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Homogenization expansion for resonances of
microstructured photonic waveguides
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We develop a homogenization expansion approach to photonic waveguides whose transverse structures are
N-fold rotationally symmetric. Examples include microstructured or holey optical fibers with air holes ar-
ranged in one or more concentric rings. We carry out a homogenization expansion for large N about the N
5 ` limit. Our multiple scale analysis applies to the scalar approximation of structures in which the micro-

features have arbitrary geometry and large index contrasts and lead to a natural efficient computational al-
gorithm for the waveguide modes and spectral characteristics. In this paper we focus on structures that pos-
sess leaky modes. The leading order (N 5 `) equations describe the modes of an averaged structure. We
derive an expansion in powers of 1/N of corrections to the leading order behavior and show that the leading
order nontrivial contribution arises at order 1/N2. We numerically calculate this leading order correction to
the complex effective indices (scattering resonances) for the leaky modes of various microstructured photonic
waveguides whose imaginary parts give the leakage rates. We observe that in many instances a two-term
truncation of the homogenization expansion gives good agreement with full simulations, even for fairly small
values of N, whereas the leading order (averaged) theory yields a substantial underestimate of the leakage
rates. © 2003 Optical Society of America

OCIS codes: 000.3860, 060.2280, 060.2400.
1. INTRODUCTION
There is currently a great deal of interest in the propaga-
tion of light in microstructured or holey optical fiber
waveguides with novel cross sections that consist of holes
surrounded by glass. The holes can be empty or filled
with a material chosen to influence the propagation. The
ability to vary the transverse geometry because of ad-
vances in fabrication technology, combined with the large
index contrasts possible with such structures, give mul-
tiple new degrees of freedom that potentially enable de-
signs with radically different properties than are possible
with standard fiber.

Numerous interesting phenomena have already been
observed in such waveguides. Among them are (i) guid-
ance by the interference-based photonic bandgap effect in
fibers with an air core and (truncated) transverse periodic
lattice of air holes,1 (ii) variability of chromatic dispersion
with a microstructure,2,3 and (iii) resulting nonlinear ef-
fects in newly accessible spectral ranges that are due to
microstructure-induced shifting of the zero dispersion
point in glass core fiber.2

Efficient and accurate mathematical modeling of light
propagation in microstructured fiber is clearly necessary
for their design and analysis. A feature of most such
structures is that they are inherently leaky because of the
existence of paths that lead from the core to the cladding
that avoid the holes and pass through only the back-
ground glass. Such structures support no true guided
modes, but they will have leaky modes characterized by
complex-valued propagation constants or effective indices
(scattering resonances); the leakage rate is given by the
imaginary part. Physically, this leakage is due to a com-
bination of tunneling through the holes and propagating
0740-3224/2003/040633-15$15.00 ©
through the glass that surrounds them. The ability to
calculate such rates is clearly of fundamental importance.
Other quantities of interest include the real parts of the
effective indices, which determine the response of the
structure to longitudinal variations such as gratings, and
the dispersion relations of the various leaky modes, which
might be quite unusual compared with standard
waveguides, due to the presence of large index contrasts
and interference effects.

There have been many numerical studies of microstruc-
ture fiber based on direct numerical calculation of static
Maxwell’s equations to determine the system’s modes;
some are also able to capture the attenuation rates. A
variety of methods have been used, among them multi-
pole expansion,4 which works well for structures with cir-
cular holes; more general expansions in local bases5 and
Fourier decompositions,6 which are applicable to more
general geometries; and scalar and vector beam
propagation,4,7 which are applicable to general geom-
etries but have limitations in computing small attenua-
tion rates and have proved problematic in some
geometries.8 All these techniques have the characteristic
that the computational difficulty of the calculations in-
crease with the complexity of the structures. By con-
trast, it has been shown9 that, for a fine enough micro-
structure, an angularly averaged index profile gives
accurate values for the real part of the effective indices of
the leaky modes; the leakage rates, however, are often
greatly underestimated.

We consider the waveguide problem in the scalar ap-
proximation. We develop a multiple scale perturbation
theory of a large class of sufficiently oscillatory struc-
tures, suitable for the analytical study and efficient nu-
2003 Optical Society of America
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merical computation of such quantities as leakage rates,
group velocities, and dispersion, that becomes more accu-
rate as the transverse structure becomes more oscillatory,
in a sense that we make precise below. If the transverse
structure is invariant under rotation by 2p/N (e.g., in the
case of a single ring of N holes uniformly distributed in an
annulus), we expand the leaky modes and the effective in-
dices (scattering resonances) in powers of 1/N. The lead-
ing order in our expansion turns out to be the averaged or
homogenized index profile10,11 referred to above. In this
paper we focus primarily on the derivation and computa-
tion of the leading order corrections (order N22), caused
by the microstructure, of both the real and the imaginary
parts of the effective indices of the leaky modes of such
averaged profiles. Since the leading order behavior is
given by a homogenized (in angle) effective medium, we
refer to this expansion as a homogenization expansion.
Results of first-order corrections to homogenized eigenval-
ues of periodic composite media have been obtained
within a different context.12,13

A few of the consequences of the homogenization ex-
pansion and numerical implementation that we wish to
highlight are listed in the following subsections.

A. Computational Algorithm
Our analytic theory leads to a natural efficient computa-
tional algorithm for the modes and spectral characteris-
tics, e.g., leakage rates, dispersion. Multiscale analysis
enables us to eliminate the stiff aspects of the computa-
tion that are due to the rapidly varying structure.
Therefore, one can expect significant reduction in compu-
tational effort. This is especially important for increas-
ingly microstructured media, for which the approxima-
tion improves, as well as for simulation-based optimiza-
tion of light-guiding characteristics.

B. Arbitrary Geometry and Index Contrasts
Although we require N-fold symmetry of the structure,
the individual microfeatures can have arbitrary geometry
and large index contrasts. In our current implementa-
tion, we approximate an arbitrary microfeature by a
simple layered structure, defined in subsection 7.B, for
which many of the calculations required can be done ex-
plicitly.

C. Good Agreement with Full Numerical Simulation
In Section 5 we present results of numerical simulations
based on our theory for several waveguides with trans-
verse microstructure. We focus on the complex effective
indices as they vary with the geometry of the microstruc-
ture. We are particularly interested in the imaginary
parts of the effective indices that correspond to the leak-
age rates. We present comparisons of our predicted loss
rates with the results that were obtained when the Helm-
holtz equation was solved directly by the Fourier decom-
position algorithm6 and the vector Maxwell’s equations by
multipole methods.4 One expects the homogenization
theory to be valid when the wavelength of light is long
compared with the individual microfeatures. We found
good agreement of our theory with full simulations even
in regimes where l fs /d, the ratio of wavelength to length
scale of microfeatures, is as small as 3/2. Although the
expansion is derived for N large, with the N 5 ` limit be-
ing the leading order term, examples in Section 5 show
agreement in cases for which N 5 3 and N 5 6. We also
observe the expected departure of our approximate meth-
ods from the results of full simulations for sufficiently
small l fs /d.

D. Sensitivity of Leakage Rates to Microstructure
In Section 5 we used our theory to compute the first two
nontrivial terms of the effective indices (scattering reso-
nances) of the leaky modes. The first term corresponds
to an average theory and the second term is a correction
that is due to microstructure. The imaginary parts of the
effective indices, corresponding to the leakage rates, are
sensitive to the introduction of microstructure and their
accurate approximation requires both terms. In con-
trast, as noted above, the real parts of the effective indi-
ces are relatively insensitive to microstructure and are
well captured by the leading order term.

E. Corrected Fields
We find that corrections that are due to microstructure of
the mode fields predicted by the averaged structure are
compactly supported in space if the microstructure per-
turbation is compactly supported in space. This is not
possible for the true solution of the mathematical model.
An additional observation indicating a limitation of the
homogenization expansion is seen for a family of struc-
tures that consist of two rings of holes, parameterized by
the relative phase angle of the arrangement in one ring to
another. Since the variation in refractive index in one
ring occurs on a disjoint set from that for the second ring,
we find the homogenization expansion predicts complex
effective indices that are independent of the phase angle.
This suggests that in the regime in which certain inter-
ference effects are important, the asymptotic expansion of
this paper could have limited use. Nevertheless, we have
proved14 that two-term approximate expansion of modes
and effective indices is valid for sufficiently large N. This
rigorous theory gives field corrections that at any finite N
are not compactly supported.

Mathematically, the leaky modes and effective indices
are obtainable from the solution of the eigenvalue prob-
lem for the Schrödinger equation

@2D' 1 V~r, u, Nu!#c 5 Ec,

c outgoing as r 5 uxu → `; (1.1)

we formulate this as a scattering resonance problem in
Section 3. Here, D' denotes the two-dimensional Laplace
operator in the transverse plane. (When the context is
clear, we shall omit the subscript '.) Since the outgoing
radiation condition at infinity is not self-adjoint, we ex-
pect eigenvalues E to be complex. The attenuation or
leakage rates are given by the imaginary part of

b 5 ~k2ng
2 2 E !1/2, (1.2)

where ng denotes a background refractive index. Of im-
portance in optics is the effective index

neff [ b/k, (1.3)



S. E. Golowich and M. I. Weinstein Vol. 20, No. 4 /April 2003 /J. Opt. Soc. Am. B 635
where k 5 2p/l fs and l fs is the free-space wavelength.
The effective index is a complex quantity for leaky
waveguides. In Section 5 the real and imaginary parts of
b, Rb, and Ib are displayed in plots of

g [ 10 log10

power input

power output
; Ib

versus Rneff 5 k21 Rb. We give attenuation rates g in
units of dB/cm, whereas Rneff is dimensionless.

In Section 6 we numerically investigate the conver-
gence of our expansion for increasing N. To conclude the
paper, in Section 8 we give a brief summary. We also re-
late the current work to a forthcoming paper14 that con-
tains a rigorous perturbation theory of a general class of
scattering resonance problems with rapidly varying and
high contrast potentials. In particular, the latter study
implies the validity of our homogenization expansion and
error estimates for the two-term truncation we use in our
simulations.

2. MAXWELL’S EQUATIONS IN A
WAVEGUIDE
Consider a waveguide with refractive-index profile n(x).
If the medium is nonmagnetic and there are no sources of
free charge or current, then the time-harmonic Maxwell
equations imply that the transverse components of the
electric field E', E' exp(ibx3)e', obey15

@D' 1 k2n2~x'! 2 b2#e' 5 V 1 e' , (2.1)

where

V 1 e' [ 2“'~e' • “' ln n2!.

We work in the scalar approximation, which entails ne-
glecting the term V 1 e' in Eq. (2.1) that arises because of
the vector nature of the fields. For modes that are local-
ized away from the microstructure, which includes most
of the examples in Section 5, the vector corrections are ex-
pected to be small because the field e' is small at the in-
terfaces, which are the only places at which it contributes.
However, this will not be true in other examples of inter-
est, and we expect that our methods can be extended to
the full vector case. In any case, we do not discuss vector
effects further in this work.

In the scalar approximation the components of e' sat-
isfy independent scalar Helmholtz equations. We let w
denote either of these transverse components. Then,

~D' 1 k2n2!w 5 b2w, (2.2)

where D' denotes the Laplace operator in the transverse
variables x' 5 (x1 , x2).

Introducing the notation

V 5 k2~ng
2 2 n2!, E 5 k2ng

2 2 b2, (2.3)

the equation for w and the propagation constant b can be
viewed as a Schrödinger equation with potential V(x')
and energy parameter E:

Lw [ ~2D' 1 V !w 5 Ew. (2.4)
Corresponding to the physical problem described in Sec-
tion 3 for some r*

. 0, we assume that

V~x! > 0, for all x,

V~x! [ 0, for uxu > r* . (2.5)

The potential V therefore does not support bound states
(guided modes) and has only scattering states (radiation
modes) along with scattering resonances (leaky modes).

3. RESONANCE PROBLEM FOR
MICROSTRUCTURE WAVEGUIDES
To fix ideas, consider a cylindrical waveguide composed of
two materials g and h, with corresponding refractive in-
dices ng and nh . We specify a transverse cross section of
the waveguide in the two-dimensional plane, with coordi-
nates x 5 (x1, x2) 5 (r, u). In Fig. 1 we show a sche-
matic picture of a glass waveguide with a single ring of 12
air holes in a solid glass cylinder. Four regions are illus-
trated: A1 , the region uxu < R in , a disk of glass with re-
fractive index ng ; A2 , the region R in < uxu < Rout , an an-
nular region with 12 equally spaced air holes; A3 , the
region Rout < uxu < Rclad that consists of a solid glass
n 5 ng , and finally, A4 , the region uxu > Rclad that con-
sists of air n 5 nh .

We are interested in how well light is confined to the
core (A1) region in such a microstructure fiber. This
structure has actual guided in addition to leaky modes
that are due to the lower refractive index of region A4 .
However, we view any propagation of light from A1 to A3
as loss. Therefore, the appropriate mathematical
problem for our purposes is the mode equation (2.4) posed
on the spatial domain $uxu < R in% ø $R in < uxu
< Rout% ø $Rout < uxu% subject to an outward-going ra-
diation condition as uxu → `. In practice, the glass opti-
cal fiber is usually coated with a high-index and a high-
loss polymer, so any light that does leak into A3 is rapidly
attenuated, which provides further justification for the
use of this boundary condition.

Fig. 1. Cross section of a microstructured waveguide.
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We now present a more general mathematical formula-
tion of this scattering resonance problem. Given a poten-
tial (index profile) V 5 V(r, u) of compact support, we
seek E and nonzero w for which

Lw [ ~2D 1 V !w 5 Ew (3.1)

subject to the outward-going radiation condition, as
r → `. We call a pair ( w, E) a scattering resonance
pair, which is also sometimes called a quasi-resonance.16

In our setting, the radiation condition can be simply de-
scribed. Because V(r) is identically zero for r > r* , Eq.
(2.4) becomes

2~D' 1 E !w 5 0, r > r* . (3.2)

Solutions of Eq. (3.2) can be expanded in a series:

w 5 (
l52`

1`

@cl
~1 ! exp~ilu!Hl

~1 !~AEr !

1 cl
~2 ! exp~ilu!Hl

~2 !~AEr !#, (3.3)

where Hl
(1) and Hl

(2) are first and second Hankel func-
tions of order l.17 Therefore the requirement that w be
outgoing is equivalent to the vanishing of all coefficients
cl

(2) in Eq. (3.3):

outward going radiation ⇔ cl
~2 ! 5 0 for all l.

(3.4)

Since Eq. (3.4) is a non-self-adjoint boundary condition
at infinity, E can be expected to be complex. However,
there are constraints on the location of E in the complex
plane. For the w to be oscillatory at infinity, we must
have RE . 0, and for w to be outgoing RAE . 0. Fur-
thermore, IE < 0. If IE . 0, then IAE . 0. From the
series expansion in Eq. (3.3) with cl

(2) 5 0 we conclude
that w exponentially decays as r → ` and is therefore an
eigenstate of the self-adjoint operator L with a nonreal ei-
genvalue. This yields a contradiction. To summarize:

If E is an energy for which there is a solution of the
resonance problem, then RE . 0 and IE < 0. Corre-
spondingly, from Eq. (2.3) we have Rb . 0 and Ib . 0.
Since E'(x) 5 e'(x')exp(ibx3), the complex resonances E
correspond to the radiative decay or leakage rates of the
structure.

4. MULTIPLE SCALES AND
HOMOGENIZATION EXPANSION
In this section we derive a multiple scale expansion of so-
lutions to the resonance problem for microstructures, giv-
ing a homogenized (averaged) theory at leading order plus
systematically computable corrections. We carry out the
analysis for a class of potentials V with the dependence of

V 5 V~r, u, Nu! 5 V~r, u, Q!, (4.1)

where V is 2p periodic in u and Q. Thus Eq. (4.1) allows
both a slow and a fast angular modulation of the index
profile. In the special case where V does not depend on u
and we have V 5 V(r, Nu), the potential corresponds to
an index profile with an N-fold symmetry. Assume that
V > 0 and that for some r* , V(r) [ 0 for r > r* . We
show the following.
Theorem: Homogenization Expansion
The resonance mode problem [see Eqs. (3.1)–(3.4)] has,
for large N, solutions with the formal expansion

w~r, u; N ! 5 F~N !~r, u, Q!, Q 5 Nu

given by

F~N ! 5 F0 1
1

N2 F2 1 OS 1

N3D ,

E ~N ! 5 E0 1
1

N2 E2 1 OS 1

N3D . (4.2)

Thus, corrections that are due to a microstructure begin
at O(N22).

• @F0(r, u), E0# is a nontrivial solution of the reso-
nance problem:

LavF0 5 E0F0 , (4.3)

where F0 is subject to the outward-going radiation condi-
tion in Eq. (3.4), and the averaged operator is given by

Lav [
1

2p
E

0

2p

L dQ [ 2D' 1 Vav~r, u!. (4.4)

• F2 5 F2
( p) 1 F2

(h), where F2
( p) is the mean zero

solution [easily derived from the Fourier series of
V(•, •, Q)] of

1

r2 ]Q
2F2

~ p ! 5 @V~r, u, Q! 2 Vav~r, u!#F0~r, u!

(4.5)

and @F2
(h), E2# solves

~Lav 2 E0!F2
~h ! 5 H E2 1

r2

2p
E

0

2p

u]Q
21@V~r, u, Q!

2 Vav~r, u!#u2dQJ
3 F0~r, u!. (4.6)

Finally, E2 is uniquely determined by the condition that
Eq. (4.6) has a solution that satisfies an outgoing radia-
tion condition at r 5 `; see Eq. (3.4).

• This yields an approximate solution of the scalar
wave equation and an approximation (neglecting vector
effects) of the transverse electric field E' of Maxwell’s
equations:

E',q~x; b! ; exp@i~bx3 2 vt !#FF0~ ux'u, u; v!

1
1

N2 F2~ ux'u, u, Nu; v! 1 OS 1

N3D G .

Here, q 5 0 or 1, v 5 ck, and b 5 (k2ng
2 2 E)1/2 5 Rb

1 iIb, with Ib . 0. E',q(x' , x3) decays with increas-
ing x3 and is therefore a leaky mode. These modes are
not square integrable.
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In Section 5 we present the results of numerical simu-
lations performed by using a two-term truncation of our
homogenization expansion, compare them with published
computations of solutions to the full problem, and discuss
the question of convergence of our expansion.

A. Multiple Scale Expansion
Because of the rapidly varying coefficient in Eq. (2.4) we
expect rapid variations in its solutions. We therefore ex-
plicitly introduce the fast angular variable

Q 5 Nu (4.7)

and view w as a function of the three independent vari-
ables r, u, and Q:

w~r, u! 5 F~r, u, Q!. (4.8)

Here, we use polar coordinates x 5 (r, u) and note that

D' 5 Dr 1
1

r2 ]u
2, (4.9)

where Dr denotes the radial part of the transverse Laplac-
ian:

Dr [ ]r
2 1

1

r
]r .

Thus, the operator ]u is replaced by ]u 1 N]Q and Eq.
(2.4) becomes

F2Dr 2
1

r2 ~]u 1 N]Q!2 1 V~r, u, Q!GF 5 EF,

(4.10)

Equivalently,

S L 2
2N

r2 ]u]Q 2
N2

r2 ]Q
2DF 5 EF. (4.11)

We seek an expansion of F and E in the small parameter
1/N:

F~N ! 5 F0 1
1

N
F1 1

1

N2 F2 1
1

N3 F3 1
1

N4 F4 1 F5
~N !,

E ~N ! 5 E0 1
1

N
E1 1

1

N2 E2 1 E3
~N !. (4.12)

Here, F j 5 F j (r, u, Q).
Substitution of Eqs. (4.12) into Eq. (4.11) and equating

like powers of 1/N we obtain a hierarchy of equations that
arise at each order in 1/N. We display the first five equa-
tions of this hierarchy:

O~N2!:
1

r2 ]Q
2F0 5 0, (4.13)

O~N !:
1

r2 ]Q
2F1 5 2

2

r2 ]u]QF0 , (4.14)

O~1 !:
1

r2 ]Q
2F2 5 2

2

r2 ]u]QF1 1 ~L 2 E0!F0 ,

(4.15)
O~N21!:
1

r2 ]Q
2F3 5 2

2

r2 ]u]QF2

1 ~L 2 E0!F1 2 E1F0 ,

(4.16)

O~N22!:
1

r2 ]Q
2F4 5 2

2

r2 ]u]QF3 1 ~L 2 E0!F2

2 E1F1 2 E2F0 . (4.17)

B. Construction of the Multiple Scale Expansion
As is typical in perturbation expansions, we must solve a
hierarchy of inhomogeneous linear equations that have a
fixed linear operator to invert and a varying inhomoge-
neous term. Each member of the hierarchy is of the form

1

r2 ]Q
2F 5 G~r, u, Q!. (4.18)

A necessary and sufficient condition for solvability in the
space of 2p periodic in Q functions is

E
0

2p

G~r, u, p !dp 5 0. (4.19)

We now proceed with a term by term construction of the
perturbation expansion.

O(N2) terms:

1

r2 ]Q
2F0 5 0. (4.20)

From this it follows that F0 is independent of the fast
phase Q:

F0~r, u, Q! 5 F0~r, u!. (4.21)

O(N) terms:

2
2

r2 ]u]QF0 2
1

r2 ]Q
2F1 5 0. (4.22)

Using Eq. (4.21) in Eq. (4.22) we obtain

1

r2 ]Q
2F1 5 0. (4.23)

Therefore,

F1~r, u, Q! 5 F1~r, u!. (4.24)

Using Eq. (4.24) we find

O(1) terms:

1

r2 ]Q
2F2 5 ~L 2 E0!F0 . (4.25)

Equation (4.25) has a solution within the space of 2p pe-
riodic in Q functions if and only if the following solvability
condition holds:

~Lav 2 E0!F0 5 0. (4.26)

Here, Lav and Vav denote, respectively, the average opera-
tor and potential with respect to the fast angular depen-
dence. They are given by
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Lav 5 2D' 1 Vav 5 2Dr 2
1

r2 ]u
2 1 Vav~r, u!,

Vav~r, u! 5
1

2p
E

0

2p

V~r, u, p !dp. (4.27)

Note that L 2 Lav 5 V 2 Vav .
We fix @F0(r, u), E0# to be a scattering resonance pair,

an outgoing solution and its associated complex eigen-
value. Since F0 satisfies Eq. (4.26), the inhomogeneous
equation (4.25) can be put into a simpler form:

1

r2 ]Q
2F2 5 @V~r, u, Q! 2 Vav~r, u!#F0~r, u!.

(4.28)

We express the solution of Eq. (4.28) in the form

F2 5 F2
~ p !~r, u, Q! 1 F2

~h !~r, u!, (4.29)

where F2
( p)(r, u, Q) and F2

(h)(r, u) are, respectively, a
particular solution of mean zero and a homogeneous solu-
tion of Eq. (4.28), which is to be determined at higher or-
der in N21. That F2

( p)(r, u, Q) can be chosen to be 2p
periodic in Q follows from the mean zero property of
V(r, u, Q) 2 Vav(r, u). Also, F2

( p) is mean zero in Q
because the constant term in its Fourier expansion is in-
cluded in F2

(h). To compute F2
( p), we expand

V(r, u, Q) 2 Vav(r, u) in a Fourier series in Q:

V~r, u, Q! 2 Vav~r, u! 5 (
u ju>1

h j~r, u!exp~ijQ!.

(4.30)

We have

F2
~ p !~r, u, Q! 5 ]Q

22@V~r, u, Q!

2 Vav~r, u!#r2F0~r, u!

5 (
u ju>1

~ij !22h j~r, u!exp~ijQ!r2F0~r, u!.

(4.31)

O(N21) terms:

1

r2 ]Q
2F3 5 2

2

r2 ]u]QF2 1 ~L 2 E0!F1 2 E1F0

5 2
2

r2 ]u]QF2
~ p ! 1 ~L 2 E0!F1 2 E1F0 .

(4.32)

The solvability condition becomes

~Lav 2 E0!F1 5 E1F0 , (4.33)

which we satisfy by taking E1 5 0 and F1 [ 0. Using
the mean zero property of F2

( p), we observe that Eq.
(4.32) becomes

]QF3~r, u, Q! 5 22]uF2
~ p !~r, u, Q!. (4.34)

O(N22) terms:

Using E1 5 0, F1 [ 0, and Eq. (4.34) to solve for F3 in
terms of F2

( p), at this order we find that
1

r2 ]Q
2F4 5

4

r2 ]u
2F2

~ p ! 1 ~L 2 E0!F2 2 E2F0

5 S L 2 E0 1
4

r2 ]u
2DF2

~ p !

1 ~L 2 E0!F2
~h ! 2 E2F0

5 S Lav 2 E0 1
4

r2 ]u
2DF2

~ p !

1 ~L 2 Lav!F2
~h ! 1 ~Lav 2 E0!F2

~h !

2 E2F0 1 ~L 2 Lav!F2
~ p !. (4.35)

The first two terms on the right-hand side of Eq. (4.35)
have zero average in Q. Therefore, the solvability condi-
tion for F4 becomes

~Lav 2 E0!F2
~h ! 5 E2F0 2

1

2p
E

0

2p

~L 2 Lav!F2
~ p !dp

5 E2F0 2
1

2p
E

0

2p

@V~r, u, p !

2 Vav~r, u!#F2
~ p !~r, u, p !dp

5 H E2 1
r2

2p
E

0

2p

u]p
21@V~r, u, p !

2 Vav~r, u!#u2dpJ F0~r, u!, (4.36)

where we used Eq. (4.31) and where ]p
21 denotes the

mean-zero antiderivative. We seek an outgoing solution
of Eq. (4.36). This determines E2 and therewith the ex-
pansion for the scattering resonance (effective index)
through order N22.

In Section 5 we use this truncated expansion to obtain
the complex effective indices (scattering resonances) for
various structures numerically. The details of the imple-
mentation are set forth in Section 7. In particular, we
derive an explicit expression for E2 [see Eqs. (7.10),
(7.17), and (7.18)] for the class of N-fold symmetric
waveguides.

5. NUMERICAL SIMULATIONS FOR
SELECTED STRUCTURES
We now illustrate the theory of the preceding section with
numerical calculations performed for several classes of
structures. The details of the implementation are set
forth in Section 7. The three classes of structures we
consider are:

example 1: a ring of circular air holes (Fig. 2),
example 2: an annulus of air supported with glass

webs (Fig. 3), and
example 3: a subset of a hexagonal lattice (Fig. 4).

We identify individual leaky modes or scattering reso-
nances of these structures by using the LPlm (linearly po-
larized) notation19 appropriate for solutions of the scalar
wave equation. Usually this notation applies to guided
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modes, but no ambiguity will result as none of the struc-
tures we consider supports guided modes. The subscript
l P $0, 1, 2,...% refers to the angular dependence exp(ilu)
of solutions to the averaged equation, whereas m
P $1, 2, 3,...% indicates the collection of leaky modes with
fixed l. This collection is ordered by Rneff , with m 5 1
corresponding to the largest such value (when this rule is
applied to guided modes, the usual meaning of m as
counting the number of nodes in the radial wave function
is recovered). In the figures we use distinct plotting sym-
bols to represent different values of l; the various values
of m for fixed l are not explicitly displayed but can be in-
ferred from the monotonic relationship between m and
Rneff .

Examples 1 and 2. The geometries of examples 1 and
2 were varied to produce a total of 30 different structures
between them. The ring of holes was scaled to three dif-
ferent core sizes, whereas the annulus with webs was
scaled to three different radii for each of two different air-
fill fractions and three different periodicities 2p/N. We
approximated each of the structures by a simple layered
potential, as described in subsection 7.B. (The web-
supported annulus depicted in Fig. 3 is a simple layered
structure without approximation.) In all the examples,
the refractive index of glass was taken to be 1.45 and the
holes were assumed to be empty. The calculations were
all performed at l fs 5 1.55 mm. All these structures
support only continuous spectrum, so we report on the
complex eigenvalues associated with resonances of the
structures.

We computed the following sets of resonances for the
rings of circles and webbed structures depicted in Figs. 2
and 3. We restricted attention to leaky mode solutions of
the averaged structure with effective indices Rneff
P @1.41, 1.45#, attenuation coefficients less than approxi-
mately 2 dB/mm, and angular index l P $0, 1, 2, 3%. To
express these quantities in our notation, note from Eqs.
(2.3) that

b 5 ~k2ng
2 2 E !1/2 (5.1)

and that the effective index is given by

neff 5 k21b. (5.2)

Also, attenuation g (in dB/cm if b has units of 1/mm) of a
leaky mode is given by

Fig. 2. (a) Ring of N 5 30 air holes approximated by a simple
layered structure with 11 layers. The ratio Rhole /Rring of the
hole radius to the ring radius is 0.7p/N. (b) The averaged po-
tential Vav with Rring 5 12 mm.
g 5
2 3 105

ln~10!
Ib. (5.3)

The factor of 2 in Eq. (5.3) is due to the definition of g as
the attenuation coefficient for intensity rather than field
amplitude. Once we found this set of leaky modes of the
averaged potential, we computed the leading order correc-
tions E2 to the leading order energies E0 .

The results for the three scaled rings of circles (Fig. 2)
are presented in Fig. 5; those for the three scalings and
two air-fill fractions along with various values of period-
icity N of the ring of air wedges are presented in Fig. 6.

We also computed resonances of a structure of the type
shown in Fig. 3 with R in 5 1 mm, Rout 5 2 mm for fill
fractions f 5 0.8, 0.9, and 1, with N 5 3 and N 5 6
holes. The calculations were performed for free-space
wavelengths l fs ranging from 1 to 2 mm. The structure
with f 5 1 is an idealized ring of air with no supporting
structure. In Fig. 7 we compare the results of our theory
with parallel calculations6 performed by a Fourier decom-
position algorithm. We observe that the two methods
agree exactly for the f 5 1 case, as they should. Addi-
tionally, in all cases our method agrees with the Fourier
calculation as l fs → 2 mm. Even for smaller l fs the
agreement is quite good except for the f 5 0.8, N 5 3
case, which is not surprising given the small value of N
and the fact that the width of the ring is equal to the
smallest free-space wavelength considered. The plots

Fig. 3. (a) Ring of air wedges supported by N 5 20 webs of
glass. The ratio R in /Rout of the outer radii of the annulus is 10/
11, whereas the air-fill fraction within the annulus is f 5 0.8.
(b) The averaged potential Vav with R in 5 10 mm.

Fig. 4. (a) Eighteen-hole subset of a hexagonal lattice (N 5 6)
with interhole spacing L 5 2.3 mm and hole radius Rhole
5 0.46 mm, approximated by a simple layered structure with
L 5 51 layers. (b) The averaged potential Vav in units of mm22

versus radius in units of micrometers.
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Fig. 5. Effective indices and attenuation coefficients of a set of least-lossy resonances with l P $0, 1, 2, 3% of the structure depicted in
Fig. 2, scaled to three different ring radii. The plotting symbol encodes angular index l: j, s, n, 1 correspond to l 5 0, 1, 2, 3. The
results of the averaged structure are labeled N 5 `.

Fig. 6. Effective indices and attenuation coefficients of a set of least-lossy resonances with l P $0, 1, 2, 3% of the structure depicted in
Fig. 3 for two choices of fill fraction x and three different radii. The plotting symbol encodes the angular index l: j, s, n, 1 correspond
to l 5 0, 1, 2, 3; the shade of gray encodes periodicity N. The results of the averaged structure are labeled N 5 `.
displayed in Fig. 7 are consistent with the expectation
that approximation by the homogenization expansion im-
proves (a) for fixed l fs and increasing N as well as (b) for
fixed N and l fs increasing.

The dashed curves in Fig. 7 display the attenuations of
the averaged structures, without the O(N22) correction.
The necessity of including these corrections is evident, al-
though the effect in these structures is not as dramatic as
in some of the other structures we consider, including that
of example 3 below.

Another result reported in Ref. 6 is the effective index
of the first excited state above the fundamental (the LP11
state) for the f 5 0.9, N 5 3 structure at l fs 5 1.55 mm.
In Table 1 we compare the results of the Fourier method
with truncations of our homogenization expansion to one
and two terms for both the fundamental and the first ex-
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cited leaky modes. We note that the one-term (averaged
theory) truncation predicts the real part of the effective
index well, agreeing with Ref. 9 but again, the O(N22)
corrections are necessary to obtain good agreement of the
attenuation rates.

Example 3. Finally, we consider the structure de-
picted in Fig. 4. This is an 18-hole subset of a hexagonal
lattice (N 5 6) with interhole spacing L 5 2.3 mm and
hole radius Rhole 5 0.46 mm. We found that the funda-
mental (LP01) resonance has a leakage rate of 14 dB/cm,
whereas that of the averaged structure was 0.92 dB/cm.
By comparison, the solution to the full vector problem by
use of a multipole method with outgoing radiation
conditions4 results in a rate of 16 dB/cm. In this ex-
ample, the effect of the N22E2 microstructure correction
on the leakage rates is even more apparent than in ex-
ample 2. However, we cannot say how much of the dis-
crepancy between Ref. 4 and ours is due to vector effects
and how much is due to the other approximations in our
method.
6. CONVERGENCE AS N\`

Here we describe a consistency check on our implementa-
tion of the scheme described in subsection 4.B for simple
layered potentials; see subsection 7.B. We compute the
first nontrivial corrections N22F2 and N22E2 to the field
and energy, respectively, in Eqs. (4.12) and express the
field and energy as our approximation plus error terms:

F 5 F0 1
1

N2 F2 1 F3
~N !,

E 5 E0 1
1

N2 E2 1 E3
~N !. (6.1)

We consider by how much the mode equation (3.1) is
not satisfied by the first two terms of the expansion in
Eqs. (6.1). Therefore, we define the residual as
Fig. 7. Attenuation of the lowest-order (fundamental or LP01) resonance for a structure of the type shown in Fig. 3 with R in 5 1 mm,
Rout 5 2 mm for fill fractions f 5 0.8, 0.9, and 1 with N 5 3 and N 5 6 holes. The calculations were performed for free-space wave-
lengths l fs ranging from 1 to 2 mm. The solid curves represent the attenuations computed according to the methods outlined in the text,
including the O(N22) corrections, the dashed curves represent the attenuations of the averaged structure, and the x corresponds to the
results presented in Fig. 3(a) of Ref. 6.

Table 1. Comparison of Results for the First Two Leaky Modes of a Ring of Air Wedgesa

Mode

Zero-Order Homogenization Second-Order Homogenization Fourier

neff Attenuation neff Attenuation neff Attenuation

LP01 1.3712 1 0.0000387i 1.36 1.3727 1 0.0000644i 2.27 1.365 1 0.000071i 2.48
LP11 1.2468 1 0.000436i 15.3 1.2515 1 0.000832i 29.3 1.255 1 0.00075i 27

a With R in 5 1 mm, Rout 5 2 mm, fill fraction f 5 0.9, and N 5 3 holes. The effective indices and attenuations (in dB/mm) of the leading term (aver-
aged) and of the two-term truncation of the homogenization expansion are compared with that of the Fourier expansion.6,18
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Fres [ F2D 1 V 2 S E0 1
1

N2 E2D G S F0 1
1

N2 F2D .

(6.2)

Substituting Eqs. (6.1) into Eq. (3.1), we find that the re-
sidual is given by

Fres 5 E3
~N !FF0 1

1

N2 F2 1 F3
~N !G

2 FD 1 V 2 S E0 1
1

N2 E2D GF3
~N !. (6.3)

We expect Fres to be of the order of N21 because F3
(N) and

E3
(N) are formally of the order of N23, and the Laplacian

in Eq. (6.3), when acting on the fast dependence, gives a
factor of N2. Indeed, expanding Fres in powers of 1/N, we
find that, when l . 0, the leading term Fres

(1) is the
O(1/N) term

Fres
~1 ! 5

1

Nr2 ]Q
2F3 . (6.4)

This could be simplified by use of Eqs. (4.34) and (4.31):

Fres
~1 ! 5 2

2

N
~]uF0!@]Q

21~V 2 Vav!#. (6.5)

Therefore, when l . 0, we expect that, as N → `,

Fres → Fres
~1 ! ; OS 1

N D , Fres 2 Fres
~1 ! ; OS 1

N2D .

(6.6)

When l 5 0, it follows that F0 5 F0(r), ]uF0 vanishes,
and the leading behavior of the residual is of higher order
in 1/N.

Since the potential V or its derivatives can have discon-
tinuities, it is problematic to compute Fres by using Eq.
(6.3); it is possible that F2

( p) is discontinuous as a func-
tion of r. We therefore interpret Eq. (6.3) as holding in
the weak sense or sense of distributions and integrate
both sides against a radial test function fR(r) of compact
support. This allows us to move the radial part of the
Laplacian over to act on fR and to define the weak re-
sidual as

Fres
~weak!~u! 5 E

0

`

r drF2fR9 2
1

r
fR8 2 fR

1

r2 ]u
2

1 fRS V 2 E0 2
1

N2 E2D G
3 S F0 1

1

N2 F2D , (6.7)

and its leading behavior in 1/N as

Fres
~weak,1!~u! 5 2

2

N
E

0

`

r drfR~]uF0!@]Q
21~V 2 Vav!#.

(6.8)

We computed Eqs. (6.7) and (6.8) for the structure of ex-
ample 2 (Fig. 3), with R in 5 10 mm and Rout 5 11 mm, for
the LP11 leaky mode. We allowed N to vary from 20 to
22,000. The results are presented in Fig. 8. The solid
line in Fig. 8(a) represents iFres
(weak)(u) 2 Fres

(weak,1)(u)i`

as a function of N. The scales are logarithmic on both
axes, so the slope of 22 verifies that the first term in (6.6)
holds over the entire range considered. The dashed
curve in Fig. 8(a) represents iFres

(weak)(u)i` ; we see that
the slope changes from 22 to 21 at around N 5 1000,
which again verifies terms (6.6).

Figure 8(b) shows the pointwise behavior of the weak
residuals by plotting N2R@Fres

(weak)(u) 2 Fres
(weak,1)(u)#

versus u for N 5 20 and N 5 54. We observe that the
envelope of the residuals is invariant after scaling by N2,
suggesting that the N22 term dominates the residual af-
ter the leading term is subtracted, even for these moder-
ate values of N. This behavior persists for all N we con-
sidered up to N 5 22,000.

7. IMPLEMENTATION OF
HOMOGENIZATION EXPANSION
In this section we outline the procedure used to obtain the
simulation results in Section 6. We specialize to the case
of a potential with no slow angular dependence, so
V(r, u, Q) 5 V(r, Q). In this case, the potential has an
N-fold symmetry. First, in Subsection 7.A, we sketch the
expansion of solutions to the resonance problem summa-
rized in the homogenization expansion in Section 4 with
no additional assumptions. This discussion pertains to
N-fold symmetric microstructure whose individual micro-
features have arbitrary geometry. Our strategy then is
to approximate a general microstructure potential V by a
simple layered potential in Subsection 7.B. For simple
layered potentials, analytic expressions can be obtained
that facilitate the numerical computations.

A. General Structures
The angular average potential is a radial function
Vav 5 Vav(r). We let F0(r, u) 5 f(r)exp(ilu), where l is
an integer. Then f(r) satisfies

F2Dr 1
l2

r2 1 Vav~r ! 2 E0G f~r ! 5 0. (7.1)

A solution of the resonance problem is the pair @ f(r), E0#,
such that f(r) is a nonsingular solution of Eq. (7.1) that
satisfies an outgoing radiation condition at r 5 `; see
Eq. (3.4). As noted in Section 3, E0 is complex with
IE0 , 0. In general, the existence of solutions to the
resonance problem is a subtle technical problem. In Sub-

Fig. 8. Results of weak residual calculation: (a) iFres
(weak)(u)

2 Fres
(weak,1)(u)i` (solid line) and iFres

(weak)(u)i` (dashed curve);
(b) N2R@Fres

(weak)(u) 2 Fres
(weak,1)(u)# for N 5 20 (solid curve)

and N 5 54 (dashed curve).
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section 7.B we analyze the problem in detail for the par-
ticular class of simple layered structures that we define
there. In this section, we posit the existence of a solution
@ f(r), E0#. Note that since Vav(r) 5 0 for r > r* ,

f~r ! 5 k* Hl
~1 !~AE0r !, r > r* (7.2)

for some constant k* .
Next we calculate the leading order correction N22F2

by our perturbation scheme. In the separable case, the
equation for F2

(h) is of the form

~Lav 2 E0!F2
~h ! 5 @E2 1 Q~r !#F0 , (7.3)

where Q(r) has compact support. Since F0(r, u)
5 f(r)exp(ilu), all the Fourier modes of F2

(h)(r, u) except
the lth mode vanish and so we define F2

(h)(r, u)
5 U(r)exp(ilu) and consider the equation

F2Dr 1
l2

r2 1 Vav~r ! 2 E0GU~r ! 5 @E2 1 Q~r !#f~r !.

(7.4)

Note that, from Eq. (2.5), both Q and Vav are zero for
r > r* , and we have

S 2Dr 1
l2

r2 2 E0DU~r ! 5 E2f~r !, r > r* . (7.5)

We proceed with the solution of the inhomogeneous prob-
lem in Eq. (7.4) for r > 0 and then obtain an expression
for E2 by imposing the outward-going radiation condition.

We have assumed that V is regular at the origin. We
let ỹ1(r) denote the solution to the homogeneous equation
associated with Eq. (7.4) that is regular at r 5 0 and
ỹ2(r) denote an independent solution, which together
with ỹ1 spans the solution set. Then ỹ1(r) } rl and
ỹ2(r) } r2l if l . 0, or ỹ1(r) } ln(r) if l 5 0. For
r . r* , an appropriate set of homogeneous solutions of
Eq. (7.5) is in terms of Hankel functions Hl

( j)(AE0r),
j 5 1, 2. Hl

(1) satisfies the outward-going radiation con-
dition at infinity and Hl

(2) the inward-going radiation
condition at infinity.

A particular solution of Eq. (7.4) can be constructed by
variation of parameters by use of these homogeneous so-
lutions in the intervals R in 5 @0, r* # and Rout
5 (r* , `). We define Gin@F# to be a choice of particular
solution of

F2Dr 1
l2

r2 1 Vav~r ! 2 E0GGin@F# 5 F~r !,

0 < r , r* ~r P R in!, (7.6)

and define Gout@F# to be a choice of particular solution of

S 2Dr 1
l2

r2 2 E0DGout@F# 5 F~r !, r* < r~r P Rout!.

(7.7)

We then have

U~r ! 5 E2Gin@ f#~r ! 1 Gin@Qf #~r ! (7.8)

for R in and

U~r ! 5 j* Hl
~1 !~AE0r ! 1 h* Hl

~2 !~AE0r ! 1 E2Gout@ f#~r !
(7.9)
for Rout , where the coefficients j* and h* are determined
by imposing continuity of U and ]rU at r 5 r* :

F j* ~E2!

h* ~E2!G 5 E2 Y 21~r* !

3 X Gin@ f#~r* ! 2 Gout@ f#~r* !

E0
21/2$]Gin@ f#~r* ! 2 ]Gout@ f#~r* !% C

1 Y 21~r* !H Gin@Qf #~r* !

E0
21/2]Gin@Qf #~r* !J , (7.10)

with

Y ~r ! 5 F Hl
~1 !~AE0r ! Hl

~2 !~AE0r !

]sHl
~1 !~AE0r ! ]sHl

~2 !~AE0r !
G .

With j* and h* given by Eq. (7.10), Eqs. (7.8) and (7.9)
define a nonsingular solution of Eq. (7.4). It remains to
impose a radiation condition at r 5 `. Consider U(r) for
r > r* . Let

z 5 AE0r, z* 5 AE0r* , G~z ! 5 U@r~z !#.
Then, Eq. (7.5) becomes

z2G9 1 zG8 1 ~z2 2 l2!G 5
E2

E0
k* z2Hl

~1 !~z !,

r~z ! > r* . (7.11)

Equations (7.9) and (7.2) yield

G~z ! 5 U@r~z !#

5 j* ~E2!Hl
~1 !~z ! 1 h* ~E2!Hl

~2 !~z !

1
E2

E0
k* Gout@Hl

~1 !#~z !. (7.12)

Gout can be constructed by variation of parameters. A
particular solution is

j*
~ p !~z !Hl

~1 !~z ! 1 h*
~ p !~z !Hl

~2 !~z !,

where

j*
~ p !@h#~z ! 5 2E

z
*

z Hl
~2 !~z !h~z!

z2W$Hl
~1 !, Hl

~2 !%
dz, (7.13)

h*
~ p !@h#~z ! 5 1E

z
*

z Hl
~1 !~z !h~z!

z2W$Hl
~1 !, Hl

~2 !%
dz. (7.14)

Therefore,

Gout@F#~z ! 5 $j*
~ p !@z2F#~z !Hl

~1 !~z !

1 h*
~ p !@z2F#~z !Hl

~2 !~z !%, (7.15)

Using Eq. (7.15) in Eq. (7.12) we obtain

G~z ! 5 U@r~z !#

5 j* ~E2!Hl
~1 !~z ! 1 h* ~E2!Hl

~2 !~z !

2
ip

4

E2

E0
k* Ez

*

z

Hl
~2 !~z !Hl

~1 !~z !z dzHl
~1 !~z !

1
ip

4

E2

E0
k* Ez

*

z

@Hl
~1 !~z !#2z dzHl

~2 !~z !. (7.16)

Note that j* (E2) and h* (E2) are determined by the con-
tinuity conditions at r 5 r* and are given by Eq. (7.10).
The condition that determines E2 is that the incoming
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part of G(z) be identically zero. Derivation of this condi-
tion on E2 requires the use of certain integral identities
that involve Hankel functions.

Note that both terms in Eq. (7.16) that are proportional
to Hl

(1) are outgoing, as can be seen when we refer to
their asymptotic forms. From Ref. 20 we have

E z@Hl
~ j !~z !#2 dz 5

z2

2
$@Hl

~ j !~z !#2 2 Hl21
~ j !~z !

3 Hl11
~ j !~z !%.

Therefore, the terms in Eq. (7.16) that are proportional to
Hl

(2) can be written as

h* ~E2!Hl
~2 !~z ! 1

ik* p

4

E2

E0

z2

2
$@Hl

~1 !~z !#2

2 Hl21
~1 !~z !Hl11

~1 !~z !%uz
*

z Hl
~2 !~z !

5 Xh* ~E2! 2
ik* p

4

E2

E0

z*
2

2
$@Hl

~1 !~z* !#2

2 Hl21
~1 !~z* !Hl11

~1 !~z* !% CHl
~2 !~z !

1
ik* p

4

E2

E0

z2

2
$@Hl

~1 !~z !#2

2 Hl21
~1 !~z !Hl11

~1 !~z !%Hl
~2 !~z !.

Again, from the asymptotic form of Hl
(1), the latter term

is seen to be outgoing at infinity so the condition for E2 is

h* ~E2! 2
ik* p

4

E2

E0

z*
2

2
$@Hl

~1 !~z* !#2

2 Hl21
~1 !~z* !Hl11

~1 !~z* !% 5 0. (7.17)

We can write h* (E2) as

h* ~E2! 5 h* 0 1 E2h* 1 , (7.18)

where h* 0,1 can be read from the second component of Eq.
(7.10). Equations (7.17) and (7.18) give a linear relation
for E2 that can be solved.

B. Simple Layered Structures: Leading Order
Resonances
We now outline an implementation of the above scheme
for a simple layered structure that we define to be one
with potential V(r, u, Q) that is both independent of the
slow angular variable u and is a simple function of the
form

V~r, Q! 5 (
i51

L

(
j51

Mi

1@ri ,ri11#~r !1@Q j , Q j11#~Q!Vi, j ,

(7.19)

where L is the number of radial layers and Mi is the num-
ber of angular sectors in one period of the ith layer. 1A(z)
denotes the indicator function of set A, taking the value
one for z P A and zero for z ¹ A. By definition, r1
5 0, Q1 5 0, and QMi11 5 2p. The potential in Eq.

(7.19) has, as a function of Q, Mi jumps in layer Ri and, as
a function of u, NMi jumps in layer Ri . An example of a
simple layered approximation to a structure that contains
six circular air holes is presented in Fig. 9.

With the definition in Eq. (7.19) of V(r, Q), Vav(r) is
constant in each region Ri 5 @ri , ri11#; equivalently,

Vav~r ! 5 Vav,i , r P Ri . (7.20)

In the special case where the index profile n(r, u) takes
on two values of ng and nh and 2pfi denotes the total
angle of annulus Ri occupied by material h, by averaging
V in Eqs. (2.3) we have

Vav~r ! 5 k2fi@ng
2 2 nh

2#, r P Ri . (7.21)

In each interval Ri , the radial wave function f(r) can be
expressed as a linear combination of Bessel and modified
Bessel functions:

f~r ! 5 s iy1~z~r !! 1 t iy2~z~r !!, (7.22)

where, for i , L, the definitions of y1 , y2 , and z depend
on the sign of R(E0 2 Vav). If R(E0 2 Vav) . 0, then
z 5 (E0 2 Vav)

1/2r, y1 5 Jl, and y2 5 Yl; otherwise, z
5 (Vav 2 E0)1/2r, y1 5 Il , and y2 5 Kl . In the outer
region, where i 5 L, we let z 5 E0

1/2, y1 5 Hl
(1), and

y2 5 Hl
(2). The condition that the solution be nonsingu-

lar at r 5 0 implies that

S s1

t1
D 5 S 1

0 D (7.23)

or a multiple thereof. The values of ( s i , t i) in some in-
terval i determine the values ( s i11 , t i11) by continuity of
f(r) and its derivative at the interface. This relationship
can be expressed by a transfer matrix21 Ti(E0) that gives
rise to the relationship between the coefficients in the out-
ermost layer and those in the innermost layer:

S sL

tL
D 5 T~E0!S s1

t1
D , (7.24)

where

T~E0! 5 TL~E0!¯T3~E0!T2~E0!. (7.25)

Fig. 9. Example of a simple layered approximation of a struc-
ture that contains six circular air holes [see Eq. (7.19)].
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The radiation condition is equivalent to the orthogonality
of (0, 1) and ( sL , tL). Therefore, the resonance or scat-
tering energies are determined by the following scalar
transcendental equation:

~0 1 !T~E0!S 1
0 D 5 0 (7.26)

or equivalently

T21~E0! 5 0, (7.27)

where Tkj denotes the (k, j) entry of matrix T(E0).

C. Simple Layered Structures: Microstructure
Corrections to F0 and E0
We now construct the order N22 correction to F0 , which
is N22F2 , and to E0 , which is N22E2 , for the special case
of a simple layered structure; see Eq. (7.19). Note that
F2 5 F2

( p) 1 F2
(h). Here F2

( p) is, in general, given by
the Fourier series in Eq. (4.31). When the potential is of
the form in Eq. (7.19), F2

( p) can be explicitly calculated,
which is done in Appendix A. F2

(h) solves Eq. (4.36) and
E2 is chosen so that Eq. (4.31) has a solution that satisfies
the outgoing radiation condition at r 5 `. We now focus
on the determination of E2 and F2

(h) in the separable
case.

Note that Eq. (4.36) for F2
(h) is of the form

~Lav 2 E0!F2
~h ! 5 @E2 1 Q~r !#F0 , (7.28)

where Q(r) has compact support; its explicit form for
simple structures is presented in Appendix A. Since
F0(r, u) 5 f(r)exp(ilu), we define F2

(h)(r, u) 5 U(r)
3 exp(ilu) and consider the equation

F2Dr 1
l2

r2 1 Vav~r ! 2 E0GU~r ! 5 @E2 1 Q~r !#f~r !.

(7.29)
The solution of Eq. (7.29) in region Rq can be written as

Uq~r ! 5 Uq
~ p !@z~r !# 1 jqy1@z~r !# 1 hqy2@z~r !#,

(7.30)
where the definitions of y1 , y2 , and z are the same as in
Eq. (7.22) and Uq

( p) denotes a particular solution ob-
tained by variation of the parameters. As above, the co-
efficients (jq11 , hq11) can be obtained from (jq , hq) if we
impose continuity of U(r) and its derivative at the inter-
face. We omit the details, but note that the transfer ma-
trix formulation from Eq. (7.23) is modified in this case to
reflect the presence of a homogeneous term:

S j
h D 5 Fq~E2! 1 TqS jq21

hq21
D . (7.31)

Note that the matrix Tq does not depend on E2 , although
Fq does.

The solution in the innermost region R1 , U1(r), must
be regular at the origin. Through a choice of particular
solution, we can take the homogeneous part of the solu-
tion in this region to be identically zero. Then, iteration
of Eq. (7.31) yields

F jL~E2!

hL~E2!G 5 FL 1 TLFL21 1 TLTL21FL22 1 ...

1 TLTL21¯T3F2 . (7.32)
It remains to impose the radiation condition in outermost
region RL . We note that Q(r) [ 0 in Eq. (7.28) and that,
by construction, F0 is outgoing and thus can be written as

F0~r, u! 5 sLHl
~1 !~AE0r !. (7.33)

Therefore, to impose the radiation condition on the correc-
tion and thereby obtain E2 , we can use Eq. (7.11) with
k* 5 sL . We can therefore use the calculations from
Subsection 7.B to obtain a particular solution. This gives
the equation for E2 :

hL~E2! 2
isLp

4

E2

E0

zL
2

2
$@Hl

~1 !~zL!#2

2 Hl21
~1 !~zL!Hl11

~1 !~zL!% 5 0, (7.34)
where

hL~E2! [ hL0 1 E2hL1 (7.35)

is read from Eq. (7.32). We then find E2 by solving the
linear relation in Eqs. (7.34) and (7.35).

8. SUMMARY AND DISCUSSION
We have derived a systematic homogenization expansion
for microstructured cylindrical waveguides with trans-
verse N-fold symmetry. The method of derivation, mul-
tiple scale analysis, facilitates the removal of fast scales
that are due to rapid variations in the microstructure.
Therefore, numerical implementation of the expansion
does not encounter the intrinsic stiffness associated with
problems having large separations of scales. We have
implemented the expansion for a number of sample struc-
tures and have computed the effective indices of their
leaky modes (scattering resonances). Of great impor-
tance are the imaginary parts of the effective indices that
correspond to the leakage rates that result from a combi-
nation of propagation and tunneling losses. In contrast
to the real parts of the effective indices, these leakage
rates are sensitive to the geometry of the microstructure
for low-index (air) holes.

The homogenization expansion can be viewed in the
more general context of perturbation theory of scattering
resonances for wave equations with rapidly varying per-
turbations that are not necessarily pointwise small. In
quantum mechanics, the eigenvalue problem [see Eqs.
(1.1)] is referred to as the scattering resonance problem.
The complex eigenvalues are called scattering resonances
or scattering frequencies whose imaginary parts give the
lifetime of elementary particle states. In a forthcoming
paper14 we develop a rigorous perturbation theory of such
scattering resonances that is valid for high contrast po-
tentials (arbitrary index contrasts), offers insight into the
regime of validity of the homogenization expansion, and
provides concrete error bounds for truncated expansion.
The theory explains the trends observed in the simula-
tions we reported in Section 5; for example, that our ho-
mogenization expansion provides an increasingly accu-
rate approximation of the modes and effective indices for
(a) fixed wavelength l fs and N increasing and (b) fixed N
and l fs increasing. The goal of this forthcoming analyti-
cal work is to develop an understanding of the interplay
among wavelength, spatial variation of the index con-
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trast, and the geometry of the microstructure to deter-
mine the propagation properties of microstructure
waveguides and, in particular, to determine the regime of
validity of the homogenization expansion.

APPENDIX A: CALCULATIONS FOR SIMPLE
LAYERED STRUCTURES
We present the expressions needed to compute the lead-
ing corrections for F0 and E0 arising from the microstruc-
ture. There are two quantities that we require:

F2
~ p !~r, u, Q! 5 r2F0~r, u!]Q

22@V~r, Q! 2 Vav~r !#,
(A1)

Q~r ! 5
r2

2p
E

0

2p

u]p
21@V~r, p ! 2 Vav~r !#u2dp.

(A2)

The mean-zero antiderivatives in Eqs. (A1) and (A2) are
explicitly calculable because of the form of the potential in
Eq. (7.19). For r P Ri ,

]Q
21@V~r, Q! 2 Vav~r !#

5 C1 2 Vav,iQ 1 (
j51

Mi

1@Q j , Q j11#~u!@Sj 1 Vi, j~Q 2 Q j!#,

(A3)

where

Sj 5 (
k51

j21

Vi,k~Qk11 2 Qk! (A4)

and the constant C1 is given below. Integrating once
more for r P Ri ,

where

Tj 5 (
k51

j21 FSk~Qk11 2 Qk! 1
1

2
Vi,k~Qk11 2 Qk!2G ,

(A6)

and the constants C1 and C2 are given by

C1 5 pVav,i 2 TMi11 ,

C2 5 2pC1 1
~2p!2

6
Vav,i 2

1

2p (
j51

Mi S Tj~Q j11 2 Q j!

1
1

2
Sj~Q j11 2 Q j!

2 1
1

6
Vi, j~Q j11 2 Q j!

3D .

(A7)

Finally, for r P Ri , the integral in Eq. (A2) evaluates to

]Q
22@V~r, Q! 2 Vav~r !# 5 C2 1 C1Q 2

1

2
Vav,iQ

2 1 (
j51

Mi
1

2p
E

0

2p

u]p
21@V~r, p ! 2 Vav~r !#u2dp

5 C1
2 1

1

p
C1TMi11

1
1

2p (
j51

Mi S Sj
2~Q j11 2 Q j! 1 Sj~Vi, j 2 Vav,i!

3 ~Q j11 2 Q j!
2 1

1

3
~Vi, j 2 Vav,i!

2~Q j11 2 Q j!
3D .

(A8)
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