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Abstract

We show that Hamiltonian partial differential equations on compact spatial domains can display transient radiative b
usually associated with infinite domains. This is done by considering a model of a single oscillator coupled to a wa
which damps due to the resonant coupling of the oscillator with a discrete frequency with the continuous spectru
field. The analysis carried out illustrates that despite the “discretization” of the continuous spectrum due to the finitene
domain, a remnant of the resonance mechanism persists. In particular, this explains how numerical computations on
domains accurately simulate, on large but finite time scales, phenomena associated with infinite spatial domains. N
simulations in the present model show good agreement with our theoretical predictions.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

Hamiltonian partial differential equations (PDEs) defined on unbounded spatial domains have solution
may exhibit two kinds of behavior:

• bound state behavior, characterized by spatially localized and time-periodic or perhaps more compl
temporal behavior, and

• radiative behavior, characterized by the escape of energy from any fixed spatially bounded set, or equiv
time-decay of a “local energy”.
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Bound state behavior is associated with discrete spectrum and the radiative behavior with continuous s
There are many mathematical models in which these two types of behavior are coupled by, for exampl
or nonlinear effects, or time-parametric forcing; see, for example,[1–12]. Nonlinearity or time parametric forcin
easily gives rise to frequencies which lie in the continuous spectrum. Thus, discrete modes couple to the co
resulting in energy transfer from bound states to radiation modes; the continuum modes act as a “conserv
bath”.

A natural question arises:can systems with discrete spectrum display a radiative character as well?On the
one hand, such energy transfer is based on the coupling of discrete and continuum modes, and where t
continuous spectrum, one might not expect radiative energy transfer. On the other hand, it is reasonable
that for an initial condition of fixed spatial support the initial stages of the evolution of this initial condition
be well-approximated by its evolution on a sufficiently large compact spatial domain, with, say, periodic bo
conditions, for which there is only discrete spectrum. This is precisely what one exploits in numerical simu
one can solve the initial value problem for PDEs posed on an infinite domain accurately for times of orderT on a
finite domain of size which is dependent onT and the initial data. Examples of numerical work, in which radia
effects are simulated are the works of[13] on the sine-Gordon equation, of[14] on theφ4 model (see also[15] for
a more recent discussion of these examples), and the more recent examples of[16] in the context of the nonlinea
Schrödinger equation.

The purpose of this note is to resolve the apparent paradox by considering a concrete example wh
calculations can be carried out explicitly. In particular, we consider a particle-wave field model arising[4].
This system hasmetastable states, bound-state like solutions which slowly decay to zero as time advance
consider the problem on a finite domain and show how to express the dynamics as those on an infinite dom
corrections due to finiteness. These corrections tend to zero in the infinite volume limit. Also, for fixed initi
and time intervals, if the domain is sufficiently large these finiteness corrections are negligible.

Our presentation is structured as follows: in Section2, we present the model and its main features. In Sectio3,
we analyze the model and compute the radiation rate in the finite system. In Section4, we present numerica
computations and compare them with theoretical predictions. Finally, in Section5, we briefly summarize ou
findings and present some interesting directions for future studies.

2. The oscillator–wave field model

Our model consists of a PDE coupled to an ordinary differential equation (ODE); the PDE is a wave e
governingη(x, t), a 2L periodic function, whereas the ODE is an oscillator equation, governing an amplitudea(t),
as follows:

(1)
(
∂2
t + B2)η(x, t) = εan(t)φ(x),

(2)ä(t) + Ω2a(t) = nεan−1(t)

L∫
−L

φ(x)η(x, t) dx,

where

(3)B2 = −∂2
x + 1,

φ(x) is a 2L-periodicL2 function andn � 1 is an integer. Our analysis extends to a general class of wave equ
defined byB = ω(p),p = −i∇x , whereω(p) is real-valued. Forε = 0 the wave field and oscillator are decoupl
while for ε �= 0 they interact.
U
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The system(1) is a Hamiltonian one with a conserved energy functional

H(t) = 1

2

∫
η2

t (x, t) + η2
x(x, t) + η2(x, t) dx + 1

2

(
ȧ2(t) + Ω2a2(t)

) − εan

∫
φ(x)η(x, t) dx

(4)= Hwave(t) + Hoscillator(t) + Hcoupling(t).

For the infinite domain,L = ∞, this model arises naturally as a reduction of a class of nonlinear Klein–Go
equations with metastable states, studied in[4]. The variablea(t) describes the amplitude of the time-periodic a
spatially localized component of the full solution andη(x, t) its dispersive part. It is shown that fort → ∞, a(t)

decays to zero slowly. Forn = 3 and 3Ω > 1, the very long time decay ofa(t) is governed essentially by a clos
equation, in which the effect of the dispersive wave field is modeled by an effective dissipation[4]:

(5)ä + (
Ω2 + ε2O

(|a|2))a ∼ −Γ a4ȧ, Γ = O
(
ε2) � 0.

Γ is the nonlinear radiation damping coefficient, which is generically strictly positive. In terms of a slowly va
complex envelope function (see Eq.(14)), Eq.(5) is equivalent to

(6)Ȧ(t) ∼ (iΛ − Γ )|A|4A.

The mechanism for this internal damping is that the unperturbed (ε = 0) oscillation of frequencyΩ leads, via
the cubic nonlinearity, to frequencies±3Ω and higher harmonics. Although the frequencies of the unpertu
problem,±Ω lie in the gap of the continuous spectrum of±B, {E: |E| � 1}, the nonlinearity induced third
harmonic,±3Ω , does fall in the continuous spectrum. This coupling of discrete to continuum modes is resp
for the energy transfer from localized to radiation modes.

In a similar fashion, this model is relevant to the dynamics of any dispersive nonlinear PDE or diffe
difference equation (DDE) that has internal modes[17,18] due to the (nonlinearity induced) coupling of vario
harmonics of the point spectrum eigenmodes with the continuous spectrum; furthermore, its dynamics are
to the time evolution of such systems (and even conjectured to be relevant to issues of the integrabilit
PDE/DDE[19,20]).

Our goal is to study the system on thefinite interval [−L,L] and to show howtransientradiative behavior
emerges for this problem, which at small amplitude, is described in terms of a basis of states correspo
discretespectrum. We shall derive the analogue of Eq.(6) (see also,(5)) for finite L.

3. Analysis of the model

The analysis proceeds by Fourier series, where we use the following conventions:

(7)f (x) =
∞∑

m=−∞
fme

iπmx
L , fm = 1

2L

L∫
−L

f (x)e− iπmx
L dx.

We consider the system(1)–(2)with initial conditions, in which the oscillator is excited but not the wave field:

(8)η(x,0) = 0, ηt (x,0) = 0,

(9)a(0) = a0, ȧ(0) = a1.

Expansion ofη(x, t) in a Fourier series, we obtain the following system of equations for theηm(t):

(10)ηm,tt + ω2
mηm = εanφm, m = 0,±1,±2, . . . .

Here,

(11)ωm =
√

k2
m + 1, km = πm

L
.

U
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3.1. Reduction to a closed oscillator equation

The solution of(10)with the initial data(8) is given by

(12)ηm(t) = ε
φm

ωm

t∫
0

an(s)sin
(
ωm(t − s)

)
ds.

Substitution of(12) into (2) yields the following integro-differential equation fora(t):

(13)ä + Ω2a = 2nε2an−1L

∞∑
m=−∞

|φm|2
ωm

t∫
0

an(s)sin
(
ωm(t − s)

)
ds.

We used the fact thatφ is real valued and soφ−mφm = |φm|2.
If the parameterε is small, we anticipate thata(t) will consist of

(i) “fast oscillations” coming from the natural frequencyΩ and its nonlinearly generated harmonics, as well a
(ii) slow variations on top of the fast modes.

Thus, we extract froma(t) the dominant “fast oscillations” of frequencyΩ

(14)a(t) = A(t)eiΩt + A∗(t)e−iΩt .

Imposing the constraint

(15)Ȧ(t)eiΩt + Ȧ∗(t)e−iΩt = 0,

we find that Eq.(2) for a(t) is equivalent to the following equation for the complex amplitudeA(t):

(16)Ȧ(t) = ne−iΩt

iΩ
ε2L

(
AeiΩt + A∗e−iΩt

)n−1 ·
∞∑

m=−∞

|φm|2
ωm

t∫
0

sin
(
ωm(t − s)

)(
AeiΩs + A∗e−iΩs

)n
ds.

3.2. Dominant resonant behavior

Eq. (16) is an exact reduction of the oscillator dynamics to a closed-form equation for the complex am
A(t). In this section, we make various approximations intended to single out the terms which are relevant to
transfer from the oscillator to the wave field. We assume that onlynΩ lies in the continuous spectrum of th
operator,B, while all lower harmonics lie in its spectral gap1:

(17)|nΩ| > 1.

Keeping only these relevant terms, we find that Eq.(16)simplifies to

(18)Ȧ(t) ∼ −nε2L

2Ω
A∗(n−1)(t)

∞∑
m=−∞

|φm|2
ωm

e−i(nΩ−ωm)t

t∫
0

Ane−i(ωm−nΩ)s ds.

1 Terms giving rise to frequencies which lie in the spectral gap and do not resonate with the continuum can be systematically re
near-identity changes of variables; see, for example,[4,22].
U
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Inserting the explicit expression for the Fourier coefficients,φm, gives

(19)Ȧ(t) = −nε2

8πΩ
A∗(n−1)(t)

∞∑
m=−∞

π

L

1

ωm

∣∣∣∣∣
L∫

−L

φ(x)e
−iπmx

L dx

∣∣∣∣∣
2

e−i(nΩ−ωm)t

t∫
0

Ane−i(ωm−nΩ)s ds.

Note that the sum in(18)can be written in the form of a Riemann sum
∑∞

m=−∞ f (mh)h, where

(20)f (y) = e−i(nΩ−ω(y))t

ω(y)

∣∣FLφ(y)
∣∣2 t∫

0

Ane−i(ω(y)−nΩ)s ds,

wherey = mh,h = π/L,ω(y) = √
1+ y2 and

(21)FLφ(y) =
L∫

−L

φ(x)e−ixy dx.

The key to relating the finiteL to infinite L dynamics is to re-express this sum using the Poisson summ
formula[21]:

(22)
∞∑

m=−∞
f (mh)h =

∞∑
m=−∞

F[f ](m/h),

where

(23)F[f ](ξ) =
∫
R

e−iξyf (y) dy

is the Fourier transform off . For (22) to hold, it suffices thatf andF[f ] have sufficient decay at infinity. From
the properties ofφ(y) andω(y), we can verify the bounds

(24)
∣∣f (y)

∣∣ � C
(
1+ |y|)−2(‖φ‖∞ + ‖φ′‖1

)
,

(25)
∣∣F[f ](ξ)

∣∣ � C1
(
1+ |ξ |)−2(1+ |t |)3

,

whereC1 depends on the energy of the initial data,H(0). The latter estimate uses|∂r
yω(y)| � C(1+ |y|)−r+1, r =

0,1, |∂r
yω(y)| � C(1+ |y|)−r−1, r � 2, and|FLφ(y)| � C

1+|y| (‖xrφ(x)‖∞ + ‖ d
dx

(xrφ(x))‖1), for r � 0.

The Poisson summation formula yields

(26)Ȧ(t) = −nε2

8πΩ
A∗(n−1)

(
F[f ](0) +

∑
m �=0

F[f ](mL/π)

)
.

We will show that first term in brackets,F[f ](0), yields the infinite volume (L = ∞) result, while the remaining
sum overm �= 0 represents corrections due to finiteL. By the bound(25),

(27)

∣∣∣∣∑
m �=0

F[f ](mL/π)

∣∣∣∣ � C1
(
1+ |t |)3 ∑

m �=0

(
1+

∣∣∣∣mL

π

∣∣∣∣
)−2

� C1
(
1+ |t |)3

L−2.

We now focus on the leading term, which we will now see corresponds to theL = ∞ limit,

(28)F[f ](0) =
∞∫ ∣∣FLφ(y)

∣∣2e−i(nΩ−ω(y))t

ω(y)

t∫
An(s)ei(nΩ−ω(y))s ds dy.
U

−∞ 0
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Now, we consider the innerds integral in(28). We have

t∫
0

An(s)ei(nΩ−ω(y))s ds

= lim
ζ→0

t∫
0

An(s)ei(nΩ−ω(y)−iζ )s ds

(29)= lim
ζ→0

(
An(t)(ei(nΩ−ω(y)−iζ )t − 1)

i(nΩ − ω(y) − iζ )
− n

t∫
0

An−1(s)Ȧ(s)
(ei(nΩ−ω(y)−iζ )s − 1)

i(nΩ − ω(y) − iζ )
ds

)
.

By (26), the integral on the right-hand side of(29) is O(ε2) and therefore contributes only at orderO(ε4). There-
fore, the dominant contribution to(29) is

(30)

t∫
0

An(s)ei(nΩ−ω(y))s ds ∼ lim
ζ→0

An(t)(ei(nΩ−ω(y)−iζ )t − 1)

i(nΩ − ω(y) − iζ )
.

Substitution of(30) into (28)gives

F[f ](0) ∼ An(t)

( ∞∫
−∞

∣∣FLφ(y)
∣∣2 1

iω(y)(nΩ − ω(y) − i0)
dy

(31)−
∞∫

−∞

∣∣FLφ(y)
∣∣2 e−i(nΩ−ω(y))t

iω(y)(nΩ − ω(y) − i0)
dy

)
.

The second term contributes a part that is decaying ast → ∞ [4] so the first term dominates and we have:

(32)F[f ](0) ∼ An(t)

∞∫
−∞

∣∣FLφ(y)
∣∣2 1

iω(y)(nΩ − ω(y) − i0)
dy.

The expression(32)can be evaluated using the classical Plemelj distributional formula:

(33)lim
ζ↓0

1

x − iζ
= P.V.

1

x
+ iπδ(x).

We obtain

F[f ](0) ∼ lim
ζ→0

An(t)

∞∫
−∞

∣∣FLφ(y)
∣∣2 eζ t

iω(y)(nΩ − ω(y) − iζ )
dy

(34)= −iAn(t)P.V.

∞∫
−∞

|FLφ(y)|2
ω(y)(nΩ − ω(y))

dy + πAn(t)

∞∫
−∞

|FLφ(y)|2
ω(y)

δ
(
nΩ − ω(y)

)
dy.

Evaluation of the second term in(34)gives

(35)F[f ](0) ∼
[
−iP.V.

∞∫ |FLφ(y)|2
ω(y)(nΩ − ω(y))

dy + π

( ∑
1

) |FLφ(ω−1(nΩ))|2
ω−1(nΩ)

]
An(t).
U−∞ {y∈R: ω(y)=nΩ}
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Finally, if we use(35) in (26)we obtain

(36)Ȧ(t) ∼ (iΛ − Γ )|A|2(n−1)A,

whereΛ = O(ε2) is real and, forf ∈ Cτ ,

(37)ΓL ≡ Γ∞ +O
(
L−τ

) = nε2

8Ω

( ∑
{y∈R: ω(y)=nΩ}

1

) |Fφ(ω−1(nΩ))|2
ω−1(nΩ)

+O
(
L−τ

)
.

In the special case of the Klein–Gordon equation, whereωKG(y) = √
1+ y2, there are two distinct solutions o

ωKG(y) = nΩ and we obtain

(38)ΓKG,∞ = nε2

4Ω
√

(nΩ)2 − 1

∣∣Fφ
(
ω−1(nΩ)

)∣∣2 +O
(
L−τ

)
.

Summary. Let T > 0 be arbitrary and letε be sufficiently small. Consider the dynamics(1)–(2)on [−L,L] with
order one initial data(8)–(9). If L is chosen so thatT 3/L2 is sufficiently small, then the initial value proble
starting withO(1) energy in the bound state, i.e. and zero(or negligible) energy in the dispersive part, is govern
by (36)–(37)on the time interval0� t � T/ε2.

4. Verification via numerical simulations

In this section we present typical numerical simulations, which validate the leading order behavior o
analytically. We consider the system of Eqs.(1), (2), with B2 = I − ∂2

x , n = 1 with initial dataa(0) = 0, ȧ(0) = 1,
η(x,0) = ηt (x,0) = 0. Thus,ω(y) = (1 + y2)1/2. φ(x) = exp(−x2/2) is selected as a typical Gaussian kerne
interaction. For the particular example displayed inFig. 1, we chooseL = 500 andε = 0.1 andΩ = 1.2. Since
Ω = 1.2 > 1, the unperturbed frequencies±Ω themselves, are embedded in the continuous spectrum and
the decay predicted by Eq.(36)should be (a modulated) exponential in good agreement with the findings ofFig. 1.
The upper plot inFig. 1 demonstrates the transfer of energy from the oscillator to the wave field and res
transient exponential decay of the oscillator energy. The lower plot inFig. 1, a plot of the evolving logarithm of th
oscillator energy (solid curve) and its best linear approximation (dashed line), illustrates the transient exp
behavior more directly.

We performed numerical simulations for various values ofL and calculated the slope,Snumerical, of the best
linear fit of the logarithm of the oscillator energy, is given by

(39)Hoscillator(t) = 1

2

(
ȧ2 + Ω2a2) = 2Ω2|A|2.

In this example, the reduced oscillator equation is of the formȦ ∼ (iΛKG − ΓKG)A, which implies∂t |A|2 ∼
−2ΓKG|A|2. Therefore, we must have

(40)Snumerical∼ d

dt
logHoscillator∼ −2ΓKG.

We find fairly good agreement between the analytical result presented in the previous section and our n
computations; in particular, for largeL we observe:Snumerical∼ 0.0237, while 2ΓKG ∼ 0.0252, whereΓKG is given
by the theoretical expression(38). The relative error is less than 6%.
U
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Fig. 1. The top panel shows the time evolution of the oscillator energy,Hoscillator(t) (solid line), the wave field energy,Hwave(t) (dashed line)
and the total energy,H(t) = H(0) = 0.5 (dash-dotted, which is indistinguishable from the lineE = 0.5). The bottom panel shows the tim
evolution of the logarithm of the oscillator energy, illustrating its practically exponential dependence on time.

5. Summary and discussion

In this Letter we considered a coupled oscillator–wave field model of interactions between discrete (boun
modes and continuum (radiation) modes. Resonant interaction of discrete and continuum modes is known
in energy transfer from bound states to radiation. Although, for a bounded spatial domain of sizeL the spectrum is
all discrete, characteristics of the infiniteL limit, for which there is continuous spectrum, emerge in the large
finite time transient dynamics. In particular, we derivetransientradiative energy transfer by obtaining a descript
U
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of the bound state dynamics in terms of the infinite domain limit (L = ∞) description plusO(L−τ ) corrections.
A key tool in the derivation is the Poisson summation formula. Our analytical predictions were tested again
numerical simulations of the full oscillator–wave field model and were found to be in good agreement. It
be particularly interesting to examine such effects systematically in the context of more complex models
ones where the internal and radiation modes exist in the linearization around a coherent structure, and the
or collision dynamics of the coherent structure(s) is monitored (together with the projection of the dynam
the internal mode eigenspace). It would also be of interest to understand the resonance picture in settin
multiple internal modes exist and various combinations of their frequencies may give rise to resonance
studies are currently in progress.
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