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1. Introduction and outline

An important area of photonics concerns the propagation and control of light in non-

homogeneous or nonlinear media. This is an area of great importance due to the

range of physical effects to be exploited in the design of devices for communication

and computing, as well as in the study of fundamental phenomena. Progress has

involved a rich interplay of experiment, modeling, computation and analysis, which

have impact beyond the specific motivating questions. Indeed, the models and

analysis that we discuss are closely related those arising in the study of Bose-Einstein

condensation in the regime governed by Gross-Pitaevskii type equations.

The propagation of light in a medium is governed by Maxwell’s equations with

appropriate linear and nonlinear constitutive relations. We consider a setting where

there is a separation of scales in the electric field; the carrier wavelength is short

compared to a wave envelope width; see Figure 1. An approximate description of

the field evolution, in terms of its envelope is therefore very natural and effective.

In this article we discuss various resonance phenomena leading to and playing a role

in the dynamics of such envelope equations.

We begin with the modeling of optical pulses traveling through a nonlinear and

periodic medium. At Bragg resonance, when the carrier wavelength and medium

periodicity satisfy a resonance relation, the wave envelope evolves according to a

system of dispersive nonlinear partial differential equations (PDEs), the nonlinear

coupled mode equations (NLCME). NLCME has gap soliton solutions. These are

localized states with frequencies in a photonic band gap. Theory predicts that

these can travel at any speed less than the speed of light. It is of fundamental and

practical interest to understand whether one can “trap” such soliton pulses. This

would have potential application to optical buffers and computing.

We explore strategies for soliton capture via the insertion of suitably designed

localized defects. The dynamics are governed by a variant of NLCME, but now with

variable coefficient “potentials”, analogous to the nonlinear Schrödinger / Gross-

Pitaevskii (NLS-GP) equation. Nonlinear scattering interactions of solitons and
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defect modes, associated with defects of the periodic structure, are explored numer-

ically and a picture of soliton capture, in terms of resonant energy transfer from

incoming solitons to “pinned” nonlinear defect states, emerges. Roughly speaking,

soliton-defect nonlinear scattering is marked by the approach of an incoming soli-

ton, interaction with defect modes, trapping of some energy by the defect, and a

emission of an outgoing soliton and radiation. Finite dimensional models of such

soliton capture have been considered, for example, in Refs. 7, 18 and references

therein.

In the last part of this article we consider, for the NLS-GP equation, the large

time evolution of the trapped energy, that part which remains localized around

the defect. We prove, that generic small amplitude initial conditions converge,

as t → ±∞, toward a nonlinear ground state defect mode 35,36. Experimental

verification of this ground state selection, described in Theorem 5.2, was recently

made in nonlinear optical waveguides by the group of Y. Silberberg at the Weizmann

Institute 27.

The structure of this article is as follows:

Section 2: Nonlinear waves in periodic media at Bragg resonance - envelope

equations

Section 3: Coherent structures - gap solitons, nonlinear defect modes

Section 4: Controlling nonlinear light pulses - stopping light on a defect

Section 5: Large time distribution of trapped energy of NLS / GP – ground

state selection
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in collaboration with: R.H. Goodman, P.J. Holmes, R.E. Slusher and A. Soffer.

This work was supported in part by US National Science Foundation grants DMS-

0412305 and DMS-0313890.

2. Nonlinear waves at Bragg resonance - envelope equations

An optical fiber grating is an optical waveguide, whose refractive index varies peri-

odically along its length. Pulse propagation through a optical fiber grating, exhibit-

ing the nonlinear Kerr effect 3, is approximately governed by the nonlinear wave

equation, with a refractive index having periodic and nonlinear parts:

∂2
t

[
n2(z, E)E(z, t)

]
= ∂2

zE (2.1)

n2 = n2
0 + εκ cos(

2π

d
z) + n2E

2 (2.2)

The coefficient εκ is the strength of the grating, a measure of the index contrast.

The coefficient, n2, is the Kerr nonlinearity coefficient.

For typical pulse-widths in experiments with a carrier wavelength of 1.5 µm

(1µm = 10−6m), there are O(105) oscillations under the wave envelope. This
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electromagnetic field is best viewed as a slowly varying envelope, modulating a

highly oscillatory carrier wave; see Figure 1. In a linear homogeneous medium
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Figure 1. Electric field of an optical pulse consisting of a short wave-length carrier and a slowly
varying, spatially localized, envelope

(εκ = 0, n2 = 0) solutions of the wave equation, 2.1, are superpositions of decoupled

forward and backward waves, E(z, t) = Ef (z, t)+Eb(z, t), where (n0∂t−∂z)Ef = 0

and (n0∂t + ∂z)Eb = 0. Alternatively, the field can viewed as a superposition of

plane waves:

E(z, t) = E+ ei(kz−ω(k)t) + E− e−i(kz+ω(k)t) + c.c. . (2.3)

Here, ω(k) = k/n0, E± are the forward and backward amplitudes, and c.c. denotes

the complex conjugate of the preceding expression. Thus propagation of waves in

a homogeneous medium is non-dispersive; all wavelengths, λ = 2π/k travel at the

same speed, 1/n0.

For a periodic structure, εκ 6= 0, there are significant differences. There are

certain wavelength intervals, photonic (pass) bands, for which waves are transmitted

with little excitation of back-reflection. In other wavelength intervals, the photonic

band gaps, significant back-reflection occurs. The simplest case of Bragg resonance

occurs when the carrier wavelength, λ is twice the medium periodicity, d:

λB = 2d, kB =
2π

λB
=
π

d
. (2.4)
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For small ε the solution can be represented, on non-trivial time-scales, by (2.3),

where E± are no longer constants, but rather evolve slowly according to coupled

mode equations, a system of PDEs , which tracks the coupled evolution of backward

and forward waves. As we shall see below, propagation in a periodic structure is

dispersive; waves of different wavelengths travel at different speeds.

We now introduce nonlinearity through the refractive index (2.2), n2 > 0, and

assume field amplitudes, chosen to balance the linear index modulations. This es-

tablishes a balance between dispersive and nonlinear effects. We encode the multiple

scale nature of the problem in terms of a small parameter ε, by the relations:

Pulse width ∼ ε−1, Pulse amplitude ∼ ε1/2, Carrier wavelength ∼ 1;

see Figure 2. The electric field then has the form

O(ε−1) 

O(ε1/2) 

n−n
0
 

O(ε) 

Figure 2. Scalings of pulse width, amplitude and carrier wavelength.

Eε ∼ ε
1

2

(

E+(Z, T )ei(kBz−ωBt) + E−(Z, T )e−i(kBz+ωBt)
)

+ c.c.

Z = εz, T = εt, (2.5)

where the amplitudes E+(Z, T ) and E−(Z, T ) satisfy the Nonlinear Coupled Mode

Equations (NLCME)

i(∂T + ∂Z)E+ + κE− + g(|E+|
2 + 2|E−|

2)E+ = 0

i(∂T − ∂Z)E− + κE+ + g(|E−|
2 + 2|E+|

2)E− = 0, g > 0. (2.6)

See, for example, Refs. 17 for an overview. A result on the validity of NLCME, as

an approximation to solutions of a nonlinear wave system at Bragg resonance, is

the following 17:

Theorem 2.1. Solutions E±(Z, T ) of the nonlinear coupled mode equations (NL-

CME) yield H1(IR) accurate approximations to solutions of the Anharmonic
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Maxwell-Lorentz model on a time scale of physical interest. Specifically,

Eε(z, t) − ℜ ε
1

2

(

E+(εz, εt)ei(kBz−ωBt) + E−(εz, εt)e−i(kBz+ωBt)
)

is O(ε) in H1(IR) for t ∼ O(ε−1),

3. Coherent structures

Note that the linearization of (2.6) about the zero state leads to a linear dispersive

equation:

i(∂T + ∂Z)E+ + κE− = 0, i(∂T − ∂Z)E− + κE+ = 0. (3.1)

Indeed, (3.1) has plane waves of the form: ~ve−iΩT with resulting dispersion relation,

Ω = Ω(Q) given by

Ω2 = Q2 + κ2.

Note the gap in the spectrum of admissible plane waves; there are no plane waves

with wave-numbers in the interval [−κ, κ]. This corresponds to the fundamental

(lowest energy) gap in the spectrum of the Helmholtz wave equation, associated

with (2.1) for n2 = 0.

Solitary wave solutions of (2.6) can be sought in the

form (E−(Z;ω), E+(Z;ω))e−iωt. Explicit solutions were given in Ref. 9, 1, by a

generalization of the soliton-form for the massive Thirring (integrable) equation .

For each ω in the interval (photonic band gap) (−κ, κ), there is a solitary wave

of finite L2 norm (optical power). Therefore, these solitary waves are called gap

solitons. A bifurcation diagram for gap solitons is displayed in Figure 3. In fact, a

family of gap solitons can be found, which travel at any speed 0 ≤ v < c.

Experiments by Slusher et. al. (1997) have explored nonlinear propagation of

light in periodic structures at Bragg resonance in fiber gratings. They observe gap

soliton propagation with speeds as slow as 50% of the speed of light 14.

Can a gap solitons propagating in a periodic structure be captured by

insertion of appropriately engineered defects?

The approach to this question, taken in Ref. 19, is discussed in the following

section and leads to some basic questions in the nonlinear scattering of coherent

structures.

4. Controlling nonlinear pulses

A simple model of a nonlinear periodic structure with a localized defect is given by

the generalization of (2.2)

n2 = n2
0(εz) + εκ(εz) cos

(
2π

d
z + Φ(εz)

)

+ n2E
2 (4.1)
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|E+|2 + |E−|2 dZ vs. ω for ω ∈ (−κ, κ).

Here, n0(Z), κ(Z) and Φ(Z) are now slowly varying parametric functions, which

approach constant limits away from some some compact set. Schematic plots of

background linear refractive indices are shown in Figure 4. Now, in a manner

Figure 4. Linear refractive index of a periodic medium with a localized defect for two sets of
parametric functions n0(εz), κ(εz) and Φ(εz)

analogous to the derivation of NLCME (2.6), we obtain the following generalization

governing propagation in periodic media with defects 19:

i(∂T + ∂Z)E+ + κ(Z)E− +W (Z)E+ + g(|E+|
2 + 2|E−|

2)E+ = 0

i(∂T − ∂Z)E− + κ(Z)E+ +W (Z)E− + g(|E−|
2 + 2|E+|

2)E− = 0 (4.2)
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The parametric function W (Z) can be computed from the functions κ(·),Φ(·) and

n0(·), which define the linear refractive index 19.

4.1. Nonlinear scattering

We have numerically investigated the interaction of incoming gap solitons, of differ-

ent amplitudes and phases, with a variety of defects. Some representative results 19

of such simulations appear in Figures 5 and 6; see also Ref. 18. Simulations show
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Figure 5. Reflection and transmission of gap soliton

a soliton incident on the defect and the resulting redistibution of its energy into (a)

a reflected soliton, (b) localized states within the defect region, (c) a transmitted

soliton and (d) outgoing radiation.
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Figure 6. Partial capture and capture of gap soliton

We next identify these localized (pinned) states within the defect region as being

nonlinear defect modes related to the background linear refractive index.

4.2. Nonlinear defect modes

Nonlinear defect modes are standing wave solutions of (4.2), which are spa-

tially localized (“pinned”) at the defect. Setting (E+(Z, T ), E−(Z, T ) =

(E+(Z), EZ(Z))e−iωT , we have

(ω + i∂Z)E+ + κ(Z)E− +W (Z)E+ + g(|E+|
2 + 2|E−|

2)E+ = 0

(ω − i∂Z)E− + κ(Z)E+ +W (Z)E− + g(|E−|
2 + 2|E+|

2))E− = 0 (4.3)

Consider first the linearization of (4.2) about the zero state. We have

i(∂T + ∂Z)E+ + κ(Z)E− +W (Z)E+ = 0

i(∂T − ∂Z)E− + κ(Z)E+ +W (Z)E− = 0 (4.4)
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Linear defect modes are solutions of (4.4) of the form E± = e−iΩTF±(Z; Ω) with

F ∈ L2, or equivalently are L2 eigenstates of the self-adjoint linear operator,

iσ3∂Z + κ(Z)σ2 + W (Z),

where σ2 and σ3 are standard Pauli matrices. Thus,

(Ω + i∂Z)F+ + κ(Z)F− +W (Z)F+ = 0

(Ω − i∂Z)F− + κ(Z)F+ +W (Z)F− = 0 (4.5)

Remark 4.1. Illustrated in Figure 4 are two different linear periodic structures

with defects, (4.1) with n2 = 0, for which the (envelope) spectral problem (4.5) is

identical.

In analogy with a result for the nonlinear Schrödinger / Gross-Pitaevskii equa-

tion ( see section 5) 28, we have 19:

Theorem 4.1. Nonlinear defect modes of (4.2) bifurcate from the zero state at the

linear discrete eigenvalues of the eigenvalue problem (4.5). These are standing wave

states which are localized or “pinned” at the defect site.

Figure 7 shows two branches of states. The dark curve corresponds to gap solitons

for translation invariant equation (2.6); see also Figure 3. These bifurcate from the

zero state at the edge of the continuous spectrum. The lighter curve corresponds

to a family of nonlinear defect states bifurcating from the zero state at the eigen-

value, ω = −1, of the linear eigenvalue problem (4.5). Such states have recently

been considered as well for a two-dimensional variant of (4.2); see Ref. 13. Note

that if the linear problem (4.5) has multiple defect states, then there are multiple

branches bifurcating from the linear eigenvalues 19,20. In section 5 we consider,

for the NLS-GP equation, the implications for the detailed nonlinear dynamics of

multiple branches of defect states.

The problem of capturing a gap soliton by a defect can be seen in terms of

the transfer of energy of an incoming soliton to nonlinear defect states. For low

velocity incoming solitons, we find that an incoming soliton transfers its energy to

a nonlinear defect state (is trapped) if there is an energetically accessible (lower L2

norm) defect state of approximately the same frequency with which it can resonate
19,18; see Figure 7. Figures 8 and 9 show the location of the soliton center of mass,

zcm, as a function of time in the non-resonant and resonant cases. In the non-

resonant case, the soliton has been reflected, while in the resonant case, much of its

energy has been trapped. The lower plots are of mode projections and indicate the

degree of energy exchange between soliton and defect mode.

A rigorous theory of soliton capture is an open problem. In the recent papers,

Refs. 24, 25, fast soliton scattering from a delta-function defect is studied analyti-

cally and numerically.
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5. Large time evolution of a captured soliton - ground state

selection for NLS / G-P

Suppose a soliton is trapped by a defect, say as in Figure 6. The defect may have

multiple linear bound states and therefore multiple bifurcating nonlinear bound



September 27, 2006 13:3 Proceedings Trim Size: 9.75in x 6.5in ws-procs975x65

11

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

t

Z
cm

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

t

Figure 9. Resonance: Strong energy transfer to defect mode

state families. These compete for the soliton’s energy. In this section we consider

the question of how the energy distributes among the available modes in the large

time limit.

This is a question of general interest and we consider it in the context of the

nonlinear Schrödinger / Gross-Pitaevskii (NLS-GP) equation:

i∂tΦ = ( −∆ + V (x) ) Φ + g|Φ|2Φ

= HΦ + g|Φ|2Φ (5.1)

Φ(x, 0) = Φ0(x), x ∈ IR3, small norm and localized.

Here, V (x) is a potential which decays rapidly as |x| → ∞.

NLS-GP can be derived in the context of nonlinear optics 3,37 and in the study

of the macroscopic behavior of a large ensemble of quantum particles (Bosons), e.g.

Bose-Einstein condensates (BEC); see, for example, Refs. 15, 2. In (5.1), g is a

constant, corresponding to, in nonlinear optics, the negative of the Kerr nonlinear

coefficient and, for Bose-Einstein condensation, the scattering length of the inter-

particle quantum potential .

Assume that H has two bound states:

Hψj∗ = Ej∗ψj∗, ‖ψj∗‖2 = 1, j = 0, 1

First consider the linear case, where g = 0. If Φ0 is sufficiently localized, then the

solution decomposes into a spatially localized, time quasi-periodic part and a part
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which decays to zero (in L∞) 26,42 due to dispersion, as t→ ±∞:

Φ(x, t) = c0e
−iE0∗tψ0∗(x) + c1e

−iE1∗tψ1∗(x)
︸ ︷︷ ︸

quasi−periodic

+ O(t−
3

2 ).

How does the solution of NLS/G-P (g 6= 0) resolve as t→ ∞?

To study this question, we begin by introducing the nonlinear bound states or

defect modes of the NLS / Gross Pitaevskii Equation. These are solutions of (5.1)

of the form Ψ(x;E)e−iEt, where

HΨ + g|Ψ|2Ψ = EΨ

The following result, analogous to Theorem 4.1, shows that there are families of

nonlinear bound states, which bifurcate from the discrete eigenstates of H 28.

Theorem 5.1. There exist nonlinear bound states bifurcating from the zero state

at the linear eigenvalues, Ej∗.

Ψαj
= αj

(
ψj∗ + O(|αj∗|

2)
)
, αj ∈ C

Ej = Ej∗ + O(|αj∗|
2), |αj | → 0 (5.2)

How do the nonlinear bound states Ψα0
and Ψα1

participate in the dy-

namics on small, intermediate and infinite time scales?

The following theorem addresses the above questions 35,36.

Theorem 5.2. For generic small initial data, the solution of the nonlinear

Schrödinger / Gross-Pitaevskii equation (NLS-GP) (5.1) evolves toward a nonlinear

ground state as t→ ±∞.

More precisely, assume

(H1) H has 2 bound states ( =⇒ 2 families of nonlinear defect modes)

(H2) Φ0 is smooth and spatially localized and small ( weakly nonlinear regime )

(H3) Γ ≡ π
∣
∣FHc

[ψ0∗ψ
2
1∗](ωres)

∣
∣
2
> 0, where ωres = 2E1∗ − E0∗; (nonlinear

variant of Fermi Golden Rule). Here, FHc
[f ](ωres) denotes the projec-

tion of f onto the generalized plane-wave eigenfunction of H (generalized

Fourier transform) at frequency ωres.

Then,

(1) As t→ ±∞,

Φ(t) = eiω±

j
(t)Ψα±

j
(x) + O(t−

1

2 )

where either j = 0 (nonlinear ground state) or j = 1 (nonlinear excited

state).

(2) Generically, j = 0. ω±

0 (t) = E±

0 t+ O(log t).



September 27, 2006 13:3 Proceedings Trim Size: 9.75in x 6.5in ws-procs975x65

13

0 20 40 60 80 100 120 140 160 180 200
0.4

0.45

0.5

0.55

t

no
rm

0 20 40 60 80 100 120 140 160 180 200
0.4

0.45

0.5

0.55

t

no
rm

Figure 10. Trapped state’s projections on ground and excited states. Top plot is for the case
where ωres = 2E1∗ − E0∗ > 0, Γ > 0. Bottom plot is for the case where ωres < 0, Γ = 0

Remark 5.1. The detailed analysis indicates that if one considers initial data,

which is a superposition of a nonlinear ground state and a nonlinear excited state,

then half the excited state energy is radiated and half goes into to forming a new

asymptotic ground state 35,36,40: |α±

0 |
2 ∼ |α0(0)|2 + 1

2 |α1(0)|2; see (5.9).

Remark 5.2. This ground state selection has been observed in experiments in

optical waveguides27.

Remark 5.3. For related work on asymptotic behavior for NLS type equations see,

for example, Refs. 5, 34, 6, 10, 11, 38, 39, 16, 40.

Remark 5.4. The “emission” of energy from the excited state into the ground

state and dispersive radiation channels is a nonlinear variant of phenomena such as

spontaneous emission, associated with the embedded eigenvalues in the continuous

spectrum; see, for example, Refs. 29, 33, 12 and references cited therein.

Sketch of the analysis:

We view the full infinite dimensional Hamiltonian system (PDE) as being comprised

of two weakly coupled subsystems:

• a finite dimensional (nonlinear oscillators - ODEs) governing the interacting

nonlinear bound states (particles), and



September 27, 2006 13:3 Proceedings Trim Size: 9.75in x 6.5in ws-procs975x65

14

• an infinite dimensional (wave equation - PDE) governing dispersive radia-

tion.

We obtain this equivalent formulation beginning with the following Ansatz:

Φ(x, t) = Ψα0(t)e
−iΘ0(t) + Ψα1(t)e

−iΘ1(t) + ηrad(t) (5.3)

The functions αj(t) and Θj(t), j = 0, 1 are “collective coordinates” on nonlinear

bound state manifolds of equilibria and ηrad(t) denotes dispersive radiation; see, for

example, Refs. 41, 30, 31, 32, 4, 22.

Substitution into (5.1) and projecting with respect to an appropriate biorthogo-

nal basis of the adjoint problem yields an equivalent system in terms of α0(t), α1(t)

and ηres(t) having the form of

Oscillators interacting with a field:

i∂tα0 = Cα0
(α0, α1, ηrad)

i∂tα1 = Cα1
(α0, α1, ηrad)

i∂tηrad = Hηrad + Pc(H) R[α0, α1, ηrad] (5.4)

Approximate finite dimensional reduction: In a manner analogous to centre-

manifold reduction of dissipative systems 8,23, we next attempt to find a closed

system by approximately solving for the radiation components, ηrad, as functional

of oscillator variables, αj . In particular, we find the contributions responsible for

resonant energy exchange between oscillator and field degrees of freedom. These

involve spectral components in a neighborhood of frequency ωres = 2E1∗−E0∗ > 0:

ηrad ∼ ηres
rad[α0, α1].

We obtain a finite dimensional system, a set of ODEs in normal form 21, which

captures, up to controllable corrections, the energy loss from the oscillators due

to radiation damping. This normal form is weakly coupled to a dispersive wave

equation, whose effect decreases with advancing time. For large time t, this effect

can be estimated in the spirit of low energy scattering phenomena in the absence

of coherent structures.

For concreteness, we illustrate the steps of the argument, beginning with a model

oscillator - field system, closely related to our analysis:

i∂tA0 = 〈χ, η(·, t)〉 A2
1e

−iωrest + . . .

i∂tA1 = 2〈χ, η(·, t)〉 A1A0e
iωrest + . . .

i∂tη = −∆η + χA0A
2
1e

−iωrest + . . .

where + . . . = dispersive PDE corrections, (5.5)

and χ denotes a spatially localized function.

The key contribution to the radiation field, due to resonance (because 0 < ωres ∈

spec(−∆) = [0,∞)) is

ηres ∼ −iπ e−iωrest A0A
2
1 ℑ (−∆ − ωres − i0)

−1
[χ · ] + . . . (5.6)
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Using (5.6) to approximately close the system for A0 and A1 yields the dispersive

normal form

i∂tA0 = (Λ0 + iΓ) |A1|
4A0 + . . .

i∂tA1 = (Λ1 − 2iΓ) |A0|
2|A1|

2A1 + . . . , Γ > 0

The precise character of the dynamics is made transparent if we introduce (renor-

malized) ground state and excited state energies:

P0(t) ∼ |A0(t)|
2, P1(t) ∼ |A1(t)|

2. (5.7)

Here ∼ refers to equality up to near-identity change of variables. For sufficiently

large times, t1(Φ0) ≤ t we have the nonlinear master equations:

dP0

dt
∼ ΓP 2

1 P0 + . . . ,
dP1

dt
∼ −2ΓP 2

1 P0 + . . . , Γ > 0 (5.8)

From this we can show, for generic initial conditions, that as t → ±∞ the system
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Figure 11. Phase portrait, corresponding to leading terms in (5.8), governing large t ground state
selection

crystallizes on the ground state; see Figure 11. Furthermore, it follows from (5.8)

that 2P0(t) + P1(t) ∼ 2P0(0) + P1(0). Taking the limit as t → ∞ and using the

generic decay of P1(t) gives:

P0(∞) = P0(0) +
1

2
P1(0), (5.9)

see Remark 5.1.
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