uniformly bounded in t .
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We now substitute (122) into the right-hand side of (118) and obtain

∫ tn+T

tn

g(t)ak(t)K[φb](t)dt = O(ε)

+
m∑

j=1

ak(tn)aj (tn)

∫ tn+T

tn

g(t)eiλk(t−tn)
∫ t

tn

g(s)e−iλj (s−tn)w−e−iH0(t−s)Pcβψjdsdt

+
m∑

j=1

n−1∑

l=0

ak(tn)aj (tl)w−ĝ0(H0 − λk)ĝ0(λj −H0)e
−iH0(tn−tl )Pcβψj . (123)

Based on (105) we can replace ak(tn)aj (tl) in (123) with

ak(tn)aj (tl) = eiλk(tn−tl )ak(tl)aj (tl)+ error(l, j),

error(l, j) = ε

n−1∑

p=l
eiλk(tn−tp)Dpw−ĝ0(H0−λk)ĝ0(λj−H0)e

−iH0(tn−tl )Pcβψj . (124)

Taking into account that tn−tn−1 = dn+T and the fact that tn−1−tl , Dp, l ≤ p ≤ n−1
do not depend on dn, the expected value of the error can be rewritten as

E(error(l, j)) =

= ε

n−1∑

p=l
E

(
w−ei(λk−H0)(tn−tn−1)eiλk(tn−1−tp)

× Dpĝ0(H0 − λk)ĝ0(λj −H0)e
−iH0(tn−1−tl )Pcβψj

)

= ε

n−1∑

p=l
w−ρ(H0 − λk)E

(
eiλk(tn−1−tp)

× Dpĝ0(H0 − λk)ĝ0(λj −H0)e
−iH0(tn−1−tl )Pcβψj

)

= ε

n−1∑

p=l
E

(
eiλk(tn−1−tp)

× Dpw−ρ(H0 − λk)ĝ0(H0 − λk)ĝ0(λj −H0)e
−iH0(tn−1−tl )Pcβψj

)
. (125)

By applying the H norm to (125), commuting the norm with both summation and
expected value and using (H7’) we get:

‖E(error(l, j))‖ ≤ |ε| C(n− l)

〈tn−1 − tl〉r2 ≤ C |ε|〈(n− l)T 〉1−r2 . (126)
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Since r2 > 2 the summation over l and j of all the errors will have an O(ε) size. By this
argument (123) becomes:

E

(〈
w+βψk,

∫ tn+T

tn

g(t)ak(t)K[φb](t)dt

〉
+ c.c.

)
=

m∑

j=1

E(ak(tn)aj (tn))

·
〈
w+βψk,

∫ tn+T

tn

g(t)eiλk(t−tn)
∫ t

tn

g(s)e−iλj (s−tn)w−e−iH0(t−s)Pcβψjdsdt

〉
+ c.c.

+
m∑

j=1

n−1∑

l=0

E(ak(tl)aj (tl))

· E

(〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λj −H0)e

i(λk−H0)(tn−tl )Pcβψj

〉)
+ c.c.

+ O(ε). (127)

But (H6’) and the technique used to prove (41) imply

E(ak(tl)aj (tl)) =
{
P
(l)
k for k = j

0 for k �= j
.

Moreover, an argument similar to the one we used in (124–126) allows us to replace
P (l) by P (n) in (127) and incur an O(ε) total error. Then, (127) becomes

E

(〈
w+βψk,

∫ tn+T

tn

g(t)ak(t)K[φb](t)dt

〉
+ c.c.

)
=

= P
(n)
k

〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)Pcβψk

〉

+P (n)k

〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)E

(
n−1∑

l=0

ei(λk−H0)(tn−tl )Pc

)
βψk

〉

+ c.c.
+ O(ε). (128)

We claim that

γ nk
def= 〈

w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)Pcβψk
〉

+
〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)E

(
n−1∑

l=0

ei(λk−H0)(tn−tl )Pc

)
βψk

〉
+ c.c.

= γk + O(〈nT 〉1−r2), (129)

where γk is given in (77). Equation (129) replaced in (128) gives (111) which finishes
the proof of this theorem.

To prove (129) we first find a simpler expression for the expected value operator
involved. Since {dj }j≥0 are independent, identically distributed with common char-
acteristic function, ρ(ξ), using the definition of tn, n ≥ 0, see (5) and the spectral
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resolution of the operator H0, see (71), we have:

E

(
ei(λk−H0)(tn−tl )Pc

)
=
∫

σcont(H0)

E(ei(λk−ξ)(tn−tl )) dm(ξ)

=
∫

σcont(H0)

E(e
i(λk−ξ)

∑n−1
j=l (dj+T )) dm(ξ)

=
∫

σcont(H0)

n−1∏

j=l
E(ei(λk−ξ)(dj+T )) dm(ξ)

=
∫

σcont(H0)

ρn−l (ξ − λk) dm(ξ) = ρn−l (H0 − λk)Pc. (130)

Hence

w−ĝ0(H0 − λk)ĝ0(λk −H0)E

(
n−1∑

l=0

ei(λk−H0)(tn−tl )Pc

)
β

= w−ĝ0(H0 − λk)ĝ0(λk −H0)

n∑

j=1

ρj (H0 − λk)Pcβ. (131)

But each operator term in (131) has its H−norm dominated by:

‖w−ĝ0(H0 − λk)ĝ0(λk −H0)ρ
j (H0 − λk)Pcβ‖

= ‖w−ρ(H0 − λk)ĝ0(H0 − λk)ĝ0(λk −H0)E(e
−i(H0−λk)(tj−1−t0)Pcβ)‖

≤ C
〈tj−1 − t0〉r2 ‖w+β‖ ≤ 〈(j − 1)T 〉−r2 .

Now r2 > 2 implies that the sequence 1/〈jT 〉r2 is summable, and, by the dominant
convergence theorem, there exists:

γ̃k = 〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)Pcβψk

〉

+
∞∑

j=1

〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)ρ

j (H0 − λk)Pcβψk

〉
+ c.c.

= lim
n→∞ γ

n
k .

Moreover

|γ̃k − γ nk | =
∞∑

j=n+1

〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)ρ

j (H0 − λkPcβψk

〉
+ c.c.

≤ 2C
∞∑

j=n
〈jT 〉−r2 ≤ D〈nT 〉1−r2 . (132)
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Consider now, for η > 0,

γ
η
k = 〈

w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)Pcβψk
〉

+
∞∑

j=1

〈
w+βψk,w−ĝ0(H0 − λk)ĝ0(λk −H0)ρ

j (H0 − λk − iη)Pcβψk

〉

+ c.c. (133)

On one hand

ρj (H0 − λk − iη)Pc = E(e−η(tj−t0)e−i(H0−λk)(tj−t0)Pc) (134)

and, by the dominant convergence theorem, for all j ≥ 1,

lim
η↘0

ρj (H0 − λk − iη)Pc = ρj (H0 − λk)Pc.

On the other hand the series (133) is dominated uniformly in η by a summable series,
because:

‖w−ĝ0(H0 − λk)ĝ0(λk −H0)ρ
j (H0 − λk − iη)Pcβ‖

=
∥∥∥∥
∫ T

0

∫ T

0
dudsg0(s + u)g0(u)E

(
e−η(tj−t0)w−e−i(H0−λk)(tj−t0−s)Pcβ

)∥∥∥∥

≤ Ce−ηjT
〈tj − to − T 〉r1 ‖g0‖1‖w+β‖ ≤ 〈(j − 1)T 〉−r1 .

Here we used (H3’), ‖g0‖1 = 1 and ‖w+β‖ bounded. Therefore, by the Weierstrass
criterion:

lim
η↘0

γ nk = γ̃k. (135)

In addition (134) implies

‖ρ(H0 − λk − iη)Pc‖ ≤ E

(
e−η(t1−t0)‖e−i(H0−λk)(t1−t0)Pc‖

)

≤ e−ηT < 1.

This makes (I − ρ(H0 − λk − iη))Pc invertible and given by the Neumann series:

(I − ρ(H0 − λk − iη))−1Pc =
∞∑

j=0

ρj (H0 − λk − iη)Pc. (136)

Plugging (136) in (133) we have

γ
η
k = 〈

βψk, ĝ0(H0 − λk)ĝ0(λk −H0)Pcβψk
〉

+
〈
βψk, ĝ0(H0 − λk)ĝ0(λk −H0)ρ(H0 − λk − iη)(I − ρ(H0 − λk − iη))−1

× Pcβψk〉 + c.c.

A simple inner product manipulation shows that:

γ
η
k =

∥∥∥∥ĝ0(H0 − λk)

√
I − |ρ(H0 − λk − iη)|2 (I − ρ(H0 − λk − iη))−1 Pc[βψk]

∥∥∥∥
2

.
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Hence

γ̃k = lim
η↘0

γ
η
k = γk, (137)

see also (135) and (77).
Finally, (137) and (132) give the claim (129). The theorem is now completely proven.

��

5. Appendix: Properties of the Power Transmission Matrix

In this section we prove the properties of the matrix (linear operator) B we used in
Corollaries 3.1 and 3.2. Recall that B is given by (22) and is irreducible, see the dis-
cussion before Corollary 3.2. We note that (22) implies in particular that for all i, j =
1, 2, . . . , i �= j ,

bii ≥ 0; bij ≤ 0; bii = −
∑

k,k �=i
bik. (138)

Lemma 5.1. If the dimension of B is finite, say m, then B is a nonnegative, self adjoint
matrix having 0 as a simple eigenvalue with corresponding normalized eigenvector:

r0 = 1√
m
(1, 1, . . . , 1)′.

Proof. The symmetry of B follows directly from (22). The fact that it is nonnegative
follows from the identity:

X∗BX =
m∑

i,j=1

bijXiXj =
∑

i,j,i<j

|bij | · |Xi −Xj |2, (139)

where we used (138). The latter and a direct calculation show Br0 = 0, hence r0 is an
eigenvector corresponding to the eigenvalue 0.

To prove that 0 is a simple eigenvalue we use the irreducibility of B. Recall that
irreducibility is equivalent to the strong connectivity of the directed graphG(B) associ-
ated to B, see for example [26, pp.19–20]. Let X = (X1, X2, . . . , Xm)

′ be an arbitrary
0-eigenvector for B. Then (139) becomes:

0 =
∑

i,j,i<j

|bij | · |Xi −Xj |2.

Clearly Xi = Xj whenever bij �= 0. In terms of graphs this translates to Xi = Xj
whenever i, j are connected by a path of length 1 in the directed graphG(B). By induc-
tion on the length of the path we get thatXi = Xj whenever i, j are connected by a path
in the directed graphG(B).But the latter is strongly connected becauseB is irreducible.
It follows that all components ofX are equal hence all the 0-eigenvectors are parallel to
r0. This together with B symmetric implies that 0 is simple. ��
Lemma 5.2. IfB is infinite dimensional, thenB is a bounded linear operator on �1 with
‖B‖1 ≤ 2. In addition, for |ε| ≤ 1, the operator Tε = I − ε2B transforms positive
vectors (i.e. vectors with all components positive) into positive vectors and conserves
their �1 norm.
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Proof. We need to show:

‖B‖1 = sup
j

∞∑

i=1

|bij | ≤ 2. (140)

Fix an arbitrary j ∈ {1, 2, . . . } and consider the j th vector in the standard basis of �1 :

X = (X1, X2, . . . )
′ , Xi =

{
0 if i �= j

1 if i = j
. (141)

Clearly X ∈ �2, ‖X‖2 = 1. Define the contractive operator in �2 :

A = (
aij

)
1≤i,j<∞ ,

aij = αij ĝ0(−�ij ) = 〈ψi, βψj 〉
∫ ∞

−∞
g0(t)e

i(λi−λj )t dt. (142)

A is contractive because for any Y ∈ �2, ‖Y‖2 = 1 :

|Y ∗AY | =
∣∣∣∣∣∣

∞∑

j,k=1

ajkY jYk

∣∣∣∣∣∣
=
∣∣∣∣
∫ ∞

−∞
g0(t)〈

∑∞
j=1e

iλj tYjψj ,
∑∞
k=1e

iλktYkβψk〉dt
∣∣∣∣

=
∣∣∣∣
∫ ∞

−∞
g0(t)〈Y (t), βY (t)〉dt

∣∣∣∣ ≤
∫ ∞

−∞
|g0(t)| · |〈Y (t), βY (t)〉|dt

≤
∫ ∞

−∞
|g0(t)| · ‖β‖H‖Y (t)‖2dt = ‖β‖H

∫ ∞

−∞
|g0(t)|dt = ‖β‖H‖g0‖L1 =1,

where, Y (t) = ∑∞
j=1 e

iλj tXjψj , Y (t) ∈ H, ‖Y (t)‖ ≡ 1, and, at the very end,
we used (H2) and (H3).

By a direct calculation we have

∞∑

i=1

|bij | =
∞∑

i=1

∣∣Xi(A · AX)i − (
AX

)
i
(AX)i

∣∣ (143)

≤ ‖X‖2 · ‖A · AX‖2 ≤ ‖A‖2
2‖X‖2 + ‖AX‖2

2

≤ 2‖A‖2
2‖X‖2

2 ≤ 2.

Inequality (140) is now proven. In addition, because
∑
i |bij | = 2bii , see (138), we get

0 ≤ bii ≤ 1. (144)

Consider,

Tε = I − ε2B, Tε = (
tij
)
1≤i,j<∞ .

From (138), (144) and |ε| ≤ 1 we deduce that Tε has nonnegative coefficients and

∞∑

i=1

tij =
∞∑

i=1

tj i = 1. (145)
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Now let

X = (X1, X2, . . . )
′ ∈ �1, Xj > 0 ∀j = 1, 2, . . . .

Then

(TεX)i =
∞∑

j=1

tijXj > 0,

since all terms in the sum are nonnegative with at least one being strictly positive.
Moreover

‖TεX‖1 =
∞∑

i=1

|(TεX)i | =
∞∑

i=1

∞∑

j=1

tijXj =
∞∑

j=1

Xj

∞∑

i=1

tij =
∞∑

j=1

Xj = ‖X‖1,

where we exchanged the order of summation because we are dealing with convergent
series with nonnegative terms and we also used (145). ��
Lemma 5.3. If B is infinite dimensional, then B is a bounded, linear, self adjoint, non-
negative operator on �2 with spectral radius less than or equal to 2. Moreover, 0 is not
an eigenvalue for B.

Proof. Consider the 2-form induced by B on �2:

X∗BX =
∞∑

i,j=1

bijXiXj ≤
∞∑

i=1

|bii ||Xi |2 + 1/2
∞∑

i=1

∞∑

j,j �=i
|bij ||Xi |2 + |Xj |2

≤ (sup
i

∑

j

|bij | + sup
j

∑

i

|bij |)‖X‖2
2. (146)

Because B is symmetric the two supremums above are equal to ‖B‖1 ≤ 2, see Lemma
5.2. Therefore |X∗BX| ≤ 2‖X‖2

2 and the 2-form induced byB together with its �2 norm
and spectral radius are all bounded by 2. Since now B is both a symmetric and bounded
operator on �2 it is self adjoint.

The argument at the end of Lemma 5.1 can be easily generalized to show that any
eigenvector corresponding to the zero eigenvalue for the irreducible operator B should
have all components equal. However such a vector is not in �2 unless it is trivial. There-
fore 0 is not an eigenvalue for B. ��
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