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Abstract: We study the evolution of the energy (mode-power) distribution for aclass of
randomly perturbed Hamiltonian partia differential equations and derive master equa-
tions for the dynamics of the expected power in the discrete modes. In the case where
the unperturbed dynamics has only discrete frequencies (finitely or infinitely many) the
mode-power distribution is governed by an equation of discrete diffusion type for times
of order O(e~2). Here ¢ denotes the size of the random perturbation. If the unperturbed
system hasdiscrete and continuous spectrum the mode-power distributionisgoverned by
an equation of discrete diffusion-damping type for times of order O(¢~2). The methods
involve an extension of the authors’ work on deterministic periodic and almost periodic
perturbations, and yield new results which complement results of others, derived by
probabilistic methods.

1. Introduction

The evolution of an arbitrary initial condition of linear autonomous Hamiltonian partial
differential equation (Schrodinger equation),

lat¢ = HO(P’ (1)

where Hy is self-adjoint operator, can be studied by decomposing the initial state in
terms of the eigenstates (bound modes) and generalized eigenstates (radiation or contin-
uum modes) of Hp. The mode amplitudes evolve independently according to a system
of decoupled ordinary differential equations and the energy or power in each mode, the
sguare of the mode amplitude, isindependent of time. If the system (1) is perturbed

id,¢ = (Ho+ W(1))9, 2

where W (¢) respects the Hamiltonian structure (W* = W), then the system of ordinary
differential equations typically becomes an infinite coupled system of equations, so-
called coupled mode equations. If W (¢) has general time-dependence (periodic, almost
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periodic, random,...), the solutions of the coupled mode equations can exhibit very com-
plex behavior. Of fundamental importanceisthe question of how themode-powersevolve
with z. Kinetic equations, which govern their evolution are called master equations [25,
5] and go back to the work of Pauli [20]. A genera approach to stochastic systems is
presented in [17, 19, 18, 13]; see dlso[1, 7, 8]. Master equations have been derived in
many contexts in statistical mechanics, ocean acoustics and optical wave-propagation
in waveguides.

We present a theory of power evolution for (2), for a class of perturbations, W (¢),
which arerandomin ¢. Our theory handlesthe case where Hy has spectrum consisting of
bound states (finitely or infinitely many discrete eigenval ues) and radiation modes (con-
tinuous spectrum). It isa natural extension of the analysisin our work on deterministic
periodic, ailmost periodic and nonlinear systems; see, for example, [9, 11, 10, 24]. Our
approach is complementary to the probablistic approach of [7, 8, 19, 18, 13]. The model
we consider is well-suited to the study of the effects of an “engineered” perturbation
of the system, e.g. a prescribed train of light pulses incident on an atomic system, or
prescribed distribution of defects encountered by waves propagating along awaveguide;
see below. We also give very detailed information on the energy transfer between the
subsystems governed by discrete “oscillators’ and continuum “radiation field”.

In particular, we study the problem

id¢ = (Ho + eg(t)B) &, ©)

where ¢ is small, and Hy and 8 are self-adjoint operators on the Hilbert space H. Hy
is assumed to support finitely or infinitely many bound states. For example, Hy =
—A + V(x), where V is smooth and sufficiently rapidly decaying as |x| — oo. 8 is
assumed to be bounded. g(¢) is a real valued function of the form of a sequence of
short-lived perturbations or “defects’ which are identical; see Fig. 1. Our methods can
treat both the case when the “defects’ are not identical and more general perturbations,
eg. W(, x) = B(t, x). For the sole purpose of simplifying the presentation we con-
sider the separable case W (r) = g(¢)B(x), with g(¢) asequence of identical short-lived
perturbations, see below.

Models of the above type arise naturally in many contexts. Among them are the
interaction between an atom and a train of light pulses [22, and references therein] , a
field of great current interest in the control of quantum systems. Such trains of localized
perturbations also model sequences of |ocalized defects along waveguides, see[15, 16],
introduced by accident or design. In the context of atomic systems, the pulse forms
considered in this article correspond to a sequence of identical pulses applied at random
times. In the context of single frequency propagation in waveguides, the perturbation

b ()

go(t —dg) got =T —dg —dq) 8ot —(m =T —dy—---—dp
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Fig. 1. Trainof short lived perturbations or “ defects’. The onset time for then' defect, ,,, is given by (5)
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corresponds to a sequence of identical defects, occurring at random distances along the
waveguide. In fact, many defects arising in fabrication of waveguides are systematic,
and can be modeled in thisway. As mentioned above, the methods presented in this arti-
cle can be extended to treat the case where g(¢) is a random segquence of non-identical
defects; see dso Remark 3.1.

We construct g(¢) asfollows. Start with go(), afixed real-valued function with sup-
port contained in the interval [0, 7'] and let {d;} ;>0 be a nonnegative sequence. Define

o0
g(t) =Y golt —1,), where 4
n=0
to = do,
th=do+T)+ 1 +T)+ -+ (dp-1+T)+dy,n>1 ©)

denotes the onset of the n'"* defect.

Note that, if the sequence {d;} ;>0 is periodic then g(¢) is periodic. In this case,
the system (3) has already been analyzed by time-independent methods [27] or, more
recently and under less restrictive hypothesis, in [9, 11]. For {d;} ;>0 quasiperiodic or
almost periodic (see[2, 4] for adefinition) the situation ismore delicate. In[11] wetreat
ageneral class of almost periodic perturbations of the form:

W(t) = ZCOS(/LJ‘t)IBj, (6)

j=0

with appropriate “small denominator” hypotheses on the frequencies {u ;}. We leave it
for a future paper [10] to consider the case of almost periodic {d;} ;>0 and to explore
the connection with the results in [11]. We note that a particular case has already been
treated in [12, Appendix E].

The model we consider isvery different from the ones studied by probabilistic meth-
ods. For example, in[1] and [17] the numbersdp, d1, . .. , are equal to afixed constant
and go(¢) is random while in our model dp, d1, ..., are random and go(¢) is fixed.
M oreover, the probabilistic approach required a perturbation which isa strongly mixing
stochastic processwith mean zero, E(W (¢)) = 0, V¢ > 0, see[18] andalso[7, 8, 13, 17,
19]. In our model E(W (1)) = E(g(2))B isgenuinely time dependent unless gg istrivial,
go(t) = 0. Of course one can add the mean to the deterministic part which becomes
non-autonomous. The deterministic problem has now acomplex evolution whichisonly
understood in special cases, see [11, 23, 27] and references therein. Consequently it is
hard if not impossible to apply the probabilistic results.

The paper is divided in two parts. The first part treats stochastic perturbations of
Hamiltonian systems with discrete frequencies and the second part extends these results
to the case where the unperturbed system has discrete and continuous frequencies. The
stochastic perturbation is of order & and then the vector P(r) € ¢1, whose components
are the expected values of the squared discrete mode amplitudes (mode-powers), sat-
isfies on time scales t = O(¢2) or equivaently t = O(1), the master equations of
diffusion or diffusion-damping type. Specifically, if Ho hasonly discrete spectrum (finite
or infinite) then

3 P(t)=—BP(r),B>0 ©)

which has the character of a discrete diffusion egquation, i.e.
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d
Xk:Pk(r)=Xk:Pk(0),EP-P=—(P,BP) <0. (8)

If Hg has both discrete and continuous spectra, then
9. P(t)=(—B—-TI)P(tr), B>0, ' =diag(yx) >0 9

for which

D P(r) < 7T PO, (10)
k k

wherey = ming yx.

In Sects. 2 and 3 we study (3) under the hypothesisthat Hyp has no continuous spec-
trum (i.e. no radiation modes) and in Sect. 4 we generalize to the case where Hy has
discrete and continuous spectrum. In Sect. 2 we present the main hypotheses on Hy and
go(t) and study the effect of a single short-lived perturbation. In Sect. 3 we present our
hypotheses on dp, d1, . .. , and analyze the effect of atrain of perturbations (3-4). We
show that if do, d1, ... , are independent random variables with certain distributions,
see Hypothesis (H4) and Examples 1 and 2, diffusion occurs in the expected value for
the powers of the modes. Specificaly, if we start with energy in one mode, then, on
atime scale of order 1/£2, one can expect the energy to be distributed among all the
modes. In Sect. 4 we analyze Eq. (3) under the hypothesisthat Hp has both discrete and
continuous spectrum (i.e. supports both bound modes and radiation modes). We prove
aresult similar to the nonradiative case but now bound state-wave resonances lead to
loss of power. The effect of our randomly distributed deterministic perturbation is very
similar to the one induced by purely stochastic perturbations, see [1, 13, 19], but quite
different from the effects of time almost periodic perturbations, see [9, 11].

Notation.

1) (x) = 1+ x2

2) Fourier Transform:
2 = / e Slg(t) dr. (11)

3) Wewrite¢ + c.c. to mean ¢ + ¢, where ¢ denotes the complex conjugate of ¢.
4) w’ denotes the transpose of w.
5) g/ denotesthe integer part of g.

2. Short-Lived Perturbation of a System with Discrete Frequencies
In this section we consider the perturbed dynamical system
19;¢(t) = Hoop (1) + ego(t) B (1, x), (12)

where Hy has only discrete spectrum and go(¢) is a short-lived (compactly supported)
function. We study the effect of this perturbation on the distribution of energy among
the modes of Hp. Here and in Sect. 4 we are extending the results in [23] to multiple
bound states but under an additional assumption, see (18).
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Hypotheses on Hy, B and go(2).

(H1) Hp isaself adjoint operator on a Hilbert space H. It has a pure point spectrum
formed by the eigenvalues : {1} ;>1 with a complete set of orthonormal eigen-
vectors: (v} >1:

Hoyrj =A%, (Wi, ¥j) = 6ij. (13)

(H2) B isabounded self adjoint operator on H and satisfies || 8] = 1.

(H3) go(r) € L2(R) is real valued, has compact support contained in [0, 7] on the
positive real line and its L1-norm, denoted by || gol|1 is 1. Thus its Fourier trans-
form has L°°-norm bounded by 1.

Note that one can always take || 8]l = 1 and ||goll1 = 1 by setting e = ||goll1 - [IB]l,
thus incorporating the size of ggB in ¢. Therefore, under assumptions (H2-H3), ¢ in
(12) measures the actual size of the perturbation in the L1(R, ) norm. Our results are
perturbative in ¢ and are valid for ¢ sufficiently small.

By the standard contraction method one can show that (12) has an unique solution
¢(t) € Hforall t € R. Moreover, because both Hp and go(t) 8 are self adjoint operators,
wehaveforalsr e R:

oI = lle O (14

We can write ¢ (¢) as a sum of projections onto the complete set of orthonormal eigen-
vectors of Hp :

¢t x) =Y ajO)y;(x). (15)
J

By Parseval’srelation

> a0 = 1612 = 16O (16)
J

Now (12) can be rewritten as

i0ar(t) = hear(t) + £g0(t) Y a; () (Wi, BYrj), k € {1,2...}, (17)

J

where (-, -) denotes the scalar product in H.

Hence Eq. (12) is equivalent to a weakly coupled linear system in the amplitudes:
ai, az, ..., (17).

Sincethe perturbation sizeis ¢ we expect, in general, that the changein energy inthe
k™ mode, |ax(1)|? — |ax(0)|2, to be of order . However with a suitable random initial
condition we can prove more subtle behavior.

Suppose that there exists an averaging procedure applicable to the amplitudes: a1,
az, ... of the solutions of (12), denoted by

a(t) = E(a()) e C.
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We now state a fundamental result, applied throughout this paper, for a single defect
which is compactly supported in time:

Theorem 2.1. Assume the conditions (H1)-(H3) hold and the initial values for (12) are
such that

E (a ; (O)ak(0)> —0  whenever j k. (18)
Thenfor all ¢ > sup{s € R | go(s) #0}andk € {1, 2, ...} wehave

Pi(t) = Pr(0) = 62 ) lowj [*180(— M) IP(P;(0) — P(0)) + O(e®),  (19)
J

where
P =E (lac()?)

denotes the average power in the k' -mode at time 7, axj = (Yr, BY;), go denotes the
Fourier transformof go and Ag; = A — A ;.

Note that (19) can be written in the form:
Pi(t) = T: Pe(0) + O(e%), (20)
where
T, =1 - &B; B >0, (21)

I isthe identity operator (matrix) and B is given by

o 121n(— Az )2 .
b= { otk 1“1 g0 (—Agj) 1%, for j £k, 22)

B = (by; o, N . .
( k’)lf’w Dok lokr?180(— Arp) 1%, for j =k
In Sect. 3we will discuss and use the properties of B and T.

Proof of Theorem 2.1. Inthe amplitude system, (17), we remove the fast oscillations by
letting

ar(t) = e M AL(®1). (23)

Note that by (16)

Y la;0f = 19012 (24)

J

Now (17) becomes

10 A (1) = ego(t) Y _ axje' ™ A (1), (25)
j
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where

Apj = A — Aj, (26)
axj = (Yi, BYj) = i @7

The above system leads to the following one in product of amplitudes, Ay (1) A; (7):

O (Ac ()AL (1) = iego(t) Y ajie ™" Ap() A (1)
J

—iego(t) ZakjeiAkthj(t)Zl(t). (28)
j

In the particular case k = [ we have the power equation for each mode:
3| A (D)) = iego(t) Z ajre B A (A (1) +c.c. (29)
J

Note that the sum in (29) commutes with time integral and expected value operators.
Thisisdueto (24) and the dominant convergence theorem, see for example [6]. Indeed
consider

Fun(0) = e S A (1A (1)go ().
j=1
From (15) we havefor dl ¢t € R,
Nim £ (1) = (@), BYr)ax (1)go(1).
From (24) and the Cauchy-Schwarz inequality |{a, b)| < ||la| ||b||, wehaveforalr € R,

| fn ()] < 116012 g0()]. (30)

Theright-hand side of (30) isintegrable and the dominant convergence theorem applies.
A similar argument is valid for expected values. Therefore, from now on, we are going
to commute both time integrals and expected values with summations like the one in
(29).

We integrate (29) from0to ¢ > sup{s € R | go(s) # 0} and integrate by parts the
right-hand side. The result is:

t
Ak (D)) = |ArO)” = ieZa,-k/o 20($)e' X7 Ap(s) A (s) + c.c.
J
o

= —ie Zajk/ g0(T)e M TdT Ak (s)A;(5) |32 + c.c. (31)
j

t o0
+is E ajk/o / go(x)e' 2k dTdy (AkAj) (s)ds + c.c. .
- s
J
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The boundary terms are
oo . —
—ie Zajk/ go(f)e’Af”thk(s)Aj(s) ];Zto +c.c.
. K
J

—=ie Za 80(—=Aj) AR(0)A;(0) + c.c., (32)
J

where go denotes the Fourier Transform of go; see (11). Note that upon taking the
average, using (18) and the fact that go(0) isreal, these boundary terms vanish.
Into the last term in (31) we substitute (28):

t (9]
isZajk/O/ go(1)e' 247 dTd; (AkA;) (s)ds =
j y
1 e8]
= +le* )Y ajeany / / 20(1)e AT dTgo(s)e 2% A, (5) A (5)ds
ip 0 Js
t @]
—el? ) ajray; fo / g0(T)e T dTgo(s)e! 20 Ap(s) Ay (s)ds.  (33)
Ja s

We again integrate by parts both termsin (33):

1 9]
ie Zajk/o f go(1)e 27 dTdy (AkA;) (s)ds
. s
J
= —ISIZZ“jkakp/ go(s)e’A""S/ go()e' MMt drds Ay ) A (w) [ =
]p u )

o o
Hel? ) ajiay / go(s)e' Aai¢ / go(r)e' ST drds Ay (u)Ag (u) |12

Jg " g
t o o X . _
el Y ajian, f / / 2o(1)e' M drgo(s)e ™0 dsd, (A, A ) (w)du
- 0 Ju s
5D

t o0 o . . _
—}elzzajmqu/ /go(r)e'Af"Tdrgo(s)e’A‘ifsdsau(AkAq)(u)du.(34)
. 0 Ju s
14

Note that the boundary terms calculated at “u = t” are zero since t > sup{s €
R | go(s) # 0}. Upon taking the expected value and using (18) the only boundary terms
contributing are the ones for which u = 0 and j = p in the second row of (34):

o o . X
Slegl? [ [ ot drgowe s ase (14,017) + e
- s
J

(e.¢] oo X .
= Yl P (14, 0F) - 20 [ [ ot dngotore s, (@9
i 0 s
J
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and the ones for which u = 0 and ¢ = k in the third row of (34):

00 oo ) )

> o / / 80(D)e A1 dTgo(s)e 4 dsE (144 O)2) + c.c.
X 0 s

J

o0 o0 . i
= Yty P (1n02) 20 [ [ g drgotsreSotds. (30)
: 0 s
J

To compute (35-36) we use the lemma:

Lemma 2.1. If go(7), t € R isreal valued and square integrable with compact support
included in the positive real line then for all 1 € R the following identity holds:

o0 o0 . .
2% / / go(v)e* drgo(s)e ™ ds = |go(—1)|2.
0 K

Proof. For any A € R we have:
o o0 X .
I = 25)1/ / go(D)e* T drgo(s)e ™ ds
0 K

= Zfoo /00 go(t)go(s) cogr(t — s)]drds.
0 K

As (s, T) — go(t)go(s) cogA(t — s)] issymmetric with respect to the diagonal t = s,
() = /0 /0 go(t)go(s) cogA(tr — s)]dtds

25/ f so®)g0(s) (¢7e ™M e ) duds
0 0

= |go(—1)|2.
O

Into the triple integral terms of (34) we again substitute (28). Then one can show that
the 1-norm of this correction vector is dominated by |¢ l|goll3 18112 l¢ (0)]12. Hence,
itisof order O(|¢|3).

Thus, after applying Lemma2.1 to (35-36) and using (31) wearrive at the conclusion
of Theorem2.1. O

3. Diffusion of Power in Discrete Frequency (Nonradiative) Systems

In the previous section we calculated the effect of a single defect on the mode-power
distribution. In this section we show how to apply this result to prove diffusion of power
for the perturbed Hamiltonian system, (2), where g(¢) is arandom function of the form
(4), defined in terms of arandom sequence {d;};>o. In particular, the sequence {d;} ;>0
will be taken to be generated by independent, identically distributed random variables.
Thiswill result inamixing the phases of the complex mode amplitudes, after each defect.

We assume that (H1-H?3) are satisfied. The following hypothesis ensures that (18)
holds before each defect, thus enabling repeated application of Theorem 2.1.
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(H4) do, di, . .. areindependent identically distributed random variablestaking only
nonnegative valuesand such that forany / € {0,1,...}and j £ k € {1,2...} we have

E (ei(xj—xk)d,> -0

where E(-) denotes the expected value.

Clearly (H4) requiresthe eigenvaluesto be distinct but aside from these we claim that
for any finitely many, distinct eigenvalues A1, A2, ... , A, there exist arandom variable
satisfying (H4).

Example 1 (finitely many bound states). Given A1, Ao, ... , A, distinct choose the ran-
domvariablesd;, 1 =0, 1, ... tobeidentically distributed with distribution d :

d= > djx,
1<j<k<m

where d . are independent random variables such that the distribution of d is either
uniformontheinterval [0, 2 /| ; — A«|] or d i takeseach of thevaluesOand /|1 j — Ak |
with probability 1/2. Inany case, forany j' £k’ € {1,2,...}

E (ei()\_i/ka/)d) ) l—[ o G —rndje | — 1—[ E (ei(x_,/ka,)djk) -0
1<j<k 1<j<k
sinceE (¢ (*.f/’kk/)".f/k’) =0.
(H4) does not restrict us to a system with finitely many bound states:

Example 2 (infinitely many bound states). Let the quantum harmonic oscillator in one
dimension:

hZ
H0=—333+a)2x2, x eR,

be the unperturbed Hamiltonian. Then A, = hw(n + 1/2), n = 0, 1,
example [14]. Note that (H4) holds provided that we choose d;, | =
identically and uniformly distributed on the interval [0, 27/ (hw)].

2,..., seefor
0,1,... tobe

Note on degenerate eigenvalues. As discussed above (H4) cannot be satisfied in the
case Hp admits degenerate eigenvalues. However, at least in some cases, our theory can
be applied. In general the degeneracy is a consequence of the symmetries of Hp, i.e. the
existence of aself-adjoint operator, say L, commuting with Ho, [L, Ho] = 0. To recover
our results it is sufficient to assume that 8, the “space-like” part of the perturbation,
respects the symmetry, i.e. commutes with L. One can now factor out L, i.e. work on
the invariant subspaces of L where Hp is hondegenerate. Along the lines of Example
2 one can consider the quantum harmonic oscillator in three dimensions which has a
spherically symmetric Hamiltonian and degenerate eigenvalues, see for example [14].
If B is spherically symmetric then it only couples bound states with the same angular
momentum. Hence the problem reduces to subsystems consisting of bound states with
the same angular momentum but different energy, therefore nondegenerate. The choice
we made in Example 2 will satisfy (H4) in each of the subsystems.
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3.1. Power diffusion after a fixed (large) number of defects.

Theorem 3.1. Consider Eqg. (12) with g of the form (4). Assume (H1-H4) hold. Then the

expected value of the power vector after passing a fixed number of perturbations “ n
satisfies

P™ = T"P(0) + O(ned), (37)
where T, isgivenin (21),
PV =E(ax (). k=12,..., (38)
th—1+T <t <t, (¢t ranging between the n'"and (n + 1)*' defects.
Proof. We will prove the theorem by induction on n > 0, the number of defects tra-
versed. For n = 0 the assertion is obvious. Suppose now that for » > 0 we have
P™W =T"P(0) + O(ned). (39)
We will show
POth = 7rtlp(0) 4 O ((n + 1)53) (40)

by applying Theorem 2.1 to (39). In order to apply Theorem 2.1 we need to verify that
(18) is satisfied before the n 4 1% defect. Specifically, we must verify that for any pair

=)
E (@420 (+0)) = E (e (nT + Sp23a) @ (o7 + Xi5e))
=0. (41)

Using the fact that d,,+1 isindependent of do + d1 + ... + d,,, and (H4) we have:

E <ak5j <nT + ZZIcl]dk>> =K (akﬁj (l’lT + Zzzodk) ei(kj_)"k)d’”l)
= E (ax0; (17 + Yj_ode) E (e *70%1) =0,

Thus (41) holds and &l the hypotheses of Theorem 2.1 are now setisfied. By applying it
and using (39) we have

P(n+l) — TsP(n) 4 0(83)
—7 (T;’P(O) + O(ne3)) + 0@
= T/ P(0) + O((n + Ded).

Hence (39) implies (40). This concludes the induction step and the proof of Theorem
3.1lisnow complete. O

In the next two corollaries we describe the asymptotic behavior of the vector of
expected powers when the number of defects n tends to infinity. Note that after a
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possible reordering of the eigenvectors 1, ¥2, ..., of Hp, the operator B given by
(22) might look like':

B =diag[B1, B2, ..., By, ...], (42)

where By, Ba, ..., By, ... are square matrices (linear operators) of dimensions m;,
mz,...,mg,...,1L<mg <oo, g =12 ....Inlinear agebratermsthis means that
B is reducible. In terms of the dynamical system (37) generated by 7, = I — 2B it
means that, after a possible reordering, the first 1 bound states of Hp areisolated from
therest. The sameisvalid for the next m» bound states, etc. To understand the evolution
of the full system it is sufficient to analyze each of the isolated subsystems separately.
They al evolve according to (37) with 7. = 1 — ¢?B, and B, given by (22) but the
indices span only asubset of the eigenvectors 1, 2, ... of Hp. Themain differenceis
that now B, isirreducible. In what follows we are focusing on one such subsystem and
drop theindex g.

Coroallary 3.1. If the subsystem has a finite number of bound states, say m, then
P(0), if n e 2
lim P™ = { ¢ BT Pp(0) ifn=1e2, (43)
e Ea1,...,0 ife2<n<le®
where E = P1(0) + P2(0) + ... + P, (0) isthe expected total power in the subsystem
and it is conserved.
Proof. We use the following properties of the irreducible matrix B:
(B1) Bissdf adjointand B > 0;
(B2) Oisasimpleeigenvalue for B with corresponding normalized eigenvector
1
Jm

These properties are proved in the Appendix.

Let Bo =0, B1, B2, ..., Bu_1 betheeigenvalues of B counting multiplicity, and let
ro, r1, - .. , rm—1 bethe corresponding orthonormalized eigenvectors. By (B1) and (B2)
B1, B2, ..., Bn—1 aredtrictly positive. Let

L1...,1. (44)

rg =

R = [ro, Tlyeve s rm_l]

be the matrix whose columns are orthonormalized eigenvectors of B and let R’ be its
transpose. Then

R/BR - d|w [/307 /317 /327 tec ﬂm—l] ’
R'R=1 = RR'.

It follows that
" = (]I - 528>n =R [R/ (H . 823) R]” R
— Rdiag [(1 — 280", (L— 261", ..., (1 — 82,3,,,,1)"] R

1 For such a decomposition to occur it is sufficient that Ho and 8 have common invariant subspaces
H1CH. Ho CH,... s Hy CH,....



Diffusion of Power in Randomly Perturbed Hamiltonian PDEs 13

We now study lim,,_,«, 7, for the three asymptotic regimes of (43). Note that for 0 <
k <m — 1lwehave

lim  (1-¢&?8)" =1,

n—00,62n—0

lim (11— &2B)" = e Fi7,

n—00,62n=t

lim  (1—&?)" =0,p >0,

n—00,2n—00

lim (1—¢’80" =1 B =0. (45)

n—00,82n— 00

Consequently,
Rdiag[1,1,... 1R =1 if n <« &?
lim 77 ={ Rdiag[e~For, e~ F17 ... ¢~Fn-17] = =B if n = e 2, (46)
e Rdiag[1,0,0,...,0]R = projection onto rg if 2 < n < |¢|~3

where rq is defined in (44).
Substitution of (46) into (37) completes the proof of Corollary 3.1. O

Coroallary 3.2. If the subsystem has an infinite number of bound states, then

P(0), if n e ?

e BP0 ifn=1te2" (47)

lim p®™ ={

n—0

For n > ¢2 the limit in £2 is 0, while the limit in ¢! does not exist. More precisely,
although the total power in the subsystemis conserved,

o0
Y P =E.  vnz0 (48)
k=1

{P™} doesnot convergein ¢* dueto an energy transfer to the high modes. In particular,
for any fixed N > 1.

o0
; (n) __
im 2 nY = E
k=N
N
; (n) _
lim. ];Pk = 0. (49)

We notethat similar results have been obtained in[1] but for different typesof random
perturbation.

Corollaries 3.1 and 3.2 show that, on time scales of order 1/¢2, the dynamical system
is equivalent with

3 P(t) = —BP(1). (50)

Moreover the definition of —B in (22) together with —B < 0 and ¢~ % unitary on ¢1
implies that the flow (50) is very much like that of a discrete heat or diffusion equation.
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In conclusion the number of defects encountered should be comparable with 1/¢2 to
have a significant effect. Once they are numerous enough, the defects diffuse the power
in the system. If the number of defects is much larger than 1/¢2 the power becomes
uniformly distributed among the bound states.

Remark 3.1. The asymptotic picture described above remains valid even when the “de-
fects” are not identical, that is when (4) isreplaced by g(r) = Y_, g.(t — 1,) with g,
real valued functions satisfying (H3). In this case the coupling matrix B™ for the nt"
defect is given by (22) with go replaced by g, while the corresponding transmission
matrix is 7. = I — £2B™. Asin Theorem 3.1 the expected power after n defects will
be PM = 1"V 70=2 7O p0) + One3). Moreover, for n < €2 or n > 2 the
results of Corollaries 3.1 and 3.2 hold. For n ~ ¢2 the limit might not exist in general.
There are exceptions though. One is when g, converges in L2(R) to a certain shape
denoted by go asn — oo. Another one is when g, is an aimost periodic sequence in
which case we denote by gg itsmean, see[2]. It would be interesting to understand what
happens when the shapes g,, are random. We speculate that adiffusion matrix B can still
be computed using the technique in [17].

Remark 3.2. Hypothesis (H4) isimportant. If we do not assume (H4) then the correction
term for each defect is of size ¢, since the boundary terms (32) no longer vanish. Con-
sequently the correction term in the main result (37) is O(ne) which on the “diffusion
timescale’ n ~ ¢ 2 isvery large.

Proof of Corollary 3.2. In the case of an infinite number of bound states, B has the
following properties, see the Appendix:

(Bls,) B isanonnegative, bounded self adjoint operator on 2 with spectral radius less
than or equal to 2;

(B2») Oisnot an eigenvaluefor B;

(B3x) B isabounded operator on ¢* with norm || B|j1 < 2;

(B4so) For || < 1 the operator 7, = (I — 2B) transforms positive vectors (i.e. all
components positive) into positive vectors and conserves their ¢1 norm.

Wearegoing to focusfirst on ¢2 results. Based on the spectral representation theorem,
see[21], we have for any Borel measurable real function f:

2
f(B) = /0 F()du(s). (51)

Here d u(s) isthe spectral measure induced by B. Note that B2, implies the continuity
of u(s) at zero.
Now

= (1-e8) = [ (1= duo

and

2
lim 7" = Iim/ (1—52s>ndu(s)
0

n— 00 e—0

2 n
/ lim (1 — 823) du(s). (52
0

e—0
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For the last equality we used the dominant convergence theorem with |1 — 25" < 1
forO0<s <2, |g] <land f02 1du(s) = 1. Using (45), with s replacing Bi, we have
that (52) becomes

foz Ldp(s) =1 if n <« &2
n'LrTO\O T, = oe tdu(s) =e” Br if n=1e2, (53)
WO+ —u(©) =0 if 2 < n < le]3

where we used (51) and the continuity of w.(s) at zero.

Plugging (53) in (37) gives the required resultsin ¢2.
For the resultsin ¢1 we use series expansions:

(]1—823)"=11+< ) 2(— B)+< ) ¢4(=B)?
+...+(;‘)82"(—B)". (54)

Since ||B|l1 < 2, (see property B3.), the finite series above is dominated in the ¢1
operator norm by:

1+ 262 (;) + (2622 <’;) @282 <Z> — (1+ 262" < 2® . (5B)

Asn — oo the seriesin (55) becomesinfinite. However, aslongasn < 7/¢2, 7 > 0
fixed, the sum in (55) is finite and hence that in (54) is convergent. Now for each
k=1,2,...,the (k + 1) termin the series (54) has the property:

: -1
lim <Z>82k(—B)k= {Ok _'fn<<8

n—00 L(-Bkifn=1e72"

Hence by the Welerstrass criterion for absolutely convergent series we have:

n
lim 7" = lim (]1—823)

n— 00 n— 00
I—-0+0—...=1 if n el
- ) 56
{H—‘CB+(r§)2—(T?Ij)3+...:eTBifn:‘ce2 (56)

It remains to prove that asn — oo, £2n — oo, { P} does not convergein ¢1. Let

PO ¢ ¢1 N ¢? denote a vector with positive components, and consider the sequence:
P®W =T1PO etni? (57)

By the third part of (53), || P ||» — 0. Assume now that there exists P < ¢! such that
| P™ — P||1 = 0. Sinceboth ¢ and ¢2 convergenceimply convergence of each compo-

nent, wededucethat P = 0.Ontheother hand,by P = T, p*—D, n=1,2, ... and

property B4, wededucethat P isapositivevector for which || P |1 = ||P(°> 1LY

E > Ofor all n > 0. Consequently P is a nonnegative vector with |P||l1 = E > 0, a
contradiction. The proof of the corollary isnow complete. O
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3.2. Power diffusion after afixed (large) timeinterval and a random number of defects.
Aspointed out initsstatement, Theorem 3.1 isvalid when one measuresthe power vector
after afixed number of defects“n” regardless of therealizations of therandom variables.
That is after each realization of do, d1, . .. the power vector is measured in between the
n' and the (n + 1) defect. Averaging the measurements over al the realizations of
do, d1, da, ... givestheresult of Theorem 3.1. What happensif one chooses to measure
the power vector at afixed time“+” (i.e. afixed distance along the fiber)? The answer is
given by the next theorem;

Theorem 3.2. Consider Eq. (12) with g of the form (4). Assume that (H1-H4) are sat-
isfied and that all random variables dp, d1, . .. , have finite mean, variance and third
momentum. Fix atimes, 0 <t « 1/|¢|3. Then the expected value of the power vector
at afixed time P (¢) satisfies

P(1) = T" P(0) + O(max{re3, ¥/°)), (58)

wheren = [t/(T + M)] denotestheinteger part of ¢ /(T + M), T isthe common time
span of the defects and M is the mean of the identically distributed random variables
do,d1, ....

Coroallary 3.3. In this setting, the conclusions of Corollaries 3.1, 3.2 and Remark 3.1
hold with » replaced by 7.

Proof of Theorem 3.2. As before, let P be the expected power vector after exactly
“k” defects. Denote by N the random variable counting the number of “defects’ up until
thefixed timez, i.e.

(N =T +do+...+dy_1<t<NT +do+...+dy, (59)

and let 5 (¢) denote the integer, which grows as ¢ decreases:

2/5 2
S o —6/5 o 2 o )
8_max{1.39 <—02(T+ )) R nlog (e )+<T+ ) log (e )}

§= 18] +1, (60)

where M, o2, respectively p are the mean, variance and the centered third momen-
tum, of the identically distributed variables dp, d1, do, . .. , and n isthe integer part of
t/(T + M). Notethat for r ~ ¢=3 or smaller § « ¢~2. The choice of §(¢) is explained
below.

The proof consists of three stages:

1. P(t) = PO 4+ O(e) + O8e?),
2. Pt = pm) 4 O(862),
3. P =TP(0) 4+ O(ned),

wheren = [t/(T + M)]. Thelast stageis simply Theorem 3.1.
For the second stage one applies again the previous theorem to get:

PO = oM 1 O(5e3).

Now 7, = I — O(g?) and since § « &2 stage two follows.
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Thefirst stageisthetrickiest. Without lossof generality wecanassumethat ¢ /(T +M)
isan integer. Indeed, for n = |¢/(T + M)| we have
P@t)— P(n(T +d)) = O (e(T + M)) = O(e),

an error which is already accounted for in this stage.

Suppose first n — 8 < N < n + 4, i.e. we condition the expected values to the
realization of |N — n| < §. The condition restricts only the realizations of do, ds, . .. dy
leaving therealizations of dy 11, . . . d,+5 abitrary; see (59). Hence, asin stage two, the
conditional expected values satisfy:

P(l‘l+8) — P(N+1) +O(882)
In addition
PNHY = P(1) + O(e),

since there are at most 2 defects of size ¢ from “+” up until after the (N + 1) defect.
Until now we have

PO = P(1) + O(e) + OB, [N —n| <38. (61)

Let p(¢) denote the power vector

p() = (Jas® P la2)2, .. ).

Recall that by definition P(r) = E(p(t)) and the total power in the system (12) is
conserved, i.e.

L E > e = IpOl1. 1R (62)
k

Moreover, by (61) and (62) we have

Pt)=E(p@) : IN—n|<8§)+E(pt) : IN—n|>9$)
= PO 4 0£%) + O(e) + O (| p(0)||1Prob(IN — n| > 8)).  (63)

We claim that for § given by (60)
Prob(|N — n| > 8) = O(e) + O(S&?). (64)
Indeed, sincet = n(T + M),

n+4 n—a
Prob(|N — n| > 8) = Prob (Z(T +dy) < z) + Prob <Z(T +dy) > t)

k=0 k=0

_ prop [ ST di) — (14 T+ M) (T + M)

B on+9o Sy ey

YUso(T +di) = (n = 8)(T + M) _ 8(T + M) )
o+/n—3 on—35 |

+ Prob(



18 E. Kirr, M.l. Weinstein

We are going to show how the choice (60) implies

n—a4 2
T+dy)—(n=8)((T+M (T +M 1)
Prob Yoo +di)—(n (T + )> (T + M) Si-l-i (66)
oa/n—34§ on—3§ 2 2
The other half of (65):
n+48 2
T +dy) — T +M o(T+M )
Prob 0T +di) — (n + (T + )<_(+ ) §£+i 67)
o/n—+46 o/n—+38 2 2
is analogous.
Depending on the size of n one has either:
0.8 8&?
oo % (68)
o3/n—3§ 2
or:
0.8p s
> = (69)

o3/n =35 2

If (68) holds, which corresponds to large n, we use the central limit theorem with the
Van Beek rate of convergence, see[6]:

Prob V20T +di) — (n— 8)(T + M) _ 8T+ M)
ov/n—34 o/n—348
1 2 0.8p
< — ey + —E—.
- V2r Jaran o3Vn—3

This together with (68), the inequality

—a?/2

7 ey <
7T Ja
S(T+M)

and thefact that § > m nloge—2 implieﬁm > 2Ine~1, proves (66) for the

case (68). If (69) holds then we apply the Chebyshev inequality:

)

o/n—34 ovn—2s) " 82T+M?2~ 2
where the latter inequality follows from (69) and

P 2/5
§ <139 <—> e 8/5,

Brob (ZZZS(T +do) — (= 8)(T + M) 5T + M)) _ Pn—8) _ 8

o2(T + M)

From (65), (66) and (67) we get relation (64). The latter plugged into (63) provesthe
first stage.

Finally, the three stages imply Theorem 3.2 provided that both ¢ and §s? are dom-
inated by C max{ne®, £3/4}, for an appropriate constant C > 0. This follows directly
frome < 1 and (60). The proof isnow complete. 0O
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4. Diffusion of Power in Systemswith Discrete and Continuous Spectrum

Thusfar we have considered systems with Hamiltonian, Hp, having only discrete spec-
trum. We now extend our analysisto the case where Hy has both discrete and continuous
spectrum. Continuous spectrum is associated with radiative behavior and this is mani-
fested in a dissipative correction to the operator (21), entering at ©(¢?). Therefore, the
dynamics on time scalesn ~ ¢~2 is characterized by diffusion of energy among the
discrete modes and radiative damping due to coupling of bound modes to the “heat
bath” of radiation modes.

The hypotheses on the unperturbed Hamiltonian Hp are similar tothosein[11]. There
is one exception though, the singular local decay estimates are replaced by a condition
appropriatefor perturbationswith continuousspectral components, seeHypothesis(H7")
below. For convenience we list here and label all the hypotheses we use:

(H1') Hoisself-adjoint ontheHilbert space . Thenorm, respectively scalar product,
on H aredenoted by || - ||, respectively (-, -).

(H2') The spectrum of Hp is assumed to consist of an absolutely continuous part,
ocont (Ho), With associated spectral projection, P¢, spectral measure dm (&) and a dis-
crete part formed by isolated eigenvalues i1, Ao, . . ., A, (counting multiplicity) with an
orthonormalized set of eigenvectors y1, Yo, ..., ¥, ie.fork, j=1,...,m,

Hoyk = Mees Yk, ¥j) = 8kjs

where §;; isthe Kronecker-delta symbol.
(H3') Local decay estimates on e~/ 10/, There exist self-adjoint “weights’, w_, w.,
number r1 > 1 and aconstant C such that

(i) w4 isdefined on adense subspace of H and on which wy > ¢, ¢ > 0,
(if) w— isbounded, i.e. w_ € L(H), suchthat Range(w_) € Domain(wy.),
(i) wy w— Pc = PcandP; = Pc w_ w4 onthedomainof wy andforal f € H
satisfying w4 f € ‘H we have

lw_e P fI| < C (t) " wy fl, t €R.

The hypotheses on the perturbation are similar to the ones used in the previous sections
for discrete systems, namely:

(H4') g isabounded self adjoint operator on H and satisfies || ]| = 1. In addition
we supposethat 8 is“localized”, i.e. w8 and wy Bw are bounded on H, respectively
on Domain(wy.).

(H5") go(r) € L?(R) isrea valued, has compact support contained in [0, T on the
positivereal lineandits L1-norm, denoted by || gol|1 is 1. Thereforeits Fourier transform,
goissmoothand || golleo < 1.

(H6') do, d1, ... are independent identically distributed random variables taking
only nonnegative values, with finite mean, M, and such that for any [ € {0, 1, ...} and
j#ke{l,2..., m}wehave

E (ei(k_/f)»k)d[> — O,

where IE () denotes the expected value.
Define the common characteristic (moment generating) function for the random vari-
ablesdo+7T,d1+ T, ...,

p(€) = E (e*ié(do+T)) —FE (e*if(lerT)) . (70)
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Note that p is acontinuous function on R bounded by 1. Then (H6') is equivalent to
P —2r;)=0

foral j £ke{l,2,...,m}.

We require an additional local decay estimate:

(H7’) There exists the number rp > 2 such that for al f € H satisfyingw, f € H
andall g, Aj, k, j=1,..., m wehave:

Cligoll2
T lwefll, t €R.

Here go denotesthe Fourier Transform, see (11), and the operators o (Ho — A)P¢, go(A—
Hp)P. are defined viathe spectral theorem:

lw_e™ 1" p(Ho — ) §o(Ho — M) go(rj — Ho)Pcf| <

p(Ho — 2)Pq =/ p(E — Vdm(E)

Ucont(HO)
— ¢~ i(H—NT, (e—f(Ho—Wf) =12 ..., (72)
G00. — Ho)Ps = / 800 — £)dm(€)
ocont (Ho)
T .
= / go(t)e A HIPgy, (72)
0

where dm (&) isthe absolutely continuous part of the spectral measure of Hp.

Remark 4.1. Conditionsimplying (H7’). If Hp = —A + V(x) isa Schrodinger operator
with potential, V (x), which decays sufficiently rapidly as x tendsto infinity, then either

E(eilf‘l’)zo, [1=0,1,...andj=12....m (73)

or
o) =0, j=1,...,m (74)
imply (H7"), provided the mean and variance of the random variables do, d1, ... , are

finite. Note that (73) is equivalent to adding the threshold, o = 0, of the continuous
spectrum to the set of eigenvalues {A; : k = 1,2,...,m} for which (HE6') must
hold. Hypothesis (74) meansthat the perturbation should not induce aresonant coupling
between the bound states and the threshold generalized eigenfunction associated with
Ao =0.

In analogy with the case of discrete spectrum, we write the solution of (2) intheform
m
Gt x) =Y aj(Oy;(x) + Pe(t, x).
j=1
Recall that the expected power vector P(¢) is defined as the column vector

P(t) = (E(@a1(n), E@zaz(1)), . .. , E(@nan(1))) .
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We denote by
P™ = P(p), thor+T <t <ty

the expected power vector after n > 1 defects (note that P (¢) is constant on the above
intervals).

We will show that the change in the power vector induced by each defect can be
expressed in terms of a power transmission matrix

T, = Tdisc.e — 82 diag[)/]_, Y2, ..., Vm]
=1 — &*B — ¢*diaglys, y2, ... , vml- (75)
Recall that Tgisce = Te = 1 — £2B, displayed in (21-22), is the power transmis-
sion matrix for systems governed by discrete spectrum. Each damping coefficient y, >
0, k=12,...,mresultsfrom the interaction between the corresponding bound state
and the radiation field. In contrast to the resultsin [11], there are no contributions from

bound state - bound state interactions mediated by the continuous spectrum; these terms
cancel out by stochastic averaging.

Remark 4.2. For sufficiently small ¢ we have:
ITells = 1= e®minfys, y2, .., ym) < L. (76)

The damping coefficients are given by:
2

Yk :J}i\ng) go(Hop — )»k)\/H—LO(HO — e —im)[2 (I — p(Ho — M — in))_l Pc[Bvk]
> 0, (77)

foral k = 1,2,...,m. Herethe operators which are functions of Hp are defined via
the spectral theorem and I is the identity on .

Remark 4.3. XYZ. When the pulses are not identical, see Remark 3.1, one can till prove
the existence of v, > 0. However, we can recover formula (77) only in the cases when
the shapes g,, convergeto afixed one denoted by go or form an almost periodic sequence
with mean go.

The following theorem is a generalization of our previous result on the effect of a
single defect on the mode-power distribution, adapted to the case where the Hamiltonian
has both discrete and continuous spectrum:

Theorem 4.1. Consider the Schrodinger equation

id¢ = Hop + g(1)B. (78)

where g(¢) is a random function, defined in terms of go(¢), given by (4). Assume that
hypotheses (H1'-H7") hold. Consider initial conditions for (2) such that w4 Pc¢o € H.
Then there exists an ¢p > 0 such that whenever |¢| < gg the solution of (2) satisfy:

B
(nT)"

P<"+1>=7;P<">+0(e3)+0< ) n=012..., (79)

where the matrix 7, isgivenin (75) and r = min{ry,rp — 1} > 1.
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By applying this theorem successively we get the change over n > 1 defects:

n—1
P —T1pO)+ Y T <0 3 +o<;)). 80
7 P(0) 1;0 (% - (80)
Using || T¢ll1 < 1 and
Z(nT)_r <00
n=1

we can conclude that the last correction term in (80) is of order O(¢).? Asfor the other
correctionterm we havetwo waysin computing itssize. Thefirstisbased on ||7;" 1 < 1,
and gives

n—1

> TFOE®) = 0med).

k=0
The second is based on

n—1 1
YT < A= 1Tt = —5.
k=0 ve
wherey = min{y1, y2, ... , ¥}, and gives
n—1
Y TFOE®) = Oy ™).
k=0

We have proved the following theorem:

Theorem 4.2. Under the assumptions of Theorem 4.1, the expected power vector after
n defects,n =1, 2, ... , satisfies:

P™ = T"P0) + O (min(ay—l, nsS)) +O(e).
Here, 7, isthe diffusion/damping power transmission matrix given in (75).
Moreover, the argument we used in the proof of Theorem 3.2 now gives

Theorem 4.3. Under the assumptions of Theorem 4.1, the expected power vector at a
fixedtimer, 0 <t < oo satisfies:

P(1) = T P(0) + O(*%). (81)

Here, n istheinteger part of t /(T + M), T isthe common time span of the defects and
M isthe mean of the identically distributed random variables dp, d1, . . . .

The nicer form of the correction term in (81) compared to (58) is due to the fact that
min(ze3, ¢/y) isnow dominated by O(¢%/°).

2 Onecanactually show that Zz;é T*O (W) =0 (min {e, % }) . However, asn — oo
the other correction term dominates and the result of Theorem 4.2 cannot be improved.
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In analogy with Corollary 3.1 we have, in the present context, the following limiting
behavior:

Corollary 4.1. Under the assumption of Theorem 4.1 the following holds:

P(0), if t < 72
lim P(t) = { e~B+D7 p(0) if =172, (82)
oo 0, ift>e2 -0

where B isdisplayed in (22) and
F:diag[yl,yz,... ,ym] > 0.
Proof. Since7; =1 — ¢%(B +I') and B + I' is self adjoint with
B+T>=min{y, : k=21,2,...m} >0

we have

I, if n e 2
lim 7,V = { ¢~ (B+D)r ifn=r1e2. (83)
e 0 ifn>e2e—0

This follows from writing 7, in the basis which diagonalizes B + I'' and using the fact
that all eigenvaluesof B + T are strictly positive, see the proof of Corollary 3.1.
Clearly, (83) and Theorem 4.3 imply the conclusion of the corollary. 0O

Note that on time scales of order 1/¢2 the dynamical system is now equivalent to:
0 P(r) = (=B -T)P(7),

where — B is a diffusion operator, see the discussion after relation (50), while —T" isa
damping operator.
It remains to prove Theorem 4.1.

Proof of Theorem4.1. Consider oneredization of the random variablesdy, d1, . . . . For
this realization the system (2) is linear, Hamiltonian and deterministic. It iswell known
that such systems have an unique solution, ¢ (), defined for al ¢+ > 0 and continuously
differentiable with respect to . Moreover

eIl = ligoll- (84)

We decompose the solution in its projections onto the bound states and continuous
spectrum of the unperturbed Hamiltonian:

¢, x) =Y a;(OV; +Pep(t) = ¢ (1) + da(0), (85)

j=1

where ¢, and ¢, are, respectively, the bound and dispersive parts of ¢:

¢p(1) =Y _a;(O)Y;,

j=1

$a(t) = Pco (1), (86)
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and
(Pp(1), ¢a(2)) = 0. (87)
Note that (84) and (87) imply
o6 (D1 =< ligoll, a1 < ligoll, (88)
for al + > 0. Consequently,

lar ()] < ll¢oll, (89)

foralt > 0.
By inserting (85) into (2) and projecting thelater onto the bound states and continuous
spectrum we get the coupled system:
10y (t) = eay(t) +eg(t) (Yu, Bop(1)) + eg(t) (Y, Bba(?)) , (90)
i101¢a(t) = Hopa(t) + eg(t)PcPda(t) + eg(t)Pchey (1), (91)

wherek =1, 2,... ,m. Duhamel’s principle applied to (91) yields
t
34(0) = 10 90) ~ i [ g(5)e U IPeppy(5)ds
0

t
—ie / g(s)e HU=9p B, (5)ds. (92)
0

In amanner analogous to the one in [3] we are going to isolate ¢, in (92). Consider the
following two operators acting on C(R*, Domain(w..)) respectively C(R*, H), the
space of continuous functions on positive real numbers with values in Domain(ws.)
respectively H:

KTl = /O g6y IR g f(s)ds, (93)
K[fl0) = fo (s IR (s)ds. (94)
Then, by applying the w_ operator on both sides of (92) we get:
w-ga(1) = w_e ' 4(0) — ie KT [w_¢al(t) — ieK[p](1). (95)
On C(R™T, H) we introduce the family of norms dependingona > 0:
I flle = ilg(ﬂ"‘llf(t)ll (96)
and define the operator norm:
[Alle = sup [|Af - (97)
lflle=<1

Thelocal decay hypothesis (H3') together with (H4') and (H5") imply:
Lemma4.1. If 0 < o < rp then there exists a constant C,, such that

IK*lle < Cas
[Klle = Ca.
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Proof of Lemma4.1. Fix ¢, 0 < o < rp and f € C(Ry, Domain(wy)) such that
| flle <1 Then

O NK IO = ()

t
/0g(S)wfe_"H"('_”F’cﬂw+f(S)ds

t .
< ()™ /O lg() | lw_e HU=IPcw_|| - wypwyl - | f(s)lds

t
< eChs pusl [ LEO ) ©las.
o (r—s)11
where we used (H3'). Furthermore, from || |l < 1and ||wBw- | bounded, we have
g9l
o =+ o o
OUNKT[fION < Cr) /(; —U_s),l(s)a(»v) If(s)lids
gl
C(r)* p _
=@ /o (1= s)i(s)®
min(z,¢;+T)
< clr)” Ig(s;zl _
i<l (t —s)1(s)
By the mean value theorem
min(z,¢;+T) |g(S)| B e
/tj mds =t —1;)""t;) " “llgoll1,
for some
tj <t <mint, t; +T). (98)
Hence
OUIKTLAION < CO* D (e —1) i) . (99)
{j:itj<t}
We claim that
D =) T Y < Dylt) (100)
{j:7j<t)

for some constant D,, independent of 7. This is a consequence of the fact that we are
computing the convolution of two power-like sequences. For a more detailed proof we
decompose the sum into two, first running for 7; < /2 andthesecond for¢/2 < 7; < 1.
For the former we have:

_,1
3 <t—tf;>”<£,~>°‘§<%> DG

{jitj<t/2} {jitj<t/2)

< <é> Ty (101)

{jijT<t/2}

PR t max(0,1—a)
< <§> Doz <§> =< Da<t>_a
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sincer; > max(1, @) and7; > 1; > (j — 1)T, see(H3"), the hypotheses of thislemma,
respectively (98) and (5). The remaining part of the sum is treated similarly:

S D VI T

{jir/2<i;<t} {jit/2<ij<t/2}

< <%>_ D ORRIRE (102)

{(kikT <1/2}
t —o
< <§> D < Dy (1),

sincery > lands —7; > kT, wherek issuch that 74 ; = max{z), : 1, < 1}, see (98)
and (5).

Now (101) and (102) imply (100) which replaced in (99) provesthe required estimate
for the K+ operator. For the K operator the argument is completely analogous. O

We are going to use Lemma4.1 for « = 0 and o = ry1. For Cg and C,, defined in the
lemma, let

Ckg = max{Co, Crl} .

Then, for ¢ such that Cxe < 1, the inverse operator (I — isK+)~1 exists and it is
bounded in the norms (97) for « = 0 and o = r1. Then (95) implies:

w_a(t) = (I —iek*)™" [w,e—"HO’m(O)] (1) —ie (I —ieK ™) " K[gp] (1)
= O ()" Hws@a(O]) - ieK[dy] + O (1K1 ) (103)

Thuswe have expressed the dispersive part, ¢, (¢) asafunctional of the bound state part,
¢p(1). Substitution of (103) into (90) gives, fork =1,2,...:

drar (1) = —idgar(t) — ieg(t) Y a; () (Yx, BYj)

j=1
—e%8(0) (w By, K9] (1) (104)
+28(0) (OUlw 4@ 1)) +O (2IKIglll)) k=12.....m.

In particular (104) implies

n—1
ap(ty) = ™G ) + &y D (o, dy. ... L dp), (105)
p=l

forall k =0,1,...m,n > 2and ! < n. Here each constant D,, depends on the real-
ization of do, da, ...d, and does not depend on the realization of any other random
variable. In addition al D, are uniformly bounded by a constant depending only on Ck
above and theinitial condition ¢ (0). Hence

ap(ty) = e =gy (1) + O(eln — 1)) (106)
fordln,/=0,1,2, ..., andk=1,2,...,m.
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We multiply both sides of (104) withay, then add theresulting equation to itscomplex

conjugate. Then we integrate from#, to¢, + T and obtainfork =1,2,... ,m
aray(ty + T) — arax(t,) =R1+ R2+ Rz, (107)
where
m ta+T
Ry = —is 300 p) [ s 0a; 0 + e (108)
=1 tn
ta+T
Re = ~cwipin. [ eO@OKIBI0A +cc. (109)
tn
R = O(e(ta) ™) + O (83). (110)

If we neglect the R, and Rz in (107) we are left with R1, which is precisely the
expression associated with the power transfer in systems with discrete spectrum; see
Sect. 2. Moreover R3 has norm asserted in (79). So, it remains to show of R» that

thw+T
E <<w+ﬁwk, [ gWar () K[ppl(t)dt) +c.c.>
tll

=wuP +0(nT)™")+ O(e), (111)

where y; isgiven by (77) and r = min{ry, rp — 1} > 1.
We use integration by parts. Let

t

Klgp](1) = / g(s)e MM K 1(s)ds,  ta<t<t,+T, (112)
tha+T

and note that K [¢p] (¢, + T) = 0. Lemma 4.1 together with
g(s) =gols —tn), th <s <t, +T, (113)
imply the existence of a constant C with the property:
IK[g5]®] < Cligoll} = C, (114)
uniformly inz, <t <t, + T. Define
A1) = ap ()™=, (115)
fork=1,2,...,m. Notethat
Ak (tn) = ar(tn). (116)
From (104) we have

10: Ak ()| = C [e] [go(s — )] (117)
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for some constant C independent of s andz, <s <1, +T. Now

ln+T tn+T _ -
/ gar()K[pp](t)dt = / Ap(1)0; K[¢p] (t)dt
In In

tutT

=—ak<rn>1%[¢b]<rn)—f 8, A (OR[d5)(0dr (118)
17

n

th+T )
=@y (ty) / g™ K [gp](1)dt + O(e).
t}l

To further rewrite (118) we notethat forz, <t <t, + T,

KLl =Y [ @m0 Pepyds
j=1""

n—1 m

u+T '
+ZZ/1 aj(s)g(s)w_e HOU=IP Boy i ds. (119)

1=0 j=1"1

Anintegration by parts similar to the one above and use of (113) leads to:

n+T .
/ a;j(s)g(s)w_e " HOU=IP By ds

1

s —ini(s—1)) —iHo(t—s) €
=ajw) | g w e PebYjds + O\ T —n
1

— g Sn(h: — —i Ho(t—1) . €
=a;(t)w_go(r; — Ho)e """ WPByr; + O (—(t — T)rl) , (120)
and
t .
/aj(s)g(s)w_e_’HO(l_S)Pcﬂlﬁjds
t)l
t
=aj (tn)/ g(s)e i (S_"')w_e_’-HO(t_S)PCﬁlﬁjds + O(e). (121)
tn
By plugging (120-121) in (119) we get
m t ) )
Klgpl(t) = aj(t) / g(s)e MGy o= IHU=)p gy s
=1 fn
m n—1 .
+D°3 aiyw-go(r; — Ho)e ' HUTPBy; + Oe), (122)
j=11=0

whereto estimatethe error we used thefact that theseries ) ", (r —y —T') ~"* isconvergent
and uniformly bounded in .
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We now substitute (122) into the right-hand side of (118) and obtain

tatT
f gar()K[pp](t)dt = O(e)
1,

n

m th+T ) t ) )
+ D @k (tn)a;(tn) / g(n)e ™= / g(s)e™ MOy _e TPy sdsdr
t)l

j=1 In
m n—1 )
+ Y artaj )y w-go(Ho — A)go(r; — Ho)e HoUn=Pe gy, . (123)
j=11=0
Based on (105) we can replace a (t,)a () in (123) with
ar(t)aj () = ™V (n)a; () + error(l, j),
n—1
error(l, j) =&y ™"~ Dw_go(Ho—rpgo(r—Ho)e 0P gy ;. (124)
p=I

Tekingintoaccountthat #, —1,_1 = d,,+T andthefactthats,_1—#, D,, | < p <n—-1
do not depend on d,,, the expected value of the error can be rewritten as

E(error(l, j)) =
n—1
=¢) E (wfetak—Ho)(rn—z,,,l)emmn,l_,p)
p=I
X ngo(Ho — )\k)g’o()»j — Ho)e—iHo(TnA—t/)pcﬂwj)
n—1
=&Y wp(Ho— ME (e
p=I

x Dpgo(Ho — Ai)go(hj — Ho)e_iHO(’"’l_”)Pcﬂtﬁj>
n—1
—¢) E (eiwnfl—z,,)
p=I
x Dyw_p(Ho — 1) go(Ho = )g0(j — Ho)e o1=Popy; ) . (125)

By applying the H norm to (125), commuting the norm with both summation and
expected value and using (H7') we get:

IE(errord, NI < ISIM < Clel{(n — DT 2. (126)
(th—1 — )72
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Sincer, > 2thesummation over [ and j of al the errorswill havean O(g) size. By this
argument (123) becomes:

tntT m
E <<w+ﬁwk, / g(r)ak<r)1<[¢b]<z)dr> + c.c.> =Y E@itn)a; (i)
In

j=1

thw+T . t . .
. <w+ﬂ‘ﬂk,'/ g(t)el)»k(f—fn)/ g(s)e_l)‘f(‘v_t")we_lHO(t_‘Y)Pcﬂl/fdedl>+C.C.
In

In

m n—1

+ Z Z E@ (t1)a; (1))

j=11=0

- E (<w+l31ﬂk, w_go(Ho — Ax)go(hj — Ho)ei(x"fHO)(t”ft’)Pcﬁ%’)) +c.c.
+ O(e). (127)

But (H6') and the technique used to prove (41) imply

! .
Pk()fork=]

E(ax(t)a;(n)) = { 0 fork#j"

Moreover, an argument similar to the one we used in (124-126) alows us to replace
PO py P™ in (127) and incur an O(¢) total error. Then, (127) becomes

tn+T
E (<w+ﬁ1ﬁk, / g(t)ﬁk(t)K[¢b](t)dt> + c.c.) =
n
= P" (w4 Bk, w—go(Ho — M) §o(ui — Ho)Pc )

n—1

+pP™ <w+/31ﬁk, w-go(Ho — A)go(Ar — Ho)E (Z ei(””‘))(’”")Pc> ﬂ’ﬁk>
1=0

+c.c.

+0O). (128)

We claim that

! def (wi B, w—go(Ho — i) oAk — Ho)PcByik)

n—1
+ <w+ﬁ1ﬂk, w_go(Ho — Ar)go(Ax — Ho)E (Z ei(k"_H")(’"_”)Pc) ﬁl//k> +c.c.

=0
= v +O(nT)""2), (129)

where y; is given in (77). Equation (129) replaced in (128) gives (111) which finishes
the proof of this theorem.

To prove (129) we first find a simpler expression for the expected value operator
involved. Since {d;} ;>0 are independent, identically distributed with common char-
acterigtic function, p(&), using the definition of 7,,, n > 0, see (5) and the spectral
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resolution of the operator Ho, see (71), we have:

B (eiak—Ho)(tn—tz)pC) = / E(e! M =810y dm (&)

ocont (Ho)
:/ E(ei(lk—S)Z;{;l(a’j‘i‘T)) dm(%‘)
ocont (Ho)

n—1
— / 1_[ E(ei()\k_f)(dj+T)) dm(€)
ocont (Ho) j=I

- / P& = 1) dm(€) = p" (Ho — )Pe. (130)
ocont (Ho)

Hence
n—1
w_2o(Ho — M) go(k — Ho)E (Z e’“k—Hoﬂf"—")Pc) B
=0

= w_go(Ho — h)o(hk — Ho) Y _ p’ (Ho — hi)Pcp. (131)
j=1

But each operator term in (131) hasits H—norm dominated by:

llw_go(Ho — A)go(hk — Ho)p’ (Ho — Ak)PcBl
= [lw_p(Ho — M) g0(Ho — A)go(rk — Ho)E(e (o=t lji-1=10)p gy |

c | B
S e oAl = (G = DT

Now r» > 2 implies that the sequence 1/(jT)"2 is summable, and, by the dominant
convergence theorem, there exists:

Vi = (wy By, w—go(Ho — i) go(rk — Ho)PcBk)

+ 3 (wi B w-go(Ho = g0 — Ho)o! (Ho — hIPefv) + c.c.

j=1
— i n
= Jim -
Moreover
oo .
Ve —vil = Z <w+ﬁWk» w_go(Ho — Ai)&o(Ax — Ho)p’ (Ho — )»ch,Blﬁk> +c.c.
j=n+1
0
<2C) (jT)"2 < D(nT)* " (132)

J=n
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Consider now, for n > 0,

i = (wy Bk, w_go(Ho — ) go(he — Ho)PcByik)

+ 3 (wa B, w-go(Ho — 1) goGu — Ho)p! (Ho — i — imPe)

j=1
+c.c. (133)
On one hand
p! (Ho — ki — in)Pe = E(e™ 110~ o210 p) (134)

and, by the dominant convergence theorem, for all j > 1,
lim ,oj(Ho — A —in)Pe = ,Oj(HO — Ap)Pe.
N\O

On the other hand the series (133) is dominated uniformly in n by a summable series,
because:

llw—go(Ho — M) &o(hk — Ho)p’ (Ho — A — in)Pcp|

T /T
/ / dudsgo(s + u)gow)E (e_"(’f_"’)w,e_’(HO_)"‘)(’J'_'O_S)PC/?) H
0 0
Ce— T
- - < i — DT "1,
R T—T llgollzllwy Bl < ((j —DT)

Here we used (H3'), |lgoll1 = 1 and |jw+ 8]l bounded. Therefore, by the Weierstrass
criterion:

limy! = . 135
n\oy" Yk (135)

In addition (134) implies
lo(Ho — Ak — imPel| < E (7700~ ot =0 )
<e M <1
Thismakes (I — p(Hp — A — in))Pc invertible and given by the Neumann series:
0
(I — p(Ho — x — i) *Pc =Y _ p/ (Ho — i — in)Pe. (136)
j=0
Plugging (136) in (133) we have
ve = (BYk. 0(Ho — Ai)§o(Ak — Ho)PcBYi)
+<ﬂ‘ﬁk, 80(Ho — M) 8o(hk — Ho)p(Ho — A — in)(I — p(Ho — A —im) ™t
x Py} + c.c.

A simple inner product manipulation shows that:
2

§0(Ho — h)y/L = |p(Ho — 2 — in)|? (L = p(Ho — 2 — in)) " Pe[Bya]

W=



Diffusion of Power in Randomly Perturbed Hamiltonian PDEs 33

Hence
~k = |lim '7__ % s 137
Vi U\Oyk Y ( )

see also (135) and (77).
Finaly, (137) and (132) givethe claim (129). Thetheorem isnow compl etely proven.
O

5. Appendix: Properties of the Power Transmission Matrix

In this section we prove the properties of the matrix (linear operator) B we used in
Corollaries 3.1 and 3.2. Recall that B is given by (22) and is irreducible, see the dis-
cussion before Corollary 3.2. We note that (22) impliesin particular that for all i, j =

12,..., i,
bii >0; bjj <0, bj;=— Z bi. (138)
ko koti

Lemma 5.1. If the dimension of B isfinite, say m, then B isa nonnegative, self adjoint
matrix having 0 as a simple eigenvalue with corresponding normalized eigenvector:

1
I

Proof. The symmetry of B follows directly from (22). The fact that it is nonnegative
follows from the identity:

1,1,...,1).

rg =

m
X*BX =Y biXiX;= Y |byjl-|Xi — X;12, (139)
i,j=1 i,ji<j

where we used (138). The latter and a direct calculation show Brg = 0, hence rg isan
eigenvector corresponding to the eigenvalue 0.

To prove that 0 is a simple eigenvalue we use the irreducibility of B. Recall that
irreducibility is equivalent to the strong connectivity of the directed graph G (B) associ-
ated to B, seefor example[26, pp.19-20]. Let X = (X1, Xo, ..., X,,) be an arbitrary
0-eigenvector for B. Then (139) becomes:

0= > Ibijl-1Xi = X;I%

i,j,i<j

Clearly X; = X; whenever b;; # 0. In terms of graphs this trandates to X; = X;
whenever i, j are connected by a path of length 1 in the directed graph G (B). By induc-
tion on the length of the path we get that X; = X ; whenever i, j are connected by a path
inthedirected graph G (B). But thelatter is strongly connected because B isirreducible.
It followsthat all components of X are equal hence al the 0-eigenvectors are parallel to
ro. Thistogether with B symmetricimpliesthat Oissimple. O

Lemma 5.2. If B isinfinitedimensional, then B isa bounded linear operator on ¢1 with
|Bll1 < 2. In addition, for |¢| < 1, the operator 7, = I — 2B transforms positive
vectors (i.e. vectors with all components positive) into positive vectors and conserves
their ¢ norm.
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Proof. We need to show:
o0
IBlla=sup) " Ibij| <2 (140)
=1

Fix an arbitrary j € {1, 2, ...} and consider the j! vector in the standard basis of ¢1 :

Qifi#j
X = (X1, X2,...), Xi:{lif;ij" (141)

Clearly X € ¢2, ||X||2 = 1. Define the contractive operator in £2 :
A= (ij) 14 ono -

aij = ojj go(—A;j) = (Y, ﬁ%‘)/

o0

go(n)e! M=)z, (142)
o0

A iscontractive becauseforany Y € ¢2, |[Y|2=1:

|Y*AY]|

S o0
> ap¥ Y| = ‘ f 80() (521 Yy, Y 21 Vi ) dit
—0

k=1

= ‘/ go(N(Y (1), BY (1))dt

< / 1801 - [{Y (). BY (1)) dt

< / o)1 - 1BllxNIY (1) |Pd1 = IIﬁIIH/ Igo()ldr = [BlIxligoll L2 =1,

—00 —

where, Y (1) = > %2 €' Xy, Y(@) € H, Y@ = 1, and, at the very end,
we used (H2) and (H3).
By adirect calculation we have

e ¢]

D Ibijl =) |Xi(A- AX); — (AX), (AX);] (143)
i=1

i=1
< IXl2-IA- AXll2 < |AI3I X 12+ 1 AX 3
< 20Al51X 15 <2
Inequality (140) is now proven. In addition, because ) ; |b;;| = 2b;;, see (138), we get
0<b; <1 (144)
Consider,
T =1-6’B,  To=(fij)1o oo

From (138), (144) and |¢| < 1 we deduce that T, has nonnegative coefficients and

00 00
Ztijzztji =1 (145)
i=1 i=1
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Now let
X = (X1, Xo,...) €, X;>0Vj=12....
Then

o
(T X); = ) 1jX; >0,
j=1

since al terms in the sum are nonnegative with at least one being strictly positive.
Moreover

o o 0 o0 o0 o0
ITeXlla =Y (LX)l => > iX;=Y X; ¥ tyy=»_ Xj=|X|1.
i=1 i=1j=1 j=1  i=1 j=1

where we exchanged the order of summation because we are dealing with convergent
series with nonnegative terms and we also used (145). O

Lemma5.3. If B isinfinite dimensional, then B is a bounded, linear, self adjoint, non-
negative operator on ¢2 with spectral radius less than or equal to 2. Moreover, 0 is not
an eigenvalue for B.

Proof. Consider the 2-form induced by B on ¢2:
o0 o0 o0 o0
X*BX = Y biiXiX; < Y bl XilP+1/2) ) Ibil1Xil? + 1% 12
i=1 i=1j,j#i
(sup Y Ibijl +sup Y Ibi; DIX 3. (146)
i j J i

ij=1

IA

Because B is symmetric the two supremums above are equal to | B||1 < 2, see Lemma
5.2. Therefore | X*BX| < 2| X |13 and the 2-forminduced by B together withits ¢2 norm
and spectral radius are al bounded by 2. Since now B is both a symmetric and bounded
operator on ¢2 it is self adjoint.

The argument at the end of Lemma 5.1 can be easily generalized to show that any
eigenvector corresponding to the zero eigenvalue for the irreducible operator B should
have all components equal. However such avector isnot in £2 unlessit istrivial. There-
foreQisnot an eigenvaluefor B. 0O
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