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1. Introduction

In this chapter we discuss Hamiltonian partial differential wave equations which are de-
fined on unbounded spatial domains, a class of so-calledextended Hamiltonian systems.
The examples we consider are the nonlinear Schrödinger and Klein–Gordon equations de-
fined onR

3. These may be viewed as infinite-dimensional Hamiltonian systems, which
have coherent solutions, e.g., spatially uniform equilibria, spatially nonuniform solitary
standing waves. . . . Questions of interest include thedynamics in a neighborhood of these
states (stability to small perturbations), stability under small Hamiltonian perturbations of
the dynamical system, the behavior of solutions on short, intermediate and infinite time
scales and the manner in which these coherent states participate in the structure of solu-
tions on these time scales.

The contrast in dynamics between Hamiltonian systems of extended type and those of
compact type is striking. Compact Hamiltonian systems arising, for example, from finite-
dimensional Hamiltonian systems or Hamiltonian partial differential equations (PDEs)
governing an evolutionary process defined on a bounded spatial domain, are systems gov-
erned by finite or infinite systems of ordinary differential equations (ODEs) with adiscrete
set of frequencies. Many fundamental phenomena and questions here involve the persis-
tence or breakdown of regular (e.g., time periodic or quasiperiodic) solutions and their dy-
namical stability relative to small perturbations. A stable state of the system is one around
which neighboring trajectories oscillate. KAM theory implies states persist in the presence
of small Hamiltonian perturbations (structural stability) provided certain arithmeticnon-
resonance conditions on the set of frequencies of the unperturbed state hold [1,27,11,3].

In contrast, extended Hamiltonian systems arising from Hamiltonian PDEs are systems
involving continuous as well as discrete spectra of frequencies. Stable states are expected
to beasymptotically stable; states initially nearby the unperturbed state remain close and
even converge to it in an appropriate metric. Since the flow is in an infinite-dimensional
space, this does not contradict the Hamiltonian character of the phase flow, which in finite-
dimensional spaces preserves volume. Convergence to an asymptotic state occurs through a
mechanism of radiating energy to infinity. It is also possible that some states of the system
are long-livedmetastable states. These are states which persist on long time scales, but
decay ast → ∞. This structural instability due to Hamiltonian perturbations occurs due to
nonlinearity induce resonances of states associated with discrete and continuous spectra,
precisely that which is precluded in the setting of KAM theory.

2. Overview

We consider partial differential equations for which the linear part (the small amplitude
limit) has spatially localized and time-periodic “bound state” solutions, which are dynam-
ically stable. Such solutions of the linear dynamical system are associated with the dis-
crete spectrum of linear self-adjoint operator generating the flow. Also associated with this
operator, due to the unboundedness of the spatial domain, is continuous spectrum with
corresponding spatially extended (nondecaying) radiation states. These bound and radia-
tion states are central to the linear dynamics. Arbitrary finite energy initial conditions can,
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by the spectral theorem for self-adjoint operators, be decomposed into a superposition of
discrete and continuous spectral states. Their amplitudes evolve with time according to an
infinite system of decoupled linear ordinary differential equations. The discrete component
of the solution is quasiperiodic in time and localized in space, while the continuous spec-
tral component disperses to zero (e.g., in a localL2 sense) as time advances. We seek to
understand the dynamics in theweakly nonlinear regime, the regime where nonlinearity is
present and where the initial data are small in an appropriately chosen norm.

Except in very special cases of integrable systems where, in an appropriate “nonlinear
basis”, bound (soliton) and radiation states evolve decoupled from one another, nonlin-
earity induces coupling and exchange of energy among bound and radiation states. It is
this situation which interests us and we consider as examples the following two nonlinear
wave equations of Hamiltonian type: the nonlinear Schrödinger equation (NLS) and the
nonlinear Klein–Gordon equation (NLKG)1

NLS i∂tΦ = (−� + V (x)
)
Φ + g|Φ|2Φ, (2.1)

Φ(t, x) ∈ C, (t, x) ∈ R
1 × R

3

NLKG
(
∂2
t − � + m2 + V (x)

)
u = gu3, (2.2)

u = u(t, x) ∈ R, (t, x) ∈ R
1 × R

3.

The nonlinear coupling coefficient,g, is real and taken to be either zero or of order
unity. The particular nonlinear Schrödinger equation, (2.1), with a nontrivial potential is
also called the Gross–Pitaevskii equation (G–P). Applications, especially of the nonlin-
ear Schrödinger equation, abound. These range from the fundamental physics of Bose–
Einstein condensation [29,16] to nonlinear optics, e.g., nonlinear optical pulse propagation
in inhomogeneous media [19,18].

The remainder of the chapter is outlined as follows:
• In Section 3 we shall introduce solitary wave solutions of the nonlinear Schrödinger

equation, (2.1).
• We then discuss a variational approach toH 1 orbital Lyapunov stability of solitary

waves in Section 4.
• The detailed behavior of solutions containing solitary wave components requires a

detailed understanding of spectral properties of the solitary wave. The linearization
about a stable solitary wave may have (a) discrete spectrum consisting of eigenstates
with zero frequency associated with the equation’s symmetries, and neutral (“inter-
nal”) oscillatory eigenstates and (b) continuous spectrum associated with spatially
extended radiation states. The presence or absence of these neutral oscillatory states,
a property which is not derivable from the variational characterization the solitary
wave, has an important effect on the dynamics on all time scales. Section 5 contains a
discussion of asymptotic stability of solitary waves in the simple case where there are
no neutral oscillations.

1Two other examples are cited at the end of this section. We have not attempted a comprehensive survey in this
chapter.
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• The case where there are neutral oscillatory eigenstates is considerably more rich in
phenomena and requires deeper mathematical study. We shall see that these latter
states typically decay to zero on very large time scales. The mechanism for decay is
nonlinearity induced resonance of discrete and continuum states; the continuous spec-
tral modes act as an effective dissipative heat bath with computable dissipation rate.
In Section 6 the ideas and methods of analysis are introduced in the simpler context
of the nonlinear Klein–Gordon equation. Then, in Section 7 we return to NLS/G–P to
study the weakly nonlinear regime of multimode nonlinear Schrödinger equations.

A theme throughout this article is that we view each PDE as a Hamiltonian system com-
prised of two subsystems: (a) a finite-dimensional subsystem describing the evolution of
coherent spatially localized states and (b) an infinite-dimensional part, governing the radi-
ation of energy to spatial infinity. For a general small norm initial condition, the solution
has different behaviors on different time scales: “initial phase”, “large but finite time” and
“infinite time”. This behavior is elucidated by derivation of an appropriatenormal form,
which makes explicit the key mechanism for energy transfer among bound and radiation
states.The direction of energy flow is an emerging property, a consequence of the initial
condition being localized, resonant coupling of bound to dispersive waves due to nonlin-
earity and the property of local decay of dispersive waves.

There are close connections between these phenomena and their analysis with the com-
putation of lifetimes of quantum states (transition theory), the perturbation theory of em-
bedded eigenvalues in continuous spectra, and parametrically forced Hamiltonian systems;
see, for example, [41–43,24,25,37,38].

In conclusion we remark that the asymptotic stability and scattering of coherent struc-
tures for infinite volume Hamiltonian systems has been considered in other contexts as
well. Two important other studies are (i) the long time dynamics resulting from a classical
particle interacting with a scalar wave field; see, for example, [26] and (ii) the stability of
the Minkowski metric for the Einstein equations of the gravitational field [10].

3. Linear and nonlinear bound states

In this section we introduce bound states of the linear (g = 0) and nonlinear (g �= 0)
Schrödinger equation (2.1).

Bound states of the unperturbed problem

Let H = −�+V (x). We assume thatV (x) is smooth, real-valued and sufficiently rapidly
decaying, so thatH defines a self-adjoint operator inL2. Additionally, we assume that the
spectrum ofH consists of continuous spectrum extending from zero to positive infinity
and two discrete negative eigenvalues, each of multiplicity one2:

σ(H) = {E0∗,E1∗} ∪ [0,∞).

2The general case of any finite number of bound states can be considered as well. The case ofm � 2 bound
states captures all key phenomena we wish to discuss and keeps the presentation as simple as possible.
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Therefore, there exist eigenstates, which smooth, square-integrable normalized functions,
ψj∗(x), j = 0,1, such that

Hψj∗ = Ej∗ψj∗, 〈ψj∗,ψk∗〉 = δjk. (3.1)

We also introduce spectral projections onto the discrete eigenstates and continuous spec-
tral part ofH , respectively:

Pj∗f ≡ 〈ψj∗, f 〉ψj∗, j = 0,1,

Pc∗ ≡ I − P0∗ − P1∗.

Nonlinear bound states

We seek solutions of (2.1) of the form

φ = e−iEtΨE.

Substitution into (2.1) yields the following elliptic problem for the bound states of NLS

HΨE + g|ΨE |2ΨE = EψE, ψE ∈ H 1. (3.2)

Note that ifΨE is any solution of (3.2) then for anyθ ∈ R, ΨEeiθ is a solution.

THEOREM 3.1 [35]. For each j = 0,1 we have a one-parameter family, bound states
depending on the complex parameter αj and defined for |αj | sufficiently small:

Ψαj
(x) ≡ αj

(
ψj∗(x) +O

(|αj |2
))

,

Ej = Ej∗ +O
(|αj |2

)
.

For αj complex and |αj | small, the set {Ψα0} is called the nonlinear ground state family and
{Ψαj

: j � 1}, the family of nonlinear excited states. Below, we shall also use the notation
ΨEj

to denote a real-valued nonlinear bound state and parametrize the family of states by
ΨEj

(x)eiθ , θ ∈ R.

The proof uses standard bifurcation theory [31], which is based on the implicit function
theorem. The analysis extends to the case of nonlocal nonlinearities.

In what follows we shall “time-modulate” these bound states. For convenience, we shall
use the notation:Ψj (t, x) = Ψαj (t) andEj(t) = Ej(|αj (t)|2).

An alternative approach to the construction of nonlinear bound states is byvariational
methods. The variational characterization is of particular interest in the case of the ground
state, due to its role in establishing itsdynamic stability. Our point of departure for the
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variational approach is the observation that NLS has the following two conserved integrals,
which are constant in time on solutions of NLS:

H[Φ] ≡
∫

|∇Φ|2 + V (x)|Φ|2 + 1

2
g|Φ|4 dx, (3.3)

N [Φ] =
∫

|Φ|2 dx, (3.4)

H is a Hamiltonian, which generates NLS;

i∂tΦ = δH[Φ,Φ∗]
δΦ∗ .

Its time-invariance for the NLS flow is associated with time-translation symmetry, while
the time-invariance ofN is related to the phase symmetryΦ �→ Φeiγ , γ ∈ R.

Nonlinear bound states of NLS areH 1 solutions,F�, of the elliptic equation

HF� + g|F�|2F� = E�F�, (3.5)

for some choice ofE and can also be viewed as critical points of the functional

JE[f ] ≡ H[F ] + EN [F ]. (3.6)

That is, we have that the first variation ofJE� vanishes atE�, i.e.δJE�[F�] = 0.
The nonlinear ground state has a characterization as a constrained minimizer

Iθ = inf
{
H[F ]: F ∈ H 1, N [F ] = θ

}
. (3.7)

For θ small, the minimum in (3.7) is attained at the ground state obtained in Theorem 3.1.
The value of the frequency parameter of a ground stateΨE depends onθ .

4. Orbital stability of ground states

In this section we discuss the orbital Lyapunov stability of ground states of NLS. Note that
by the phase invariance of NLS, we have that theorbit of the ground state

Ogs= {
ΨE0(x)eiγ : γ ∈ [0,2π)

}
(4.1)

is a one-parameter family of ground states. The ground state is stable in the following
sense. If initiallyΦ(x, t = 0) is H 1 close to some phase-translate ofΨE0 then, for all
t �= 0, Φ(x, t) is H 1 close to some (typicallyt dependent) phase-translate ofΨE0. In order
to make this precise, we introduce a metric which measures the distance from an arbitrary
H 1 function to the ground state orbit:

dist(u,Ogs) = inf
γ

∥∥u − Ψ0e
iγ

∥∥
H1. (4.2)
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Thus a more precise statement of stability is as follows. For anyε > 0 there is aδ > 0 such
that if

dist
(
Φ(·,0),Ogs

)
< δ (4.3)

then for allt �= 0

dist
(
Φ(·, t),Ogs

)
< ε.

The proof of stability is now sketched. Letε be an arbitrary positive number. We have
for t �= 0, by choosingδ in (4.3) sufficiently small

ε2 ∼ JE0

[
Φ(·,0)

] − JE0[Ψ0]
= JE0

[
Φ(·, t)] − JE0[Ψ0] by conservation laws

= JE0

[
Φ(·, t)eiγ

] − JE0[Ψ0] by phase invariance

= JE0

[
Ψ0 + u(·, t) + iv(·, t)] − JE0[Ψ0]

(definition of the perturbationu + iv, u, v ∈ R)

∼ (
L+u(t), u(t)

) + (
L−v(t), v(t)

)
(by Taylor expansion andδJE0[Ψ0] = 0). (4.4)

The operatorsL+ andL− are, respectively, the real and imaginary parts of the second
variational derivative ofJE0, the linearized operator about the ground state. IfL+ andL−
were positive definite operators, implying the existence of positive constantsC+ andC−
such that

(L+u,u) � C+‖u‖2
H1, (4.5)

(L−v, v) � C−‖v‖2
H1 (4.6)

for all u,v ∈ H 1, then it would follow from (4.4) that the perturbation about the ground
state,u(x, t) + iv(x, t), would remain of orderε in H 1 for all time t �= 0. The situation is
however considerably more complicated. The relevant facts to note are as follows.

(1) L−Ψ0 = 0, with Ψ0 > 0. Hence,Ψ0 is the ground state ofL−, 0∈ σ(L−), andL−
is a nonnegative with continuous spectrum[|E0|,∞).

(2) For smallL2 nonlinear ground states,L+ has exactly one strictly negative eigen-
value and continuous spectrum[|E0|,∞).

The zero eigenvalue ofL− and the negative eigenvalue ofL+ constitute twobad directions,
which are treated as follows, noting thatu(·, t) andv(·, t) are not arbitraryH 1 functions
but are rather constrained by the dynamics of NLS.

To controlL−, we chooseγ (t) so as to minimize the distance of the solution to the
ground state orbit, (4.2). This yields the codimension one constraint onv: (v(·, t),Ψ0) = 0,
subject to which (4.6) holds withC− > 0.
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To controlL+, we observe that sinceL2 is invariant on solutions, we have the codimen-
sion constraint onu: (u(·, t),Ψ0) = 0. AlthoughΨ0 is not the ground state ofL+, it can be
shown by constrained variational analysis that for small amplitude nonlinear ground states,
C+ > 0 in (4.5).

Thus, positivity (coercivity) estimates (4.5) and (4.6) hold andJE0 serves as a Lyapunov
functional which controls the distance of the solution to the ground state orbit. The argu-
ment presented here appears in greater detail and greater generality in [54], where it is
proved that

∂E‖ψE‖2
2 > 0 (4.7)

implies orbital stability of any constrained energylocal minimizers. The approach is in-
spired by the seminal article [2], who refers to origins in the work of Boussinesq. A general
functional analytic setting is given in [20], where it is shown that (4.7) is necessary and suf-
ficient for stability. See also the related compactness-based variational approach to stability
in [9] for a proof of orbital stability of constrainedglobal minimizers.

5. Asymptotic stability of ground states I. No neutral oscillations

The type of stability discussed in the previous section is that encountered in the setting
of finite-dimensional Hamiltonian systems; if the initial conditions are close to the group
orbit of the ground state, then the solution remains close for all time.Asymptotic stability, in
which the solution asymptotically converges to the state of interest, cannot apply in finite-
dimensional Hamiltonian systems as this would violate the volume preserving constraint
on the phase flow. However, in an infinite-dimensional setting not all norms are equivalent
and there are processes, namely radiation of energy to infinity, which facilitate asymptotic
convergence to a preferred state.

We now discuss such a result for small amplitude ground states of NLS. The notion of
stability can be seen as a natural refinement of the ideas of Section 4. Instead of freezing
the “energy”E of the individual ground state, whose stability is under study, and allowing
the phase,θ to evolve in order toapproximately track the solution, we instead construct
E(t) andθ(t) to evolve in time in such a way that the deviation of the solution,φ(·, t) and

themodulated ground stateΨE(t)e
−i(

∫ t
0 E(s) ds−θ(t)) tends to zero in an appropriate norm.

Before stating a result along these lines we need to briefly discuss some spectral proper-
ties of the ground state. Recall that by stability of the ground state (in the Lyapunov sense)
it is necessary that all spectrum of the generator of the linearized flow,−iH0 about the
ground state lie on the imaginary axis. Zero is an isolated eigenvalue, arising from sym-
metries of the equation and the continuous spectrum consists of vertical semi-infinite lines
[i|E0|, i∞) and(−i∞,−i|E0|]. The key hypotheses are: (i) thatH0 has no nonzero eigen-
values in the gap between−i|E0| andi|E0|, and thus solutions of the linearized evolution
with periodic or quasiperiodic oscillations about the ground state are precluded (see(h3)

below), and (ii) thatH has neither an eigenvalue nor a “resonance” at zero energy [21], a
hypothesis on the behavior of(H − zI)−1 asz → 0, which holds for genericV (x), and
ensures sufficiently strong dispersive time-decay estimates of the linearized evolution.
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THEOREM 5.1 [39,40,32]. Consider NLS in spatial dimension n = 3. Assume the follow-
ing

(h1) The multiplication operator f �→ 〈x〉σ V (x)f , where σ > 3 is bounded on
H 2(R3),

(h2) The Fourier transform of V , V̂ ∈ L1(R3)

(h3) Zero is neither an eigenvalue nor a resonance of the operator H = −� + V .
(h4) H0 acting on L2 has exactly one negative eigenvalue E0∗ < 0, with H0ψ0∗ =

E0∗ψ0∗, ‖ψ0∗‖2 = 1.
Let the initial condition φ0 be sufficiently small in H 1 ∩ L2(〈x〉2 dx). Then, there exist
smooth functions E(t) and θ(t), such that limt→±∞ E(t) = E± and limt→±∞ θ(t) = θ±
exist and

lim
t→±∞

∥∥φ(·, t) − e−i(
∫ t

0 E(s) ds−θ(t))ΨE(t)

∥∥
L4(R3)

= 0. (5.1)

To prove Theorem 5.1 we seek a solution in the form of a modulated nonlinear ground
state and a dispersive correction:

φ(x, t) = ΨE(t)e
−i(

∫ t
0 E(s) ds−θ(t)) + η(t). (5.2)

Substitution into NLS and projection onto the subspaces associated with the discrete and
continuum modes of the linearized flow yields a coupled system of equations forE(t), θ(t)

andη(t). Asymptotic convergence ofE(t) andθ(t), and decay ofη(·, t) ast → ±∞ are
proved using local decay [21] and dispersiveLp, p > 2, estimates [22].

We postpone further discussion of this analysis to our discussion of the case where the
linearized dynamics has neutral oscillations about the ground state, e.g., which may result
from H possessing two or more eigenvalues; see Sections 6 and 7. The analogous coupled
ODE–PDE system requires considerably deeper study. In the next section, Section 6, we
discuss the metastability and decay of neutral oscillations in the context of the nonlinear
Klein–Gordon equation. Then, in Section 7 we turn to the case of NLS, where the same
mechanisms are at work.

6. Resonance and radiation damping of neutral oscillations—metastability of bound
states of the nonlinear Klein–Gordon equation

Consider the nonlinear Klein–Gordon equation (NLKG) with a potentialV (x), assumed
to be smooth and sufficiently rapidly decaying as|x| → ∞:

(
∂2
t + B2)u = gu3. (6.1)

Here,B2 = −� + m2 + V (x), is a strictly positive operator with a single eigenvalue,Ω2,
satisfying 0< Ω2 < m2, with correspondingL2-normalized eigenfunctionϕ(x), which
satisfiesB2ϕ = Ω2ϕ. We also assume that the essential spectrum ofB2 is absolutely con-
tinuous and is given by the semi-infinite interval[m2,∞). The parameter,g, is taken to be
real and either zero or of order unity.
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Corresponding to the discrete spectral part ofB2 is a family of time-periodic and spa-
tially localized solutions:

ub(t, x;R,θ) = R cos(Ωt + θ)ϕ(x) (6.2)

of the linear Klein–Gordon equation

(
∂2
t + B2)u = 0. (6.3)

For any sufficiently smooth and localized (finite energy) initial conditions, the solution
to (6.3) has the decomposition:

u(t, x) = ub(t, x;R0, θ0) + η(t, x), (6.4)

whereR0 andθ0 are constants determined by the initial conditions andη(t, x) disperses to
zero ast tends to infinity.

QUESTION. What is the character of solutions to thenonlinear problemg �= 0 for initial
data which are small in an appropriate norm?

REMARK 6.1. This question is of independent interest for the nonlinear Klein–Gordon
equation. We wish, however, to also point out the relation of this question to the large
time asymptotics of NLS. Recall our assumption in Theorem 5.1 thatH have only one
eigenvalue,E0∗, which by Theorem 3.1, gives rise to a branch of nonlinear ground states.
If H has two eigenvalues, then there is an additional branch of nonlinear excited states.
For NLKG, the role of the nonlinear ground state is played by the zero solution and the
dynamics of the nonlinear excited state can be understood by our analysis of how the un-
perturbed time-periodic bound state of the Klein–Gordon equation decays due to resonant
energy transfer to radiation modes under a nonlinear Hamiltonian perturbation.

The following result [44] gives a detailed description of solutions.

THEOREM 6.1. Consider the nonlinear Klein–Gordon equation (6.1), with V (x), real-
valued and satisfying

(h1) There exists δ > 5 such that for all |α| � 2, |∂αV (x)| � Cα〈x〉−δ .
(h2) (−� + 1)−1((x · ∇)lV (x))(−� + 1)−1 is bounded on L2 for |l| � 10.
(h3) Zero is not a resonance of the operator −� + V , [21].
(h4) Nonlinear analogue of the Fermi Golden Rule resonance condition; see, for exam-

ple, [42].

Γ ≡ π

3Ω

(
Pcϕ

3, δ(B − 3Ω)Pcϕ
3) ≡ π

3Ω

∣∣(Fcϕ
3)(3Ω)

∣∣2 > 0.

Here, Pc denotes the projection onto the continuous spectral subspace of B and
Fc denotes the Fourier transform relative to the continuous spectral part of B.
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Assume that the initial data u(x,0) and ∂tu(x,0) are such that their norms are sufficiently
small in W2,2 ∩ W2,1 and W1,2 ∩ W1,1, respectively. Then, the solution of the initial value
problem with λ �= 0 decays to zero as t → ±∞. In particular,

u(x, t) = R(t)cos
(
Ωt + θ(t)

)
ϕ(x) + η(x, t),∣∣R(t)

∣∣ � C|t |−1/4,
∥∥η(·, t)∥∥

L8 � C|t |−3/4. (6.5)

To prove this result, it is natural to first decompose the solution into its discrete and
continuous spectral components:

u(x, t) = a(t)ϕ(x) + η(x, t),
〈
ϕ,η(·, t)〉 = 0. (6.6)

Then,a andη satisfy a coupled system equations, which in the zero amplitude limit is the
decoupled linear system:

(
∂2
t + Ω

)
a(t) = 0,

(
∂2
t + B2)η(t, x) = 0. (6.7)

The latter has time-periodic and spatially localized solutiona(t) = R cos(Ωt + θ), η ≡ 0,
corresponding to (6.2). For small norm solutions, the equations fora andη are coupled,
and can be analyzed by a variant of the arguments outlined in Section 7. We point out that
the slow decay of the solution,u(x, t), quantified in the estimates (6.5) is governed by the
effective oscillator equation

∂2
t a + (

Ω2 +O
(|a|2))a ∼ −Γ a4∂ta, Γ > 0. (6.8)

Equation (6.8) is adamped equation, which governs the transfer of energy from the oscil-
lator to the dispersive wave-field.Γ is the derived nonlinear friction coefficient.

7. Asymptotic stability II. Multiple bound states and selection of the ground state in
NLS

We now return to the nonlinear Schrödinger equation (NLS)

i∂tΦ = HΦ + g|Φ|2Φ, H = −� + V. (7.1)

In Section 5 we saw, in the case whereH has exactly one bound state, that solutions with
small initial conditions asymptotically, ast → ±∞, approach an asymptotic ground state.
In this section we consider the case where the Schrödinger operatorH = −� + V (x) has
multiple bound states.

For the linear Schrödinger equation (g = 0), the solution can be expressed as

e−iH tφ0 =
∑
j

〈ψj∗, φ0〉ψj∗e−iEj∗t + e−iH tPc∗φ0, (7.2)
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wheree−iH tPc∗φ0 decays to zero ast → ±∞. The time decay of the continuous spectral
part of the solution can be expressed, under suitable smoothness, decay and genericity
assumptions onV (x), in terms oflocal decay estimates [21,30]:

∥∥〈x〉−σ e−iH tPc∗φ0
∥∥

L2(R3)
� C〈t〉−3/2

∥∥〈x〉σ φ0
∥∥

L2(R3)
, (7.3)

σ � σ0 > 0, andL1 → L∞ decay estimates [22,55]

∥∥e−iH tPc∗φ0
∥∥

L∞(R3)
� C|t |−3/2 ‖φ0‖L1(R3). (7.4)

Therefore, the large time behavior of typical solutions of the linear Schrödinger equation
(g = 0) is quasiperiodic.

Consider now the case of NLS withg �= 0 andV is such that the Schrödinger operator
H has exactly two bound states:ψ0∗e−iE0∗t andψ1∗e−iE1∗t , with Hψj∗ = Ej∗ψj∗, ψj∗ ∈
L2. By Theorem 3.1 NLS has ground state and excited state branches of nonlinear bound
statesΨα0e

−iE0t andΨα1e
−iE1t , with Ψαj

∈ L2 satisfying

HΨαj
+ g|Ψαj

|2Ψαj
= EjΨαj

. (7.5)

Here,αj denotes a coordinate along thej th nonlinear bound state branch and

Ej = Ej∗ +O
(|αj |2

)
.

We are interested in the behavior of solutions to NLS with initial conditions of small
norm. In contrast to asymptotic quasiperiodic behavior (7.2)–(7.3), we find that the generic
long time behavior is a ground state plus dispersive radiation [46]:

THEOREM 7.1. Consider NLS with a V (x) a smooth and short range (sufficiently de-
caying) potential supporting two bound states as described above. Furthermore, assume
that the linear Schrödinger operator, H , has no zero energy resonance [21]. Assume the
(generically satisfied) nonlinear Fermi golden rule resonance condition3

Γω∗ ≡ g2π
〈
ψ0∗ψ2

1∗, δ(H − ω∗)ψ0∗ψ2
1∗

〉
> 0 (7.6)

holds, where

ω∗ = 2E1∗ − E0∗ > 0. (7.7)

Then, there exist constants k0 � 3 and σ0 � 2 such that for any σ � σ0 and k � k0, if
‖〈x〉σ φ(0)‖Hk is sufficiently small, we have the following characterization of the large time
dynamics of the solution φ(t) of the initial value problem for NLS with initial data φ(0).

3The operatorf �→ δ(H − ω∗)f projectsf onto the generalized eigenfunction ofH with generalized eigen-
valueω∗. The expression in (7.6) is finite by local decay estimates (7.3); see, e.g., [42].
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As t → ∞
φ(t) → e−iωj (t)Ψαj (∞) + ei�tφ+, (7.8)

in L2, where eitherj = 0 or j = 1. The phase ωj satisfies

ωj (t) = ω∞
j t +O(logt). (7.9)

Here, Ψαj (∞) is a nonlinear bound state (Section 3), with frequency Ej(∞) near Ej∗.
When j = 0, the solution is asymptotic to a nonlinear ground state, while in the case j = 1
the solution is asymptotic to a nonlinear excited state. Generically, j = 0.

See also the related results on [4–6,13,14,48,49]. Nongeneric solutions which converge
asymptotically to an excited state were constructed in [50].

We give a sketch of the analysis. In analogy with the approach discussed in Section 5 for
the one bound state case, we represent the solution in terms of the dynamics of the bound
state part, described through the evolution of thecollective coordinates α0(t) andα1(t),
and a remainderφ2, whose dynamics is controlled by a dispersive equation. In particular
we have

φ(t, x) = e−i
∫ t

0 E0(s) ds−iΘ̃(t)
(
Ψα0(t) + Ψα1(t) + φ2(t, x)

)
. (7.10)

We substitute (7.10) into NLS and use the nonlinear equations (7.5) forΨαj
to simplify.

Anticipating the decay of the excited state, we center the dynamics about the ground state.
We therefore obtain forΦ2 ≡ (φ2, φ2)

T the equation:

i∂tΦ2 = H0(t)Φ2 + G
(
t, x,Φ2; ∂t �α(t), ∂t �α, ∂t Θ̃(t)

)
, (7.11)

where H0(t) denotes the matrix operator which is the linearization about the time-
dependent nonlinear ground stateΨα0(t). The idea is that in order forφ2(t, x) to decay
dispersively to zero we must chooseα0(t) andα1(t) to evolve in such a way as to remove
all secular resonance terms fromG. Thus we require,

Pb

(
H0(t)

)
Φ2(t) = 0, (7.12)

wherePb(H0) andPc = I − Pb(H0) denote the discrete and continuous spectral projec-
tions of H0. Since the discrete subspace ofH0(t) is four-dimensional (consisting of a
generalized null space of dimension two plus two oscillating neutral modes), (7.12) is
equivalent to four orthogonality conditions implying four differential equations forα0, α1
and their complex conjugates. These equations are coupled to the dispersive partial differ-
ential equation forΦ2. At this stage we have that NLS is equivalent to a dynamical system
consisting of a finite-dimensional part governing�αj = (αj ,αj ), j = 0,1, coupled to an
infinite-dimensional dispersive part governingΦ2:

i∂t �α = A(t)�α + �Fα,

(7.13)
i∂tΦ2 = H0(t)Φ2 + �Fφ.
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We expectA(t) andH0(t) to have limits ast → ±∞. We fix T > 0 arbitrarily large, and
to study the dynamics on the interval[0, T ]. In this we follow the strategy of [5,14]. We
shall rewrite (7.13) as:

i∂t �α = A(T )�α + (
A(t) −A(T )

)�α + �Fα,
(7.14)

i∂tΦ2 = H0(T )Φ2 + (
H0(t) −H0(T )

)
Φ2 + �Fφ

and implement a perturbative analysis about thetime-independent reference linear, respec-
tively, matrix and differential, operatorsA(T ) andH0(T ).

More specifically, we analyze the dynamics of (7.14) by using (1) the eigenval-
ues of A(T ) to calculate the key resonant terms and (2) the dispersive estimates of
e−iH0(T )tPc(T ) [13,17,33,34].

Next we explicitly factor out the rapid oscillations fromα1 and show that, after a near
identity change of variables(α0, α1) �→ (α̃0, β̃1), that the modified ground and excited state
amplitudes satisfy the perturbeddispersive normal form:

i∂t α̃0 = (c1022+ iΓω)|β̃1|4α̃0 + Fα[α̃0, β̃1, η, t],
(7.15)

i∂t β̃1 = (c1121− 2iΓω)|α̃0|2|β̃1|2β̃1 + Fβ [α̃0, β̃1, η, t].

REMARK 7.1. For finite-dimensional Hamiltonian systems the normal form coefficients
are real. That they are complex here, with imaginary part∼ Γω, is to due NLS being
an infinite-dimensional Hamiltonian system with discrete spectral states resonating with
continuum spectral states. The positivity ofΓω reflects the energy flow from the excited
state to the ground state and continuum states, and the resulting damping of the nonlinear
excited state.

It follows from (7.15) that aNonlinear Master Equation governsPj = |α̃j |2, the power
in thej th mode:

dP0

dt
= 2Γ P 2

1 P0 + R0(t),

(7.16)
dP1

dt
= −4Γ P 2

1 P0 + R1(t).

Coupling to the dispersive part,Φ2, is through the source termsR0 andR1. The expression
“master equation” is used since the role played by (7.16) is analogous to the role of master
equations in the quantum theory of open systems [15].

REMARK 7.2. An interesting phenomenon is anticipated by the system obtained
from (7.16), by dropping the decaying correction termsRj (t):

dp0

dt
= 2Γp2

1p0,

(7.17)
dp1

dt
= −4Γp2

1p0.
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First, it is easy to see from (7.17) thatp1(t) decays to zero ast → ∞ unlessp0(0) = 0.
Furthermore, note that the resulting equation has the conservation law 2p0(t) + p1(t) =
2p0(0) + p1(0), the “total energy”. Therefore, sincep1(t) → 0 ast → ∞, we have

p0(∞) = p0(0) + 1

2
p1(0).

Thus we expect that half the energy in decaying excited state is transferred to the ground
state and half to continuum radiation.

The detailed behavior of the system (7.16) coupled to the dispersive part can be charac-
terized on short, intermediate and long time scales. We consider the system (7.16) on three
time intervals:I0 = [0, t0] (initial phase)I1 = [t0, t1] (embryonic phase) andI2 = [t1,∞)

(selection of the ground state). A careful analysis reveals an effective finite-dimensional
reduction to a system of equations for the “effective mode powers”:Q0(t) and Q1(t),
closely related toP0(t) andP1(t), whose character on different time scales dictates the
full infinite-dimensional dynamics, in a manner analogous to role of a center manifold
reduction of a dissipative system [7].

Initial phase—t ∈ I0 = [0, t0]. Here,I0 is the maximal interval on whichQ0(t) � 0. If
t0 = ∞, thenP0(t) = O(〈t〉−2) and the ground state decays to zero. In this case, we show
that the excited state amplitude has a limit as well (with may or may not be zero). This case
is nongeneric.

Embryonic phase—t ∈ I1 = [t0, t1]. If t0 < ∞, then fort > t0:

dQ0

dt
� 2Γ ′Q0Q

2
1,

(7.18)
dQ1

dt
� −4Γ ′Q0Q

2
1 +O

(√
Q0Q

m
1

)
, m � 4.

Therefore,Q0 is monotonically increasing;the ground state grows. Furthermore, ifQ0 is
small relative toQ1, then

Q0

Q1
is montonically increasing,

in fact exponentially increasing;the ground state grows rapidly relative to the excited state.

Selection of the ground state t ∈ I2 = [t1,∞). There exists a timet = t1, t0 � t1 < ∞,
at which theO(

√
Q0Q

m
1 ) term in (7.18) is dominated by the leading (“dissipative”) term.

For t � t1 we have

dQ0

dt
� 2Γ ′Q0Q

2
1,

(7.19)
dQ1

dt
� −4Γ ′Q0Q

2
1.
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It follows that Q0(t) → Q0(∞) > 0 andQ1(t) → 0 ast → ∞; the ground state is se-
lected.
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Appendix. Notation

Hs denotes the Sobolev space of functions obtain via the closure ofC∞
0 in a norm:

‖f ‖2
Hs = ∑

|α|�s ‖∂αf ‖2
L2.

Pb∗ = Pb∗(A) denotes the projection onto the discrete spectral subspace of bound
states (L2 eigenstates) of an operatorA. Pc∗ = I − Pb∗ denotes the projection onto
the continuous spectral subspace.
H = −� + V , self-adjoint Schrödinger operator onL2, with smooth, sufficiently
decaying potential,V (x).
H0 matrix linearization of NLS about the ground state.
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