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Abstract

We derive a homogenization expansion approach to obtaining the leaky modes, or
scattering resonances, of photonic waveguides whose transverse structures are N -
fold rotationally symmetric. Examples include microstructured, or “holey,” optical
fibers with air holes arranged in one or more concentric rings. We numerically cal-
culate the leading order correction to the complex effective indexes for the leaky
modes of various microstructured photonic waveguides in the scalar approximation.
We observe that in many instances this two-term truncation of the homogenization
expansion gives very good agreement with full simulations, even for fairly small
values of N .
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1 Introduction

There is currently a great deal of interest in the propagation of light in mi-
crostructured, or “holey,” optical fiber waveguides with novel cross-sections
consisting of holes surrounded by glass. The holes may be empty or filled with
a material chosen to influence the propagation. The ability to vary the trans-
verse geometry due to advances in fabrication technology, combined with the
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large index contrasts possible with such structures, give multiple new degrees
of freedom that potentially enable designs with radically different properties
than is possible with standard fiber.

Numerous interesting phenomena have already been observed in such waveg-
uides. Among them are (i) guiding by the interference based photonic band
gap effect in fibers with an air core and (truncated) transverse periodic lat-
tice of air holes [3]; (ii) variability of chromatic dispersion with microstructure
[12], [7]; and resulting (iii) nonlinear effects in newly accessible spectral ranges
due to microstructure-induced shifting zero dispersion point in glass core fiber
[12].

Efficient and accurate mathematical modeling of light propagation in mi-
crostructured fiber is clearly necessary for their design and analysis. A feature
of most such structures is that they are inherently leaky due to the existence
of paths leading from the core to the cladding that avoid the holes and pass
only through the background glass. Such structures support no true guided
modes, but they will have leaky modes characterized by complex-valued prop-
agation constants or effective indexes (scattering resonances); the leakage rate
is given by the imaginary part. Physically, this leakage is due to a combination
of tunneling through the holes and propagating through the glass surrounding
them. The ability to calculate such rates is clearly of fundamental importance.
Other quantities of interest include the real parts of the effective indexes, which
determine the response of the structure to longitudinal variations such as grat-
ings, and the dispersion relations of the various leaky modes, which may be
quite unusual compared to standard waveguides due to the presence of large
index contrasts and interference effects.

There have been many numerical studies of microstructure fiber based on di-
rect numerical calculation of static Maxwell’s equations in order to determine
the system’s modes; some of them are also able to capture the attenuation
rates. A variety of methods have been used, among them the multipole ex-
pansion [16], which works well for structures with circular holes; more gen-
eral expansions in local bases [9] and Fourier decompositions [11], which are
applicable to more general geometries; and scalar and vector beam propaga-
tion [4,16], which are applicable to general geometries but have limitations
in computing very small attenuation rates and have proven problematic in
some geometries [15]. All of these techniques have the characteristic that the
computational difficulty of the calculations increase with the complexity of
the structures. By contrast, [1] show that for fine enough microstructure, an
angularly averaged index profile gives accurate values for the real part of the
effective indexes of the leaky modes; the leakage rates, however, are often
greatly underestimated.

This paper summarizes recent work by the authors on the analysis and nu-
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merical computation of scattering resonances using ideas from multiple scale
perturbation and homogenization theory. An expanded version of this work
containing all details is in [6]. A rigorous mathematical theory is presented by
the authors in [5]. We develop a multiple scale perturbation theory of a large
class of “sufficiently oscillatory” structures suitable for the analytical study
and efficient numerical computation of such quantities as leakage rates, group
velocities, and dispersion, that becomes more accurate as the transverse struc-
ture becomes more oscillatory. The present study is carried out in the scalar
approximation. If the transverse structure is invariant under rotation by 2π/N
(e.g. in the case of a single ring of N holes uniformly distributed in an annulus)
we expand the leaky modes and the effective indexes (scattering resonances)
in powers of 1/N . The leading order in our expansion turns out to be the
averaged or homogenized index profile [2,8], referred to above. In this study,
we focus primarily on the derivation and computation of the leading order
corrections (order N−2), due to microstructure, of both the real and imagi-
nary parts of the effective indexes of the leaky modes of such averaged profiles.
Since the leading order behavior is given by a homogenized (in angle) effective
medium, we refer to this expansion as a homogenization expansion. Results
on first-order corrections to homogenized eigenvalues of periodic composite
media were obtained in [13,10].

A few of the consequences of the homogenization expansion and numerical
implementation that we wish to highlight are:

(1) Computational algorithm: Our analytic theory leads to a natural efficient
computational algorithm for the modes and spectral characteristics, e.g. leak-
age rates, dispersion. Multiscale analysis enables us to eliminate the “stiff”
aspects of the computation due to the rapidly varying structure.

(2) Arbitrary geometry and index contrasts: Although we require N -fold sym-
metry of the structure, the individual microfeatures may have arbitrary geom-
etry and large index contrasts. In our current implementation, we approximate
an arbitrary microfeature by a simple layered structure, having the local char-
acter of the structure of figure 1.

(3) Very good agreement with full numerical simulation: As illustrated in sec-
tion 3 numerical simulations based on our theory give very good agreement
with full numerical simulations [11], [16] of the complex effective indexes and,
in particular, their imaginary parts, which correspond to the leakage rates.
One expects homogenization theory to be valid when the wavelength of light
is long compared with the individual microfeatures. We find very good agree-
ment of our theory with full simulations even in regimes where λfs/d, the ratio
of wavelength to length scale of microfeatures, is as small as 3/2. Although,
the expansion is derived for N large, with the N = ∞ limit being the leading
order term, examples of section 3 show agreement in cases where N = 3 and
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N = 6. We also observe the expected departure of our approximate methods
from the results of full simulations for sufficiently small λfs/d.

(4) Sensitivity of leakage rates to microstructure: In section 3 we have used
our theory to compute the first two nontrivial terms of the effective indexes
(scattering resonances) of the leaky modes. The first term corresponds to an
average theory and the second term is a correction due to microstructure. The
imaginary parts of the effective indexes, corresponding to the leakage rates,
are very sensitive to the introduction of microstructure and their accurate
approximation requires both terms. In contrast, as noted above, the real parts
of the effective indexes are relatively insensitive to microstructure, and are
well captured by the leading order term.

(5) Corrected fields: We find that corrections, due to microstructure, of the
mode fields predicted by the averaged structure are compactly supported in
space if the microstructure perturbation is compactly supported in space. This
is not possible for the true solution of the mathematical model. A consequence
of this is that in the regime where certain interference effects are important,
the expansion of this paper may have limited use. The rigorous theory of [5],
which reproduces the second order homogenization expansion of modes and
effective indices for N large, does not have this limitation.

Mathematically, the leaky modes and effective indexes we compute are solu-
tions to the scalar approximation to Maxwell’s equations, in which the trans-
verse components ϕ of the electric field satisfy

(
∆⊥ + k2n2

)
ϕ = β2ϕ, (1.1)

where ∆⊥ denotes the Laplace operator in the transverse variables, x⊥ =
(x1, x2). We introduce the notation V = k2(n2

g − n2) and E = k2n2
g − β2,

where ng denotes a background refractive index. For example, in the case of
a glass waveguide with airholes, the refractive index, n, takes on the value
ng ∼ 1.45 in glass and nh ∼ 1 in air. Thus, V is a compactly supported
potential for which

V (x) ≥ 0, for all x and V (x) = 0, for r ≥ r∗. (1.2)

The equation for ϕ and β can be viewed as a Schrödinger equation with
potential V (x⊥) and energy parameter E:

Lϕ ≡ (−∆⊥ + V )ϕ = E ϕ. (1.3)

The potential, V , therefore does not support bound states (guided modes) and
only has scattering states (radiation modes), along with scattering resonances
(leaky modes).

Since we are interested in the escape of energy from the “core” we require that
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ϕ satisfy an outgoing radiation condition as r →∞. This scattering resonance
eigenvalue problem is non-selfadjoint and therefore can be expected to have
complex eigenvalues, E, which determine the complex effective indexes neff ≡
β/k. The imaginary parts of neff govern the leakage rates for the waveguide
[14].

2 Multiple scales and homogenization expansion

We now present a multiple scale expansion of solutions to the resonance prob-
lem for microstructures. A homogenized (averaged) theory occurs at leading
order followed by systematically computable corrections. We carry out the
analysis for a class of potentials V with the dependence: V = V (r, θ, Nθ) =
V (r, θ, Θ), where V is 2π−periodic in θ and Θ. This allows both a slow and a
fast angular modulation of the index profile. In the special case where V does
not depend on θ and we have V = V (r, Nθ), the potential corresponds to an
index profile with an N - fold symmetry. Assume V ≥ 0 and that for r ≥ rL,
V ≡ 0.

Homogenization Expansion: The scattering resonance problem has, for
large N , solutions with the formal expansion ϕ(r, θ; N) = Φ(N)(r, θ, Θ), with
Θ = Nθ, given by

Φ(N) = Φ0 +
1

N2
Φ2 +O(

1

N3
); E(N) = E0 +

1

N2
E2 +O(

1

N3
). (2.1)

• (Φ0(r, θ), E0) is a non-trivial solution of the resonance problem LavΦ0 =
E0Φ0, where Φ0 is subject to the outward going radiation condition, and Lav

is determined by averaging L over Θ.

• Φ2 = Φ
(p)
2 + Φ

(h)
2 , where Φ

(p)
2 is the mean zero solution (easily derived from

the Fourier series of V (·, ·, Θ)) of

1

r2
∂2

ΘΦ
(p)
2 = [ V (r, θ, Θ)− Vav(r, θ) ] Φ0(r, θ) (2.2)

and (Φ
(h)
2 , E2) solves:

( Lav − E0)Φ
(h)
2 = (2.3)

 E2 +
r2

2π

∫ 2π

0

∣∣∣∣∣∂−1
Θ [V (r, θ, Θ)− Vav(r, θ)]

∣∣∣∣∣
2

dΘ


 Φ0(r, θ)

Finally, E2 is uniquely determined by the condition that (2.3) has a solution
which satisfies an outgoing radiation condition at r = ∞.
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Fig. 1. (a) A ring of “air wedges” supported by N = 6 webs of glass. The inner
and outer radii of the annulus are 1 and 2µm, respectively, while the air fill fraction
within the annulus is f = 0.9. (b) The averaged potential Vav.

• This yields an approximate solution of the scalar wave equation and an
approximation (neglecting vector effects) of the transverse electric field, ~E =
(E⊥, Elon) = (E1, E2, E3), of Maxwell’s equations:

E⊥,q(x; β) ∼ ei(βx3−ωt)
[

Φ0(|x⊥|, θ; ω) +
1

N2
Φ2(|x⊥|, θ, Nθ; ω) + O

(
1

N3

) ]
.

Here, ω = ck and β =
√

k2n2
g − E = <β + i=β, with =β > 0. E⊥,q(x⊥, x3)

decays with increasing x3 and is therefore a “leaky mode.” These modes are
not square integrable.

3 Numerical simulations for selected structures

We now illustrate the theory of the preceding section with numerical calcu-
lations performed for two classes of structures: an annulus of air supported
with glass “webs” (figure 1) and a subset of a hexagonal lattice (figure 2).
We approximated the second structure by a simple layered potential (the web-
supported annulus is a simple layered structure without approximation). We
took the refractive index of glass to be 1.45 and assumed the holes were empty.

We computed resonances of a structure of the type shown in figure 1 with
Rin = 1µm, Rout = 2µm for the fill fractions f = 0.8, 0.9, and 1, with N = 3
and N = 6 holes. The calculations were performed for a range of free-space
wavelengths λfs ranging from 1µm to 2µm. The structure with f = 1 is an
idealized ring of air with no supporting structure. In figure 3 we compare the
results of our theory to parallel calculations performed in [11] by a Fourier
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Fig. 2. (a) An 18-hole subset of a hexagonal lattice (N = 6) with inter-hole spacing
Λ = 2.3µm and hole radius Rhole = 0.46µm, approximated by a simple layered
structure with L = 51 layers. (b) The averaged potential Vav in units of (µm)−2 vs.
radius in units of µm.

decomposition algorithm. We observe that the two methods agree exactly for
the f = 1 case, as they should. Additionally, in all cases our method agrees
with the Fourier calculation as λfs → 2µm. Even for smaller λfs the agreement
is quite good except for the f = 0.8, N = 3 case, which is not surprising given
the small value of N and the fact that the width of the ring is equal to the
smallest free space wavelength considered. The plots displayed in figure 3 are
consistent with the expectation that approximation by the homogenization
expansion improves (a) for fixed λfs and increasing N , as well as (b) for fixed
N and λfs increasing.

The dashed lines in figure 3 display the attenuations of the averaged structures,
without the O(N−2) correction. The necessity of including these corrections
is evident, though the effect in these structures is not as dramatic as in some
of the other structures we consider, including that of figure 2.

Another result reported in [11] is the effective index of the first excited state
above the fundamental resonance (the LP11 state) for the f = 0.9, N = 3
structure at λfs = 1.55µm, which they found to be 1.255 + 0.00075i, which
gives rise to a loss of 27 dB/mm. Our method predicts an effective index of
1.252 + 0.00083, or a loss of 29 dB/mm. By comparison, this mode of the
averaged structure has an effective index of 1.247+0.00044i, or an attenuation
of 15 dB/mm. This illustrates the sensitivity of loss rates to the introduction of
microstructure and the need for the first correction N−2E2 of our expansion.

Finally, we consider the structure depicted in figure 2. This is an 18-hole subset
of a hexagonal lattice (N = 6) with inter-hole spacing Λ = 2.3µm and hole
radius Rhole = .46µm. We found that the fundamental (LP01) resonance has a
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leakage rate of 14 dB/cm, while that of the averaged structure was 0.92 dB/cm.
By comparison, [16] found this rate to be 16 dB/cm by solving the full vector
problem with outgoing radiation conditions using a multipole method. In this
example, the effect of the N−2E2 microstructure correction on the leakage rates
is even more apparent than in the structure of figure 1. However, we cannot
say how much of the discrepancy between [16] and ours is due to vector effects,
and how much to the other approximations in our method. The role of vector
effects is currently under investigation.

4 Discussion

The homogenization expansion can be viewed in the more general context of
perturbation theory of “scattering resonances” for wave equations with rapidly
varying perturbations which are not necessarily pointwise small. In quantum
mechanics, the eigenvalue problem (1.3) is referred to as the scattering reso-
nance problem. The complex eigenvalues are called scattering resonances or
scattering frequencies, whose imaginary parts give the lifetime of elementary
particle states. In a forthcoming paper [5] we develop a rigorous perturbation
theory of such scattering resonances, valid for high contrast potentials (arbi-
trary index contrasts), which gives insight into the regime of validity of the
homogenization expansion and provides concrete error bounds for the trun-
cated expansion. The theory explains the trends observed in the simulations we
report in section 3; for example, that our homogenization expansion provides
an increasingly accurate approximation of the modes and effective indexes:
(a) for fixed wavelength, λfs, and N increasing, and (b) for fixed N and λfs

increasing. The goal of this analytical work is to develop an understanding of
the interplay among wavelength, spatial variation of the index contrast, and
the geometry of the microstructure in determining the propagation properties
of microstructure waveguides and, in particular, in determining the regime of
validity of the homogenization expansion.
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Fig. 3. Attenuation of the lowest order (fundamental, or LP01) resonance for a
structure of the type shown in figure 1, with Rin = 1µm, Rout = 2µm for the
fill fractions f = 0.8, 0.9, and 1, with N = 3 and N = 6 holes. The calculations
were performed for a range of free-space wavelengths λfs ranging from 1µm to 2µm.
The solid lines are the attenuations computed according to the methods of this
paper, including the O(N−2) corrections; the dashed lines are the attenuations
of the averaged structure; and the crosses correspond to the results presented in
figure 3a of [11].
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