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SCATTERING RESONANCES OF MICROSTRUCTURES AND
HOMOGENIZATION THEORY∗

S. E. GOLOWICH† AND M. I. WEINSTEIN‡

Abstract. Scattering resonances are the eigenvalues and corresponding eigenmodes which solve
the Schrödinger equation Hψ = Eψ for a Hamiltonian, H, subject to the condition of outgoing radia-
tion at infinity. We consider the scattering resonance problem for potentials which are rapidly varying
in space and are not necessarily small in a pointwise sense. Such potentials are of interest in many
applications in quantum, electromagnetic, and acoustic scattering, where the environment consists
of microstructure, e.g., rapidly varying material properties. Of particular interest in applications are
high contrast microstructures, e.g., large pointwise variations of material properties.

We develop a perturbation theory for the scattering resonances and eigenvalues of such high
contrast and oscillatory potentials. The expansion is proved to be convergent in a norm which
encodes the degree of oscillation in the microstructure. Next, we consider the concrete example of
two-dimensional microstructure potentials. These correspond, for example, to a class of photonic
waveguides with transverse microstructures. The leading order behavior is given by the scattering
resonances of a suitable averaged potential, as predicted by classical homogenization theory. We
show that the next term in the expansion agrees with that given by a higher order homogenization
multiple-scale expansion, with an error term determined by the regularity of the potential. The
higher order corrections, which take into account the detailed microstructure, have been shown by
the authors to be important for efficient and accurate numerical computation of radiation rates.
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1. Introduction and overview.

1.1. Scattering resonances and microstructures. Consider the time-
independent Schrödinger equation

Hψ = Eψ,

where H is the Hamiltonian

H = −∆ + V (x).(1.1)

Scattering resonances of (1.1) are solutions (E,ψ), with ψ �= 0, which satisfy an
outgoing radiation condition at spatial infinity. The condition of outgoing radiation is
a non-self-adjoint boundary condition, and therefore the scattering resonance energies,
E, are typically complex numbers. A precise formulation of this radiation condition
and the scattering resonance problem is given in section 4.

In this paper, we are interested in the scattering resonances for (1.1) in the case
where the potential, V (x), has a background (slowly varying or “mean”) part, V0(x),
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and a rapidly oscillatory perturbation, δV (x), which is not necessarily pointwise small:

V (x) = V0(x) + δV (x).(1.2)

We call such potentials potentials with microstructure and refer to δV (x) as the mi-
crostructure part of the potential. If the variations in the values of the potential are
large, we refer to a high contrast potential. The Hamiltonian with potential V0(x) will
be denoted H0 and that with perturbed potential denoted H. A consequence of the
results of this paper is a rigorous analytical foundation for the work in [7], where we
derived a multiple-scale expansion for certain microstructured potentials, which arise
as photonic microstructures, and used it as part of an accurate and efficient scheme for
numerically computing scattering resonances; see section 1.2. A detailed discussion
of the application to photonic microstructures, as well as an announcement of some
of the current analytical work, is contained in [8].

The scattering resonance problem is of great mathematical interest and physical
importance, arising in quantum, acoustic, elastic, and electromagnetic scattering. A
basic problem in each field is to consider the situation of a compact region of space
which is occupied by a collection of inhomogeneities or “scatterers,” while outside this
region the medium is homogeneous. Thus, outside this compact region the elementary
propagating states are plane waves, ei(k·x−ωt), where ω = ω(k) is the dispersion
relation of the homogeneous medium (k = |k|, k = 2π/λ, λ = wavelength). For a fixed
wavevector, k, one considers a plane wave incident on a collection of inhomogeneities
or “scatterers” and calculates the scattered field. The mapping from incident to
scattered field is determined by the scattering matrix, S(k). In many situations, S(k)
can be analytically continued from the positive real axis into the complex plane. Its
poles in the lower half-plane are called resonances. Corresponding to these resonances
are (non-L2) states. Scattering resonances play an important role in the dynamics of
waves. Namely, a general spatially localized initial condition incident on our collection
of scatterers will typically interact for some time and give rise to a spray of radiation.
The local energy, in a neighborhood of the scatterers, will die away as time evolves.
The long-time transient exponential rate of local energy decay is determined by the
imaginary parts of the resonances. In particular, one expects this decay to be limited
by the resonance with the smallest imaginary part. For a given resonance, one refers
to its imaginary part as the line-width or reciprocal lifetime of the associated state.

Being based on the Schrödinger equation (1.1), the analysis of this paper applies
to a nonrelativistic quantum particle in a rapidly varying landscape [13], to the acous-
tic propagation of small amplitude pressure fluctuations about an equilibrium in an
inhomogeneous medium [17], and to electromagnetic waves, in the scalar approxima-
tion, propagating in an inhomogeneous dielectric medium [26, 14].

Our initial motivation comes from the electromagnetic context, where there is a
great deal of interest in the analysis of optical properties of media comprised of micro-
or nanostructures. Recent advances in fabrication technology have made possible,
through variations in material contrast and distribution of microfeatures, the manip-
ulation of optical properties of composite media in a manner analogous to the way
the electrical properties of materials have been manipulated for many years. Exam-
ples range from engineering the dispersion properties of photonic waveguides [20, 11]
to cavity QED experiments, with a view toward applications to quantum comput-
ers [28]. Scattering resonances are of central importance in the behavior of such
structures. The real parts are relatively insensitive to the detailed microstructure
and are approximated by an averaged potential model, leading order homogenization
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theory. As illustrated below and extensively in [7], the imaginary parts are highly
sensitive to the detailed microstructure, and we require higher order homogenization
theory to estimate them accurately. Imaginary parts of scattering resonances of these
structures correspond to the “Q-factor” of the effective cavity resonator.

1.2. Application to photonic waveguides. A specific example, considered
in detail in [7], is an optical fiber waveguide with transverse microstructure. Such
waveguides are often called photonic crystal fibers or holey fibers. In the scalar
approximation, the transverse components of the electric field E⊥ = eiβx3e⊥(x1, x2)
each satisfy the Helmholtz wave equation(

∆ + k2n2(x) − β2
)
ψ = 0.(1.3)

Here, ∆ denotes the Laplace operator with respect to the transverse variables (x1, x2),
k = 2π/λ, λ denotes the wavelength of light, n(x) denotes the refractive index profile,
and β denotes the propagation constant. Let ng denote a background refractive index.
Then, the Helmholtz equation can be rewritten as a Schrödinger equation (1.1) with
the following definitions:

V (x) = k2
(
n2
g − n2(x)

)
, E = k2n2

g − β2.(1.4)

Here, x denotes the two-dimensional spatial coordinate in the plane transverse to the
waveguide.

A class of examples corresponding to a large family of microstructured waveguides
of interest, treated in detail in section 6, is

V (x) = VN (x) = V0(|x|) + δV N (x) = V0(r) + δV (r,Nθ).(1.5)

Here, (r, θ) are polar coordinates for x ∈ R
2. The potential defined by (1.5) cor-

responds to a N -fold symmetric structure. The functions V0(r) and δV (r,Θ) are
compactly supported locally L2 functions. The parameter N is a positive integer.
When N is large, the potential VN is a rapidly varying perturbation of V0. This
perturbation does not tend to zero pointwise but does tend to zero in a weak sense.
Examples of such high contrast microstructure potentials appear in Figures 1 and 2.

We have derived and numerically implemented homogenization and corrected ho-
mogenization theories of scattering resonances and compared the results with direct
numerical simulation [7]. Numerical results indicate that the real parts of scattering
resonances are well approximated by those associated with the averaged potential,
V0(r). However, the situation with imaginary parts of scattering resonances is very dif-
ferent. Figure 3 contrasts predictions for the imaginary parts of scattering resonances
for structures of the type illustrated in Figure 1. Results for five different structures
parametrized by N and “fill fraction” f are shown. The imaginary part of a scattering
resonance is plotted as a function of a wavelength, λ. The crosses correspond to direct
numerical simulation. The two curves correspond to predictions obtained from the av-
erage potential (dashed curve) and the second order corrected homogenization theory
(solid curve), the validity of which is proved in this work; see the discussion below.
Corrected homogenization gives excellent agreement with direct numerical simula-
tions over wavelength ranges of interest in the particular application. For structures
of the type shown in Figure 2, the corrected homogenization theory gives an even
more dramatic improvement over the averaged (homogenization) theory. Clearly, and
in general, numerical methods informed by analytical estimates on resonances can
play an important role in finding optimal structures, e.g., maximizing “Q-factors.”
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Fig. 1. (a) Black regions form the support of an N-fold symmetric potential (N = 20). V (x)
takes on one constant value on these regions and is zero outside. (b) The averaged potential V0(r) =

(2π)−1
∫ 2π
0 V (r,Θ)dΘ, where V (x) = V0(r) + δV (r,Nθ), r = |x|.
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Fig. 2. (a) An 18-hole subset of a hexagonal lattice (N = 6) with (b) the averaged potential
V0(|x|).

The current work implies analytical justification for the homogenization expan-
sion and numerical approach summarized above and presented in detail in [7]. In
particular, Theorems 4.1 and 7.1 imply the validity of second order homogenization,
provided that a particular norm of the perturbation, ‖|δV N‖|, is sufficiently small. By
Theorem 6.1, this smallness condition can be expressed as

1

λ2
· 1

N
· C∗ sufficiently small,(1.6)

where the constant C∗ = supM M‖|δV M‖| (see Theorem 6.1), which depends on the
details of the microstructure. Our analysis applies to the case of fixed λ and N
sufficiently large. However, the condition (1.6) suggests validity for fixed N (fixed mi-
crostructure) and λ large. Results which encompass this limit as well will be presented
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Fig. 3. Imaginary parts of scattering resonances, corresponding to scattering attenuation rate
in the optical waveguide context, for the lowest order (fundamental or LP01) resonance. Calculation
is for N-fold symmetric structures of the type shown in Figure 1 for different fill fractions, f , and
N = 3 and N = 6. The calculations were performed for a range of wavelengths, λ. Solid curves
are attenuations computed using second order, O(N−2), homogenization, proved herein to be valid
for large N . Dashed curves correspond to leading order homogenization (averaging) theory. Crosses
correspond to the results of direct numerical simulation presented in Figure 3(a) of [19].

in a separate publication.
We conclude this subsection with a discussion of two observations on departures

of approximate theories from direct numerical simulation. (1) Note that as the wave-
length is decreased, there is an increasing departure of approximate theoretical results
from simulation results. The effect is most pronounced for the structure whose pa-
rameters are N = 3 and f = .8. This trend can be understood by noting that as the
wavelength is decreased with the structure held fixed, one enters the regime of geo-
metrical optics, where the classical ray picture applies, rather than the wave picture,
in which averaging can be expected to apply. Nevertheless, we find good agreement
in our simulations for a ratio of wavelength to microfeature size of about 3/2. (2) The
plots in Figure 3 show a systematic underestimation of the “exact” imaginary parts.
Note that there are two essential mechanisms of scattering loss: free space diffrac-
tion or ballistic propagation—propagation concentrated on rays where the potential is
zero in between the barriers, where V is positive; and tunneling—propagation along
rays which impinge on regions where V is positive. Homogenization theory replaces
a problem in which both mechanisms are present by an effective problem, defined
by the effective potential barrier, V0(|x|), for which tunneling is the only mechanism.
Although, still rooted in homogenization ideas, our higher order theory gives a very
significant improvement in the approximation even for relatively small values of N
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and wavelength to microfeature size ratios. Though we have found a natural small
parameter, ‖|δV ‖|, for measuring the “size” of the microstructure perturbation, we
believe a related mode-dependent intrinsic parameter exists, which should give yet
deeper insight. This is currently under investigation.

1.3. An illustrative and elementary example. In this subsection we present
a simple example which motivates our approach to spectral problems with high con-
trast microstructure. We present only a sketch of the ideas. All analytical details are
contained within our full implemention for the resonance problem, which is far more
involved.

Consider the Schrödinger eigenvalue problem with periodic boundary conditions
for an eigenfunction u ∈ L2(S1) and an eigenvalue, E:(

−∂2
θ + V (θ)

)
u(θ) = Eu(θ),

u(0) = u(1), ∂θu(0) = ∂θu(1).(1.7)

Here, V (θ) ∈ L∞
periodic. We rewrite (1.7) as the equivalent equation of Lippman–

Schwinger type: (
I − (1 + E)

(
I − ∂2

θ

)−1
)
U + QV U = 0,

U ≡
(
I − ∂2

θ

) 1
2 u,

QV U ≡
(
I − ∂2

θ

)− 1
2 V

(
I − ∂2

θ

)− 1
2 U.(1.8)

Using the implicit function theorem, one can prove the following theorem.
Theorem 1.1. Let (U0, E0) be a solution of the eigenvalue problem (1.8) with

potential V0 and consider the perturbed eigenvalue problem with potential V . Let
δV ≡ V − V0 denote the perturbation. If the mapping U �→ QδV U has small norm as
an operator from L2 to L2, i.e.,∥∥∥(I − ∂2

θ

)− 1
2 δV

(
I − ∂2

θ

)− 1
2

∥∥∥
B(L2)

sufficiently small,(1.9)

then (U0, E0) perturbs analytically to a nearby solution, (U(V ), E(V )), of the eigen-
value problem.

Remark 1.2. While the operator norm in (1.9) can be small if δV is pointwise
small, e.g., δV (θ) = εQ(θ), 0 < ε � 1, it can also be small if δV is pointwise
large (high contrast) but sufficiently oscillatory (microstructure). For example, if
δV N (θ) = Q(Nθ), then the operator norm (1.9) is O(N−1) by the following lemma
(see also Theorem 6.1).

Lemma 1.3. Let f(θ) be a 2π period function. Then,

the mapping f(θ) �→ eiNθf(θ) has L2 norm one,

the mapping f(θ) �→ 〈∂θ〉−1eiNθ〈∂θ〉−1f(θ) has L2 norm O
(
N−1

)
.(1.10)

1.4. Goals, results, and overview.
Perturbation problem. Suppose the (E0, ψ0) is a solution to the scattering reso-

nance problem for the Hamiltonian H0 with potential V0(x). Our goals are to address
the following issues.

(1) For δV (x) sufficiently oscillatory (has sufficiently fine microstructure) and
high contrast, show that the scattering resonance problem for H with potential V (x) =
V0(x) + δV (x) has a “nearby” solution, (E(V ), ψ(V )).
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(2) Develop a resonance perturbation theory in terms of a natural parameter,
measuring the fineness of the microstructure.

(3) Relate (1) and (2) to homogenization theory.
In sections 3 and 4 we reformulate the scattering resonance problem as a “pre-

conditioned” Lippman–Schwinger type equation (Theorem 3.2):

(I + TR(E)TV ) Ψ = 0,

where the operators TR(E) and TV are defined in section 3. We then obtain a sta-
bility and perturbation theory of scattering resonances in a norm appropriate for
the study of microstructure perturbations which are not necessarily pointwise small
(Theorem 4.1). The norm of the perturbation, ‖|δV ‖|, gives a natural measure of the
degree of fineness of the microstructure and is defined for a compactly supported L2

perturbation, δV , by

‖TδV ‖B(L2) ≡ ‖|δV ‖| = ‖〈D〉−1δṼ 〈D〉−1‖|B(L2);(1.11)

see also (4.1). Here, δṼ = χ−1δV χ−1, χ(x) = O(e−α|x|), for some α > 0 and

〈D〉 = (m2 − ∆)
1
2 .

If δV is pointwise large but very oscillatory ‖|δV ‖| may be small due to the opera-
tor 〈D〉−1, which gives small weight to the part of δV supported at high wavenumbers;
see the discussion of section 1.3. For the class of examples represented by (1.5) we
have (Theorem 6.1)

‖|δV N‖| = O
(

1

N

)
.

The main results of this paper are the following:
1. Theorem 3.2 introduces a characterization of solutions to the scattering reso-

nance problem, (nonnormalizable) scattering resonance modes, and complex scatter-
ing resonance energies as solutions of a “preconditioned” Lippman–Schwinger equa-
tion defined on L2.

2. Theorem 4.1 is a stability theorem showing that if the potential, V0, is such
that (ψ(V0), E(V0)) is a (simple) scattering resonance pair and V0 is perturbed to a
“nearby” potential V , i.e., ‖|V − V0‖| is small, then the scattering resonance problem
with potential V has a nearby scattering resonance pair (ψ(V ), E(V )). Furthermore,
the mapping V �→ (ψ(V ), E(V )) is analytic in V . The norm, ‖| · ‖|, has been con-
structed so that if V −V0 is not pointwise small but is very oscillatory, then ‖|V −V0‖|
is small. In section 4.2 we treat the case of degeneracies arising when V0 is a radial
potential, V0 = V0(r).

3. Theorem 7.1 demonstrates the connection with homogenization theory. For
the class of microstructures, corresponding to high-contrast microstructures of the
type arising in physical problems, we show that the N−2 corrections to homogenization
theory agree with the resonance perturbation theory of Theorem 4.1 with an error of
order N−2−τ , τ > 0. The number τ depends on the regularity of the potential. In
particular, if V is C2, then τ = 2, but if as is often the case in applications V has
jump discontinuities (e.g., an interface between two different materials at which there
is a jump in refractive index), then τ = 1.

4. Theorems 2.1 and 2.2 encompass the (simpler) perturbation theory of eigen-
values for microstructure potentials.
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Although the problem of stability of eigenvalues for self-adjoint operators (see
sections 1.3 and 2) has many of the structural features of the resonance problem,
the resonance problem requires a much more technical treatment for the following
reasons:

• While eigenvalues of a self-adjoint operator, H, are poles of the resolvent
(Green’s function) (H − E)−1, scattering resonance energies are poles, E (
E �= 0),
of the analytic continuation of the resolvent across the continuous spectrum (branch
cut) to a “nonphysical” sheet; see section 3.

• Solutions of the eigenvalue equation Hψ = Eψ, where E is a scattering
resonance energy, do not lie in L2 and in fact grow exponentially at infinity.

Overview.

• In section 2 we discuss microstructure perturbations of the eigenvalue prob-
lem.

• In section 3 we formulate the scattering resonance problem.
• In section 4 we state and prove our theorem on microstructure perturbations

of scattering resonances.
• In section 5 we explicitly calculate the expansion of the scattering resonance

pair (E(V ), ψ(V )) about the case V = V0.
• In section 6 we show that the theory applies to potentials of the form V =

V0(r) + δV (r,Nθ), where V0(r) supports scattering resonances and N is sufficiently
large.

• In section 7 the homogenization expansion of [7] is reviewed, and it is proved
that the leading term and lowest nonzero correction in N−1 agree with those of the
expansion displayed in section 5. As demonstrated in [7] the imaginary parts of scat-
tering resonances (leakage rates) are very sensitive to the detailed microstructure.
Therefore, it is important to understand the corrections to leading order (effective
medium) homogenization theory. Our second order homogenization expansion leads,
in examples of physical interest, to an efficient and accurate numerical method, giving
very good agreement with full simulation by Fourier methods and multipole methods.
The real parts of scattering resonances are far less sensitive to the specific microstruc-
ture, and often the first term in the expansion (the averaged or homogenized problem)
gives a good approximation.

Finally, we wish to mention other work on spectral problems in the setting of
microstructure. In [24] and [18] the validity of first order corrections to homogenized
eigenvalues for divergence form (self-adjoint) elliptic operators with rapidly varying
coefficients on bounded domains is analyzed. The problem of scattering resonances for
the Helmholtz resonator problem is studied in [5, 6] and in other works cited therein.

1.5. Definitions, notation, and conventions. All integrals are assumed to
be over all space (Rn) unless otherwise noted.

(r, θ) denote polar coordinates in R
2

�z, the real part of z; 
z, the imaginary part of z

Both z and z∗ are used to denote the complex conjugate of z.

A∗ denotes the adjoint of the operator A.

[A,B] = AB −BA, the commutator of A and B.

The inner product for functions f, g ∈ L2(Rn) is denoted by

〈f, g〉 =

∫
f(x)g(x) dx.
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For radial functions f(r), g(r) ∈ L2(Rn) on R
n we denote the radial inner product by

〈f, g〉rad =

∫ ∞

0

f(r)g(r)rn−1 dr.

Fourier transform:

F [g](ξ) ≡ ĝ(ξ) ≡
∫

e−ix·ξg(x) dx,

g(x) = F−1[F [g]](x) = (2π)−n

∫
eix·ξ ĝ(ξ) dξ.(1.12)

〈ξ〉 = (m2 + ξ2)1/2, ξ2 = ξ · ξ.
D = −i∇, ∆ = ∇ · ∇, the Laplace operator.

Functional calculus:

f(D)g ≡ F−1[fF [g](·)] =
1

(2π)n

∫
eix·ξf(ξ)ĝ(ξ) dξ,(1.13)

〈D〉g =
(
m2I − ∆

)1/2
g =

1

(2π)n

∫
eix·ξ〈ξ〉ĝ(ξ) dξ.(1.14)

Exponentially localized weights: Let 0 < M̃ < M .

χ(x) = F−1[χ̂] and χ̃(x) = F−1[ˆ̃χ], where

χ̂(ξ) =
(
M2 + ξ2

)−4
and ˆ̃χ(ξ) =

(
M̃2 + ξ2

)−4
.(1.15)

Note that 0 < χ(x) = O(e−M |x|) and 0 < χ̃(x) = O(e−M̃ |x|). The exponential upper
bound follows from deformation of the ξ integral contour. Note that χ(x) is essentially
the Bessel potential G8(x), which is strictly positive; see equation (26) in [27].

For a radial function, g(r), defined on R
2,

f(Dl)g ≡ e−ilθf(D)eilθg.

〈Dl〉 = (I − ∆r + l2

r2 )
1
2 .

Young’s inequality: Let α � β denote the convolution of functions α and β.

‖α � β‖Lp ≤ ‖α‖L1‖β‖Lp , p ≥ 1.(1.16)

Bessel functions: For any integer �,

J�(z) =
i−�

π

∫ π

0

eiz cos θ cos(�θ) dθ.(1.17)

Fourier transform of uniform measure on Sn−1: See, for example, [3]. For n ≥ 2,

1

(2π)
n
2

∫
Sn−1

eiω·z dω =
1

|z|n−2
2

Jn−2
2

(|z|).(1.18)
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2. Microstructure perturbations of eigenvalues. We will study the time-
independent Schrödinger equation

Hψ = Eψ,(2.1)

where

H = −∆ + V (x).

Throughout this paper, we require fairly stringent conditions on the potential, namely,
that V (x) ∈ L∞(Rn) and V (x) has compact support. Minor modifications in our
arguments can be made to treat the case of potentials which decay exponentially as
|x| → ∞. For simplicity, we will work in spatial dimension n = 2 or 3, though we
believe that generalization to higher dimensions can be done. Standard arguments
[22, 9] imply that H is self-adjoint on the domain D(H) = D(−∆) = H2(Rn), and
the essential spectrum σess(H) = σ(−∆) = [0,∞).

In this section we focus on the eigenvalue problem for (2.1), requiring ψ ∈ L2

and for the remainder of the paper the scattering resonance problem, corresponding
to (2.1), with ψ “outgoing” at ∞.

The class of potentials we consider can be written as

V (x) = V0(x) + δV (x),

where V0 is “slowly varying” and δV is a perturbation which is “rapidly varying,” but
possibly a pointwise large perturbation, in a sense which is made precise below.

A solution to the eigenvalue problem

(−∆ + V )ψ = Eψ(2.2)

is a pair (E,ψ), where ψ is nontrivial and ψ ∈ H2(Rn).
We now reformulate the eigenvalue problem in a manner which is well suited to

treating microstructure perturbations; see section 1.3. Let E = µ2. For 
µ > 0
(E /∈ [0,∞)), (−∆ − µ2)−1 is bounded on L2, and so (2.2) implies that

ψ +
(
−∆ − µ2

)−1
V ψ = 0

or, equivalently,⎛
⎜⎝I + (−∆ − µ2)−1(I − ∆)︸ ︷︷ ︸

SR(µ)

〈D〉−1V 〈D〉−1︸ ︷︷ ︸
SV

⎞
⎟⎠ 〈D〉ψ = 0.(2.3)

Therefore, we have the following simple correspondence between solutions of (2.2) and
a Lipmann–Schwinger-type integral equation.

Theorem 2.1. The pair (E = µ2, ψ) is a solution to the eigenvalue problem if
and only if (µ, ψ̃), where ψ̃ = 〈D〉ψ ∈ L2, solves

(I + SR(µ)SV ) ψ̃ = 0.(2.4)

If E0 is an eigenvalue, then E0 = µ2
0 < 0 for some µ0 on the imaginary axis in the

upper half-plane. We have the following perturbation theorem for simple eigenvalues.
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Theorem 2.2. (a) Let V0 denote a potential for which ‖|V0‖|1 is finite, where

‖|V0‖| ≡ ‖SV0‖B(L2) =
∥∥〈D〉−1V0〈D〉−1

∥∥
B(L2)

.(2.5)

Let (E0, ψ0) denote a solution of the eigenvalue problem corresponding to the po-
tential, V0(x), and assume that E0 is a simple eigenvalue, for which ψ̃0 = 〈D〉ψ0

correspondingly spans the null space of I + SR(µ0)SV0
. Assume that〈

SV0 ψ̃0, S
′
R(µ0)SV0 ψ̃0

〉
= ‖R0(µ0)V0ψ0‖2

2 �= 0.(2.6)

Then, there exists ε0 such that for any potential V satisfying ‖|V − V0‖| < ε0, there
corresponds a unique solution (E(V ), ψ(V )) of the eigenvalue problem which lies near
(E0, ψ0).

(b) The mapping

V �→ (E,ψ) ∈ R
1 ×H2,

which associates to a potential V a solution (E(V ), ψ(V )) of the eigenvalue problem,
is analytic in the norm ‖|V ‖| in a neighborhood ‖|V − V0‖| < ε0 of V0.

The proof of this theorem is a very much simplified version of the proof of the
analogous result (Theorem 4.1) for the case of scattering resonances. We implement
the ideas in the latter context. However, we do make a few remarks presently.

Remark 2.3. The proofs are based on the implicit function theorem. Recall that
an eigenvalue E0 of −∆ + V0 is such that E0 = µ2

0, where µ is purely imaginary and
in the upper half-plane. Also, as can easily be seen using the Fourier transform, the
operators ∂j

µSR(µ), j ≥ 0, are bounded in L2 in a neighborhood of µ0. Therefore,
one expects the continuity of eigenvalues in the norm for potentials varying in a
neighborhood of V0 in the norm (2.5).

Remark 2.4. The results worked out in sections 5–7 apply as well for the case of
the eigenvalue problem of this section, with much simpler proofs. These include

1. a convergent perturbation expansion of eigenvalues in the V − V0 (compare
section 5);

2. results for the special case of N -fold symmetric perturbations, V − V0 =
δṼ (r,Nθ) (compare section 6);

3. a homogenization/multiple-scale expansion of eigenvalues as well as compar-
ison and agreement with the eigenvalue perturbation theory through second order in
N−1 (compare section 7).

3. Formulation of the scattering resonance problem.

3.1. Elementary review of resonances. Our particular interest is in the res-
onances of H, which we will construct as perturbations of the resonances of H0 =
−∆ + V0. Therefore, we must first consider the latter resonances. Their existence for
the restricted class of potentials we consider is well known [2]. We will briefly review
the arguments, as they will serve as a starting point for the proofs of our main results.

Proposition 3.1. The resolvent RV0(µ) = (−∆ +V0 −µ2)−1 can be analytically
continued from the half-plane 
µ > 0 to the entire plane C, when n is odd, or to
the logarithmic Riemann surface Λ when n is even. The analytic continuation of the
resolvent is meromorphic in µ, with residues at the poles corresponding to finite-rank
operators associated with nontrivial solutions of(

−∆ + V0 − µ2
)
u = 0(3.1)
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Incoming resonances

Pseudo bound state

Bound states

Outgoing resonances

Re(mu)

Im(mu)

Fig. 4. Complex µ plane. Outgoing/incoming resonances correspond to solutions satisfying
outgoing/incoming radiation conditions at infinity.

that satisfy either outgoing (+) or incoming (−) boundary conditions at infinity [25]:

u(rω) = r−
n−1

2 e±iµr[h(ω) + o(1)] as r → ∞,(3.2)

where h is a continuous function on the unit sphere Sn−1.
The half-plane 
µ > 0 is often called the “physical sheet” and 
µ < 0 the

“unphysical sheet.” As seen below, poles of RV0
(µ) on the physical sheet correspond

to eigenvalues, E = µ2 < 0 (�µ = 0,
µ > 0). Those on the unphysical sheet
correspond to outgoing (�µ > 0,
µ < 0) or incoming (�µ < 0,
µ < 0) solutions,
which are not L2. These are called resonances. See Figure 4.

Proof of Proposition 3.1. For 
µ > 0, introduce the free resolvent R0(µ) =
(−∆ − µ2)−1. The kernel of the free resolvent R0(µ) is known explicitly [16]:

R0(µ;x, y) =
1

4i

(
µ

2π|x− y|

)n−2
2

H
(1)
n−2

2

(µ|x− y|),(3.3)

where H
(1)
n−2

2

is a Hankel function [1]. In odd dimensions n ≥ 3, this Hankel function

is entire as a function of µ, while in even dimensions it is entire on the logarithmic
covering Λ of C. The large |z| asymptotics of Hankel functions are displayed in

Appendix A. H
(1)
ν (z) satisfies an outgoing radiation condition as |z| → ∞.

It is shown in [10] that in the physical upper half-plane, 
µ > 0, the resolvent
RV0 is meromorphic, with poles possibly existing on the imaginary axis. Poles, µ, in
the upper half-plane correspond to eigenvalues, E = µ2 < 0, of H0. Away from its
poles, the resolvent RV0(µ) satisfies(

−∆ + V0 − µ2
)
RV0(µ) = I,

which, since the domains of −∆ + V0 and ∆ are equal, can be rewritten as

(I + R0(µ)V0)RV0(µ) = R0(µ).(3.4)
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In order to analytically continue RV0
(µ) from the physical half-plane to 
µ < 0,

it is evident from (3.3) and the asymptotic behavior of H
(1)
ν , (A.4), that we will need

to work in a larger Hilbert space, since H(1)(µ|x − y|) maps the space of square
integrable functions that are compactly supported in |x| ≤ r0, L

2
c(r0), to eα|x|L2(Rn),

with α > |
µ|. It is possible to formulate the analytic continuation in L2(Rn) by
explicitly introducing localizing functions χ(x) satisfying

0 < χ(x) = O(e−α|x|);(3.5)

see (1.15). Multiplying (3.4) on the left by χ(x), we obtain(
I + χR0(µ)V0χ

−1
)
χRV0(µ) = χR0(µ).(3.6)

Both sides of (3.6) are considered as mappings from L2
c(R

n), the space of compactly
supported L2 functions, to L2(Rn).

For |
µ| < α, it can be shown by direct estimation of the kernel associated with
the operator χR0V0χ

−1 using (3.3) that [2]

χR0(µ)V0χ
−1 : L2(Rn) → L2(Rn)

is Hilbert–Schmidt and therefore compact. Furthermore, it is also analytic in this
region, and its norm tends to zero as 
µ → +∞ in the physical sheet. Therefore,
the analytic Fredholm theorem [21] tells us that (I + χR0V0χ

−1)−1 is meromorphic
in the domain of analyticity of µ and that the residues at the poles are finite-rank
operators. From (3.6) and (3.3) is it clear that χRV0

(µ) inherits the analyticity of
(I + χR0(µ)V0χ

−1)−1χR0(µ).
Furthermore, if µ is at a pole, then(

I + χR0V0χ
−1
)
F0 = 0(3.7)

has a nontrivial solution F0 ∈ L2(Rn). Setting ψ0 = χ−1F0, we see that

ψ0 = −R0V0ψ0,(3.8)

which is equivalent to (3.1). Also, if the analytic continuation in µ is from the physical
half-plane to the fourth quadrant across the positive real axis, then (3.8), along with
the asymptotic behavior (A.4) of the Hankel function in (3.3), allows us to conclude
that the solution is outgoing at infinity; if the continuation is across the negative real
axis to the third quadrant, then it is incoming.

3.2. Resonances of microstructure potentials. We can now begin our study
of resonances of microstructured potentials V = V0 + δV . The guiding intuition is
that a resonance pair (E0, ψ0) of V0 should perturb to a nearby pair (E,ψ) of V , if
δV is sufficiently oscillatory, depending on the pair (E,ψ). To make these statements
precise, we take (3.7) as the starting point. We assume that (µ2,Ψ) are a resonance
pair, with Ψ ∈ L2(R2), and write ψ = χ−1Ψ. We then introduce the smoothing
operator 〈D〉−1 and its inverse, 〈D〉, given in (1.14) to obtain⎛

⎜⎝I + 〈D〉χR0(µ)χ〈D〉︸ ︷︷ ︸
TR(µ)

〈D〉−1χ−1V χ−1〈D〉−1︸ ︷︷ ︸
TV

⎞
⎟⎠ (〈D〉χψ) = 0.(3.9)
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Theorem 3.2. Resonances are solutions (Ψ, µ), with 0 �= Ψ ∈ L2, and 
µ < 0 of

(I + TR(µ)TV ) Ψ = 0,(3.10)

where TR(µ) and TV are defined in (3.9).
Remark 3.3. (1) The properties of TR(µ) and TV , which validate (3.10) as an

alternative formulation of the resonance problem, are stated and proved below. In
particular, we shall prove (Corollary 3.6) that TV (µ)TV is compact for 
µ > −M̃ . By
the analytic Fredholm theorem [23], (I + TR(µ)TV )−1 is meromorphic for 
µ > −M̃
with poles which are finite-rank operators. Poles in the lower half-plane are scattering
resonances.

(2) The localizing operators χ are used to transfer decay from the potential to
localization of the free resolvent, which facilitates analytic continuation in µ to the
lower half-plane, where resonance energies are found.

(3) The operators 〈D〉−1 and 〈D〉 transfer smoothness from the free resolvent R0

to act on the microstructured potential V . This latter property enables the pertur-
bative treatment of high contrast microstructures, as explained in section 1.3.

To prove Theorem 3.2 and to work with the formulation (3.10) we require the
following two lemmas.

Lemma 3.4. The operator

TV : L2(Rn) → L2(Rn)

is Hilbert–Schmidt, and therefore compact, for n ≤ 3.
Lemma 3.5. Assume n ≤ 3, and let k ≥ 0 be arbitrary. The operator

∂k
µTR(µ) : L2(Rn) → L2(Rn)

is defined, bounded and analytic in µ for 
µ > −M̃ > −m, m > 0.
Corollary 3.6. The operator

TR(µ)TV : L2(Rn) → L2(Rn)

is compact and analytic in µ for 
µ > −M̃ > −m and n ≤ 3.
Proof of Lemma 3.4. Let

Ṽ = χ−1V χ−1.(3.11)

Note that Ṽ has the same support as V . To prove that TV is compact, note that

〈D〉−1Ṽ 〈D〉−1f =

∫
K(x, y)f(y) dy,

where

K(x, y) =

∫
dξ

(2π)n
dη

(2π)n
ei(x·ξ−y·η)

ˆ̃V (ξ − η)

〈ξ〉〈η〉 ,(3.12)

where 〈D〉−1 = (m2 − ∆)−1/2 and 〈ξ〉 = (m2 + ξ2)1/2. We claim that∫ ∫
|K(x, y)|2 dx dy < ∞,(3.13)
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implying that TV is a Hilbert–Schmidt operator and therefore compact on L2.
We now verify (3.13). The Fourier transform of K(x, y) is given by

K̂(ξ, η) =
ˆ̃V (ξ + η)

(m2 + |ξ|2) 1
2 (m2 + |η|2) 1

2

.(3.14)

By the Plancherel theorem∫
dx dy|K(x, y)|2 = (2π)2n

∫
dξ dη

∣∣K̂(ξ, η)
∣∣2

= (2π)2n
∫

dξ dη

∣∣ ˆ̃V (ξ + η)
∣∣2

(m2 + |ξ|2)(m2 + |η|2)

= (2π)2n
∫

1

(m2 + |ξ|2) dξ
∫ ∣∣ ˆ̃V (η + ξ)

∣∣2 1

(m2 + |η|2) dη.(3.15)

The inner integral (dη) is the convolution of an L1 function, | ˆ̃V |2, and, for dimension
n < 4, an L2 function, 〈η〉−2, and is therefore in L2(dη) by Young’s inequality, (1.16).
It follows that the integrand of the outer integral (dξ) is the product of L2 functions
and by the Cauchy–Schwarz inequality∫

dx dy|K(x, y)|2 ≤ (2π)2n
∥∥〈ξ〉−2

∥∥2

2

∥∥Ṽ ∥∥2

2
< ∞.(3.16)

Lemma 3.4 now follows.
The following lemma, concerning analyticity properties of the free resolvent ker-

nel, is central to analytic extension of TR(µ) into the lower half-plane and the proof
of Lemma 3.5.

Lemma 3.7. Let n ≥ 2. For j = 0, 1, the operator

Lj(µ) = R0(µ)〈D〉j(3.17)

has a kernel Lj(µ;x, y) that can be analytically continued from the (physical) upper
half-plane to the lower half-plane, with a branch cut starting at −im. The kernel is
given by

Lj(µ;x, y) = mj+n−2G2−j(m(x− y)) +
(
m2 + µ2

)
mj+n−4G4−j(m(x− y)) + Rj(µ;x, y).

(3.18)

Here, Gα(x) denotes the kernel associated with the Bessel potential (I−∆)−
α
2 , defined

in terms of the Fourier transform [27]

Ĝα(ξ) =
(
m2 + ξ2

)−α
2 .(3.19)

For µ in the physical upper half-plane, Rj is defined by

Rj(µ;x, y) =

(
m2 + µ2

)2
(2π)n

∫
eiξ·(x−y) dξ

(ξ2 − µ2) (m2 + ξ2)
2−j/2

.

The first two terms in (3.18) form a quadratic polynomial in µ and is therefore an
entire function of µ. The analytic continuation of Rj(µ;x, y) from 
µ > 0 to 
µ < 0
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is given by

Rj(µ;x, y) = Rj(−µ;x, y) +
(
m2 + µ2

) j
2

πi

(2π)n

(
µ

|x− y|

)n−2
2

Jn−2
2

(µ|x− y|),

(3.20)

where Jα is the Bessel function [1]. Furthermore, Rj(µ;x, y) satisfies

Rj(µ;x, y) =
(
m2 + µ2

) j
2 R0(µ;x, y) + R(2)

j (µ;x− y),(3.21)

where R0(µ;x, y) denotes the free resolvent kernel given by (3.3) and∣∣∣∂k
µR

(2)
j (µ;x, y)

∣∣∣ ≤ C(b, k)e−b|x−y|, 
µ ≥ 0,(3.22)

for any b < m and any k ≥ 0.
Proof of Lemma 3.7. For 
µ > 0 we represent the kernel of Lj(µ) using the

Fourier transform:

Lj(µ;x, y) =

∫
dξ

(2π)n
eiξ·(x−y)

(
m2 + ξ2

)j/2
ξ2 − µ2

.(3.23)

Using the algebraic identity

1

ξ2 − µ2
=

1

m2 + ξ2
+

m2 + µ2

(ξ2 − µ2) (m2 + ξ2)
,(3.24)

we have

Lj(µ;x, y) =

∫
dξ

(2π)n
eiξ·(x−y)

[
1

(m2 + ξ2)
1−j/2

+

(
m2 + µ2

)
(m2 + ξ2)

2−j/2

+
(m2 + µ2)2

(ξ2 − µ2)(m2 + ξ2)2−j/2

]
.

The expansion (3.18) now follows from definition (3.19).
The first two terms of (3.18) are entire in µ. To analytically continue the remaining

term Rj(µ;x, y) we will adapt an argument in [15]. We begin by rewriting Rj as

Rj(µ;x, y) =

(
m2 + µ2

)2
(2π)n

∫
Sn−1

dω

∫ ∞

0

dρρn−1eiρω·(x−y) 1

(ρ2 − µ2) (m2 + ρ2)
2−j/2

.

We now focus on the ρ integral. Its integrand is analytic in ρ except for poles at
ρ = ±µ and, for the case of j = 1, a branch cut starting at ρ = ±im. Let µ1 = µ′+iε1
and µ2 = −µ′ + iε2, where µ′ ∈ R+ and εj > 0, denote points in the first and second
quadrants. We begin by considering R(µ1;x, y) and R(µ2;x, y) separately. R(µ1;x, y)
can be expressed as an integral over the contour in Figure 5, part of which is the
lower half of a circle about µ′ traversed counterclockwise, γ−(µ′). R(µ2;x, y) can be
expressed as an integral over the contour in Figure 6, part of which is the upper half
of a circle about µ′ traversed clockwise, γ+(µ′). In this representation of R(µ2;x, y),
we let ε2 approach −ε1 (µ2 → −µ1) to obtain a representation of R(−µ1;x, y), in
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XX

Fig. 5. Complex ρ integration contour for R(µ1;x, y). The points ±µ′ are denoted by “x.” The
point µ1 = µ′ + iε1, ε1 > 0 is denoted by a circle in the upper half-plane. Vertical semi-infinite lines
are branch cuts extending from ±im to ±i∞.

terms of integration over a contour containing γ+; see Figure 7. The difference,
R(µ1;x, y)−R(−µ1;x, y), has an integral representation over the contour homotopic
to γ−(µ′) − γ+(µ′), a circle about µ′ traversed counterclockwise; see Figure 8. Thus

Rj(µ1;x, y) −Rj(−µ1;x, y)

=
(
m2 + µ2

1

)2
(2π)−n

∫
Sn−1

dω

∮
γ+−γ−

dρ ρn−1eiρω·(x−y) 1

(ρ2 − µ2
1)(m

2 + ρ2)2−j/2

=
(
m2 + µ2

1

) j
2 µn−2

1 (πi)(2π)−n

∫
Sn−1

dω eiµ1ω·(x−y)

=
(
m2 + µ2

1

) j
2 (πi)(2π)

−n
2

(
µ1

|x− y|

)n−2
2

Jn−2
2

(µ1|x− y|).

(3.25)

In the second equality of (3.25), we have performed the contour integral, and in the
third we have used the well-known expression (1.18) for the Fourier transform of the
uniform measure on the sphere, Sn−1, in terms of Bessel functions. This completes
the proof of (3.20).

To prove (3.21), we rewrite the kernel Rj as

Rj(µ;x, y) =
(
m2 + µ2

) j
2

∫
dξ

(2π)n
eiξ·(x−y) 1

ξ2 − µ2

+
(
m2 + µ2

)2 ∫ dξ

(2π)n
eiξ·(x−y)

(
(m2 + ξ2)j/2−2 − (m2 + µ2)j/2−2

ξ2 − µ2

)
.(3.26)
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X
X

Fig. 6. Integration contour for R(µ2;x, y). The points µ2 = −µ′ + iε2, ε2 > 0, and −µ2 are
denoted by circles.

We recognize the first term in (3.26) as a multiple of a Hankel function, which, for

µ > 0, by a contour deformation decays exponentially as |x−y| → ∞. It is therefore
proportional to the outgoing Hankel function. The integrand in the second term, along
with any number of derivatives with respect to µ, is analytic in ξ in a strip around
the real axes and has sufficiently rapid decay as |ξ| → ∞ so that a Paley–Wiener-type
theorem (e.g., Theorem IX.13 of [21]) applies to prove (3.22) for n = 2, 3.

Proof of Lemma 3.5. For 
µ > 0 the boundedness of TR in L2 follows from
bounding its Fourier transform, which is simple because the resolvent kernel decays
exponentially for 
µ > 0. However, the analytic continuation of the resolvent kernel to

µ < 0 grows exponentially, so we must proceed more carefully. We use a combination
of techniques; see, for example, [2, 15].

By commuting 〈D〉, we rewrite TR as a sum of operators, whose kernels can be
analytically continued. The proof uses two technical results, Lemmas 3.8 and 3.9,
which are stated and proved at the end of this section.

First, consider the case k = 0:

TR ≡ 〈D〉χR0(µ)χ〈D〉
=
(
χ〈D〉 + [〈D〉, χ]

)
R0(µ)

(
〈D〉χ + [χ, 〈D〉]

)
= χ〈D〉R0〈D〉χ +

(
[〈D〉, χ]χ̃−1

)(
χ̃R0〈D〉χ

)
+
(
χ〈D〉R0χ̃

)(
χ̃−1[χ, 〈D〉]

)
+
(
[〈D〉, χ]χ̃−1

)(
χ̃R0χ̃

)(
χ̃−1[χ, 〈D〉]

)
= AI + A

(a)
II + A

(b)
II + AIII.(3.27)

Then estimate each of the terms in succession.
We begin with AI. For µ in the upper half-plane, the Fourier representation of
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X X

Fig. 7. We let ε2 approach −ε1, corresponding to µ2 → −µ1. Integration contour shown is for
R(−µ1;x, y).

R0(µ) is valid, and we may therefore commute one of the 〈D〉 operators through the
resolvent and apply the identity

χR0(µ)〈D〉2χ = χIχ +
(
m2 + µ2

)
χR0(µ)χ.(3.28)

The expression (3.28) enables us to carry out the analytic continuation of AI from the
upper half-plane to the lower half-plane. Boundedness on L2 in the required region
follows from Lemma 3.8 with k = 0 below and (3.3).

Moving to the next two terms, we observe that it is sufficient to discuss only

one of A
(a)
II and A

(b)
II , since 〈D〉 commutes with R0 in the upper half-plane, and the

analytic continuation is given by Lemma 3.7. We decompose

A
(a)
II =

(
[〈D〉, χ]χ̃−1

)
(χ̃R0〈D〉χ)

and note that the first term is bounded by Lemma 3.9. We show boundedness of the
second term in two steps. We first consider 
µ ≥ 0. Then (3.18) and (3.21) allow us
to express R0(µ)〈D〉 as a sum of four operators. The two containing Bessel kernels
are clearly bounded, while the term containing R0 is bounded by Lemma 3.8. That

R(2)
j is bounded can be seen by computing the L1 → L∞ norm of its kernel, using

(3.22).
Next, choose µ such that 
µ > −m. Then (3.20) allows us to express R0(µ)〈D〉

as a sum of two terms, the first of which, R0(−µ)〈D〉, we have already bounded and
the second of which is bounded by Lemma 3.8.

Finally, the last term AIII is bounded by application of Lemmas 3.9 and 3.8.
The result for k > 0 is obtained by differentiating the kernels R0 and L1 in (3.27)
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X

Fig. 8. The jump in R(µ;x, y) from its value at µ1 on the first Riemann sheet to its value on
the second Riemann sheet, R(µ1;x, y)−R(−µ1;x, y), is represented as an integral over the circular
contour shown.

and proceeding as above, noting that Lemmas 3.7 and 3.8 can be applied for any
k > 0.

Lemma 3.8. The operator mapping L2(Rn) → L2(Rn) given by the kernel

∂k
µ

[
χ(x)

(
µ

|x− y|

)n−2
2

Jn−2
2

(µ|x− y|)χ(y)

]
(3.29)

is Hilbert–Schmidt, and therefore compact and, in particular, bounded, for 
µ > −m
and any k ≥ 0. In (3.29), J may be any of the Bessel functions J , Y , H(1), or H(2).

This result, for dimension n = 3, follows from the proof in [2]; see, in particular,
the analysis of the operator denoted Tκ. The case of general n follows the same line
of argument.

Lemma 3.9. Let χ and χ̃ be exponentially localized functions with exponential
rates M and M̃ as introduced in (1.15). Then, the operator

C = [〈D〉, χ]χ̃−1 : L2(Rn) → L2(Rn)(3.30)

is bounded when M̃ < min(m,M/
√

2). For any f ∈ L2(Rn)

Cf = Cf.(3.31)

The adjoint of C, C∗, is given by

C∗ = χ̃−1[χ, 〈D〉].(3.32)
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Proof of Lemma 3.9. We first show that C is bounded. Let f denote any member
of L2(Rn). Then,

Cf ≡ F (x) =

∫
dy

∫
dζ

(2π)n
dη

(2π)n
eiζ·x−iη·yχ̂(ζ − η)(〈ζ〉 − 〈η〉)χ̃−1(y)f(y).(3.33)

Since ‖Cf‖2 = ‖F̂‖2 it suffices to show that ‖F̂‖2 is bounded above by C‖f‖2 for
some positive constant, C. The integrand in (3.33) is analytic in ζ varying over the
product of strips around the real axes, −∞ < ζj < ∞, and has sufficient decay as
|ζj | → ∞ so that we may shift the ζ contours ζj → ζj + iγj , with |γ| < min(m,M).
We next write

χ̃−1(y) =
∑

s∈{−1,1}n

1sgn(y)=s(y)χ̃
−1(y)

and define γj = γj(s) = −vsj , where v is chosen to satisfy

n− 1
2 M̃ < v < n− 1

2 min(m,M).(3.34)

We note that the first inequality in (3.34) will ensure that, for y ∈ R
n and |y|1 =

|y1| + · · · + |yn|, ∥∥1sgn(y)=s(y)χ̃
−1(y) e−v|y|1f(y)

∥∥
2
≤ C‖f‖2,(3.35)

while the second ensures that |γ| < min(m,M), so that the contour shift is permitted.
After the contour shift, we have

F̂ (ξ) =
∑

s∈{−1,1}n

∫
dy

∫
dη

(2π)n
e−iη·yχ̂(ξ − η − iγ(s))(〈ξ〉 − 〈η + iγ(s)〉)

×1sgn(y)=s(y)χ̃
−1(y)e−v|y|1f(y).

To continue, we define

gs(y) = 1sgn(y)=s(y)χ̃
−1(y)e−v|y|1

and carry out the dy integral:

F̂ (ξ) =
∑

s∈{−1,1}n

∫
dη

(2π)n
χ̂(ξ − η − iγ)︸ ︷︷ ︸

F1

(〈ξ〉 − 〈η + iγ〉)︸ ︷︷ ︸
F2

ĝs(η).(3.36)

We may bound F1 of (3.36) as follows. Choose γ2 = (δ/2)M2, with δ ∈ (0, 1), and
set x = ξ − η. Then

|M2 + (x− iγ)2|2 =
(
M2 + x2

)2
+ γ4 − 2γ2

(
M2 + x2

)
+ 4(x · γ)2

≥
(
M2 + x2

) (
M2 + x2 − 2γ2

)
≥
(
(1 − δ)M2 + x2

)2
,(3.37)

and it follows that

|F1| ≤
(
(1 − δ)M2 + (ξ − η)2

)−4
.(3.38)



498 S. E. GOLOWICH AND M. I. WEINSTEIN

We bound F2 of (3.36) as follows. Write F2 = F
(1)
2 + F

(2)
2 , with

F
(1)
2 =

(
m2 + ξ2

) 1
2 −

(
m2 + η2

) 1
2 ,

F
(2)
2 =

(
m2 + η2

) 1
2 −

(
m2 + (η + iγ)2

) 1
2 .

We observe that |F (1)
2 | ≤ C|ξ − η|. We may bound |F (2)

2 | by noting that it can be
written as

F
(2)
2 = |η| (1 + f1(η)) − |η| (1 + f2(η)),

where

|f1(η)| ≤ O
(
|η|−2

)
, |f2(η)| ≤ O

(
|η|−1

)
.

Then, clearly |F (2)
2 | is bounded by a constant, and

|F2| ≤ C + |ξ − η|.(3.39)

Finally, we assemble (3.38) and (3.39) by writing∣∣F̂ (ξ)
∣∣ ≤ (2π)−n

∑
s∈{−1,1}n

(
h � |ĝs|

)
(ξ)

with

h(ξ − η) =
(
(1 − δ)M2 + (ξ − η)2

)−4 (
C + |ξ − η|

)
.

Then, by Young’s inequality,

‖Cf‖2 = ‖F̂‖2 ≤ π−n ‖h‖1 sup
s∈{−1,1}n

‖ĝs‖2 ≤ C‖f‖2.

The expression (3.31) follows from (3.33), as does (3.32) for the adjoint C∗, along
with the fact that C is bounded.

4. Perturbation theory of scattering resonances. In this section we state
and prove a perturbation theorem for solutions of the scattering resonance problem.
We first consider, in section 4.1, the case where the resonance subspace being per-
turbed has dimension one. We then turn, in section 4.2, to the two-dimensional radial
case, V0 = V0(r), and show how the perturbation theory of degenerate pairs of res-
onances (occurring for angular momentum |l| ≥ 1) can be reduced to the previous
case.

4.1. Perturbations of simple scattering resonances.
Theorem 4.1. (a) Let V0 denote a potential for which ‖|V0‖| is finite, where

‖|V0‖| ≡ ‖TV0‖B(L2) = ‖〈D〉−1V0〈D〉−1‖B(L2).(4.1)

Let (E0, ψ0) denote a solution of the corresponding scattering resonance problem. As-
sume that

dim {ker (I + TR(E0)TV0)} = 1(4.2)
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and that this subspace is spanned by the function

Ψ0 = 〈D〉χψ0

(see (3.9)). Furthermore, assume the condition

〈TV0Ψ0, T
′
R(E0)TV0

Ψ0〉 �= 0.(4.3)

Then, there exists ε0 such that for any potential V satisfying ‖|V − V0‖| < ε0, there
corresponds a unique solution (E(V ), ψ(V )) of the scattering resonance problem which
lies near (E0, ψ0).

(b) The mapping

V �→ (E,ψ) ∈ C ×H1(χ(x)dx),

which associates to a potential V a solution (E(V ), ψ(V )) of the scattering resonance
problem, is analytic in the norm ‖|V ‖| in a neighborhood ‖|V − V0‖| < ε0 of V0.

Proof of Theorem 4.1. We formulate the problem so that the result follows from
the implicit function theorem. For ‖|V −V0‖| small we seek a solution of the scattering
resonance problem

(I + TR(E)TV ) Ψ = 0(4.4)

in the form

E = E0 + δE,(4.5)

Ψ = Ψ0 + δΨ,(4.6)

where

(I + TR(E0)TV0) Ψ0 = 0.(4.7)

Substitution of (4.5) and (4.6) into (4.4) and use of (4.7) yields

(I + TR(E0)TV0) δΨ = −TR(E0)TδV Ψ0 − δTR(E0, δE)TV0Ψ0

−Q(δV , δΨ, δE;V0,Ψ0, E0)(4.8)

with

δTR(E0, δE) = TR(E0 + δE) − TR(E0)

and Q consisting only of the quadratic and higher order terms:

Q(δV , δΨ, δE;V0,Ψ0, E0) =
(
TR(E0)TδV + δTR(E0, δE)TV0

)
δΨ

+δTR(E0, δE)TδV (Ψ0 + δΨ).(4.9)

We will apply the analytic Fredholm theorem to (4.8). The solvability condition
requires an understanding of the adjoint operator I + T ∗

V0
TR(E0)

∗. Note that since
V0 is real-valued, TV0 is self-adjoint.

Lemma 4.2. Under condition (4.2) of Theorem 4.1, the adjoint operator I +
TV0TR(E0)

∗ has a one-dimensional null space spanned by the function

Ψ#
0 = TV0Ψ0.(4.10)
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Therefore, the inhomogeneous problem

(I + TR(E0)TV0)U = S

has a solution for S ∈ L2 if and only if〈
TV0Ψ0, S

〉
= 0.(4.11)

Proof of Lemma 4.2. Since TR(E0)TV0 is compact the dimensions of the null
spaces of I + TR(E0)TV0 and I + TV0TR(E0)

∗ are equal [12].
To construct the adjoint null space, observe that an element of the null space

satisfies

(I + TR(E0)TV0) Ψ0 = 0.(4.12)

Applying the operator TV0 we get

(I + TV0
TR(E0))TV0

Ψ0 = 0.(4.13)

Taking the complex conjugate of (4.13) yields

TV0
Ψ0 + TV0

TR(E0)TV0
Ψ0 = 0.(4.14)

The lemma follows from the observation that TV0f = TV0
f , since V0 is real-valued,

and the conclusion of Lemma 4.3.
Lemma 4.3. For any µ ∈ C \ {0} satisfying 
µ > −M̃ > −m and f ∈ L2(Rn),

TR(µ)f = TR(µ)∗f.

Proof of Lemma 4.3. We employ the decomposition (3.27) of TR. We first note
that the result for AI follows from the use of the identity (3.28), Lemma 3.8, and the
fact that the free resolvent is symmetric, as can be seen from (3.3). We next consider

AII = A
(a)
II + A

(b)
II = C

(
χ̃L1(µ)χ

)
+
(
χL1(µ)χ̃

)
C∗,

where we have used the notation of (3.30) and (3.17). The result follows from
Lemma 3.9, which tells us that Cf = Cf for f ∈ L2; Lemma 3.7, which tells us that
L1 has a symmetric kernel; and Lemma 3.8, which tells us that χ̃L1(µ)χ is a bounded
operator from L2 → L2 for 
µ > −M̃ . The result for AIII follows similarly.

Continuing with the proof of Theorem 4.1, we note that (4.11) gives us an implicit
condition for the solvability of (4.8) for δΨ, obtained by setting the inner product of
the right-hand side of (4.8) with TV0

Ψ0 equal to zero:〈
TV0

Ψ0, δTR(E0, δE)TV0
Ψ0

〉
+
〈
TV0

Ψ0, TδV Ψ0

〉
+
〈
TV0

Ψ0,Q(δV , δΨ, δE;V0,Ψ0, E0)
〉

= 0.(4.15)

We now view the task of solving the scattering resonance problem as that of seeking
a solution (Ψ(V ), E(V )) of the system of equations (4.8), (4.15). In compact form we
write

F(δV , δΨ, δE) = 0,(4.16)
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where F = (F1, F2) and

F1(δV , δΨ, δE) = (I + TR(E0)TV0) δΨ +
(
TR(E0)TδV + δTR(E0, δE)TV0

)
Ψ0

+Q(δV , δΨ, δE;V0,Ψ0, E0),(4.17)

F2(δV , δΨ, δE, ) =
〈
TV0Ψ0,

(
TR(E0)TδV + δTR(E0, δE)TV0

)
Ψ0

+Q(δV , δΨ, δE;V0,Ψ0, E0)
〉
.(4.18)

We verify that the hypotheses of the analytic implicit function theorem hold for
F : X × Y → Z, with

X = {V ∈ L2(Rn) of compact support},
Y = L2(Rn) × C,

Z =
{
(f, z) ∈ L2(Rn) × C : z =

〈
TV0Ψ0, f

〉}
and with the norms ‖|V ‖| for V ∈ X, ‖Ψ‖L2 + |E| for (Ψ, E) ∈ Y, and ‖f‖L2 + |z| for
(f, z) ∈ Z.

We first compute the differential DF evaluated at a point x0 = (Ṽ , Ψ̃, Ẽ) in a
neighborhood of the origin:

DδV ,δΨ,δEF1(x0) = DδV F1(x0) + DδΨF1(x0) + DδEF1(x0)

= TR(E0)TδV Ψ0 + TR(E0)TδV Ψ̃ + δTR(E0, Ẽ)TδV (Ψ0 + Ψ̃)

+
[
I + TR(E0)TV0 + TR(E0)TṼ + δTR(E0, Ẽ) + δTR(E0, Ẽ)TṼ

]
δΨ

+T ′
R(E0 + Ẽ)

[
TV0Ψ0 + TV0Ψ̃ + TṼ (Ψ0 + Ψ̃)

]
δE,

DδV ,δΨ,δEF2(x0) = DδV F2(x0) + DδΨF2(x0) + DδEF2(x0)

=
〈
TV0Ψ0, TR(E0)TδV Ψ0 + TR(E0)TδV Ψ̃ + δTR(E0, Ẽ)TδV (Ψ0 + Ψ̃)

+
[
TR(E0)TṼ + δTR(E0, Ẽ) + δTR(E0, Ẽ)TṼ

]
δΨ

+T ′
R(E0 + Ẽ)

[
TV0Ψ0 + TV0Ψ̃ + TṼ (Ψ0 + Ψ̃)

]
δE

〉
.

By Lemmas 3.4 and 3.5, we see that

‖DδV ,δΨ,δEF(x0)‖Z ≤ C‖|δV ‖| + C‖δΨ‖ + C|δE|

for x0 in a neighborhood of the origin, and therefore F is analytic there. We observe
that F(0, 0, 0) = 0 and consider the differential evaluated at the origin:

DδΨ,δEF(0, 0, 0) =

(
I + TR(E0)TV0 T ′

R(E0)TV0Ψ0

0
〈
TV0Ψ0, T

′
R(E0)TV0Ψ0

〉 )
.(4.19)

We now verify that the inverse of DδΨ,δEF(0, 0, 0) is defined and bounded on Z.
Consider the system of equations

(I + TR(E0)TV0
) δΨ + T ′

R(E0)TV0
Ψ0 δE = f1,

〈TV0Ψ0, T
′
R(E0)TV0

Ψ0〉 δE = 〈TV0
Ψ0, f1〉.(4.20)

By Lemma 4.2, this system can be solved uniquely for (δΨ, δE) ∈ L2 × C of a func-
tion of δV . The conclusions of Theorem 4.1 now follow from the implicit function
theorem.
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4.2. Perturbation theory of degenerate resonances: A special case.
There are many situations in which degenerate resonances occur or, equivalently,
cases where assumption (4.2) is violated. A general theory of degenerate scatter-
ing resonances will not be developed in this work. We focus instead on a particular
class of potentials having degenerate resonances and their behavior under a class of
perturbations.

In particular, we consider the case of potentials in the plane with radial symme-
try, V0(r), and rapidly varying, zero mean, perturbations of the type illustrated in
Figure 1.2, δV (r,Nθ). Assumption (4.2) on the resonances of the unperturbed po-
tential is violated because of the presence of a double degeneracy indexed by positive
and negative angular momenta. In this section we prove that for this class of pertur-
bations, the perturbation theory of a twofold degenerate resonance reduces to that of
two independent nondegenerate resonances, as formally seen in [7].

We begin by noting that solutions of the unperturbed problem

(I + TR(E0)TV0
)Ψ0 = 0

divide into degenerate subspaces of angular momentum � spanned by

Ψ0±� = e±i�θΨ̃0�.

Here, Ψ̃0� = Ψ̃0�(r) satisfies

(I + Ť�,R(E0)Ť�,V0)Ψ̃0� = 0,

and we have defined

Ť�,R(E) = 〈Ď�〉χǦ�(E)χ〈Ď�〉,
Ť�,V = 〈Ď�〉−1χ−1V χ−1〈Ď�〉−1.

The operators Ǧ� and 〈Ď�〉 are defined as

Ǧ�(E) =

(
−∆ +

�2

r2
− E

)−1

,

〈Ď�〉−1 =

(
m2I − ∆ +

�2

r2

)− 1
2

,(4.21)

and they arise as a result of the commutation formulas

TV e
i�θf = ei�θŤ�,V f,

TRe
i�θg = ei�θŤ�,Rg.(4.22)

We note that the operators (4.21) differ from the partial wave Green’s function G�

and smoothing operator 〈D�〉−1 defined in sections 8 and 6, in that (4.21) contains a
full Laplacian.

We expand Ψ, a solution of the scattering resonance problem

(I + TR(E)TV )Ψ = 0(4.23)

with V near V0 and E near the degenerate resonance energy E0, in the form

Ψ =
∑

α∈{±�}
cαΨ0α + Φ,

E = E0 + δE,

V = V0 + δV ,(4.24)
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where cα are constants. Substitution of (4.24) into (4.23) yields the following equation
for Φ:

(I + TR(E0)TV0
)Φ = (TR(E0)TV0

− TR(E)TV )

⎛
⎝ ∑

α∈{±�}
cαΨ0α + Φ

⎞
⎠.(4.25)

The solvability condition is〈
Ψ#

0β , (TR(E0)TV0 − TR(E)TV )

⎛
⎝ ∑

α∈{±�}
cαΨ0α + Φ

⎞
⎠〉 = 0, β ∈ {±�},(4.26)

where Ψ#
0β span the adjoint null space of I + TR(E0)TV0

. These functions are charac-
terized by the following lemma.

Lemma 4.4. If the null space of I + TR(E0)TV0 is spanned by Ψ0±�, then the
adjoint null space is spanned by

Ψ#
0±� = e±i�θŤ�,V0

¯̃Ψ0�.(4.27)

Proof of Lemma 4.4. Since TR(E0)TV0 is compact the dimensions of the null
spaces of I + TR(E0)TV0

and I + TV0
TR(E0)

∗ are equal [12]. By the same argument
as in Lemma 4.2, the functions (4.27) are elements of the adjoint null space. When

� > 0 the two functions Ψ#
0±� are linearly independent.

Returning to (4.25), we choose to represent the solution Φ as

Φ =
∑

α∈{±�}
cαe

iαθΦ̃�,(4.28)

where we define Φ̃� to satisfy(
I + Ť�,R(E0)Ť�,V0

)
Φ̃�

=
(
Ť�,R(E0)Ť�,V0 − Ť�,R(E)Ť�,V0 − Ť�,R(E)Ť�,δV

) (
Ψ̃0� + Φ̃�

)
.(4.29)

To justify the representation (4.28), we note that the linear combination (4.28) satisfies
(4.25), and it is unique by Fredholm theory. The solvability condition (4.26) becomes,
with the definition (4.28), the matrix equation

Mβαcα = 0,

where

Mβα = 〈Ψ#
0β , (TR(E0) − TR(E))TV0Ψ0α〉︸ ︷︷ ︸

M
(I)
βα

−〈Ψ#
0β , TR(E)TδV Ψ0α〉︸ ︷︷ ︸

M
(II)
βα

+ 〈Ψ#
0β , (TR(E0) − TR(E))TV0

Φα〉︸ ︷︷ ︸
M

(III)
βα

−〈Ψ#
0β , TR(E)TδV Φα〉︸ ︷︷ ︸

M
(IV)
βα

.

Lemma 4.5. When N > 2�, the matrix M is diagonal and takes the form

Mβα = 2π δβα
〈
Ť�,V0

¯̃Ψ0�, (Ť�,R(E0) − Ť�,R(E))Ť�,V0Ψ̃0�

〉
rad

+2π δβα
〈
Ť�,V0

¯̃Ψ0�, (Ť�,R(E0) − Ť�,R(E))Ť�,V0Φ̃0�

〉
rad

−2π δβα
∑

k∈Z\{0}

〈
Ť�,V0

¯̃Ψ0�, Ť�,R(E)〈Ďα〉−1χ−1δV kχ
−1〈Ďα−kN 〉−1Φ̃�,−k

〉
rad

.
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Proof of Lemma 4.5. We explicitly compute the matrix elements of M , starting
with

M
(I)
βα = 2π δβα

〈
Ť�,V0

¯̃Ψ0�, (Ť�,R(E0) − Ť�,R(E))Ť�,V0Ψ̃0�

〉
rad

,

which follows from the definitions the commutation formulas (4.22). To compute
M (II), we expand δV in the Fourier series

δV =
∑
k �=0

δV k(r)e
ikNθ,(4.30)

which yields

M
(II)
βα =

∑
k �=0

〈
TV0

eiβθ ¯̃Ψ0�, TR(E)TδV keikNθeiαθΨ̃0�

〉

=
∑
k �=0

∫ 2π

0

ei(α−β+kN) dθ
〈
Ť�,V0

¯̃Ψ0�, Ťα+kN,R(E)〈Ďα+kN 〉−1χ−1δV kχ
−1〈Ď�〉Ψ̃0�

〉
= 0 for N > 2�.

We see that M (II) vanishes for N large enough. Continuing with M (III), we use the
Fourier series of Φ̃�,

Φ̃�(r, θ) =
∑
p∈Z

eiNpθΦ̃�,k(r).(4.31)

After commuting through the angular dependence, we find

M
(III)
βα =

∑
p∈Z

∫ 2π

0

ei(α−β+pN)θ dθ

〈
Ť�,V0

¯̃Ψ0�, (Ťα+pN,R(E0) − Ťα+pN,R(E))Tα+pN,V0Φ̃�,k

〉
rad

.

When α �= β and N > 2�, M (III) vanishes, but there is a contribution to the diagonal,
which comes from the p = 0 term:

M
(III)
βα = 2π δβα

〈
Ť�,V0

¯̃Ψ0�, (Ť�,R(E0) − Ť�,R(E))Ť�,V0Φ̃0�

〉
rad

.

Finally, to compute M (IV) we make use of both Fourier series (4.30) and (4.31):

M
(IV)
βα =

∑
k ∈ Z \ {0}

p ∈ Z

∫ 2π

0

ei(α−β+kN+pN)θ dθ

〈
Ť�,V0

¯̃Ψ0�, Ťα+kN+pN,R(E)〈Ďα+kN+pN 〉−1χ−1δV kχ
−1〈Ďα+pN 〉−1Φ̃�,p

〉
rad

.

Once again, there is no contribution from the off-diagonal terms when N > 2�, and
the diagonal contribution arises from the k = −p terms.

Because M is diagonal for large enough N ,

Mβα = δβαMβ(δV ; Φ, δE),

the two angular momenta decouple. Choosing c� = 1, c−� = 0, say, we find that the
system (4.25) and (4.26) reduces to (4.29) and M�(δV ; Φ, dE) = 0. This system is of
the same form as that considered in Theorem 4.1, and an analogous result applies. In
the current context, the condition (4.3) becomes〈

Ť�,V0

¯̃Ψ0�, Ť
′
�,R(E0)Ť�,V0Ψ̃0�

〉
rad

�= 0.
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5. Scattering resonance expansion. In the previous section we proved that if
the scattering resonance problem has a solution (E0, ψ0) corresponding to a potential
V0, then for all potentials V = V0 + δV in a neighborhood of V0 (‖|δV ‖| small) the
scattering resonance problem has a solution (E(V0 + δV ), ψ(V0 + δV )). Moreover, we
have that E(V ) and ψ(V ) can be expanded about the V0 case. In this section we
compute the first few terms of this expansion.

To find the explicit expansions of E(V ) and ψ(V ) we write

E = E0 + δE(1) + δE(2) + · · · ,
Ψ = Ψ0 + δΨ(1) + δΨ(2) + · · · ,(5.1)

where terms with a superscript j are formally of order j. Substitution of (5.1) into
(4.8) and equating like orders or magnitude yields a hierarchy of inhomogeneous equa-
tions, the first two terms of which are

O(1) : (I + TR(E0)TV0) δΨ
(1) = −

(
TR(E0)TδV + δE(1)T ′

R(E0)TV0

)
Ψ0,(5.2)

O(2) : (I + TR(E0)TV0
) δΨ(2) = −

(
δE(2)T ′

R(E0) +
1

2
T ′′
R(E0)

(
δE(1)

)2
)
TV0

Ψ0

−
(
TR(E0)TδV + δE(1)T ′

R(E0)TV0

)
δΨ(1)

−δE(1)T ′
R(E0)TδV Ψ0.(5.3)

At order O(m) in perturbation theory, δE(m) is determined by the solvability condi-
tion: 〈

TV0
Ψ0, right-hand side of δΨ(m) equation

〉
= 0.(5.4)

The equation for δE(m) has the form〈
TV0Ψ0, T

′
R(E0)TV0Ψ0

〉
δE(m) = · · · .(5.5)

Therefore, the determination of δE(m) at all orders depends on the nonvanishing of
the (m-independent) coefficient

CdE ≡
〈
TV0

Ψ0, T
′
R(E0)TV0

Ψ0

〉
=
〈
V0ψ0, R

′
0(E0)V0ψ0

〉
.(5.6)

Consider the O(1) equation. By Lemma 4.2 a necessary and sufficient condition
for solvability in L2 is〈

TV0Ψ0, TR(E0)TδV Ψ0 + δE(1)T ′
R(E0)TV0Ψ0

〉
= 0.

Therefore,

δE(1) = −〈TV0Ψ0, TR(E0)TδV Ψ0〉
〈TV0Ψ0, T ′

R(E0)TV0Ψ0〉
(5.7)

or, equivalently, using (5.6) and the definitions of TV , TR, and Ψ0,

δE(1) = − 〈V0ψ0, δV ψ0〉〈
V0ψ0, R

′
0(E0)V0ψ0

〉 .(5.8)
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If δE(1) is chosen to satisfy (5.8), then (5.2) has a unique solution Ψ(1).
Turning to the O(2) equation, we then substitute this into the right-hand side of

(5.3) and find, via Lemma 4.2, that δE(2) is determined by the solvability condition

CdEδE
(2) = −1

2

(
δE(1)

)2 〈
TV0Ψ0, T

′′
R(E0)TV0

Ψ0

〉
−
〈
TV0

Ψ0, TR(E0)TδV δΨ
(1)
〉
− δE(1)

〈
TV0

Ψ0, T
′
R(E0)TV0

δΨ(1)
〉

−δE(1)
〈
TV0

Ψ0, T
′
R(E0)TδV Ψ0

〉
.(5.9)

The procedure can be continued to obtain a solution to any order.

Special case: Vanishing first order correction; δE(1) = 0. When δE(1) =
0, the expression for δE(2) simplifies considerably. This case arises in the application
of section 6.

Lemma 5.1. Suppose δE(1) = 0. Then,

δE(2) = C−1
dE

〈
Ψ0, TδV δΨ

(1)
〉

(5.10)

= −
〈
TδV Ψ0, (I + TR(E0)TV0

)−1TR(E0)TδV Ψ0

〉〈
TV0Ψ0, T ′

R(E0)TV0Ψ0

〉 .(5.11)

Proof of Lemma 5.1. If δE(1) = 0, then (5.9) gives〈
TV0Ψ0, δE

(2)T ′
+(E0)TV0Ψ0 + TR(E0)TδV δΨ

(1)
〉

= 0.(5.12)

Therefore,

δE(2)
〈
TV0Ψ0, T

′
R(E0)TV0Ψ0

〉
= −

〈
TV0Ψ0, TR(E0)TδV δΨ

(1)
〉

= −
〈
TR(E0)TV0Ψ0, TδV δΨ

(1)
〉

=
〈
Ψ0, TδV δΨ

(1)
〉
.(5.13)

The second equality in (5.13) follows from Lemma 4.3, and the third follows from
(4.7). Finally, (5.11) follows from (5.2).

6. The Schrödinger equation with potentials with N-fold symmetric
(microstructure) potentials. Let r = |x| and θ ∈ [0, 2π] denote polar coordinates
in the plane, R

2. We consider V (x) = V0(r)+δVN (x), where V0(r) defines the averaged
structure and δVN , the microstructure

δVN (x) = δṼ (r,Nθ).(6.1)

Here, δṼ (r,Θ) is 2π-periodic and mean-zero in Θ. Thus we have a structure with
N -fold rotational symmetry.

We want to show that to any scattering resonance of the averaged structure,
there is a nearby scattering resonance of the perturbed structure, provided that N is
sufficiently large. In order to apply the results of Theorem 4.1 we must show that, as
N → ∞,

‖| δVN ‖| ≡ ‖TδVN
‖B(L2) =

∥∥〈D〉−1δV̌N 〈D〉−1
∥∥
B(L2)

→ 0,(6.2)
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where δV̌N = χ−1δVNχ−1. We next prove this and, in particular, obtain the precise
estimate of ‖| δVN ‖| in terms of N .

Theorem 6.1. For some positive constant, C, depending on V and χ,

‖|δVN‖| ≤ C
1

N
.(6.3)

Corollary 6.2. By Theorems 6.1 and 4.1, there exists a positive integer, N∗ >
0, such that, for N ≥ N∗, the scattering resonance problem for H = −∆ + V0 + δVN

has a solution (EN , ψN ) with scattering frequency EN near E0.
To prove (6.3), we shall make use of the Fourier series of δVN :

δVN (·, θ) =
∑
k �=0

δVN
(k)(·)eikθ.(6.4)

A similar expansion holds for δV̌N , with δVN
(k) replaced by δV̌N

(k) ≡ χ−1δVN
(k)χ−1.

Proposition 6.3. Let K(∆) denote a function of the Laplacian. Then,

K(∆)ei�θf(r) = ei�θK(∆�)f(r),(6.5)

where

∆� = ∆r −
�2

r2
.(6.6)

In particular,

〈D〉−1ei�θf(r) = ei�θ〈D�〉−1f(r),(6.7)

〈D�〉−1 =
(
m2I − ∆�

)− 1
2 .(6.8)

Proof of Theorem 6.1. We now estimate the norm of TδV N
. Let f ∈ L2 be

arbitrary. Then,

〈D〉−1δV̌N 〈D〉−1f =
∑
�

〈D〉−1δV̌N 〈D〉−1f�e
i�θ

=
∑
�

〈D〉−1δV̌Nei�θ〈D�〉−1f�

=
∑
�,k �=0

〈D〉−1δV̌N
(k)

ei(�+kN)θ〈D�〉−1f�

=
∑
�,k �=0

ei(�+kN)θ〈D�+kN 〉−1δV̌N
(k)〈D�〉−1f�.(6.9)

Taking the L2 norm and using orthogonality of {ei�θ : � ∈ Z} we have

∥∥〈D〉−1δV̌N 〈D〉−1f
∥∥2

L2 =
∑
�,k �=0

∥∥∥〈D�+kN 〉−1δV̌N
(k)〈D�〉−1f�

∥∥∥2

L2

=
∑
�,k �=0

∥∥∥〈D�+kN 〉−1
∣∣∣δV̌N

(k)
∣∣∣ 1
2
∣∣∣δV̌N

(k)
∣∣∣ 1
2

sgn
(
δV̌N

(k)
)
〈D�〉−1f�

∥∥∥2

L2

≤
∑
�,k �=0

∥∥∥〈D�+kN 〉−1
∣∣∣δV̌N

(k)
∣∣∣ 1
2
∥∥∥2

B(L2)

∥∥∥∣∣∣δV̌N
(k)
∣∣∣ 1
2 〈D�〉−1

∥∥∥2

B(L2)
‖f�‖2

L2 .(6.10)



508 S. E. GOLOWICH AND M. I. WEINSTEIN

Since the operators |δV̌N
(k)| 12 〈D�〉−1 and 〈D�〉−1|δV̌N

(k)| 12 are adjoints, their B(L2)
norms are equal, and we have∥∥〈D〉−1δV̌N 〈D〉−1f

∥∥2

L2 ≤
∑
�,k �=0

Γ�+kN,kΓ�,k‖f�‖2
L2 ,(6.11)

where

Γq,k =
∥∥∥ ∣∣∣δV̌N

(k)
∣∣∣ 1
2 〈Dq〉−1

∥∥∥2

B(L2)
.(6.12)

Let

B� ≡ 〈D�〉 =

(
m2I − ∆r +

�2

r2

) 1
2

.(6.13)

Note that

Γq,k =
∥∥∥〈x〉∣∣∣δV̌N

(k)
∣∣∣ 1
2 · 〈x〉−1B−1

q

∥∥∥2

B(L2)
≤ γk

∥∥〈x〉−1B−1
q

∥∥2

B(L2)
,(6.14)

where

γk = sup
x

∥∥∥〈x〉∣∣∣δV̌N
(k)
∣∣∣ 1
2
∥∥∥
∞

≤ γ,

where γ is independent of k since V (r, θ) is bounded and has compact support in x.
Therefore,

∥∥〈D〉−1δV̌N 〈D〉−1f
∥∥2

L2 ≤ γ2
∑
�,k �=0

∥∥〈x〉−1B−1
�+kN

∥∥2

B(L2)

∥∥〈x〉−1B−1
�

∥∥2

B(L2)
‖f�‖2

L2 .

(6.15)

We shall bound (6.14) using the following proposition.
Proposition 6.4. ∥∥〈x〉−1B−1

� f
∥∥
L2 ≤

(
1 + �2

)− 1
2 ‖f‖L2 .(6.16)

The proof is given in section 8.
We now conclude our estimation of ‖| δVN ‖|. By Proposition 6.4 applied to the

operators B� and B�+kN we have from (6.15)

‖〈D〉−1δVN 〈D〉−1f‖2
L2 ≤ 2γ2

∑
|k|≥1

∑
�

1

1 + (� + kN)2
1

1 + �2
‖f�‖2

L2 .(6.17)

Consider the above sum over the range k ≥ 1. The range k ≤ −1 is treated similarly:∑
k≥1

∑
�

1

1 + (� + kN)2
1

1 + �2
‖f�‖2

L2 =
∑
A

+
∑
B

+
∑
C

.

Here, we use the notation∑
A

≡
∑
k≥1

∑
−2kN≤�≤−kN/2

{· · · },
∑
B

≡
∑
k≥1

∑
�≥−kN/2

{· · · }, and

∑
C

≡
∑
k≥1

∑
�≤−2kN

{· · · }.(6.18)
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These three sums are estimated as follows:∑
A

≤
∑
k≥1

∑
−2kN≤m≤−kN/2

1

1 + �2
‖f�‖2

L2 ≤
∑
k≥1

1

1 + k2N2

4

‖f�‖2
L2 ≤ C

1

N2
‖f‖2

L2 ,

∑
B

≤
∑
k≥1

1

1 + k2N2

4

∑
�≥−kN/2

1

1 + �2
‖f�‖2

L2 ≤ C
1

N2
‖f‖2

L2 ,

∑
C

≤
∑
k≥1

1

1 + k2N2

∑
�≤−2kN

1

1 + �2
‖f�‖2

L2 ≤ C
1

N2
‖f‖2

L2 .

This completes the proof of Theorem 6.1.

7. Comparison of perturbation and homogenization expansions. In the
previous section, we showed the applicability of resonance perturbation theory to
the class of potentials VN ; see (1.5). In this section, we first summarize the formal
homogenization expansion [7], derived and used extensively to obtain an expansion
and efficient numerical algorithm for computation of leakage rates (imaginary parts
of scattering resonances) for a class of photonic microstructure waveguides. We then
prove that this expansion of the scattering resonance frequency, E(VN ), agrees through
second order with the expansion

E(V ) = E0 + δE(1) + δE(2)

of the previous section.

7.1. Summary of homogenization/multiscale expansion. We begin with
a brief summary of the multiscale/homogenization expansion. For more detail, see [7].
We seek solutions of the equation

(−∆ + VN − E)ψ = 0(7.1)

that satisfy an outgoing radiation condition at infinity.
For simplicity, we take

VN = VN (r, θ,Nθ) = V0(r) + δṼ (r,Nθ),(7.2)

where δṼ (r,Θ + 2π) = δṼ (r,Θ), and we define

δV (r, θ) = δṼ (r,Nθ).(7.3)

The more general case, where V0 is not necessarily radial, can also be treated.
As in [7], we view a solution of (7.1) as a function of slow variables r, θ and a fast

variable Θ = Nθ:

ψ = Φ(r, θ,Θ).(7.4)

Equation (7.1) can be rewritten as an equation for Φ(r, θ,Θ) by replacing ∂2
θ in the

Laplacian appearing in (7.1) by (∂θ + N∂Θ)2. We then substitute into the resulting
equation the following expansions:

Φ(N) = Φ0 +
1

N
Φ1 +

1

N2
Φ2 +

1

N3
Φ3 +

1

N4
Φ4 + · · · ,

E(N) = E0 +
1

N
E1 +

1

N2
E

(homog)
2 + · · · .(7.5)
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Equating like orders of N−1 yields a hierarchy of equations of the form

1

r2
∂2
ψΦj = Fj , j = 0, 1, 2, . . . .(7.6)

The solvability condition for (7.6) is

〈Fj〉av (r) ≡ 1

2π

∫ 2π

0

Fj(·,Θ)dΘ = 0.(7.7)

This hierarchy can be solved recursively. The equations from O(N2) through O(1)
imply that the leading order term is a solution of the scattering resonance problem
for V0, (E0, ψ0), which we have taken in (7.5). Furthermore,

Φ2 = Φ
(p)
2 (r, θ,Θ) + Φ

(h)
2 (r, θ),(7.8)

where

Φ
(p)
2 (r, θ,Θ) = ∂−2

Θ

[
δṼ r2ψ0

]
.(7.9)

At order O(N−1), we find δE1 = 0 and Φ1 = 0, and we can solve for Φ3 in terms of

Φ
(p)
2 . Finally, E

(homog)
2 is determined via the solvability condition for the Φ4 equation.

This solvability equation reads as

(−∆ − E0 + V0) Φ
(h)
2 = E

(homog)
2 ψ0 +

〈
δṼ ∂−2

Θ δṼ
〉
av

(r)r2ψ0.(7.10)

Now E
(homog)
2 is to be chosen so that (7.10) has a solution satisfying an outward going

radiation condition at infinity. In [7] we implemented this construction of E
(homog)
2

and Φ2 for a class of “separable microstructures” as part of a numerical algorithm
used to treat general microstructures, δṼ .

7.2. N−2 corrections: Homogenization vs. resonance perturbation the-

ory. In this subsection we show that the expression for E
(homog)
2 , obtained as a solv-

ability condition for (7.10), is, up to higher order corrections in N−1, the same as
that given by (5.10) in Lemma 5.1.

We begin by reformulating (7.10) in L2. First rewrite (7.10) as

(−∆ − E0 + V0) Φ
(h)
2 = −E

(homog)
2 R0(E)V0ψ0 +

〈
δṼ ∂−2

Θ δṼ
〉
av

(r)r2ψ0,(7.11)

where we have used the Lippman–Schwinger equation (3.8) to replace ψ0 by
−R0(E0)V0ψ0.

For E with �E > 0 and 
E > 0, consider the equation

(−∆ − E + V0)R = −E
(homog)
2 R0(E)V0ψ0 +

〈
δṼ ∂−2

Θ δṼ
〉
av

(r)r2ψ0.(7.12)

R0(E) is a bounded operator on L2, and applying it to both sides of (7.12) gives(
I + R0(E)V0

)
R = −E

(homog)
2 R0(E)R0(E)V0ψ0 + R0(E)

〈
δṼ ∂−2

Θ δṼ
〉
av

(r)r2ψ0

−E
(homog)
2 R′

0(E)V0ψ0 + R0(E)
〈
δṼ ∂−2

Θ δṼ
〉
av

(r)r2ψ0

≡ S.(7.13)
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We then define

R1 = 〈D〉χR, S1 = 〈D〉χS

and introduce localization and smoothing operators into (7.13) to find(
I + TR(E)TV0

)
R1 = S1.(7.14)

For E in the upper half-plane, (7.14) is always solvable. We now analytically continue
across the continuous spectrum, the half-line E ≥ 0 (corresponding to µ ∈ R), to
the lower half-plane and, in particular, to a small punctured disc about E = E0,
0 < |E − E0| < ε. We note that S1 ∈ L2(Rn), since V0 and 〈δṼ ∂−2

Θ δṼ 〉av(r) both
have compact support. From Corollary 3.6 we have that TR(E0)TV0 is compact, and
therefore by Lemma 4.2 the solution R1 of (7.14) exists for E = E0 if and only if the
following solvability condition holds:〈

TV0
Ψ0, G

〉
= 0.(7.15)

We may read off E
(homog)
2 from (7.14). After recognizing that the coefficient of

E
(homog)
2 is exactly CdE from (5.6), we find that

E
(homog)
2 = C−1

dE

〈
TV0Ψ0, TR(E0)TVΨ0

〉
= −C−1

dE

〈
Ψ0, TVΨ0

〉
,(7.16)

where we have used Lemma 4.3 and (3.9) and defined

V(r) = r2
〈
δṼ ∂−2

Θ δṼ
〉
av

(r).

Theorem 7.1. When δV is of the form (7.3) and has compact support,∣∣∣δE(2) −N−2E
(homog)
2

∣∣∣ = O
(
N−(2+τ)

)
,

where τ > 0 depends on the details of δV . In particular, if δV (r, θ) is twice differen-
tiable in r, then τ = 2; if δV (r, θ) has a finite number of jump discontinuities in r,
then τ = 1.

Proof of Theorem 7.1. For ease of presentation, we make the simplifying, but
inessential, assumption that

ψ0 = ψ0(r).

We begin by expressing δE(2) from (5.11) as

δE(2) = −C−1
dE

(
N

(PT,main)
2 −N

(PT,rem)
2

)
,(7.17)

where

N
(PT,main)
2 =

〈
TδV Ψ0, TR(E0)TδV Ψ0

〉
,

N
(PT,rem)
2 =

〈
TδV Ψ0,

(
I + TR(E0)TV0

)−1
TR(E0)TV0TR(E0)TδV Ψ0

〉
,

CdE =
〈
TV0Ψ0, T

′
R(E0)TV0Ψ0

〉
.
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Estimation of the remainder N
(PT,rem)
2 . We begin by removing the smooth-

ing operators:

N
(PT,rem)
2 =

〈
χ−1V0R0(E0)δV ψ0︸ ︷︷ ︸

f

, (I + χR0(E0)V0χ
−1)−1︸ ︷︷ ︸

A−1

χR0(E0)δV ψ0︸ ︷︷ ︸
g

〉
.(7.18)

By the proof of Proposition 3.1, the operator (I + χR0(E0)V0χ
−1)−1 is meromorphic

with finite-rank residues at the poles. Because we are evaluating it at a pole, we must
verify that g ⊥ kerA∗ and f ⊥ kerA. Under our assumption that kerA is the one-
dimensional space spanned by χψ0, it is easy to see that kerA∗ is also one-dimensional
and spanned by χ−1V0ψ0. We may then compute〈

χ−1V0ψ0, g
〉

=
〈
R0(E0)

∗V0ψ0, δV ψ0

〉
= 0,

which follows because R0(E0)
∗V0ψ0 is a radial function while δV ψ0 is mean-zero in

θ. Similarly, we may verify that 〈f, χψ0〉 = 0 and conclude that〈
f,A−1g

〉
≤ C‖f‖2‖g‖2

= C‖χ−1V0χ
−1χR0(E0)

∗δV ψ0‖2‖χR0(E0)δV ψ0‖2

≤ C‖χR0(E0)δV ψ0‖2
2.

In order to bound ‖χR0(E0)δV ψ0‖2
2, we first express R0(E0) as a sum of a

bounded operator and an unbounded correction, using the analytic continuation for-
mula (3.20) with j = 0. This gives

‖χR0(µ0)δV ψ0‖2 ≤ ‖χR0(−µ0)δV ψ0‖2 + C‖χJ0(µ0| · |) � δV ψ0‖2.(7.19)

We next expand δV in a Fourier series

δV (r, θ) =
∑
n �=0

δV n(r)einNθ.(7.20)

We consider the first term in (7.19) and use Proposition 6.3 to see that

χR0(−µ0)δV nψ0e
inNθ = einNθχGnN (µ0)δV nψ0,(7.21)

where

G�(µ) =

(
−∆r +

(nN)2

r2
− µ2

0

)−1

is the partial wave Green’s function. In section 8, we prove the following estimate on
G�(µ).

Proposition 7.2. Let µ ∈ C \ {0} with |
µ| < M . There exists a constant, C,
such that for all l ≥ 1

f ∈ L2(R2) =⇒ ‖χG�(µ)χf‖2 ≤ C
‖f‖2

�2
.

This result implies that

∥∥χR0(−µ0)δV nψ0e
inNθ

∥∥
2
≤ C

‖χ−1δV nψ0‖2

(nN)2
,
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and therefore ∥∥χR0(−µ0)δV ψ0e
inNθ

∥∥
2
≤ CN−2 sup

n

∥∥χ−1δV nψ0

∥∥
2

≤ CN−2.

We still must bound the second term in (7.19). We observe that for f ∈ L2(R2) and
compact support,

J0(µ0| · |) � f(x) =

∫
dyJ0(µ0|x− y|)f(y)

= 2π

∫
dy

∫
S1

dωeiµ0(x−y)ωf(y)

= 2π

∫
S1

dωeiµ0xω f̂(µ0ω),

and therefore

‖χJ0(µ0| · |) � f‖2 ≤ C sup
ω∈S1

|f̂(µ0ω)|‖χ(x) sup
ω∈S1

|eiµ0xω|‖2

≤ C sup
ω∈S1

|f̂(µ0ω)|.(7.22)

Next, we will need the following lemma.
Lemma 7.3. If F (r, θ) = f(r)eilθ, then its Fourier transform F̂ can be written in

polar coordinates (ρ, ν) as

F̂ (ρ, ν) = 2πeil(ν+3π/2)

∫ ∞

0

rdrf(r)Jl(ρr).(7.23)

The proof is given in Appendix B.
Because we are considering the limit of large N while µ0 is fixed, we may use the

asymptotic form (A.6) of Jn along with (7.22) and Lemma 7.3 to find that

‖χJ0(µ0| · |) � δV ψ0‖2 ≤
∑
n

∥∥χJ0(µ0| · |) � δV ne
inNθψ0

∥∥
2

≤ C
∑
n

∫
rdr

∣∣δV n(r)ψ0(r)JnN (|µ0|r)
∣∣

≤
∑
n

(C|µ0|)nN
(nN)!

≤ (C|µ0|)N
N !

.

N
(PT,main)
2 = 2nd order homogenization + small correction. In the ex-

pression for N
(PT,main)
2 , (7.17), we first remove the smoothing operators and move to

the physical sheet using the analytic continuation formula, (3.20), shedding a small
correction in the process:

N
(PT,main)
2 =

〈
δV ψ0, R0(µ0)δV ψ0

〉
=
〈
δV ψ0, R0(−µ0)δV ψ0

〉
+

i

2

〈
δV ψ0, J0(µ0| · |)δV ψ0

〉
.(7.24)
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In order to show that the second term of (7.24) is small, we note that for f, g ∈ L2(R2)

〈f, J0(µ| · |)g〉 =

∫
dx dy f(x)J0(µ|x− y|)g(y)

=

∫
S1

dω

∫
dx eiµx·ωf(x)

∫
dy e−iµy·ωg(y)

=

∫
S1

dωf̂(µω)ĝ(µω),

and therefore, using (7.23),

∣∣〈δV ψ0, J0(µ0| · |)δV ψ0

〉∣∣ ≤ (C|µ|)2N
(N !)2

.

In order to estimate the difference between the first term in (7.24) and
〈
Ψ0, TVΨ0

〉
,

the numerator from (7.16), we first prove the following lemma.
Lemma 7.4.〈

δV ψ0, R0(−µ0)δV ψ0

〉
=
∑
n �=0

〈
f (L)
n , R0(−µ0)f

(R)
n

〉
,(7.25)

N−2
〈
Ψ0, TVΨ0

〉
=
∑
n �=0

〈
f (L)
n , r2∂−2

θ f (R)
n

〉
,(7.26)

where

f (L)
n (r, θ) = δV n(r)ψ0(r)e

inNθ,

f (R)
n (r, θ) = δV n(r)ψ0(r)e

inNθ.

Proof of Lemma 7.4. We first note that (7.25) follows immediately on expanding
δV in a Fourier series (7.20) and moving to a Fourier integral representation, using
(7.23).

In order to see (7.26), we begin by writing

N−2
〈
Ψ0, TVΨ0

〉
=
〈
δV ψ0, r

2∂−2
θ δV ψ0

〉
,

which follows directly from the definitions. We may then expand δV (r, θ) in a Fourier
series (7.20) and observe that, again, the off-diagonal terms vanish.

We may now complete the proof of Theorem 7.1. We begin by using Lemma 7.4
to see that∣∣∣δE(2) −N−2E

(homog)
2

∣∣∣ = C−1
dE

∣∣〈δV ψ0, R0(−µ0)δV ψ0

〉
−N−2

〈
Ψ0, TVΨ0

〉∣∣+ O(N−4)

≤ C−1
dE

∑
n �=0

∣∣∣〈f (L)
n ,

(
R0(−µ0) − r2∂−2

θ

)
f (R)
n

〉∣∣∣+ O(N−4).(7.27)

We may rewrite the summand in (7.27) as∣∣∣〈f (L)
n ,

(
R0(−µ0) − r2∂−2

θ

)
f (R)
n

〉∣∣∣
=

∣∣∣∣∣
〈
f (L)
n ,

(
−∆r +

(nN)2

r2
− µ2

0

)−1 (
∆r + µ2

0

)( r2

(nN)2

)
f (R)
n

〉∣∣∣∣∣ .(7.28)



SCATTERING RESONANCES AND HOMOGENIZATION THEORY 515

In order to estimate (7.28), we prove in section 8 the following proposition.
Proposition 7.5. When f, g ∈ L∞([0, R]), g ∈ C2, and � is taken large depend-

ing on µ and R,

|〈f,G�(µ)∆rg〉| ≤
C

�2
‖f‖∞‖∆rg‖∞,(7.29)

while when g is piecewise C2, with a finite number of jump discontinuities in g or g′,
then

|〈f,G�(µ)∆rg〉| ≤
C

�
‖f‖∞‖g‖∞.(7.30)

By Proposition 7.5

|(7.28)| ≤ C
1

(nN)2
1

(nN)τ
.

Use of this bound in (7.27) and summing over n �= 0 implies that∣∣∣δE(2) −N−2E
(homog)
2

∣∣∣ = O(N−2−τ ) + O
(
N−4

)
.

This completes the proof of Theorem 7.1.

8. Partial wave Green’s function estimates. In this section we prove the
weighted estimates, used in sections 6 and 7, involving the partial wave Green’s func-
tion

G�(µ) =

(
−∆r +

�2

r2
− µ2

)−1

,

defined for µ in the physical upper half-plane. G�(µ) may be analytically continued
to the lower half-plane by explicitly computing its kernel [16]:

G�(µ)f(r) =

∫ ∞

0

G�(r, r
′;µ)f(r′)r′dr′,

G�(r, r
′;µ) = −π

2
i

{
J�(µr)H

(1)
� (µr′) if r′ ≥ r,

H
(1)
� (µr)J�(µr

′) if r ≥ r′.
(8.1)

We first prove Propositions 7.2 and 7.5, which are used in section 7. We then
prove Proposition 6.4.

Proof of Proposition 7.2. Because the kernel A(r, r′) = χ(r)G�(r, r
′)χ(r′) is sym-

metric, we may estimate the L2 → L2 norm of the associated operator [4] as

‖A‖ ≤ sup
r

∫
r′dr′|A(r, r′)|

and use the explicit form (8.1) of G�. We define

AJ(r1, r2) = χ(r2)
∣∣∣H(1)

� (r2)
∣∣∣ ∫ r2

r1

rdr |J�(µr)|χ(r),

AH(r1, r2) = χ(r1)|J�(r1)|
∫ r2

r1

rdr
∣∣∣H(1)

� (µr)
∣∣∣χ(r),

and so

‖A‖ ≤ sup
r′

(AJ(0, r′) + AH(r′,∞)) .
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It suffices to obtain the bound supr1,r2 AJ,H(r1, r2) ≤ C�−2. We treat AJ ; the
bounds on AH are similar. We prove this bound by separately considering the cases:
for r1 ≤ r2 ≤ σ, r1 ≤ σ ≤ r2 and σ ≤ r1 ≤ r2, where σ > 0. We shall see that the
dominant contribution to the bound comes from r small, which dictates that σ be
sufficiently small, yet large enough as � → ∞ so that the large � asymptotics in the
crossover and large r regions can be used. We set σ =

√
�.√

� ≤ r1 ≤ r2: An examination of the asymptotic forms (A.1) reveals that the
following bounds hold for r bounded away from the origin. For r ≥ r#, there exists
C# > 0, such that

χ(r)|J�(µr)| ≤ C#e−(M−|
µ|)r,

χ(r)|H�(µr)| ≤ C#e−(M−
µ)r.

Therefore,

AJ(r1, r2) ≤ Ce−(M−
µ)r2

∫ r2

r1

rdre−(M−|
µ|)r

≤ Ce−(1−ε)(M−
µ)r2 .

Therefore, if r2 > r1 >
√
�, then

AJ,H(r1, r2) ≤ Ce−C′√l ≤ C�−2.(8.2)

r1 ≤ r2 ≤
√
�: Note that the asymptotic expressions (A.6) hold, and therefore

AJ(r1, r2) ≤ C(�− 1)!r−1
2 e−Mr2

∫ r2

r1

rdr
r�

�!
e−Mr

≤ C

�
r−�
2 e−Mr2

∫ r2

r1

drr�+1

≤ C

�2
r2
2e

−Mr2 ≤ C

�2
.(8.3)

Finally, we treat the transition region.
r1 ≤

√
� ≤ r2:

AJ(r1, r2) ≤ e−(M−|
µ|)r2
∫ √

�

0

rdr
r�

�!
= o

(
e−C

√
�
)
≤ O(�−2).

This completes the proof of Proposition 7.2.
Proof of Proposition 7.5. Because f(r) and g(r) are supported for r ∈ [0, R], we

may write

〈f,G�(µ)∆rg〉 =

∫ R

0

rdrf(r)

∫ R

0

r̃dr̃G(r, r̃) (∆rg) (r̃)

= C

∫ R

0

rdrf(r)H
(1)
� (µr)

∫ r

0

r̃dr̃J�(µr) (∆rg) (r̃)

+C

∫ R

0

rdrf(r)J�(µr)

∫ R

r

r̃dr̃H
(1)
� (µr) (∆rg) (r̃)

≡ D1 + D2.
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Case 1. g ∈ C2: We may use (8.1) and (A.6) to find that

|D1| + |D2| ≤
C

�

[∫ R

0

rdr|f(r)| (�− 1)!

(µr)�

∫ r

0

r̃dr̃
(µr̃)�

�!
|∆rg(r̃)|

+

∫ R

0

rdr|f(r)| (µr)
�

�!

∫ R

r

r̃dr̃
(�− 1)!

(µr̃)�
|∆rg(r̃)|

]

≤ C

�2
‖f‖∞ ‖∆rg‖∞,(8.4)

which is the desired bound (7.29).
Case 2. g or g′ have jump discontinuities: When g or g′ has a finite number of

jump discontinuities at the points ri, we introduce a partition of unity 1 =
∑

i χi(r),
where each χi ∈ C∞ and suppχi contains ri and no other breakpoint rj �=i. We may
then represent g as

g =
∑
i

χi(gi + θ(r − ri)g̃i),

where gi, g̃i ∈ C2 and θ(x) is the Heaviside function (θ(x) = 0, x ≤ 0, and θ(x) =
1, x ≥ 0). We will examine D1 in detail; D2 will give a similar contribution, as can
be easily checked. Using (8.1),

D1 = C
∑
i

∫ R

0

r dr f(r)H
(1)
� (r)

∫ r

0

r̃ dr̃ J�(r̃)∆r̃(χi(r̃)(gi(r̃) + θ(r̃ − ri)g̃(r̃))).(8.5)

A number of terms result from the action of the ∆r̃ in the inner integral. When all
of the g̃i(ri) = 0, i.e., the case of jumps in g′ only, the result is the same as the C2

case (7.29). When some of the g̃i(ri) �= 0, however, the sum (8.5) can be written as
a dominant term containing θ′′ = δ′, where δ(r) denotes the one-dimensional Dirac
delta distribution, plus contributions satisfying the same bound as in the C2 case.
That is,

D1 = C
∑
i

∫ R

0

r dr f(r)H
(1)
� (µr)

∫ r

0

r̃ dr̃ J�(µr̃)χi(r̃)g̃i(r̃)δ
′(r̃ − ri)(8.6)

+O
(
�−2

)
‖f‖∞‖g‖∞.

The sum in (8.6) is, in turn, dominated by the contribution from ∂rJ�:

|D1| ≤ C‖f‖∞
∑
i

‖g̃i‖∞

[∫ R

0

r dr |H(1)
� (µr)|θ(r − ri)rig̃i(ri)|∂rJ�(µr)|r=ri + O

(
�−2

)]

≤ C‖f‖∞
∑
i

‖g̃i‖∞

[(
�r�−1

i

�!

)∫ R

ri

r dr
(�− 1)!

r�
+ O

(
�−2

)]

≤ C‖f‖∞
∑
i

‖g̃i‖∞
[(ri

�

)
+ O

(
�−2

)]

≤ C

�
‖f‖∞‖g‖∞.

D2 may be estimated by similar arguments.
We now turn to the proof of Proposition 6.4, used in section 6. We first need the

following proposition.
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Proposition 8.1. Let V0 be a nonnegative, bounded, and sufficiently decaying
function. For any p ∈ C, with �p > 0, and f ∈ L2(R2),∥∥∥∥∥〈x〉−1

(
−∆r +

m2

r2
+ V0 + p

)−1

f

∥∥∥∥∥
L2

≤ 1

�p + m2
‖f‖L2 .(8.7)

Remark 8.2. We use this result for the case V0 = 0 only. From the proof, it is
clear that it holds under much less stringent hypotheses on V0.

Proof of Proposition 8.1. The proof is broken into two parts. We first prove

estimates for the heat kernel exp[(∆ − m2

r2 )t] and then reduce the desired resolvent
estimate to the heat kernel estimate.

Part 1. Let um denote the solution of the initial value problem for the heat
equation:

∂tum =

(
∆r −

m2

r2
− V0

)
um, um(0) = f.(8.8)

Multiplication by um and integration over R
2 gives the identity:

d

dt

∫
|um|2 dx = −2

∫
|∇um|2 dx− 2m2

∫ |um|2
r2

dx− 2

∫
V0|um|2 dx.(8.9)

Since V0 is nonnegative we can drop both the first and third terms on the right-hand
side of (8.9) to obtain

d

dt

∫
|um|2 dx ≤ −2m2

∫ |um|2
r2

dx.(8.10)

Integration of (8.10) over the time interval from 0 to t and using that (1 + r2)−1 ≤ 1
yields

α(t) ≤ ‖f‖2
L2 − 2m2

∫ t

0

α(s) ds,

α(t) ≡
∫ |um|2

1 + r2
dx.(8.11)

It follows that ∥∥∥〈x〉−1e(∆r−m2

r2
−V0)tf

∥∥∥
L2

≤ e−m2t‖f‖L2 .(8.12)

Part 2. First note that the resolvent and heat kernels are related by the Laplace
transform: when �p > 0,(

∆r −
m2

r2
− V0 − p

)−1

f =

∫ ∞

0

e−pte(∆r−m2

r2
−V0)t dt f.(8.13)

Thus, using the weighted estimate (8.12) we have∥∥∥∥∥〈x〉−1

(
∆r −

m2

r2
− V0 − p

)−1

f

∥∥∥∥∥
L2

≤
∫ ∞

0

e−(�p)t
∥∥∥〈x〉−1e(∆r−m2

r2
−V0)tf

∥∥∥
L2

dt

≤
∫ ∞

0

e−(�p)t e−m2t‖f‖L2 =
1

�p + m2
‖f‖L2 .(8.14)
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This completes the proof of Proposition 8.1.
Proof of Proposition 6.4. Recall that

B2
� = m2I − ∆r +

�2

r2
.

We take V0 = 0 and p = 1. In this case, there is no restriction on � because �p+ �2 =
1 + �2 is always positive. This gives the bound

∥∥〈x〉−1 B−2
� f

∥∥
L2 ≤ 1

1 + �2
‖f‖L2 .(8.15)

We now deduce the estimates for B−1
� from those obtained for B−2

� through the
square root formula

B−1 =
1

π

∫ ∞

0

1√
w

1

B2 + w
dw.(8.16)

From (8.16) it follows that

∥∥〈x〉−1B−1
�

∥∥
B(L2)

≤ 1

π

∫ ∞

0

1√
w

∥∥∥∥ 1

〈x〉
1

B2
� + w

∥∥∥∥
B(L2)

dw.(8.17)

By Proposition 8.1, with V0 = 0 and p = w ≥ 0, we have∥∥∥∥ 1

〈x〉
1

B2
� + w

∥∥∥∥
B(L2)

≤ 1

�2 + w
.

Therefore,

∥∥〈x〉−1B−1
�

∥∥
B(L2)

≤ 1

π

∫ ∞

0

1√
w

1

�2 + w
dw ≤ C

(1 + �2)1/2
.

Appendix A. Asymptotics of Bessel and Hankel functions. We briefly
record the well-known asymptotics of Bessel and Hankel functions.

(1) When � → ∞, the following asymptotic expansions hold uniformly for | arg z| <
π − ε, with ε > 0:

J�(�z) ∼
(

4ζ

1 − z2

)1
4

(
Ai(�2/3ζ)

�1/3

∞∑
k=0

ak(ζ)

�2k
+

Ai′(�2/3ζ)

�5/3

∞∑
k=0

bk(ζ)

�2k

)
,

H
(1)
� (�z) ∼ 2e

−πi
3

(
4ζ

1 − z2

)1
4

(
Ai(e2πi/3�2/3ζ)

�1/3

∞∑
k=0

ak(ζ)

�2k

+
e2πi/3 Ai′(e2πi/3�2/3ζ)

�5/3

∞∑
k=0

bk(ζ)

�2k

)
,(A.1)

where

2

3
ζ

3
2 = ln

1 +
√

1 − z2

z
−
√

1 − z2

and ak, bk are defined in [1].
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(2) In the limit |z| → ∞ with � held fixed, these reduce to

Jν(z) =

(
2

πz

) 1
2

cos

(
z − 1

2
νπ − π

4

)
+ e|
z|O

(
|z|−1

)
, | arg z| < π,(A.2)

Yν(z) =

(
2

πz

) 1
2

sin

(
z − 1

2
νπ − π

4

)
+ e|
z|O

(
|z|−1

)
, | arg z| < π,(A.3)

H(1)
ν (z) = Jν(z) + iYν(z)

∼
(

2

πz

) 1
2

exp(i

(
z − 1

2
νπ − π

4

)
, −π < arg z < 2π,(A.4)

H(2)
ν (z) = Jν(z) − iYν(z)

∼
(

2

πz

) 1
2

exp(−i

(
z − 1

2
νπ − π

4

)
, −2π < arg z < π.(A.5)

(3) For |z| ≤ C
√
� and � → ∞, (A.1) and the asymptotics or Airy functions [1]

imply that

J�(z) ∼
1

�!

(z
2

)�

, H
(1)
� (a) ∼ − i

π
(�− 1)!

(z
2

)−�

.(A.6)

Appendix B. Proof of Lemma 7.3. To prove (7.23) we represent x, k ∈ R
2 in

polar coordinates as, respectively, (r, θ) and (ρ, ν). We wish to compute the Fourier
transform

F̂ (k) =

∫
dxe−ik·xF (x), where F (x) = f(r)ei�θ.

We define θ̃ = θ − ν, the angle between x and k, and compute as follows:

F̂ (k) =

∫ ∞

0

rdr

∫ 2π

0

dθ̃ e−iρr cos θ̃f(r)ei�(θ̃+ν)

= ei�(ν+π)

∫ ∞

0

f(r)rdr

∫ π

−π

dθ̃ eiρr cosψ+i�ψ

= 2πei�(ν+3π/2)

∫ ∞

0

f(r)J�(ρr)rdr,(B.1)

where we have used (1.17).
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