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Abstract

We consider nonlinear bound states of the nonlinear Schrödinger equation

i∂zφ(z, x) = −∂2
xφ − (1 + m(Nx))|φ|p−1φ,

in the presence of a nonlinear periodic microstructure m(Nx). This equation mod-
els the propagation of laser beams in a medium whose nonlinear refractive index is
modulated in the transverse direction, and also arises in the study of Bose-Einstein
Condensation (BEC) in a medium with a spatially dependent scattering length. In
the nonlinear optics context, N = rbeam/rms denotes the ratio of beam width to
microstructure characteristic scale. We study the profiles of the nonlinear bound
states using a multiple scale (homogenization) expansion for N ≫ 1 (wide beams),
a perturbation analysis for N ≪ 1 (narrow beams) and numerical simulations for
N = O(1). In the subcritical case p < 5, beams centered at local maxima of the
microstructure are stable. Furthermore, beams centered at local minima of the mi-
crostructure are unstable to general (asymmetric) perturbations but stable relative
to symmetric perturbations. In the critical case p = 5, a nonlinear microstructure
can only stabilize narrow beams centered at a local maximum of the microstruc-
ture, provided that the microstructure also satisfies a certain local condition. Even
in this case, the stability region is very small so that small (O(10−2)) perturbations
can destabilize the beam. Therefore, such beams are “mathematically” stable but
“physically” unstable.

Key words: Microstructure, Homogenization, Instability, Collapse, Periodic
potential, Solitary waves, Nonlinear waves, Bose-Einstein Condensation (BEC).
PACS: 42.65.Tg, 42.65.Jx, 03.75.Lm

1 Introduction and overview

The propagation of linearly-polarized, paraxial laser beams in a homogeneous
Kerr medium can be modeled by the nonlinear Schrödinger equation (NLS)

i∂zφ(z,x) = −∆φ− |φ|2φ, φ(0,x) = φ0(x). (1.1)

Here φ is the slowly-varying envelope of the electric field, z measures the
distance in the direction of propagation, x = (x1, ..., xd) is the d-dimensional
transverse vector and ∆ = ∂2

x1
+ · · · + ∂2

xd
is the d−dimensional Laplacian

(diffraction) operator. The case d = 1 corresponds to propagation of beams in

Email addresses: fibich@tau.ac.il (G. Fibich), yonatans@post.tau.ac.il
(Y. Sivan), miw2103@columbia.edu (M.I. Weinstein).
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a planar geometry (slab waveguide), d = 2 to propagation in a bulk medium,
and d = 3 to propagation of pulses in a bulk medium with anomalous time
dispersion (in this case, time plays the role of a third “spatial” variable). The
cubic (Kerr) nonlinearity in (1.1) results from the dependence of the refractive
index on the electric field intensity

n = n0 + n2|φ|2, (1.2)

where n0 and n2 are constants that denote the linear and nonlinear refractive
indices of the medium, respectively.

The NLS
i∂tψ(t,x) = −∆ψ − |ψ|2ψ,

also models the dynamics of Bose-Einstein Condensates (BEC),
which are the subject of numerous recent theoretical and experi-
mental investigations. In that context, the NLS is also known as
the Gross-Pitaevskii (GP) equation. In this equation, typically x =
(x, y, z), i.e., d = 3, but the cases d = 1 and d = 2 are also of physical
interest.

In order to understand the relative effects of diffraction (−∆) and nonlinearity
(|ψ|2) in Eq. (1.1), it is useful to consider the more general NLS

i∂zφ = −∆φ− |φ|p−1φ, (1.3)

with a nonlinearity exponent p > 1. We delineate several cases for the NLS (1.3):

p < 1 +
4

d
, the subcritical case,

p = 1 +
4

d
, the critical case,

p > 1 +
4

d
, the supercritical case. (1.4)

In the subcritical case we have global existence in z, i.e. arbitrary H1 initial
conditions give rise to solutions which exist for all z. In contrast, in the critical
and supercritical cases NLS solutions can become singular after propagating
a finite distance Zc. The critical case is characterized by a sharp L2 norm
(power) threshold Pcr(d), such that for P ≥ Pcr singularity formation can
occur, while for P < Pcr solutions diffract to zero with advancing z, where
P =

∫ |φ0|2dx is the beam power 1 [54,55]. The critical case p = 1 + 4/d is
distinguished by the property that in this case the power, P, is invariant under
the natural dilation scaling of NLS (1.3), φ(·,x) 7→ φλ(·,x) ≡ λ2/(p−1)φ(·, λx),
i.e. P[φλ] = P[φ]. For more information on NLS theory, see [50,52,54].

1 We call the L2 norm the power, since in the nonlinear optics context it corresponds
to physical beam power.
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The NLS (1.3) is derived from Maxwell’s equations and the consti-
tuitive law (1.2) for a homogeneous Kerr nonlinear medium. Recent
advances in fabrication methods now make possible the fabrication
of transparent media with rapidly varying, high contrast refractive
properties (see e.g. [31,32]) with potential light-processing applica-
tions ranging from optical communication transmission media to
quantum information science. Thus there is considerable interest in
understanding the propagation of light in microstructure media.

Linear microstructures: Most studies have considered linear microstructures,
i.e., those for which n0 is modulated while n2 remains uniform. Nonlinear
bound states (stationary self-trapped beams) in the presence of a periodic
linear microstructure in the direction of propagation, i.e.,

n = n0(z) + n2|φ|2,

have been studied both analytically and experimentally; see, e.g., the review [7]
and references therein. Such a microstructure can support propagation of gap
solitons [17,36] and gives rise to phenomena such as slow light [15]. Trapping
of gap soliton pulses in periodic structures with localized defects has been
studied in [26,27]. This has potential applications to optical buffering, high-
density storage and optical gates. Propagation of light in media with a linear
microstructure where n0 is modulated in the transverse plane, i.e.,

n = n0(x) + n2|φ|2

was studied in [24,42,46]. Other studies considered transverse periodical lin-
ear microstructures, also known as photonic lattices. In particular, the limiting
regimes of the discrete (“tight binding”) and semi-discrete NLS can be used to
demonstrate the existence and stability of discrete solitons [3,4,8,14,19,58,59].
In the context of quantum mechanics [23] there is the related notion of quan-
tum breathers. Further studies used the continuous NLS model to study lattice
solitons and their relation to the detailed band-gap structure [22,41,51]. For
a recent review, see [9] and references therein.

In certain studies of BECs, condensates are studied in the back-
ground of periodic linear medium (n0(x) or equivalently V (x) in the
NLS / GP equation) or optical lattice, induced by the interference
of laser beams. As a result, dynamics of condensates loaded on op-
tical lattices are similar to the dynamics of discrete solitons [13,49]
or lattice solitons [18]. For a review of these BEC studies, see [?,?].

Nonlinear microstructures: Recent success in the fabrication of media with
a rapidly varying nonlinear refractive index [31] have motivated the study of
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NLS with a spatially varying nonlinear coefficient, i.e., a nonlinear microstruc-
ture. This corresponds to media where n2 is modulated and n0 is constant. In
the BEC context, the analogous situation is one where the scattering
length (controlled by the Feshbach resonance) varies in space. The
possibility of controlling the scattering length [20,53] makes it pos-
sible to induce a spatially and temporally dependent nonlinearity.
The case of a periodic nonlinearity in the direction of propagation, i.e.,

n = n0 + n2(z)|φ|2,

was analyzed in [1,12,43,47] in the context of a nonlinear analog of dispersion
management, sometimes called nonlinearity management and in [1,39] in
the context of BEC.

The case considered in this paper, of modulation of n2 in the transverse di-
rection, i.e.,

n = n0 + n2(x)|φ|2, (1.5)

has received little attention thus far. Merle [37,38] studied the properties of
blowup solutions of

i∂zφ = −∆φ− g(x)|φ|p−1φ, (1.6)

in the critical case p = 1 + 4/d. Fibich and Wang found a condition for the
stability of radially-symmetric, narrow bound states of Eq. (1.6) in the critical
case [21]. Studies of Eq. (1.6) in the context of BEC were done mainly
for the case d = 1 and p = 3 (subcritical case) using the moment
method and standard soliton perturbation techniques [?,1,48,53].
In [?], results of soliton motion and radiation were obtained. In [?],
specific conditions for stability were derived for the subcritical case
when d ≥ 3. Finally, Hajaiej and Stuart [30] proved the stability of
the constrained energy minimizers (ground states) of Eq. (1.6) in
the d-dimensional subcritical case.

In this paper we consider Eq. (1.6) in one transverse dimension x, which
corresponds to propagation in a planar geometry (d = 1). Hence, p < 5
corresponds to subcritical self-focusing, and p = 5 to critical self-focusing.
Since both cases, (d, p) = (1, 5) and (d, p) = (2, 3) are critical, the case p = 5
with one transverse dimension is mathematically analogous to the physical
case of Kerr (cubic) nonlinearity p = 3 in two transverse dimensions (i.e.,
propagation in a bulk Kerr medium) [?].

We focus on the case of a periodic nonlinear microstructure in the trans-
verse direction, corresponding to the design of many manufactured slab mi-
crostructure waveguides. In this case, the propagation is governed by the one-
dimensional NLS

i∂zφ = −∂2
xφ − (1 +m(Nx))|φ|p−1φ, (1.7)
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where the periodic function m(Nx) describes the nonlinear microstructure
variations in the transverse direction (see Fig. 1).

The paper is organized as follows. In Section 2, we derive Eq. (1.7) from the
Helmholtz equation with a nonlinear microstructure refractive index. In this
derivation it is useful to introduce the parameter N , which measures the ratio
of the input beam width rbeam to the microstructure period rms,

N =
rbeam

rms
. (1.8)

Thus, N ≪ 1 corresponds to narrow beams (beams which are narrower than
the microstructure period) and N ≫ 1 corresponds to wide beams (beams
which are wider than the microstructure period). We find that the stability
properties of microstructure bound states are strongly dependent on N .

Fig. 1. Graphical illustration of a medium with a microstructure in the transverse
plane.

Bound states φ = eiνzu(N)(x; ν) of Eq. (1.7) satisfy the equation

−∂2
xu

(N) − (1 +m(Nx))
(

u(N)
)p

+ νu(N) = 0. (1.9)

In Section 3.1, we solve this equation in the case of wide (N ≫ 1) bound
states using a multiple scale expansion (Theorem 3). The expansion shows
that, to leading order in 1/N , u(N) is a nonlinear bound state of a homoge-
neous medium with an average Kerr nonlinearity coefficient 〈n2〉. Here, 〈n2〉 is
equal to the arithmetic average of n2(x) over one microstructure period. Cor-
rections due to microstructure in the nonlinear bound state profile arise only
at O(N−2). Therefore, even when the microstructure variations are O(1), the
microstructure has a small effect on the bound state profile. We also prove that
nonlinear microstructure always reduces the L2 norm (power) of wide bound
states (Theorem 7). Since our multiple scales expansion remains valid
for high-contrast microstructure and even for maxx |m(Nx)| > 1, our
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analysis covers situations where the nonlinearity coefficient changes
sign.

We note that standard homogenization theory [11] can also be used
in order to calculate the leading order solution of Eq. (1.9). However,
for N ≫ 1, computation of the O(N−2) correction due to microstruc-
ture is essential in the case of critical nonlinearities (p = 5) since
for N = ∞ the solitary wave is only marginally unstable (algebraic
growth of the linearized evolution). Our study of the first non-trivial
corrections in 1/N shows that the highly degenerate (due to critical-
ity) zero mode of the linearized operator perturbs to an exponential
instability, a result which cannot be obtained by leading order ho-
mogenization. Two other problems where homogenization gives an
an incomplete picture are [25,35].

In Section 3.2, we use perturbation analysis to obtain an expansion in powers
of N for narrow bound states (N ≪ 1). As in the case of wide beams, the
leading order term in the expansion is a nonlinear bound state of the homo-
geneous NLS. Here, the uniform Kerr coefficient is determined by the local
properties of the microstructure. As in the case of wide beams, even when the
microstructure variations are not small, the microstructure has a small effect
on the bound state profile. We also show that the microstructure leads to an
O(N2) change in the bound state power for p 6= 5, but only an O(N4) change
in the critical case p = 5.

With asymptotic expansions of nonlinear bound states in hand, in Section 4
we turn to the question of the dynamical stability of the waveguide solutions
φwg(x, z) = u(N)(x; ν)eiνz . General conditions for stability and instability for
equations of nonlinear Schrödinger equations were given in [29,56,57]. These
conditions, which ensure that the bound state, which is a critical point of an
appropriate energy functional, is in fact a local minimizer, are as follows (see
Theorem 10):

(S1) The linearized operator

L
(N)
+ ≡ −∂2

x + ν + p ( 1 +m(Nx))
(

u(N)(x)
)p

has no more than one negative eigenvalue (spectral condition).
(S2) ∂ν ‖u(N)(x; ν)‖2

2 > 0 (slope condition).

We apply these two conditions to study the stability and instability of wide
(N ≫ 1), O(1) and narrow (N ≪ 1) beams for subcritical (p < 5) and critical
(p = 5) cases. In the subcritical case, beams centered at a local maximum
of the microstructure are stable while beams centered at a local minimum of
the microstructure are stable relative to symmetric perturbations (symmetric
problem) but unstable under general, symmetry-breaking perturbations (gen-
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Symmetric problem General problem

local maximum local minimum local maximum local minimum

N ≫ 1 stable stable stable probably a unstable

N = O(1) stable stable stable unstable

N ≪ 1 stable stable stable unstable

Table 1
Stability of beams with various widths for the subcritical case p = 3. Since the
power slope is always positive, stability is determined by the number of negative
eigenvalues.
a See discussion in Section 4.6.1.

Symmetric problem General problem

local maximum local minimum local maximum local minimum

N ≫ 1 unstable∗ unstable∗ unstable∗ unstable∗

N = O(1) unstable∗ stable unstable∗ unstable†

N ≪ 1 determined by Eq. (4.14) determined by Eq. (4.14) unstable†

Table 2
Stability of beams with various widths for the critical case p = 5. Source for insta-
bility is marked by ∗ for a negative slope and by † for a second negative eigenvalue.

eral problem), see Table 1. In the critical case, only narrow beams centered
at a local maximum of a microstructure that satisfies condition (4.14) can be
stable, while wide and O(1) beams centered at a local maximum are unstable
due to a negative slope. Beams centered at a local minimum are unstable due
to a second negative eigenvalue (violation of (S1)); see Table 2.

An interesting case is that of O(1) beams centered at a local mini-
mum. Although the slope condition (S2) holds both for the subcrit-
ical and critical cases, the beam is still seen to be unstable. Indeed,
the linearized operator L

(N)
+ has two negative eigenvalues, the larger

of which corresponds to a asymmetric eigenstate. Instability then
follows from Theorem 10. Insight into the nature of this instabil-
ity can be obtained by an Ehrenfest-type calculation: we show in
Section 4.7 that the acceleration of the center of mass of the beam
is always in the direction of the nearest local maximum of the mi-
crostructure. In other words, the instability of beams centered at a
local minimum of the microstructure is due to the tendency of the
beam to move toward regions of higher nonlinear index of refraction.
This drift instability is related to an excitation of the asymmetric
second mode of L

(N)
+ . Due to the reflection symmetry of the equa-

tion about local minima, stability can be restored by constraining
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to initial data which are symmetric about the local minimum.

In Section 4.5, we show that in the case of O(1) beams the definition
of a beam “centered” at a microstructure maximum or minimum
is more subtle. This is due to the fact that, unlike narrow beams,
an O(1) beam interacts with a more extended spatial “landscape”.
Therefore, in order to determine the stability properties of an O(1)
beam, one needs to average out microstructure changes which are
more rapid than the O(1) beam scale. We observe that a coarse-
grained description, in terms of a locally averaged but not globally
averaged description, may be most appropriate for defining whether
the beam is centered at a microstructure maximum or minimum.

In Section 5 we illustrate the stability and instability results of Section 4
through numerical simulations. In the subcritical case p = 3 (Section 5.1),
bound states centered at a local maximum of the microstructure are indeed
stable, as well as beams centered at a local minimum of the microstructure
that are perturbed by a symmetric perturbation. However, asymmetric per-
turbations (e.g., a lateral shift of the beam center) causes beams centered at
a local minimum to drift toward the nearest local maximum and to oscillate
about it. As noted earlier, this drift instability is related to the existence of
a second (asymmetric) negative eigenvalue. In the critical case p = 5 (Sec-
tion 5.2), our simulations show that whenever the instability originates from
a failure to satisfy the slope condition (e.g., wide and O(1) beams centered
at a microstructure maximum), the beam undergoes either blowup or total
diffraction, depending on its initial power. This blowup/diffraction instability
is similar to the case of homogeneous NLS. As in the subcritical case, when-
ever the instability originates from a second negative eigenvalue (i.e., beams
centered at a local minimum), the solution exhibits a drift instability. How-
ever, unlike the subcritical case, these beams blowup as they drift rather than
oscillate about the microstructure maximum. Depending on the input beam
power, the blowup point can be before or after the nearest local maximum.
Finally, we confirm that narrow beams centered at a local maximum of a
microstructure that satisfies condition (4.14) are stable. We expect, however,
that this stability is more of mathematical than physical interest since the
magnitude of the positive slope is only O(N4) small. Indeed, we find that
the beam is stable under perturbations of size O(10−4) but becomes unstable
under perturbations of order (O(10−2)). Section 6 contains a summary and
concluding discussion.
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2 Theory of stationary beams in nonlinear microstructures

2.1 Derivation of NLS

Consider the scalar nonlinear Helmholtz equation

∆E(z, x) +
ω2

0

c2
n2(x, |E|2)E = 0, (2.1)

as a model for the propagation of linearly-polarized, monochromatic beams in
a planar waveguide with a Kerr-type nonlinearity. Here E denotes the electric
field, z the direction of propagation, x the transverse coordinate, ∆ = ∂2

z +∂2
x,

ω0 the carrier frequency, c the speed of light in vacuum and n the refractive
index. In this paper we analyze the case where the linear index of refraction n0

is uniform, but the nonlinear index of refraction n2 is periodically modulated
in the transverse direction x, i.e.,

n(x) = n0 + n2(x)|E|2, n2(x) = n̄2 + δn2

( x

rms

)

, (2.2)

where n0 and n̄2 are constants and δn2(
x

rms
) is periodic with period rms. We

introduce the standard non-dimensional variables

z̃ ≡ z

2k0r
2
beam

, x̃ ≡ x

rbeam

, E = eik0z(2n0n̄2k
2
0r

2
beam)−

1

2φ, (2.3)

where k0 = ω0n0/c denotes the wavenumber in the medium and rbeam the
width of the incident beam. Substituting the rescaling (2.3) in Eq. (2.1), as-
suming the Kerr nonlinearity is small (i.e., n2|φ|2 ≪ n0) and using the paraxial
approximation (φzz ≪ k0φz) we obtain for φ(z̃, x̃):

i∂z̃φ = −∂2
x̃φ− (1 +m(Nx̃))|φ|2φ,

where m(Nx̃) = δn2(Nx̃)/n̄2 and

N ≡ rbeam/rms.

Therefore, N ≫ 1 describes the situation of a wide input beam (rbeam ≫ rms)
and N ≪ 1 describes a narrow beam (rms ≫ rbeam); but see also Remark 2
below.

In what follows, we consider a more general equation with a general power
nonlinearity p > 1, rather than only the cubic case (p = 3). Thus, suppressing
the tildes, we get

i∂zφ = −∂2
xφ − (1 +m(Nx))|φ|p−1φ, φ(0, x) = φ0(x). (2.4)
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When the nonlinear index of refraction is also uniform, i.e., δn2(Nx) ≡ 0,
then m ≡ 0 and Eq. (2.4) reduces to the homogeneous nonlinear Schrödinger
equation

i∂zφ = −∂2
xφ − |φ|p−1φ. (2.5)

The natural scaling of the spatial variable of the microstructure variations is
X ≡ Nx. Indeed, under this definition, m = m(X) is periodic with period 1.

Remark 1 Without loss of generality, we can assume that the X− average
of m is zero, i.e.,

〈m〉 ≡
∫ 1

0
m(X) dX = 0. (2.6)

Indeed, if the average of m is nonzero, we can define m ≡ m̃ + 〈m〉 and

φ̃ = φ /(1 + 〈m〉) 1

p−1 so that φ̃ satisfies Eq. (2.4) with a mean-zero periodic
nonlinear microstructure.

We also assume that m is an even function. Thus, m satisfies the following
three requirements:

〈m〉 = 0, m(X) = m(−X), m(X) = m(X + 1). (2.7)

2.2 Bound states

We seek nonlinear bound states of Eq. (2.4) of the form

φ(z, x) = eiνzu(N)(x; ν),

where u(N) is a real function. The equation for u(N) becomes

d2

dx2
u(N) + (1 +m(Nx))(u(N))p − νu(N) = 0, u(N)(±∞) = 0. (2.8)

Recall that in a homogeneous medium (m ≡ 0), Eq. (2.8) reduces to

d2

dx2
U + Up − ν U = 0, (2.9)

whose solution is given by

U(x, ν) =
(p+ 1

2
ν
) 1

p−1 sech
2

p−1

(p− 1

2

√
νx
)

. (2.10)

Since the nonlinear microstructure is symmetric with respect to x = 0, in what
follows we will look for bound states that are also symmetric with respect to
x = 0. Therefore, we can replace Eq. (2.8) with the following boundary value
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problem on the positive real line:

d2

dx2
u(N) + (1 +m(Nx))(u(N))p − ν u(N) = 0, dxu

(N)(0) = 0, u(N)(∞) = 0,

(2.11)
for 0 < x <∞. The solution on all R is obtained by reflection about x = 0.

Remark 2 Under the transformation u(Ñ) = ν
1

p−1 u(N)(
√
νx), Eq. (2.11) be-

comes

− d2

dx2
u(Ñ) − (1 +m(Ñx))(u(Ñ))p + u(Ñ) = 0, Ñ ≡ N√

ν
. (2.12)

Therefore, the parameter that determines whether the bound state of (2.11) is
wide or narrow is Ñ rather than N . However, since the width of the bound
state is ≈ ν−

1

2 (see Eq. 2.10) and since the rescaling (2.3) implies that the
nondimensional width is O(1), if follows that ν = O(1) in Eq. (2.11).

3 Calculation of bound states

3.1 Calculation of wide bound states (N ≫ 1) using multiple scales analysis

We now adopt a multiple scale approach to calculate an asymptotic approx-
imation of wide bound states (N ≫ 1), i.e., bound states whose width is at
least a few microstructure periods long (rbeam ≫ rms):

Theorem 3 Let m(X) satisfy Eq. (2.7) and let N ≫ 1. Then, the solution
of Eq. (2.11) is given by

u(N)(x; ν) =U(x, ν) − 1

N2

(

Up [∂−2
X m(X)] − pτmL

−1
+ [U2p−1]

)

+O(N−4), (3.1)

where U is given by Eq. (2.10), X = Nx, ∂−2
X is given by (3.15) with k = 2,

τm = −〈m ∂−2
X m〉 = 〈[∂−1

X m]2〉 > 0, (3.2)

the average 〈·〉 is given by Eq. (2.6), and

L+ = −d2
x + ν − pUp−1(x, ν). (3.3)

Since limN→∞ u(N) = U , Theorem 3 shows that as N → ∞ the bound state
only ”feels” the average nonlinear refractive index n̄2 = 1

rms

∫ x+rms

x n2(x) dx;
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see (2.2). At large but finite values of N , wide bound states differ from the
bulk bound state only by an O(N−2) term. Note that this holds even when
m undergoes O(1) changes, i.e., when δn2 is comparable in magnitude to n̄2

(see, e.g., Fig. 7).

Proof: We view the solution u(N) as a function of a slow scale x and a fast
scale X = Nx, i.e., u(N) = u(N)(x,X). In terms of the independent variables
x and X, d/dx is replaced by ∂x + N∂X so that Eq. (2.11) can be rewritten
as

−
(

∂2
x + 2N∂x∂X +N2∂2

X

)

u(N)(x,X) − (1 +m(X))
(

u(N)
)p

+ νu(N) = 0.

(3.4)

We expand the solution of (3.4) in a power series in N−1, i.e.,

u(N)(x,X) = u0(x,X) +
1

N
u1(x,X) +

1

N2
u2(x,X) + · · · . (3.5)

Substituting expansion (3.5) into Eq. (3.4) and equating powers of N yields
the following hierarchy of equations:

O(N2) : −∂2
Xu0 = 0, (3.6)

O(N) : −∂2
Xu1 = 2∂x∂Xu0, (3.7)

O(N0) : −∂2
Xu2 = 2∂x∂Xu1 + ∂2

xu0 + [1 +m(X)]up
0 − νu0,

(3.8)

O(N−1) : −∂2
Xu3 = 2∂x∂Xu2 + ∂2

xu1 + [1 +m(X)]pup−1
0 u1 − νu1,

(3.9)

O(N−2) : −∂2
Xu4 = 2∂x∂Xu3 + ∂2

xu2 + [1 +m(X)]pup−1
0 u2

+ [1 +m(X)]

(

p

2

)

up−2
0 u2

1 − νu2. (3.10)

Similarly, substituting Eq. (3.5) into the boundary condition d
dx
u(N)(0) = 0,

see Eq. (2.11), and equating powers of N gives the following hierarchy of
boundary conditions:

O(N) : ∂Xu0(x = 0, X = 0) = 0, (3.11)

O(N−j) : ∂Xuj+1(0, 0) + ∂xuj(0, 0) = 0, j = 0, 1, .... (3.12)

In addition, the condition u(N)(∞) = 0 translates into
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uj(∞, X) = 0 j = 0, 1, .... (3.13)

Each equation in the hierarchy (3.6)-(3.10) is of the form

−∂2
Xuj(X; x) = Fj(x,X), (3.14)

where Fj(x,X) depends on {un}n<j. Since m(X) has period 1, we shall seek
to construct an expansion where each uj, and therefore each Fj(x,X) has a
period 1 in X. For this we use:

Lemma 4 Equation (3.14), in which the forcing function Fj(·, X) is a peri-
odic function of X with period 1, has a solution which is periodic in X with
period 1 if and only if 〈Fj〉 = 0. In this case, the solution of Eq. (3.14) can
be explicitly constructed using the Fourier series of Fj(·, X).

Proof: Since Fj(·, X) is periodic it can be expanded in a Fourier series:

Fj(·, X) =
∑

n∈Z

fne
i2πnX .

If 〈Fj〉 = 0, then we can define ∂−k
X , a mapping from the space of mean zero

periodic functions to itself by:

∂−k
X Fj =

∑

n 6=0

(i2πn)−k fne
i2πnX . (3.15)

Note that uj(X) = −∂−2
X Fj(X) satisfies Eq. (3.14). Conversely, if uj(X) is a

periodic solution of Eq. (3.14), then integration of Eq. (3.14) between 0 and 1
implies 〈Fj〉 = 0. 2

Remark 5 The general solution of Eq. (3.14) which satisfies the periodicity
requirement uj(·, X) = uj(·, X + 1) is

uj(X, x) = −∂−2
X Fj(X, x) + uj,h(x),

where uj,h(x) is an arbitrary function of x and ∂−2
X Fj is defined by (3.15).

We now turn to solve Eqs. (3.6)-(3.10). By Remark 5, the solution of Eq. (3.6)
is u0 = u0,h(x) which indeed satisfies condition (3.11). Consequently, the so-
lution of Eq. (3.7) is

u1 = u1,h(x). (3.16)

By Lemma 4, solvability of Eq. (3.8) requires that the average of its right-
hand-side would be equal to zero. Since, u0 = u0,h, this yields

∂2
xu0,h + up

0,h − νu0,h = 0. (3.17)
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Hence, by conditions (3.12) and (3.13), u0 = u0,h = U(x, ν), see Eq. (2.10).
Since, in addition, u1 = u1,h(x), from Eq. (3.8) it follows that u2(x,X) satisfies
the simplified equation

−∂2
Xu2 = m(X)Up(x, ν).

By Remark 5,
u2 = −Up(x, ν) [∂−2

X m(X)] + u2,h(x), (3.18)

where the homogeneous solution, u2,h(x), is to be determined at a later stage
and ∂−2

X m(X) is defined by (3.15). Consequently, condition (3.12) for j = 1
becomes

∂Xu2(0, 0) + ∂xu1(0, 0) = −Up(0, ν) [∂−1
X m(X)]

∣
∣
∣
x=0

+ ∂xu1,h(0)

= ∂xu1,h(0) = 0. (3.19)

Solvability of Eq. (3.9) requires that the X− average of its right-hand-side
would be equal to zero. Using Eq. (3.16) gives

L+u1,h = 0, (3.20)

where L+ is given by Eq. (3.3). Since L+ has the null space

Ker(L+) = span{∂xU(x, ν)}, (3.21)

and since ∂xU(x, ν) is an odd function of x, the solution of Eq. (3.20) subject to
the boundary conditions (3.19) and (3.13) is u1,h ≡ 0. Therefore, by Eq. (3.16),
u1 ≡ 0. Therefore, by Remark 5 and Eq. (3.18), the solution of Eq. (3.9) is
given by

u3(x,X) = 2 (∂−3
X m(X)) ∂x(Up) + u3,h(x), (3.22)

and condition (3.12) for j = 2 becomes

∂xu2(0, 0) = 0. (3.23)

Solvability of Eq. (3.10) requires that the X− average of the terms on its right-
hand-side would be equal to zero. Calculating the averages term by term gives

〈2∂x∂Xu3〉 = 0, (3.24)

for the first term. Using Eq. (3.18), gives

∂2
xu2 − νu2 =−[∂−2

X m(X)]
(

∂2
x − ν

)

Up(x, ν) +
(

∂2
x − ν

)

u2,h(x),

whose average is given by
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〈∂2
xu2 − νu2〉=

(

∂2
x − ν

)

u2,h(x). (3.25)

In the same manner, by Eq. (3.18)

〈

(1 +m(X)) pUp−1u2

〉

=
〈

(1 +m(X))pUp−1
(

− [∂−2
X m(X)]Up + u2,h(x)

)〉

= pUp−1u2,h(x) + pτmU2p−1, (3.26)

where τm is given by Eq. (3.2). Substituting the averages (3.24), (3.25) and (3.26)
in the X-average of the right-hand-side of Eq. (3.10) gives the following equa-
tion for u2,h(x)

∂2
xu2,h − νu2,h + pUp−1(x, ν)u2,h + pτmU2p−1 = 0.

Therefore, by condition (3.23),

u2,h(x) = p τmL
−1
+ [U2p−1] ,

where L+ is defined by Eq. (3.3). Finally, by Eq. (3.18),

u2(x,X) = −[∂−2
X m(X)] Up(x, ν) + pτm L−1

+ [U2p−1]. (3.27)

This concludes the proof of Theorem 3. 2.

We can use the results of Theorem 3 to calculate the effect of a periodic nonlin-
ear microstructure on the power (L2 norm) of the bound states ‖u(N)(ν)‖2

2 =
∫ |u(N)(x, ν)|2dx:

Corollary 6 Let u(N) be the solution of Eq. (2.11), let m(X) satisfy Eq. (2.7)
and let N ≫ 1. Then,

‖u(N)(ν)‖2
2 = ‖U(ν)‖2

2 − Cwide

N2
+ O(N−4), (3.28)

where the constant Cwide is given by Cwide = τm∂ν

∫ U2p(x, ν) dx and τm is
given by Eq. (3.2).

Proof: See Appendix A.

Corollary 6 implies the following

Theorem 7 Let N ≫ 1. Then, a mean-zero nonlinear microstructure al-
ways decreases the L2 norm (power) of the bound states of Eq. (2.4), i.e.,
‖u(N)(ν)‖2

2 < ‖U(ν)‖2
2.
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Proof: Recall that U(x, ν) satisfies, see Eq.(2.10),

U(x, ν) = ν
1

p−1U(ν
1

2x, 1). (3.29)

Hence,

∫

U(x, ν)2k dx = ν
2k

p−1
− 1

2ρ∗(k), ρ∗(k) =
∫

U2k(x, 1) dx > 0, (3.30)

which for k = p reduces to ν
2p

p−1
− 1

2ρ∗(p). Therefore, for all p > 1 and ν > 0,

∂ν

∫

U(x, ν)2p dx=
(

2p

p− 1
− 1

2

)

ν
2p

p−1
− 3

2 ρ∗(p)

=
(

3p+ 1

2(p− 1)

)

ν
2p

p−1
− 3

2 ρ∗(p) > 0. (3.31)

Hence, the O(N−2) term in Eq. (3.28) is strictly negative. 2.

3.1.1 Simulations

In this section, we solve the boundary value problem (2.11) numerically using
the Fourier transform iterative method (see Appendix B). These simulations
confirm the results of the multiple scale analysis for N ≫ 1. In fact, we
observe that even for N ≈ 2 there is a good agreement between the results of
the multiple scale expansion and the computed bound states.

In the simulations we use the nonlinear microstructure

m = α cos(2πNx) = α cos(2πX), (3.32)

which satisfies conditions (2.7). In this case, α > 0 (α < 0) describes a situa-
tion where the beam is centered at a local maximum (minimum) of the nonlin-
ear microstructure and |α| expresses the relative magnitude of microstructure
variations.

The solutions of Eq. (2.11) for ν = 1 and α = ±0.5 are shown in Fig. 2 for
various values of N in the subcritical case p = 3. Note that even for N = 2
and O(1) changes in the nonlinear microstructure, u(N) is nearly indistinguish-
able from the homogeneous medium soliton U . Indeed, plotting the difference
u(N)−U shows that the microstructure adds a small modulation whose magni-
tude scales as N−2, and whose local period is N , as predicted by Theorem 3.
Moreover, u2/N

2, the leading order correction to U is in excellent
agreement with the numerical values of the difference of u(N) − U .
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Fig. 2. Solutions of Eq. (2.11) with p = 3, ν = 1 and m = 0.5 cos(2πNx) for N = 2
(dotted line) and N = 4 (dashed line). Also shown is U =

√
2sech(x) (solid line). (a)

u(N) and U as a function of x: all three lines are indistinguishable. (b) Magnification
of region near x = 0. (c) u(N) − U as a function of x. (d) Same as (c). Also shown
is u2/N

2 as given by Eq. (3.27) (solid line).

Fig. 3 shows the difference between ‖U‖2
2 = 4 and ‖u(N)‖2

2 for ν = 1 and
2 ≤ N ≤ 15. The microstructure causes the L2 norm of u(N) to decrease,
as predicted by Theorem 7. In order to quantitatively assess the accuracy
of the multiple-scales/homogenization expansion, we recall that according to
Corollary 6,

||U||22 − ||u(N)||22 ≈ CwideN
−2, (3.33)

where for p = 3,

Cwide ≡
α2

(2π)2

∫ 1

0
(sin 2πX)2dX

︸ ︷︷ ︸

τm

∂ν

∫ ∞

−∞
U6(x, ν = 1)dx =

2

3π2
.

Therefore, log(||U||22 − ||u(N)||22) ≈ log(Cwide) − β log(N) with β = 2 and
log(Cwide) ≈ −2.695. A least square fit of the numerical data gives β = 2.0035
and log(Cwide) = −2.684, i.e., less than 1% difference. Since there is excellent
agreement between Corollary 6 and the numerical data up to N = 2, we
conclude that the results of the multiple scale expansion remain valid for
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values of N that are only moderately above one.

Remark 8 We recall that N was defined as the ratio of the beam
radius rbeam to the microstructure period rms. Hence, N = 2 corre-
sponds to a beam that extends over 2N = 4 microstructure periods.
Therefore, the agreement of the multiple scales expansion with the
numerics for values of N as small as 2 is to be expected.

2 5 10 15
0

0.01

0.02

N

||U
|| 22 −

||u
(N

) || 22

(a)

2   5   10  15

10
−3

10
−2

(b)

N

Fig. 3. A: Difference between the power of U and u(N) for p = 3 and α = ±0.5
(stars) and least square fit of log(||U||22 − ||u(N)||22) ≈ −2.0035 log N − 2.68 (solid
line). B: same data on a log-log scale.

In Fig. 4 we show solution of Eq. (2.11) for α < 0, i.e., bound states
centered at a local minimum of the microstructure. For α = −0.3 the
bound state has a global maximum at x = 0. However, for smaller
values of α (e.g. α = −0.8), bound states have a local minimum at
x = 0 and two adjacent global maxima. We note that Eq. (2.11) has
solutions also for α < −1, i.e., for the case of a medium which consists
of both focusing and defocusing regions. Indeed, the multiple scales
expansion shows that the effective nonlinearity is only determined
only by the average nonlinear coefficient (which is independent of
α). Hence, the microstructure can support bound states also for
α < −1.
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1

x
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Fig. 4. Solutions of Eq. (2.11) with p = 3, ν = 1 and m = 0.5 cos(2πNx) for N = 2.
(a) α = −0.3 (solid line) and α = −0.8 (dashed line). (b) α = −3 (solid line) and
α = −8 (dashed line).
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3.2 Calculation of narrow bound states (N ≪ 1) using perturbation analysis

We now consider the case of narrow beams, i.e., N ≪ 1 or rbeam ≪ rms. In this
case, the beam is influenced mainly by the local changes of the microstructure
near the beam center, and not by the global periodic structure.

As before, we assume that m(X) satisfies conditions (2.7). Using a pertur-
bation analysis similar to the one in [21], we show in Appendix C that the
solution of Eq. (2.11) is given by

u(N)(x; ν) = [1 +m(0)]−
1

p−1

[

U(x, ν) +N2m
′′(0)

2
L−1

+ (x2Up)
]

+ O(N4), (3.34)

where U is given by Eq. (2.10) and L+ is by Eq. (3.3). By Eq. (C.17), the
power of u(N) is given by

‖u(N)(ν)‖2
2 = [1 +m(0)]−

2

p−1

(

‖U(ν)‖2
2 +

N2

ν

(p− 5)m′′(0)
∫

x2Up+1

2[1 +m(0)](p2 − 1)

)

+ O(N4). (3.35)

Thus, for p 6= 5, the microstructure induces an O(N2) change in the bound
state power, whose sign is given by sgn[(p−5)m′′(0)]. In the critical case p = 5,
the contribution of the O(N2) term vanishes and by Eq. (C.18),

‖u(N)(ν)‖2
2 =

‖U(ν)‖2
2

[1 +m(0)]
1

2

(3.36)

−N
4

ν

∫

x4U6(x, ν)

72[1 +m(0)]
5

2

[

[m′′(0)]2G5 −m(4)(0)[1 +m(0)]
]

+ O(N6),

where

G5 = −18

∫

x2U5L−1
+ [x2U5]

∫

x4U6
∼= −0.3531, (3.37)

is a ν-independent constant. Thus, in the critical case, the leading order effect
of the nonlinear microstructure on the bound state profile is O(N2) but its
effect on the power is only O(N4), as was first pointed out in [21]. In addition,
unlike the subcritical (p < 5) and supercritical (p > 5) cases, the sign of the
O(N4) correction does not depend only on the sign of m′′(0), i.e., on whether
m has a local maximum or minimum at x = 0, but also on the magnitude of
m′′(0) and on the values of m(0) and m(4)(0).
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3.2.1 Simulations

As in the wide beam case, we solve the boundary value problem (2.11) nu-
merically using the Fourier transform iterative method (see Appendix B) and
confirm the validity of the perturbation analysis for N ≪ 1. The solutions
of Eq. (2.11) with m(X) = α cos(2πX) and p = 5 are shown in Fig. 5 for
N = 0.1, 0.2, and 0.4. As predicted by Eq. (3.34), the difference between u(N)

and U scales as N2. From Eq. (3.30) and Eq. (3.36) it follows that the power
dependence on N is given by
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Fig. 5. Solutions of Eq. (2.11) with p = 5, ν = 1 and m = 0.5 cos(2πNx) for N = 0.1
(dotted line), N = 0.2, (dash-dotted line) and N = 0.4 (dashed line). Also shown is

U = 3
1

4 sech
1

2 (2x) (solid line). (a) u(N) and U as a function of x: all three lines are
indistinguishable. (b) Magnification of region near x = 0. (c) u(N) −U as a function
of x.

||u(N)||22 −
||U||22

[1 +m(0)]
1

2

≈ Cnarrow
N4

ν2
, (3.38)

where

Cnarrow ≡
∫∞
−∞ x4 U6(x, 1)

72 [1 +m(0)]
5

2

([

1 +m(0)
]

m(4)(0) −G5[m
′′(0)]2

)

, (3.39)

and where U(x, 1) is given by Eq. (2.10). Since m(X) = α cos(2πX), we can
rewrite Cnarrow as

Cnarrow = C̃narrow
α

[1 + α]
5

2

(α+ αc), (3.40)

where C̃narrow = (2π)4 (1 − G5)
∫∞
−∞ x4 U6(x, 1)/72 ∼= 3.39 and αc = 1

1−G5

∼=
0.7390. Therefore, Cnarrow is positive if and only if 0 > α > −αc. Fig. 6
demonstrates the change in the power of the bound states for α = 0.5 > 0,
0 > α = −0.5 > −αc and α = −0.9 < −αc. As predicted by Eqs. (3.38)-
(3.40), the power of the bound state decreases with N in the second case and
increases in the first and third cases. Additionally, from Eq. (3.38) it follows

that log
(

||u(N)||22−||U(x, 1)||22/(1+α)
)

≈ log(Cnarrow)−β log(N) with β = 4
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and Cnarrow is given by Eq. (3.40). A least square fit of the data of Fig. 6
yielded these values of β and Cnarrow with 2% − 4% accuracy.
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Fig. 6. Power difference ‖u(N)‖2
2 − ‖U(x, nu)‖2

2/(1 + α)1/2 for p = 5, ν = 1 and
α = 0.5, α = −0.5 and α = −0.9. Solid line is the least square fit of CnarrowNβ.

4 Stability of bound states - analysis

4.1 Conditions for stability

We now analyze the stability of the waveguide solutions φwg = eiνzu(N)(x; ν),
where u(N) is the solution of Eq. (2.11).

In the case of the NLS with a nonlinear microstructure (2.4), the appropriate
notion of stability, orbital stability, is as follows: 2

Definition 9 Let u(N)(x; ν) be a solution of Eq. (2.11). Then, φwg(x, z) =
u(N)(x; ν)eiνz is an orbitally stable solution of Eq. (2.4) if ∀ǫ, ∃δ > 0 such that
for any φ(x, 0) ∈ H1(R1) which satisfies infθ ‖φ(·, 0) − u(N)eiθ‖H1 < δ, the
corresponding solution φ(x, z) of Eq. (2.4) satisfies

sup
z≥0

inf
θ
‖φ(·, z) − φwge

iθ‖H1 < ǫ.

The following result on nonlinear stability and instability was proved in [29,56,57]:

2 Under the definition of orbital stability, the solution remains close to the family
of all the transformations of the solitary wave which leaves the equation invariant.
In the presence of nonlinear microstructure, the only such transformation is a phase
shift.
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Theorem 10 Let u(N) be a positive solution of Eq. (2.11) and let n−(L
(N)
+ )

be the number of negative eigenvalues of the operator

L
(N)
+ = −∂2

x + ν − p(1 +m(Nx))
(

u(N)(x)
)p−1

. (4.1)

Then, φwg = u(N)(x; ν)eiνz is a nonlinearly orbitally stable solution of Eq. (2.4)
if and only if

(S1) n−(L
(N)
+ ) ≤ 1 (spectral condition).

(S2) ∂ν‖u(N)(x; ν)‖2
2 > 0 (slope condition).

Furthermore, the failure of either (S1) or (S2) implies the existence of an
exponentially growing solution of the linearized NLS dynamics [28,33].

Remark 11 The spectral condition in [29,56,57] is

n−(L
(N)
+ ) − n−(L

(N)
− ) ≤ 1, (4.2)

where n−(L
(N)
− ) is the number of negative eigenvalues of the opera-

tor

L
(N)
− = −∂2

x + ν − (1 +m(Nx))
(

u(N)(x)
)p−1

. (4.3)

Since L
(N)
− u(N) = 0, and since the smallest eigenvalue of L

(N)
− is

attained by a positive function, we conclude that n−(L
(N)
− ) = 0 if

and only if u(N) > 0. In that case, the spectral condition reduces to
(S1).

Remark 12 In Section 2, we showed that u(N) = U + o(1) for N ≫ 1
and N ≪ 1. Since U > 0, we conclude that u(N) > 0 for N ≫ 1 and
N ≪ 1. In addition, in all our numerical simulations for N = O(1)
beams, we also observe that u(N) > 0. Therefore, it is reasonable to
assume in Theorem 10 that u(N) is positive. Clearly, if Eq. (2.11)
admits solutions which are not positive (i.e., solutions for which
U is not the leading order term in the solution) the correct spectral
condition is (4.2) rather than (S1).

We now remark on the idea behind the proof. Conditions (S1) and (S2) stem
from a variational characterization of bound states. The variational approach
is based on the observation that bound states of microstructure NLS are crit-
ical points of the energy functional

Eν [f ] ≡ H[f ] + νP[f ]. (4.4)

Here,
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H=
∫
(

|∂xf(x)|2 − 2

p+ 1
(1 +m(Nx))|f(x)|p+1

)

dx

and

P =
∫

|f(x)|2 dx (4.5)

are conserved integrals of NLS 3 . Note that if U is a stationary point of H
subject to fixed P, then U is a critical point of Eν for some Lagrange multi-
plier ν, and moreover U satisfies equation (2.11). In [29,56,57] it is shown that
for a bound state to be nonlinearly orbitally stable it is essentially necessary
and sufficient for it to be a local minimizer of H subject to fixed P.

At the heart of Theorem 10 is a study of whether Q(U), the second variation
(Hessian) of the functional Eν about U , constrained to the subspace C, which is
defined in terms of orthogonality conditions related to the conserved integrals
of NLS, is positive. Q is defined as

Q(U) = 〈L(N)
+ f, f〉 + 〈L(N)

− g, g〉, U = f + ig, (4.6)

where L
(N)
+ and L

(N)
− are second order Schrödinger operators associated with

the real and imaginary parts of the operators.

In [56,57] it was shown that positivity of Q on C (and therefore orbital sta-
bility) holds if and only if (S1) and (S2) hold. In [28,33] general results were
derived for the number of exponentially growing (in z) modes of the linearized

dynamics for NLS in terms of the number of negative eigenvalues of L
(N)
+ and

L
(N)
− . In particular, the failure of either (S1) or (S2) implies the existence of

an exponentially growing solution of the linearized dynamics.

4.2 Stability in a homogeneous medium

In the case of a homogeneous medium (i.e., m(x) ≡ 0), u(N) reduces to U , see

Eq. (2.10), and the operator L
(N)
+ reduces to L+ as given in Eq. (3.3). The

associated eigenvalue problem of the linearized operators L+ is

L+f = λf, −∞ < x <∞, f(x = ±∞) = 0. (4.7)

The spectrum of L+ is composed of (see e.g., [56]),

3 The idea is motivated by the seminal article of T.B. Benjamin on the stability of
the KdV soliton [10].
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(1) A simple negative eigenvalue, denoted by λmin, with an even eigenfunction
fmin(x).

(2) A simple eigenvalue λ0 = 0, with the corresponding odd eigenfunction
f0(x) = ∂xU .

(3) A strictly positive continuous spectrum [ν,∞).

Thus, n−(L+) = 1, and stability is determined by the slope condition. By
Eq. (3.30),







∂ν‖U(ν)‖2
2 > 0, p < 5,

∂ν‖U(ν)‖2
2 = 0, p = 5,

∂ν‖U(ν)‖2
2 < 0, p > 5.

(4.8)

Thus, by Theorem 10, φwg = eiνzU is stable for p < 5 and unstable for p ≥ 5.

4.3 Spectral condition (S1)

We now use Theorem 10 to determine the stability of waveguide solutions
of Eq. (2.4). We first state two Propositions which are consequences of basic
ODE theory; see, for example, [16].

Proposition 13 The eigenvalues of the self-adjoint operator L
(N)
+ are real

and simple.

Proposition 14 The eigenvalues and eigenfunctions of L
(N)
+ vary analytically

with N .

We now prove the following result:

Proposition 15 The eigenfunctions of L
(N)
+ are either even or odd.

Proof: Let f (N) be the eigenfunction of the operator L
(N)
+ , i.e.,

L
(N)
+ f (N)(x) = λ(N)f (N)(x).

Then, since L
(N)
+ is even,

L
(N)
+ f(−x) = λ(N)f (N)(−x).

Hence,

L
(N)
+ [f (N)(x) ± f (N)(−x)] = λ(N)[f (N)(x) ± f (N)(−x)].

Thus, by Proposition 13 it follows that either [f (N)(x) + f (N)(−x)] ≡ 0 or
[f (N)(x) − f (N)(−x)] ≡ 0. Hence, f must be either odd or even. 2.
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Using these properties, we now study the spectrum of L
(N)
+ . We note that

the coefficients of L
(N)
+ converge to those of L

(0)
+ as N → 0, where L

(0)
+ is the

linearized operator that corresponds to

i∂zφ = −∂2
xφ − (1 +m(0))|φ|p−1φ.

Since this equation reduces to Eq. (2.5) through a simple scaling, the prop-

erties of the eigenfunctions and eigenvalues of L
(0)
+ aresimilar to those of L+.

In addition, by Propositions 13 and 14, it follows that the structure of the
spectrum of L

(N)
+ is similar to the spectrum of L

(0)
+ , i.e., two simple discrete

eigenvalues (denoted by λ
(N)
min and λ

(N)
0 , respectively) and a continuous spec-

trum [ν(N),∞). In the following Theorem we determine the signs of λ
(N)
min and

the continuous spectrum:

Proposition 16 Let L
(N)
+ be given by Eq. (4.1) and let m(Nx) satisfy Eq. (2.7).

Then, λ
(N)
min < 0 and ν(N) > 0.

Proof: Let f∗ = u(N) /‖u(N)‖2. Since u(N) is the solution of Eq. (2.11), the
Rayleigh quotient of f∗ is

〈L(N)
+ f∗, f∗〉=

1

‖u(N)‖2
2

〈
(

− ∂2
x − p(1 +m(Nx))u(N)p−1

+ ν
)

u(N), u(N)〉

=− p− 1

‖u(N)‖2
2

〈(1 +m(Nx))u(N)p, u(N)〉 < 0.

Hence, from the variational characterization of the principal eigenvalue of
L

(N)
+ [16,45],

λ
(N)
min ≡ inf

f∈H1

〈L(N)
+ f, f〉
〈f, f〉 < 0.

Concerning the continuous spectrum, note that L
(N)
+ is a Schrödinger operator

of the form

−∂2
x + ν + V (x), V (x) = −p(1 +m(Nx))

(

u(N)p−1
(x)
)

.

Since V (x) decays to zero rapidly at infinity, it follows by Weyl’s theorem on
the stability of the essential spectrum, which here equals the continuous spec-
trum, that the continuous spectrum of L

(N)
+ is equal to that of the “operator at

infinity” −∂2
x +ν [45]. The latter is given by the semi-infinite interval [ν,∞).2

We thus see that the discrete eigenvalue λ
(N)
0 to which the simple eigen-

value λ0 = 0 perturbs, determines whether n− = 1 or n− = 2. We recall
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that λ0 is related to the translation invariance of solutions of Eq. (2.10). In-
deed, since U(x + δ) is a solution of Eq. (2.10) for all δ, differentiation of
Eq. (2.10) with respect to δ implies L+Ux = 0, i.e. ∂xU is an eigenfunction
of L+ with eigenvalue λ0 = 0. However, in the presence of microstructure
(m(x) 6≡ 0), the bound state equation (2.11) is no longer translation invari-

ant. Thus, we expect L
(N)
+ not to have a zero eigenvalue.

Since f0 is odd, it follows from Proposition 14 and Proposition 15 that f
(N)
0 is

odd for all N . Similarly, since f
(N)
min is even, the eigenfunction that corresponds

to the negative eigenvalue, λ
(N)
min is even. Hence, it is useful to distinguish

between the

(1) Symmetric problem, i.e., when the solution of Eq. (2.4) satisfies φ(z, x) =
φ(z,−x).

(2) General, asymmetric problem.

The eigenvalue problem of the linear stability operator L
(N)
+ of the NLS with

nonlinear microstructure (2.4) in the symmetric problem is

L
(N)
+ f (N)(x) = λf (N), 0 < x <∞, f (N)

x (0) = 0, f (N)(∞) = 0,

(4.9)

and in the asymmetric problem is

L
(N)
+ f (N)(x) = λf (N), −∞ < x <∞, f (N)(±∞) = 0. (4.10)

In both cases, L
(N)
+ is given by Eq. (4.1). It follows from Proposition 15 that

the eigenvalues of L
(N)
+ in the symmetric problem (4.9) consist only of the

eigenvalues of L
(N)
+ in the general (asymmetric) problem (4.10), for which the

corresponding eigenfunctions are even. Specifically, the eigenvalue λ
(N)
0 of the

general problem (4.10) is not an eigenvalue of the symmetric problem (4.9).
Therefore, we have the following result:

Corollary 17 Let L
(N)
+ be given by Eq. (4.1), let m(Nx) satisfy Eq. (2.7).

Then, in the symmetric problem (4.9), n−(L
(N)
+ ) = 1.

In the general (asymmetric) problem, we have to determine the sign of λ
(N)
0 .

For N ≪ 1, we show in Appendix D that

λ
(N)
0 = −Cpm

′′(0)N2 + O(N4), (4.11)

where Cp is a positive constant for p > 1. Hence, sgn(λ
(N)
0 ) = −sgn(m′′(0))

and we have the following result:
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α = 0.5 α = −0.5
m(X)

(local maximum) (local minimum)

p = 3 p = 5 p = 3 p = 5

α cos(2πX) 0.22 0.91 -0.23 -1.93

α(e−(X/0.1)2 − 0.1772) 0.07 0.47 -0.06 -0.57

α(e−(X/0.2)4 − 0.3626) 0.12 0.68 -0.12 -1.01

step function 0.13 0.72 -0.13 -1.16

Table 3
Eigenvalue λ

(N)
0 for N = 1, p = 3 and 5 and α = ±0.5 for four different nonlinear

microstructures.

Corollary 18 Let L
(N)
+ be given by Eq. (4.1), let N ≪ 1, let m′′(0) 6= 0.

Then, in the asymmetric problem (4.10),

(1) n−(L
(N)
+ ) = 1 for a beam centered at a local maximum of the microstruc-

ture (m′′(0) < 0).

(2) n−(L
(N)
+ ) = 2 for a beam centered at a local minimum of the microstruc-

ture (m′′(0) > 0).

The parameter region which is not covered by theory is N = O(1), i.e., beams
whose width is of the order of the microstructure period. In the absence of the-
ory, we calculate n−(L

(N)
+ ) numerically through direct discretization of L

(N)
+ .

We repeat the calculation for four different nonlinear microstructures that
range from a very smooth microstructure to the discontinuous step function,
see Fig. 7. In Table 3 we show λ

(N)
0 for N = 1, p = 3 and 5, and α = ±0.5.

As in the case of narrow beams, λ
(N)
0 is positive (negative) for a bound state

centered at a local maximum (minimum) of the microstructure. Therefore, we
conjecture that Corollary 18 holds also for O(1) beams (but see Section 4.5).

−0.5 0 0.5

0

0.5

(b)

x
−0.5 0 0.5

0

0.5
(c)

x
−0.5 −0.2 0.2 0.5

−0.4

0

0.6
(d)

x
−0.5 0 0.5
−1

0

1
(a)

g

x

Fig. 7. One period of the mean-zero microstructures used in the simulations
when N = O(1). (a) m = α cos(2πX); (b) m = α(e−(X/0.1)2 − 0.1772); (c)
m = α(e−(X/0.2)4 − 0.3626); (d) step function. In all plots α = 1.
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For N ≫ 1 and p > 1, a multiple scales expansion shows that if we expand

λ
(N)
0 =

λ1

N
+
λ2

N2
+ · · · ,

then λ1 = λ2 = 0 (see Appendix E). Therefore we conclude that λ
(N)
0 = o(N−2)

but at present the sign of λ
(N)
0 remains undetermined analytically.

In order to demonstrate the dependence of λ
(N)
0 onN , we set m = α cos(2πNx)

and calculate λ
(N)
0 numerically for the general eigenvalue problem (4.10), with

no assumptions on symmetry, for values of N as large as our numerical solver
permits. The results are shown in Fig. 8 for the critical case (p = 5). Results

for the subcritical case are similar (data not shown). For N ≪ 1, λ
(N)
0 > 0 (<

0) for α = 0.5 (−0.5) and scales as N2, see Fig. 8(b,e), as predicted by

Eq. (4.11). When N = O(1), λ
(N)
0 attains its maximal absolute value

and decreases to zero as N increases. A numerical fit shows that λ
(N)
0

decays at an exponential rate, see Fig. 8(c,f), consistent with the

analytical result λ
(N)
0 = o(N−2) of Appendix E. Hence, the numerical

simulations suggest that when the beam is centered at a maximum
(minimum) of the microstructure, λ

(N)
0 remains positive (negative)

also for N ≫ 1. Our results for various beam widths are summarized in
Table 4.

0 2 4
0

0.4

0.8

λ
0
(N)

(a)

10
−2

10
−1

10
−3

10
−2

10
−1

(b)

2 3 4
10

−4

10
−2

10
−1 (c)

0 2 4
−3

−1.5

0

N

λ
0
(N)

(d)

10
−2

10
−1

10
−2

N

(e)

2 3 4

10
−3

10
−2

10
−1 (f)

N

Fig. 8. Eigenvalue λ
(N)
0 of L

(N)
+ for p = 5 as a function of N . The microstructure

is m = α cos(2πNx) with α = 0.5 (local maximum; (a) - (c)) and α = −0.5 (local
minimum; (d) - (f)). (b) and (e): Zoom-in on data of narrow beams (N ≪ 1).

|λ(N)
0 | is shown on a log-log scale. Solid lines are (b) 6.42N1.99, (c) 49.4e−3.0N , (e)

19.7N2.00, (f) 179.4e−3.4N .
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Symmetric data General data

local maximum local minimum local maximum local minimum

N ≫ 1 1 1 probably 1 a probably 2

N = O(1) 1 1 1 2

N ≪ 1 1 1 1 2

Table 4
n−(L

(N)
+ ), the number of negative eigenvalues of L

(N)
+ , in both the subcritical (p = 3)

and critical (p = 5) cases. Results for N ≫ 1 in the asymmetric case are based on
extrapolation of the numerical observations shown in Fig. 8.
a If p = 3 and x = 0 is a global maximum of m(Nx) then n− = 1, see Section 4.6.1.

4.4 Sign and magnitude of ∂ν‖u(N)(ν)‖2
2

In order to determine the stability of u(N)
ν by Theorem 10, we need also to

calculate the sign ∂ν‖u(N)(ν)‖2
2. Numerical studies suggest that, in addition to

the sign of ∂ν‖u(N)(ν)‖2
2, the magnitude of ∂ν‖u(N)(ν)‖2

2 plays an important
role in that it determines the size of the stability region. Therefore, in what
follows we determine both the sign and magnitude of ∂ν‖u(N)(ν)‖2

2.

4.4.1 Wide bound states (N ≫ 1)

In the case of wide beams, the sign and magnitude of ∂ν‖u(N)(x, ν)‖2
2 follow

from the multiple scales analysis of Section 3.1:

Theorem 19 Let u(N) be the solution of Eq. (2.11), let m(X) satisfy (2.7)
and let N ≫ 1. Then,

(1) ∂ν‖u(N)(ν)‖2
2 is positive for p < 5 and negative for p ≥ 5.

(2) The magnitude of ∂ν‖u(N)(ν)‖2
2 is O(1) when p 6= 5 and is O(N−2) when

p = 5.

Proof: From Corollary 6 it follows that ∂ν‖u(N)(ν)‖2
2 = ∂ν‖U(ν)‖2

2+O(N−2).
Thus, according to Eq. (4.8) it follows that for p 6= 5 the magnitude of the
slope is O(1) and the sign of ∂ν‖u(N)(ν)‖2

2 is the same as in homogeneous
medium. When p = 5, ∂ν‖U(ν)‖2

2 = 0 and

∂ν ‖u(N)‖2
2 = − τm

N2
∂2

ν

∫

U10(ν) dx+ O(N−4). (4.12)

Therefore, ∂ν‖u(N)(ν)‖2
2 = O(N−2). Differentiating Eq. (3.31) yields
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∂2
ν

∫

U10(ν) dx= 2ρ∗(5) > 0. (4.13)

Substitution in Eq. (4.12) shows that ∂ν‖u(N)(ν)‖2
2 < 0. 2.

4.4.2 Narrow bound states (N ≪ 1)

In the case of narrow beams, the sign and magnitude of ∂ν‖u(N)(x, ν)‖2
2 follow

from the perturbation analysis of Section 3.2:

Theorem 20 Let u(N) be the solution of Eq. (2.11), let m(Nx) = m(−Nx),
let 1 +m(0) > 0 and let N ≪ 1. Then,

(1) ∂ν‖u(N)(x, ν)‖2
2 is positive for p < 5 and negative for p > 5. When p = 5,

∂ν‖u(N)(x; ν)‖2
2 > 0 if and only if Cnarrow < 0 (see Eq. (3.39), i.e., if

(

1 +m(0)
)

m(4)(0) < G5[m
′′(0)]2, (4.14)

where G5
∼= −0.3531 is given by Eq. (3.37).

(2) The magnitude of ∂ν‖u(N)(x, ν)‖2
2 is O(1) when p 6= 5 and is O(N4) when

p = 5.

Proof: From Eq. (3.35) it follows that for p 6= 5, ∂ν‖u(N)(x, ν)‖2
2 = [1 +

m(0)]
2

p−1∂ν‖U(x, ν)‖2
2 + O(N2). Therefore, as in the wide beam case, when

p 6= 5, the microstructure does not alter the sign and changes the magnitude
of ∂ν‖u(N)(x, ν)‖2

2 only slightly. When p = 5, ∂ν‖U(x; ν)‖2
2 = 0. Therefore, by

Eq. (3.38)

‖u(N)(x, ν)‖2
2 ≈ Cnarrow

N4

ν2
. (4.15)

Therefore, condition (4.14) follows by direct differentiation and the power
slope is O(N4) small. 2.

Remark 21 Since 1 +m(0) > 0 and since G5 < 0, condition (4.14) implies
that a necessary condition for a positive slope is m(4)(0) < 0.

4.4.3 Bound states with N = O(1) width

In order to complete the picture, we use numerical simulations to calculate
∂ν‖u(N)(x, ν)‖2

2 for the four different nonlinear microstructures shown in Fig. 7.
Fig. 9 and Fig. 10 show ‖u(N)(x, ν)‖2

2 for p = 3, 5 and N = 1, as a function
of ν. We let ν vary from 0.25 to 4 which, according to Remark 2, correspond
to 2 ≥ Ñ ≥ 0.5, i.e., beams whose width is 1/2 to 2 microstructure periods
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long. In the subcritical case, the power slope is positive for beams centered
at either a local maximum or local minimum. In the critical case, the power
slope has O(1) magnitude and is negative (positive) when centered at a local
maximum (minimum) of the microstructure (but see Section 4.5).

0.25 1 4
2

4

6

ν

α =0.5

|| 
u(N

)  ||
22

0.25 1 4
2

4

6

8

ν

α =−0.5

Fig. 9. Power of bound states for the subcritical case p = 3 with α = ±0.5 and
N = 1 as a function of ν for the microstructures of Fig. 7.

0.25 1 4

2.3

2.5

2.7

ν

α =0.5

|| 
u(N

)  ||
22

0.25 1 4

2.8

3.1

3.4

ν

α =−0.5

Fig. 10. same as Fig. 9 for the critical case p = 5.

4.4.4 Slope condition (S2) - summary

We have seen that in the subcritical case p = 3, ∂ν‖u(N)(x, ν)‖2
2 is positive

and O(1) for all beam widths. In Table 5 we summarize the results of Sec-
tions 4.4.1-4.4.3 for the critical case (p = 5) by showing the sign and mag-
nitude of ∂ν‖u(N)‖2

2 for wide, O(1) and narrow beams centered at either a
local maximum or a local minimum of the microstructure. As we have seen,
for wide beams (N >> 1) ∂ν‖u(N)‖2

2 is always negative and is O(N−2). When
the beams have N = O(1) width, ∂ν‖u(N)‖2

2 = O(1) and its sign is positive
for a local minimum and negative for a local maximum. For narrow beams
(N << 1), ∂ν‖u(N)‖2

2 = O(N4) and its sign can be either positive or negative,
depending on the values of m′′(0) and m(4)(0).

In order to illustrate the results of Table 5, we set m = ±0.5 cos(2πNx) and
calculate the power of the bound states for N = 1 as ν varies between 0.01
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local maximum local minimum

N ≫ 1 O(N−2), negative

N = O(1) O(1), negative O(1), positive

N ≪ 1 O(N4), sign determined by Eq. (4.14)

Table 5
Sign and magnitude of ∂ν‖u(N)‖2

2 for wide, O(1) and narrow bound states centered
at a local maximum and minimum of the nonlinear microstructure for the critical
case (p = 5).

and 30 for the critical case (see Fig. 11). According to Remark 2, these values
of ν correspond to 10 = Ñ(ν = 0.01) ≥ Ñ ≥ Ñ(ν = 30) = 0.18, i.e. to
wide, O(1), and narrow beams. When ν ≪ 1 (Ñ ≫ 1, wide beams) the
slope is negative and of O(N−2) magnitude for both curves. The slope is
negative (positive) and has O(1) magnitude for O(1) beams centered at a
local maximum (minimum). For narrow beams, i.e. ν ≪ 1 or Ñ ≫ 1, it can
be verified that for m = ±0.5 cos(2πNx), condition (4.14) is satisfied only for
beams centered at a local minimum so that the slope is negative (positive) for
beams centered at a local maximum (minimum). In both cases, the magnitude
of the slope is O(N4).

Remark 22 When ν ≫ 1 (narrow beams), the local Kerr coefficient at the
beam center, 1 + m(0) = 1 + α, affects the dominant term of the power (see
Eq. (3.36)) so the power of the bound state strongly depends on α. However,
when ν ≪ 1, the dependence on α is only through the O(N−2) correction term
(see Eq. (3.1)), hence the two curves are nearly indistinguishable.

0.01 0.1 1 10 30

2.5

3

3.5

ν

|| 
u(N

)  ||
22

α =0.5

α = −0.5

Fig. 11. Power of the bound states as a function of ν for m = ±0.5 cos(2πx). Positive
slope branch is shown by a solid line and negative slope branches are shown by a
dashed line.
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4.5 Definition of bound states centered at a local maximum/minimum revis-
ited

We have seen that the stability properties of bound states depend
on whether the beam is centered at a local maximum or minimum
of the microstructure. The criterion we used for the maximum or
minimum was the sign of m′′(0). In this Section we show that for
O(1) beams the criterion can be more complex.

We consider the microstructurem(Nx) = −0.6 cos(2πNx)+0.3 cos(4πNx)
(see Fig. 12). This microstructure has a shallow local maximum at
x = 0 with two adjacent global minima. Narrow beams centered at
x = 0 show the characteristics of beams centered at a local maxi-
mum, i.e., that λ

(N)
0 > 0, see Fig. 13(a). However, O(1) beams have

the characteristics of O(1) bound states centered at a local mini-

mum, namely, that λ
(N)
0 < 0 (see Fig. 13(a)) and a positive slope (see

Fig. 13(b)).

The reason for that is that although the O(1) beam is centered at
a local maximum of the microstructure, the region over which the
“bulk of the beam” is centered is of low nonlinear refractive index.
Thus, we see that for O(1) beams, not only the local value of the
microstructure at the beam center affects the stability but rather
the area where the beam is centered (unlike narrow beams which
are affected only by the local changes of the microstructure). Hence-
forth, in order to determine the stability properties of O(1) beams,
one needs to consider the local average of the microstructure over
the width of the beam. This coarse grained description arises only
for microstructures having extrema points which are not global ex-
trema. Hence we did not observe this phenomenon so far when we
used the microstructures shown in Fig. 7.

−3 0 3
−1

0

1

Fig. 12. The microstructure m(Nx) = −0.6 cos(2πNx) + 0.3 cos(4πNx) for N = 1.
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Fig. 13. (a) Eigenvalue λ
(N)
0 of L

(N)
+ with ν = 1 for the microstructure of Fig. 12.

(b) Power of solutions of Eq. (2.11) for the microstructure of Fig. 12 with N = 1.
Note that ν ≫ 1 corresponds to narrow beams and ν = O(1) corresponds to O(1)
beams.

4.6 Stability results

At this stage we can combine the results of Theorem 10 concerning the spectral
condition (S1) on the number of negative eigenvalues of L+ (Section 4.3), with
our calculations of the slope condition (S2) (Section 4.4). By Theorem 10 these
determine the stability or instability of the nonlinear bound state (waveguide)
solutions φwg = eiνzu(N).

4.6.1 Subcritical case p = 3

Stability in this case is summarized in Table 1. Since the slope is positive for
all beam widths, stability is determined by n−. As summarized in Table 4,
in the symmetric problem n− = 1, hence beams of all widths centered at
either a local maximum or minimum of the microstructure are stable. In the
asymmetric problem, n− = 1 (n− = 2) for narrow and O(1) beams centered at
a local maximum (minimum) of the microstructure. Thus, narrow and O(1)
beams are stable if centered at a local maximum and unstable if centered at
a local minimum.

Since we did not determine the sign of λ
(N)
0 for wide beams, stability of wide

beams in the asymmetric case was not determined analytically in this study.
In [30], Hajaiej and Stuart proved the stability of the ground state 4 in the
asymmetric, subcritical case. Clearly, the ground state is centered at a global
maximum of the microstructure. Hence, the results of [30] agree with our
results for N ≪ 1 and N = O(1), and show that wide beams centered at a
global maximum are stable. Consequently, we can conclude that in the general
problem, n− = 1 for wide beams centered at a global maximum. We note that
unlike [30], our stability results apply to bound states centered at any extrema

4 i.e., the bound state with minimal power.
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of the microstructure, e.g., at a local minimum or even at a local maximum
which is not a global one. More importantly, they also apply in the critical
case.

4.6.2 Critical case p = 5

Stability in this case is summarized in Table 2. In the symmetric case n−(L
(N)
+ ) =

1 (see Corollary 17) so that according to Theorem 10, stability is determined
by the slope condition. Therefore, when N ≫ 1 all bound states are unstable.
Beams of O(1) width which are centered at a local minimum (maximum) are
stable (unstable) and narrow beams are stable if and only if condition (4.14)
is satisfied 5 . We recall that the slope magnitude for narrow beams is much
smaller (O(N4)) than for O(1) beams (O(1) slope). Thus, stability of narrow
beams is expected to be much weaker than for O(1) beams.

In the asymmetric problem, when N ≫ 1, the negative slope of ‖u(N)(ν)‖2
2 im-

plies that these solutions are unstable regardless of the (unknown) sign of λ
(N)
0 .

O(1) beams satisfy n−(L
(N)
+ ) = 1 only when centered at a local maximum. In

this case the slope is negative so that these beams are unstable. Therefore,
in the general problem, beams can be stable only if they have N ≪ 1 width
and if centered at a local maximum of a microstructure that satisfies condi-
tion (4.14). Even then, since the slope magnitude is O(N4), we expect the
stabilization induced by the microstructure to be extremely weak.

4.7 The spectral condition (S1) revisited

In Section 4.3, we have seen that n− = 2 in the general problem (4.10) when
the beam is centered at a local minimum of the microstructure. Hence, this
bound state is always unstable. However, n− = 1, (hence, beams can be stable)
when the bound state is centered at a local maximum. In order to motivate
this finding, we look at the transverse velocity and acceleration of the beam
center of mass, defined as

〈x〉 =

∫

x|φ|2
∫ |φ|2 =

∫

x|φ|2
∫ |φ0|2

. (4.16)

Proposition 23 Let φ be a solution of Eq. (2.4). Then,

5 In [21] Fibich and Wang used a rigorous variational approach to study ground
states of (2.4) for the d-dimensional symmetric problem with N ≪ 1 and d ≥ 2.
They derive a condition for stability which is a generalization of condition (4.14) to
multi-dimensions.
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d

dz

∫

x|φ|2 dx = 2 Im
∫

φxφ
∗ dx, (4.17)

and

d2

dz2

∫

x|φ|2 dx =
4N

p+ 1

∫

m′(Nx)|φ|p+1 dx. (4.18)

Proof: Differentiate the right-hand-sides with respect to z, use Eq. (2.4)
and integrate by parts.

Let us perturb the beam center by considering the initial condition φ0 =
u(N)(x − δc) where u(N) is the solution of Eq. (2.11). From Proposition 23 it
follows that

d 〈x〉
dz

∣
∣
∣
∣
z=0

= 0,

i.e., the initial lateral velocity of the beam center is zero for φ0 = u(N)(x− δ).
Calculation of the initial lateral acceleration leads to the following result:

Corollary 24 Narrow bound states that are centered slightly off a local ex-
tremum of the microstructure have an initial acceleration towards the nearest
local maximum of the microstructure.

Proof: See Appendix F.

Thus, the instability of beams centered at a local minimum of the microstruc-
ture stems from their attraction to regions with higher Kerr nonlinearity. This
explains why such beams can be stable in the symmetric problem (which does
not allow lateral perturbations), and also why in the asymmetric case, for both
the subcritical and critical cases, beams centered at a local minimum of the
microstructure are unstable.

The instability of bound states centered at a local minimum of the microstruc-
ture under asymmetric perturbations was observed also in discrete [?] and con-
tinuous [?] linear microstructures. In the discrete model, instability of bound
states centered between the waveguides (i.e., at a local minimum of the linear
microstructure) is attributed to the Peierls-Nabarro potential [40], an effective
potential that increases the Hamiltonian of beams centered at a local mini-
mum of the linear microstructure with respect to beams centered at a local
maximum with the same power. In that sense, the cases of linear and nonlinear
microstructures are similar since for a fixed state, centering it about a local
maximum (minimum) of m(Nx) appears to be the best choice for minimizing
(maximizing) the energy functional Eν , see (4.4), as it would make the second
term in H most negative (positive), while the first term in H and P are in-
dependent of the centering. Hence, one expects instability of states centered
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at a local minimum of m(Nx), and provided H is bounded below for fixed
P, stability of states with their maximum centered about a local maximum of
m(Nx).

5 Stability of bound states - Simulations

In this section we consider the stability of the nonlinear bound state φwg =
eizu(N)(x; ν = 1). We show the dynamics of bound states and especially the
different types of instabilities that can develop in various cases. We solve
Eq. (2.4) numerically using a fourth-order implicit finite-difference scheme
with the initial condition

φ(x, 0) = (1 + δp)u
(N)(x− δc; ν = 1).

Thus, δp perturbs the power of the bound state but preserves its symmetry
with respect to x = 0, and δc shifts the beam center from x = 0 to x = δc
but preserves its power. The values of dz and dx were chosen to ensure
grid convergence. In the symmetric case, we solved Eq. (2.4) only
for 0 < x < ∞ and used the boundary condition ∂x u(N)(0) = 0. The
full solution was obtained by reflection about x = 0. In the general
asymmetric case, we solved Eq. (2.4) for −∞ < x <∞.

Instead of presenting the H1 difference between the solution φ and the waveg-
uide solution φwg, we plot the maximal amplitude of the solution after verifying
that the dynamics of the difference between the maximal amplitude and the
initial maximal amplitude is qualitatively similar to the dynamics of the H1

difference. The advantage of this approach is that in addition to stability, the
maximal amplitude also provides information on the character of the dynam-
ics in the stable and unstable cases, e.g. blow-up, diffraction, etc.). We also
present the dynamics of the center of mass of the beam (defined in Eq. (4.16)).
Together, these two quantities give a fairly comprehensive description of the
dynamics.

5.1 Subcritical case p = 3

We first consider N = O(1) beams centered at a local maximum of the mi-
crostructure. In these simulations and those that follow, the microstructure is
given by m(Nx) = α cos(2πNx). In the symmetric case (δc = 0, Fig. 14(a)), a
perturbation of the power induces only small oscillations of the maximal am-
plitude. Similarly, a small lateral shift of the incident beam (δc 6= 0 and δp = 0)
results in small oscillations of the beam center about the local maximum of
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the microstructure while hardly affecting the maximal amplitude (Fig. 14(b)).
Combining the two perturbations results in simultaneous small oscillations of
the maximal amplitude and beam center (Fig. 14(c)). Thus, we see that O(1)
beams centered at a local maximum are stable under arbitrary (symmetric
and asymmetric) perturbations; see Table 1.
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Fig. 14. Maximal amplitude of solutions of Eq. (2.4) for p = 3, N = 1, α = 0.5.
(a) δp = 0.02 and δc = 0. (b) δp = 0 and δc = 0.02. The inset shows the position
of the beam center of mass (solid line) with respect to the local maximum (dashed
line) and local minima (dotted line) of the microstructure. (c) Similar to (b) with
δc = 0.02 and δp = 0.02.

Dynamics of O(1) beams centered at a local minimum of the microstructure
is qualitatively similar to beams centered at a local maximum as long as the
symmetry is maintained (Fig. 15(a)). However, a lateral shift of the incident
beam results in a large drift of the beam center towards the nearest maximum
of the microstructure and oscillations about it together with O(1) oscillation
of the maximal amplitude (Fig. 15(b)). Unlike the stable beams centered at
a local maximum, the drift increases rather than decreases as δc → 0. This
is to be expected, because smaller δc with respect to a local minimum is,
in effect, a larger perturbation with respect to the nearest local maximum.
Adding a perturbation to the power (Fig. 14(c)) does not alter the dynamics
significantly. Thus, we conclude that beams centered at a local minimum are
stable in the symmetric case but unstable in the general problem, in agreement
with Table 1. The dynamics of wide and narrow beams are qualitatively similar
(data not shown).

5.2 Critical case p = 5

We first consider O(1) beams centered at a local maximum of the microstruc-
ture. A slight increase in the beam power (δp > 0) results in a finite-distance
collapse; see Fig. 16(a). In addition, when the beam center is shifted from
the local maximum it no longer has enough power for blow-up and thus, it
diffracts; see Fig. 16(b). The dynamics of wide beams centered at a local
maximum is qualitatively similar (data not shown). Thus, as summarized in
Table 2, wide and O(1) beams centered at a local maximum are unstable. We
also note that this instability is similar to one in homogeneous Kerr medium,
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Fig. 15. Maximal amplitude of solutions of Eq. (2.4) for p = 3, N = 1, α = −0.5.
(a) δp = 0.02 and δc = 0. (b) δp = 0 and δc = 0.02 (solid line) and δc = 0.05
(dashed line). The inset shows the position of the beam center of mass (solid line)
with respect to the local maximum (dashed line) and local minima (dotted line) of
the microstructure. (c) Similar to (b) with δc = 0.02 and δp = 0.02.

i.e., the beam either develops a self-focusing singularity (blows up) or diffracts
to zero [54].
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Fig. 16. Maximal amplitude of solutions of Eq. (2.4) for p = 5, N = 1, α = 0.5. (a)
δp = 0.02 and δc = 0. (b) δp = 0 and δc = 0.02.

In Fig. 17 we show the dynamics of O(1) beams centered at a local minimum
of the microstructure. In Table 2, in the symmetric problem, these beams are
stable since as δp → 0, the oscillations become smaller (Fig. 17(a)). In con-
trast, a small shift of the initial beam center causes it to drift toward the
nearest maximum and, consequently, to blow-up; see Fig. 17(b). Perturbing
both the power and beam center only accelerates the blow-up; see Fig. 17(c).
We note that the generic location of the singularity is not at the local maxi-
mum of the microstructure. Indeed, in Fig. 18 we show that the blowup point
(which is different from the center of mass) of the beam shown in Fig. 17(b) is
beyond the nearest local maximum. Note that an input beam with the same
lateral shift but with higher input power blows up before the local maximum.
These simulations show that O(1) beams are stable in the symmetric case but
unstable in the asymmetric case, in agreement with Table 2.

In Fig. 19(a) we show that in the symmetric case, wide beams centered at a
local minimum whose power is slightly above the power of the bound state
(δp > 0) undergo self-focusing but do not blow-up. The reason for that is
that after the initial focusing, the beams reach an O(1) width where they
become stable; see Fig. 17(a). Despite the arrest of collapse, these wide beams
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Fig. 17. Maximal amplitude of solutions of Eq. (2.4) for p = 5, N = 1, α = −0.5.
(a) δp = 0.02 (dashed line), δp = 0.05 (solid line) and δc = 0. (b) δp = 0 and
δc = 0.02. The inset shows the position of the beam center of mass (solid line) with
respect to the local maximum (dashed line) and local minimum (dotted line) of the
microstructure. (c) Similar to (b) with δc = 0.02 and δp = 0.02.
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Fig. 18. Location of maximal amplitude (xmax(z)) as a function of focusing level for
solutions of Eq. (2.4) for p = 5, N = 1, α = −0.5, δc = 0.02, δp = 0 (solid line) and
δp = 0.5 (dashed-dotted line). Local maximum and minimum of the microstructure
are shown by a dashed line and a dotted line, respectively.

are unstable as smaller perturbation only delays the self-focusing but does
not reduce its magnitude. We note that this instability is different from the
typical blowup/ diffraction instability of the homogeneous NLS. Of course,
any symmetry breaking in the initial condition (e.g., δc 6= 0 or even random
noise) would result in a drift instability, i.e., a shift to the nearest maximum
of the microstructure and to collapse, similar to Fig. 17(b,c).
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Fig. 19. Maximal amplitude of solutions of Eq. (2.4) for p = 5, N = 4, α = −0.5,
δc = 0 and δp = 0.02 (solid line), δp = 0.05 (dashed line).

In the general, asymmetric critical case, the only stable bound states are nar-
row beams centered at a local maximum of microstructures that satisfy con-
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dition (4.14); see Table 2. Since the microstructure m = α cos(2πNx) satisfies
condition (4.14) only for beams centered at a local minimum, we use the mi-
crostructure m = 0.48 cos(2πNx) − 0.1 cos(4πNx) for which beams centered
at a local maximum do satisfy condition (4.14). In the symmetric problem,
narrow beams of this microstructure are indeed stable under O(10−4) pertur-
bations, as can be seen in Fig. 20(a). However, since perturbations as small as
δp = 0.01 result in blowup, the stability region is extremely small (compare, for
instance, with Fig. 17(a)). The smallness of the stability region is attributed
to the O(N4) small slope of the power curve, see Eq. (3.36). Fig. 20(b) shows
that the beam is also stable under asymmetric perturbations (which do not
have to be as small). The stability with respect to such perturbations is at-

tributed to the O(N2) positive value of the eigenvalue λ
(N)
0 (see Eq. (4.11)).

Finally, stability is maintained if we simultaneously perturb the power and
lateral position (see Fig. 20(c)).

The dependence of stability on the properties of the microstructure
through condition (4.14) is further demonstrated in Fig. 21, where
we solve Eq. (2.4) for the one-parameter family of microstructures
m(Nx) = 0.48 cos(2πNx) − γ cos(4πNx) for which the ∂ν

∫

[u(N)]2 is pos-
itive (negative) for γ > γc (γ < γc) where γc

∼= 0.032. Indeed, for
the given perturbation δp = 10−4, δc = 0, the solution blows up for
γ = 0.03 and is stable for γ = 0.1 and γ = 0.075. The “unexpected”

blowup at γ = 0.05 is due to the very small slope (∂ν

∫ (

u(N)
)2 ∼= 0.0025

at γ = 0.05) that implies a very small stability region. Indeed, we
confirmed that the beam is “mathematically stable” at γ = 0.05, i.e.,
that under a smaller perturbation δp = 4 · 10−5 the beam is stable
(data not shown).
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Fig. 20. Maximal amplitude of solutions of Eq. (2.4) with the microstructure
m = 0.48 cos(2πNx) − 0.1 cos(4πNx) for p = 5 and N = 0.2 . (a) δc = 0 and
δp = 4 · 10−5 (solid line), δp = 10−4 (dashed line) and δp = 0.01 (dash-dotted line).
(b) δp = 0 and δc = 0.2. The inset shows the position of the beam center of mass
with respect to the local maximum (dashed line) and local minimum (dotted line)
of the microstructure. (c) Similar to (b) with δc = 0.2 and δp = 10−4.
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Fig. 21. Maximal amplitude of solutions of Eq. (2.4) with the microstructure
m = 0.48 cos(2πNx) − γ cos(4πNx) for p = 5, δp = 10−4, δc = 0, and N = 0.2.
γ = 0.1 (solid line), γ = 0.075 (dashed line), γ = 0.05 (dash-dotted line), γ = 0.03
(dotted line).

6 Summary and discussion

In this paper we have used a combination of rigorous analysis, asymptotic anal-
ysis, and numerical simulations to study the structure and dynamic stability
properties of bound states of the scalar one-dimensional NLS with a trans-
verse periodic nonlinear microstructure and general pth power nonlinearity,
Eq. (1.7). We chose the one-dimensional model to simplify the presentation;
the general multi-dimensional problem can be treated by a natural extension
of the methods presented herein. In particular, the critical case p = 5 is mathe-
matically analogous to the important case of Kerr nonlinearity p = 3 in spatial
dimension d = 2 [?].

Some of the results obtained in this paper can be obtained using
Evans function methods; see, for example, [34]. These methods are
particularly well suited to one space-dimensional problems. Note,
however, that the methods we use in this paper (multiple scale /
homogenization expansions, perturbation theory of spectra and vari-
ational methods) are not specific to one dimensional analysis, and
can naturally be extended to multi-dimensional cases.

We introduce and emphasize the importance of the dimensionless parame-
ter N = rbeam/rms, the ratio of beam width to the microstructure period. Our
study appears to be the first wherein the three regimes: wide (N ≫ 1), narrow
(N ≪ 1) and intermediate (N = O(1)) beams are systematically considered.
Moreover, to the best of our knowledge, this is the first analytic study of wide
beams in a microstructured media. The problem of stability at different beam
width regimes are, in fact, interconnected; the width of an unstable beam
can change significantly with propagation. For example, we observe that in
the symmetric case, a bound state centered at a microstructure minimum is
unstable if the beam is wide but stable if the bound state is O(1). There-
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fore, when an unstable wide bound state self-focuses to one of O(1) width, it
becomes stabilized.

Theorem 10 asserts that a nonlinear bound state is orbitally sta-
ble if and only if the spectral condition, (S1), (n−(L+) ≤ 1) and the
slope condition, (S2), (∂ν ‖u‖2

2 > 0) hold. These conditions together
imply that a state u(N) is a local minimizer of H subject to fixed P.
Very roughly speaking, if the slope condition, (S2), is violated then
either nonlinearity dominates diffraction or vice versa. Hence, the
bound state becomes unstable either by collapsing or by diffractively
spreading and approaching zero. This blowup/diffraction instabil-
ity scenario, studied in the homogeneous case for NLS at criticality
(p = 1 + 4/d) [54], is supported by our numerical studies. We have
also numerically studied the situation where the spectral condition
(S1) does not hold, but the slope condition, (S2), holds. This results
in a drift instability, as exhibited by the formal Ehrenfest-type com-
putation in Section 4.7, which is excited only by asymmetric pertur-
bations. The importance of the spectral condition is demonstrated
by the occurrence of a drift instability even when the power slope
is positive. Although previous studies have already demonstrated
instability when the slope condition is satisfied (but the spectral
condition is not), see e.g., [42], in numerous other studies the im-
portance of the spectral condition was overlooked and only the slope
condition was tested for determining stability.

We have shown analytically that in the critical case p = 5, a nonlinear mi-
crostructure can stabilize the beam only in the case of a narrow beam which is
centered at a local maximum of a microstructure that satisfies condition (4.14).
Our simulations revealed that these bound states are indeed stable, but only
relative to extremely small perturbations. Therefore, it seems likely that non-
linear microstructure by itself cannot stabilize a laser beam since typically, in
actual physical setups the profile of the incident beam can be controlled up
to a few percent accuracy. Thus, it may be that the bound state of Fig. 20 is
mathematically stable but physically unstable. As noted, the extreme small-
ness of the basin of stability about that bound state appears related to the
O(N4) small slope of the curve ν 7→ ∂ν‖u(N)‖2

2. Further research is needed to
establish the relation between the magnitude of the (positive) slope and the
size of the basin of stability.

Finally, we believe that some of the analytical contributions of this study,
namely,

(1) the identification of the importance of the beam width parameter,
(2) the multiple scales analysis for calculation of wide beams,
(3) the perturbation analysis for calculation of narrow beams (which was first
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done in [21])
(4) the realization that in the case of “physical stability” there is a “third

condition” that involves the magnitude of the slope, which determines
the size of the stability region,

may prove useful in other settings where equations of nonlinear Schrödinger
equation type with spatially varying coefficients arise.

Acknowledgements

We thank F. Merle and S. Bar-Ad for useful discussions. We also thank the
referees for many useful comments. G. Fibich and Y. Sivan were partially
supported by grant No. 2000311 from the United States-Israel Binational Sci-
ence Foundation (BSF), Jerusalem, Israel. M.I. Weinstein was supported in
part by a grant from the US National Science Foundation.

A Proof of Corollary 6

By Theorem 3,

‖u(N)‖2
2 = ‖U‖2

2 +
2p

N2
τm

∫

U L−1
+ [U2p−1] + O(N−4) (A.1)

= ‖U‖2
2 +

1

N2
τm

∫

2pU2p−1 L−1
+ [U ] + O(N−4).

We note that there is a O(N−2) “cross-term” in Eq. (A.1)

− 2

N2

∫

U(x, ν)p+1 ∂−2
X m(Nx) dx,

which we have neglected. We claim that if m(X) is at least piecewise contin-
uous, this term is of order N−2 exp(−κN). Since m(X) is periodic, it has the
Fourier expansion

m(X) =
∑

|k|≥1

mke
2πikX .

In the worst case where m has jump discontinuities, mk = O(|k|−1) for large
k. Also,

∂−2
X m(Nx) =

∑

|k|≥1

(2πik)−2 mke
2πikNx,

The cross-term (A.2) is then controlled by

1

N2

∑

|k|≥1

1

k2
mk

∫

U(x, ν)p+1 e2πikNx dx.
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Since U is analytic in a strip about the real axis, the previous expression is
bounded by

C

N2

∑

|k|≥1

1

k3
e−κ|k|N ≤ C

N2
e−κN , κ > 0.

In order to proceed, we use the following Lemma:

Proposition 25 Let U and L+ be given by Eq. (2.10) and Eq. (3.3). Then,
∂νU = −L−1

+ U .

Proof: Differentiating Eq. (2.9) with respect to ν gives

0 = ∂ν (∂2
xU) + ∂ν Up − ∂ν (νU) = ∂2

x (∂νU) + pUp−1 (∂νU) − U − ν∂νU =

= −L+∂νU − U .

2.

Using Proposition 25 in Eq. (A.1) gives

‖u(N)‖2
2 = ‖U‖2

2 − 1

N2
τm

∫

∂νU 2pU2p−1 + O(N−4)

= ‖U‖2
2 − 1

N2
τm∂ν

∫

U2p dx + O(N−4),

which proves Corollary 6.

B Numerical computation of bound states by the spectral renor-
malization method

The numerical method that we use to calculate bound states was first intro-
duced by Petviashvili [44] and more recently by Ablowitz, Musslimani and
co-workers in a series of papers [2,4,6,41]; for a recent review, see [5]. Here,
we derive the method using a different approach which, we believe, makes it
somewhat more intuitive.

Let uV be the nontrivial solution of

−∂2
xu(x) − V (x)|u|p−1u+ νu = 0, (B.1)

and let F(u) =
∫∞
−∞ u(x)e−ikxdx be the Fourier transform of u. Taking the

Fourier transform of Eq. (B.1) and rearranging yields

F(u) =
1

k2 + ν
F(V (x)|u|p−1u).
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This equation can be solved with the fixed point iterations

F(um+1) =
1

k2 + ν
F(V (x)|um|p−1um), m = 0, 1, . . . (B.2)

so that um+1 = F−1
(

1
k2+ν

F(V (x)|um|p−1um)
)

. Unfortunately, numerical sim-

ulations show that the iterations (B.2) usually converge to the fixed points
u∞ ≡ 0 or u∞ ≡ ∞, rather than to uV . This divergence can be understood in
the following way. Suppose, for example, that at some stage in the iterations
we have um = CuV where C is a complex constant. In this case,

F(um+1) =
1

k2 + ν
F(V (x)Cp−1|uV |p−1 CuV ) ≡ CpF(uV ),

i.e., um+1 = CpuV . Therefore, the iterations will diverge to u∞ ≡ 0 if |C| < 1
and to u∞ ≡ ∞ if |C| > 1.

The argument above shows that in order to make sure that the iterations
converge to uV , we need somehow to prevent the L2 norm of um from going to

zero or to infinity. To do that, we multiply Eq. (B.2) by
[

F(u)
]∗

and integrate
over k, resulting in the integral identity

∫

|F(u)|2dk =
∫

1

k2 + ν
F(V (x)|u|p−1u)

[

F(u)
]∗
dk. (B.3)

In general, um does not satisfy condition (B.3). Therefore, we define um+ 1

2

=
Cmum where the real constant Cm is chosen so that um+ 1

2

will satisfy iden-

tity (B.3). Specifically, let

SLm ≡
∫

|F(um)|2dk, SRm ≡
∫ 1

k2 + ν
F(V (x)|um|p−1um)

[

F(um)
]∗
dk.

Therefore, the real constant Cm is chosen so that C2
m SLm = Cp+1

m SRm. This
equation has three solutions: Cm = 0 (corresponding to u∞ = 0), Cm = ∞
(corresponding to u∞ = ∞) and the nontrivial solution

Cm =
(SLm

SRm

) 1

p−1 , (B.4)

corresponding to u∞ = uV . Therefore, we can avoid the divergence to u∞ = ∞
or u∞ = 0 by applying the iterations (B.2) to um+ 1

2

instead of um, i.e.,

F(um+1) =
(

SLm

SRm

) p

p−1 1

k2 + ν
F(V (x)|um|p−1um). (B.5)

The idea that the iterations (B.2) can be made to converge by adding the
multiplication by the (SL/SR)p/p−1 term was derived in [5] from a “homoge-
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nization” 6 argument. We believe that our derivation is more intuitive since it
shows that by choosing Cm as in (B.4), we restrict the iterations to the family
of solutions {u| u satisfies (B.3), u 6≡ 0, u 6≡ ∞}.

In this paper we are interested in solutions of Eq. (B.1) with V (x) = 1+m(Nx)
where m is a periodic function, e.g., m = α cos(2πNx). These solutions are
centered at x = 0, which is a local maximum (minimum) of the microstructure
for α > 0 (α < 0). Since if u(x) is even and real then F(u) is also even and
real, if we choose the initial guess u0 to be even and real, then um should
remain even and real for all m. However, in our simulations we found out
that in some cases, numerical roundoff errors lead to the accumulation of an
imaginary component of um that eventually shift the center of the solution
away from x = 0. For example, an initial guess centered at a local minimum
might converge to a solution centered at a local maximum. In order to avoid
this undesirable effect due to the accumulation of the imaginary component,
we added the stage um → |um| , i.e.,

um+1 =

∣
∣
∣
∣F−1

((SLm

SRm

) p

p−1 1

k2 + ν
F(V (x)|um|p−1um)

)∣
∣
∣
∣.

We note that the trick um → |um| works because the ground state of a second
order elliptic problem is of one sign.

C Perturbation analysis for N ≪ 1

In this Appendix, we use a perturbation analysis to solve Eq. (2.11) for narrow
beams. The derivation follows the same lines as [21]. We define u(N)(x) =
(

1
1+m(0)

) 1

p−1S(x). Then, the equation for S is

−∂2
xS − 1 +m(Nx)

1 +m(0)
Sp + νS = 0. (C.1)

Taylor expansion of the microstructure gives

1 +m(Nx)

1 +m(0)
= 1 + aN2x2 + bN4x4 + O(N6), (C.2)

where a = m′′(0)/2[1 + m(0)] and b = m(4)(0)/24[1 + m(0)]. We look for a
solution of Eq. (C.1) of the form

S = U +N2g(x) +N4h(x) + O(N6), (C.3)

6 The meaning of the term “homogenization” in [5] is obviously different from the
one we use in the main body of this paper.
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where U is given by Eq. (2.10). Therefore,

Sm = Um +N2mUm−1g +N4
(

mUm−1h+

(

m

2

)

Um−2g2
)

+ O(N6),

and the equations for g and h are

−L+g = −a x2Up, (C.4)

−L+h = −
(

p

2

)

Up−2g2 − b x4Up − a p x2 Up−1g,

where L+ is defined in (3.3). We multiply Eq. (2.9) by S, use the ansatz (C.3)
and integrate. Collecting the O(N2) and O(N4) terms gives

∫

Ux gx + ν
∫

Ug −
∫

Up g = 0, (C.5)

and

∫

Ux hx + ν
∫

Uh−
∫

Up h = 0, (C.6)

respectively. We multiply Eq. (C.1) by U , use ansatz (C.3) and integrate.
Collecting the O(N2) and O(N4) terms gives

∫

Ux gx + ν
∫

Ug − p
∫

Up g = a
∫

x2Up+1, (C.7)

∫

Ux hx + ν
∫

Uh− p
∫

Up h−
(

p

2

)
∫

Up−1g2 − a p
∫

x2Upg

= b
∫

x4Up+1. (C.8)

Next we derive the Pohozaev integral identities:

Lemma 26 Let S be a solution of Eq. (C.1). Then,

ν||S||22 + ||Sx||22 −
1

1 +m(0)
||[1 +m(Nx)]

1

p+1S||p+1
p+1 = 0, (C.9)

−ν
2
||S||22 +

1

2
||Sx||22 +

‖(xmx)
1

p+1S‖p+1
p+1

[1 +m(0)](p+ 1)
+

‖[1 +m(Nx)]
1

p+1S‖p+1
p+1

[1 +m(0)](p+ 1)
= 0.

(C.10)
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Proof: Multiplying (C.1) by S and integrating gives (C.9). Multiplying (C.1)
by (x · ∂xS) and integrating gives

∫

(x Sx)
(

− Sxx + νS − 1 +m(Nx)

1 +m(0)
Sp
)

=

∫

(x Sx)xSx +
ν

2

∫

x(S2)x +
1

[1 +m(0)](p+ 1)

∫

Sp+1
(

[1 +m(Nx)]x
)

x
=

∫

(Sx)
2 +

∫

(x∂x)
(Sx)

2

2
− ν

2

∫

S2 +
1

[1 +m(0)](p+ 1)

∫

Sp+1xmx

+
1

[1 +m(0)](p+ 1)

∫

Sp+1[1 +m(Nx)],

from which Eq. (C.10) follows after some algebra. 2.

Multiplying (C.9) by 1
2

and subtracting it from (C.10) gives

−ν
∫

S2 +
p+ 3

2[1 +m(0)](p + 1)

∫

[1 +m(Nx)]Sp+1 +

∫

(xmx)S
p+1

[1 +m(0)](p+ 1)
= 0.

Substituting ansatz (C.3) for S and separating powers of N gives

−2ν
∫

Ug +
p+ 3

2(p+ 1)

∫ (

a x2Up+1 + (p+ 1)Upg
)

+
2a

p+ 1

∫

x2Up+1

= 0, (C.11)

and

−2ν
∫

Uh− ν
∫

g2 +
1

p+ 1

∫

2a(p+ 1)x2Upg + 4bx4Up+1

+
p+ 3

2(p+ 1)

∫ [

(p+ 1)Uph+

(

p+ 1

2

)

Up−1g2 + a x2(p+ 1)Upg + bx4Up+1
]

= 0. (C.12)

Subtracting (C.5) from (C.7) gives −(p− 1)
∫ Upg = a

∫

x2Up+1. Substituting
into (C.11) gives

−2ν
∫

Ug + a
(

p+ 3

2(p+ 1)
+

2

p+ 1

)∫

x2Up+1 +
p + 3

2(p+ 1)
(p+ 1)

(

− a

p− 1

∫

x2Up+1
)

= −2ν
∫

Ug + a
(

p+ 3

2(p+ 1)
+

2

p + 1
− p+ 3

2(p+ 1)

p+ 1

p− 1

) ∫

x2Up+1,
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so that

2ν
∫

Ug = a
p− 5

p2 − 1

∫

x2Up+1. (C.13)

Reorganizing Eq. (C.12)

−ν
(

2
∫

Uh+
∫

g2
)

+
p+ 3

2

∫

Uph +
p(p+ 3)

4

∫

Up−1g2 + a
p+ 3

2

∫

x2Upg

+b
p+ 3

2(p+ 1)

∫

x4U4 + 2a
∫

x2Upg + b
∫

x4U4

= ν
(

− 2
∫

Uh−
∫

g2
)

+
p+ 3

2

∫

Uph+
p(p+ 3)

4

∫

Up−1g2 + a
p+ 7

4

∫

x2Upg

+b
3p+ 5

2(p+ 1)

∫

x4Up+1 = 0.

(C.14)

Subtracting (C.6) from (C.8) gives

−(p− 1)
∫

Up h− p(p− 1)

2

∫

Up−1g2 = a p
∫

x2Upg + b
∫

x4Up+1.

Multiplying by − p+3
2(p−1)

and substituting into (C.14) gives after some algebra

ν
(

2
∫

Uh +
∫

g2
)

= a
6p− 14

4(p− 1)

∫

x2Upg + b
p2 − p− 4

(p+ 1)(p− 1)

∫

x4Up+1.

(C.15)

Therefore, combining

∫

S2 =
∫

U2 + 2N2
∫

Ug +N4
[

2
∫

Uh +
∫

g2
]

+ O(N6),

with (C.13) and (C.15) gives

[1 +m(0)]
2

p−1

∫ [

u(N)
]2

=
∫

S2 =
∫

U2 +N2 a

ν

p− 5

p2 − 1

∫

x2Up+1

+N4
[
a

ν

6p− 14

4(p− 1)

∫

x2Upg +
b

ν

p2 − p− 4

(p+ 1)(p− 1)

∫

x4Up+1
]

+O(N6). (C.16)

Therefore, when p 6= 5
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‖u(N)‖2
2 = [1 +m(0)]−

2

p−1

(

‖U‖2
2 +N2 a

ν

p− 5

p2 − 1

∫

x2Up+1
)

+ O(N4).

(C.17)

When p = 5, the O(N2) term vanishes so by Eq. (C.16) and (C.4), the O(N4)
correction is

‖u(N)‖2
2 =

= [1 +m(0)]−
1

2



‖U‖2
2 +N4

[
a2

ν

∫

x2U5L−1
+ [x2U5] +

2

3

b

ν

∫

x4U6
]


+ O(N6)

=
‖U‖2

2

[1 +m(0)]
1

2

+N4 18[m′′(0)]2
∫

x2U5L−1
+ [x2U5] +m(4)(0)[1 +m(0)]

∫

x4U6

72ν[1 +m(0)]
5

2

+ O(N6)

=
‖U‖2

2

[1 +m(0)]
1

2

− N4

ν

∫

x4U6

72[1 +m(0)]
5

2

[

[m′′(0)]2G5 −m(4)(0)[1 +m(0)]
]

+O(N6). (C.18)

where G5 = −18
∫

x2U5L−1

+
[x2U5]

∫
x4U6

∼= −0.3531.

Remark 27 In [21], Fibich and Wang derived relation (C.18) for the critical
case for arbitrary dimension. However, the expression that appears in [21]
(Eq. (1.12)) has a typographical error. The correct expression is

‖φω‖2
2 =

1

V
d
2 (0)



‖R‖2
2 − ǫ̂4

d
∫

r4R4/d+2

24(d+ 2)V 2(0)

[

[V ′′(0)]2Gd − V (4)(0)V (0)
]

+ O(ǫ̂6)



.

(C.19)

D Perturbation analysis of λ
(N)
0 for N ≪ 1

In this Appendix we solve the eigenvalue problem (4.10) for N ≪ 1
and show that it leads to Eq. (4.11). Let

f
(N)
0 = f

(0)
0 (x) +N2f

(2)
0 (x) + O(N4), (D.1)

λ
(N)
0 =N2λ2 +N4λ4 + O(N6). (D.2)

By appendix C, L
(N)
+ , defined in (4.1) is
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L
(N)
+ =−∂2

x + ν − p

(

1 +m(0) +N2x2m
′′(0)

2

)
(

U +N2 m′′(0)
2
L−1

+ (x2Up)
)p−1

[1 +m(0)]

+O(N4).

Hence, the leading order of the eigenvalue problem (4.10) is

−∂2
xf

(0)
0 + νf

(0)
0 − pUp−1f

(0)
0 = 0,

where U is given by Eq. (2.10). By Eq. (3.21) we get that f
(0)
0 (x) = Ux

which is the eigenfunction of the zero eigenvalue, λ0. The next order
is

− ∂2
xf

(2)
0 + νf

(2)
0 − pUp−1f

(2)
0 = L+f

(2)
0 = λ2Ux + (D.3)

+p
(

m′′(0)

2[1 +m(0)]

)

x2Up−1Ux + p
(

m′′(0)

2[1 +m(0)]

)(

L−1
+

[

x2Up
])

(p− 1)Up−2Ux.

Solvability of Eq. (D.3) is ensured by requiring that the right-hand-
side of Eq. (D.3) is perpendicular to the null space of L+ which is
spanned by Ux. Therefore,

λ2

∫

U2
x + p

m′′(0)

2[1 +m(0)]

∫

x2Up−1U2
x + p(p−1)

m′′(0)

2[1 +m(0)]

∫ (

L−1
+

[

x2Up
])

Up−2 U2
x = 0.

Eliminating λ2 and using Lemma 28 we get that

λ2

∫

U2
x = −p m′′(0)

2[1 +m(0)]

∫

x2Up−1U2
x − m′′(0)

2[1 +m(0)]

∫

x2Up(U − Up) = 0.

Using

Ux = −U tanh(
p− 1

2
x), tanh2(

p− 1

2
x) = 1 − sech2(

p− 1

2
x) = 1 − 2

p+ 1
Up−1,

(D.4)

we get that

λ2

∫

U2
x =− m′′(0)

2[1 +m(0)]

(

p
∫

x2Up−1U2(1 − 2

p+ 1
Up−1) −

∫

x2(Up+1 − U2p)
)

=

=− m′′(0)

2[1 +m(0)]

∫

x2
(

pUp+1 − 2p

p+ 1
U2p − Up+1 + U2p

)

=

=− m′′(0)

2[1 +m(0)]

∫

x2
(

(p− 1)Up+1 + (1 − 2p

p + 1
)U2p

)

=

=−(p− 1)
m′′(0)

2[1 +m(0)]

∫

x2
(

Up+1 − 1

p+ 1
U2p

)

.
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Numerical evaluation of
∫

x2
(

Up+1 − 1
p+1

U2p
)

> 0 shows that it is posi-

tive for all p > 1 (see Fig. D.1). Thus, Eq. (4.11) follows immediately.

5 10
0

40

80

p

∫ x
2  [ 

U
p+

1  −
 U

2p
/(

p+
1)

 ]

Fig. D.1. Numerical evaluation of
∫

x2
(
Up+1 − 1

p+1U2p
)

as a function of p.

E Multiple scales expansion of λ
(N)
0 for N ≫ 1

The eigenvalue problem (4.10) for λ
(N)
0 , the analytical continuation of λ0 = 0

is

[

− d2
x + ν − p(1 +m(Nx))u(N)p−1

(x, ν)
]

f (N)(x; ν) = λ
(N)
0 f (N). (E.1)

In the case of wide beams, by Theorem 3, u(N) = U(x, ν)− 1
N2 [∂

−2
X m(X)]Up +

pτm

N2 L
−1
+ [U2p−1] + O(N−4). Since the solution f (N) is a function of a slow scale

x and a fast scale X = Nx, we can expand f (N) and λ
(N)
0 in a series of powers

of N−1 so that

f (N)(x,X) = f0(x,X) +
1

N
f1(x,X) +

1

N2
f2(x,X) + · · ·,

λ
(N)
0 =

λ1

N
+
λ2

N2
+ · · ·.

As in Section 3.1, we replace dx → ∂x+N∂X so that Eq. (E.1) can be rewritten
as

[

−
(

∂2
x + 2N∂x∂X +N2∂2

X

)

− p(1 +m)(u(N))p−1 + ν
]

f (N) = λ
(N)
0 f (N).

(E.2)

Substituting the expansion for f (N) into (E.2) and equating powers of N yields
the following hierarchy of equations:
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O(N2) : −∂2
Xf0 = 0, (E.3)

O(N) : −∂2
Xf1 = 2∂X∂xf0, (E.4)

O(N0) : −∂2
Xf2 = 2∂X∂xf1 + ∂2

xf0 + (1 +m)pUp−1f0 − νf0,

(E.5)

O(N−1) : −∂2
Xf3 = 2∂X∂xf2 + ∂2

xf1 + (1 +m)pUp−1f1 − νf1 + λ1f0,

(E.6)

O(N−2) : −∂2
Xf4 = 2∂X∂xf3 + ∂2

xf2 + (1 +m)pUp−1f2 − νf2 + λ1f1

+λ2f0 − (1 +m)p(p− 1)Up−2
(

[∂−2
X m]Up − pτmL

−1
+ U2p−1

)

f0,

(E.7)

where τm was defined in Eq. (3.2). We proceed by requiring that fj are periodic
in X. Since the right-hand-side of Eq. (E.3) is zero, by Remark 5, its solution is
f0 = f0,h(x). Consequently, the solution of Eq. (E.4) is f1 = f1,h(x). Solvability
of (E.5) is ensured by setting the average of the right-hand-side of (E.5) equal
to zero. This yields

L+f0,h = 0,

so that f0 = f0,h = Ux(x, ν). Therefore, f2(x,X) satisfies the simplified equa-
tion −∂2

Xf2 = m(X) p Up−1Ux whose solution is

f2 = −p[∂−2
X m]Up−1Ux + f2h(x) = −[∂−2

X m]∂x(Up) + f2,h(x).

Solvability of (E.6) is ensured by setting the X− average of its right-hand-side
equal to zero. This yields

−L+f1,h = λ1f0,h = λ1Ux.

Hence, for the right-hand-side to be perpendicular to the null space of L+,
λ1 = 0 and f1,h = Ux.

Solvability of (E.7) is ensured by setting the X− average of its right-hand-side
equal to zero. Calculating the averages term by term gives

〈∂2
xf2 − νf2 + λ2Ux〉 = ∂2

xf2,h − νf2,h + λ2Ux,

pUp−1 〈(1 +m)f2〉 = pUp−1
〈

(1 +m)(f2,h(x) − p[∂−2
X m]Up−1Ux)

〉

= pUp−1
(

f2,h + τmpUp−1Ux

)

,

−p(p− 1)Up−2Ux

〈

(1 +m)
(

[∂−2
X m]Up − pτmL

−1
+ U2p−1

)〉

= −p(p− 1)Up−2Ux(−τmUp + pτmL
−1
+ U2p−1).

Combining all the above gives
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L+f2,h = pUp−1(τmpUp−1Ux

)

− p(p− 1)Up−2Ux(−τmUp + pτmL
−1
+ [U2p−1)] + λ2Ux

= p2τm U2p−2Ux + p(p− 1)τmU2p−2Ux + p2(p− 1)Up−2UxτmL
−1
+ [U2p−1] + λ2Ux

= p(2p− 1)τmU2p−2Ux + p2(p− 1)Up−2UxτmL
−1
+ [U2p−1] + λ2Ux. (E.8)

Solvability is ensured only if the right-hand-side of Eq. (E.8) is perpendicular
to the null space of L+. Eliminating λ2 gives

λ2 = −pτm
∫ U2

xUp−2[p(p− 1)L−1
+ [U2p−1] + (2p− 1)Up]
∫ U2

x

. (E.9)

In order to proceed we use the following Lemma:

Lemma 28 Let U be given by (2.10) and let L+ = −d2
x + ν − pUp−1(x, ν).

Then, p(p− 1)Up−2U2
x = L+U − L+Up.

Proof: Apply L+ on U and on Up. Then eliminate p(p− 1)Up−2U2
x . 2.

Substituting for the first term on the right-hand-side of (E.9) and using the
fact the L+ is self adjoint gives

λ2 = −pτm
∫ U2p − U3p−1 + (2p− 1)U2

xU2p−2

∫ U2
x

.

Using relations (D.4) gives

λ2 = −pτm
∫

2pU2p − 5p−1
p+1

U3p−1

∫ U2
x

= −pτm
∫ U2p

[

2p− 5p−1
p+1

Up−1
]

∫ U2
x

= 0, (E.10)

where the integral was evaluated analytically (using Maple) for p = 3, 5 and

numerically for other values of p. Thus we conclude that λ
(N)
0 = o(N−2).

F Proof of Corollary 24

¿From Eq. (4.18) it follows that the acceleration of the center of mass of the
initial condition φ0 = u(N)(x− δc) is given by

d2 〈x〉
dz2

∣
∣
∣
∣
z=0

=
4N

p+ 1

1
∫ |φ0|2

A(δc),

where
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A(δc) ≡
∫

m′(Nx) u(N)p+1
(x− δc) dx =

∫

m′(N(y + δc)) u
(N)p+1

(y) dy.

Therefore,

A(δc) ∼= A(0) + δc
d

dδc
A(δc)

∣
∣
∣
δc=0

= δcN
∫

m′′(Nx)u(N)p+1
(x) dx.

If the width of the input beam is much smaller than the microstructure period
(N ≪ 1), then, m′′ can be replaced with its value at x = 0. Hence,

sign(A(δ)) = sign(δc ·m′′(0)). (F.1)

Therefore, a beam close to a local minimum of the microstructure (m′′(0) > 0)
will accelerate away from it (i.e., towards the nearest maximum) and a beam
close to a local maximum of the microstructure (m′′(0) < 0) will move towards
it.
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