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A REACTION DISPERSION SYSTEM
AND RAMAN INTERACTIONS∗

MICHAEL I. WEINSTEIN† AND VADIM ZHARNITSKY‡

Abstract. We consider the problem of amplification of an optical signal wave with an optical
pump wave when both are propagating in the fundamental mode of a single mode optical waveguide.
We introduce a system of Ginzburg Landau type and study the radiation loss due to the nonlinear
interaction between the signal and the pump waves. The linear dynamics are dispersive, while
nonlinearity governs the transfer of energy from the pump wave to the signal wave. The strength
of the effect is shown to depend on a dimensionless parameter, which is given by the ratio of the
diffraction length and amplification length. If this parameter is small, then the radiation loss is small.
This result is established by (i) verifying the absence of resonant terms that can potentially drive
the growth of radiative components and (ii) then by estimating the oscillatory (nonresonant) terms
by proving the relevant PDE a priori estimates. These estimates require appropriate bounds on the
solutions of the PDE, whose only conserved integral is the L2 norm. However, the special structure
of the nonlinear term, dictated by the physics of the Raman effect, implies a weak space-time bound
involving the signal and pump intensities. This bound and L2 conservation are used together with
Strichartz (space-time) estimates for the Schrödinger equation to obtain control of stronger classical
norms of the signal and pump fields.

Key words. Landau–Ginzburg equations, Raman interaction, nonlinear optics, optical wave-
guides

AMS subject classifications. 35Q55, 35Q60, 78A60

DOI. 10.1137/S0036141003428172

1. Introduction. In this paper we study a system of nonlinear and dispersive
partial differential equations, where nonlinearity is of “reaction” type, i.e., in the
absence of dispersion it induces pure energy exchange between the fields. Such systems
are reminiscent of reaction-diffusion systems; here the diffusive mechanism is replaced
by dispersion. While the latter has been widely studied, the former has received very
little attention.

Our reaction-dispersion system arises naturally in mathematical modeling of the
stimulated Raman process, but will also arise in other systems (perhaps in somewhat
modified form), where two dispersive waves interact nonlinearly, while other nonlinear
effects (such as self-phase modulation) and diffusion are negligible. This system can
be also considered as a special case of complex Ginzburg–Landau (CGL) system,
which has been studied in a different parameter regime [2]. We will often refer to the
systems (1.1) and (1.2) as the Raman model, due to their relation to the motivating
physical context.

The Raman effect is one where light of one frequency, ωs (“signal”), is amplified
by light of a down shifted frequency, ωp (“pump”). Taking the energy transfer charac-
teristics of the Raman process into account as well as diffraction leads to the system
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of nonlinear evolution equations, discussed in greater detail in Appendix A:

i∂tus = −Δus + iε|up|2us,
i∂tup = −Δup − iε|us|2up.(1.1)

More generally, we must include the Kerr effect in (1.1). This would introduce
cross-phase and self-phase modulation terms of the types αs|up|2us + βs|us|2us and
αp|us|2us+βp|up|2up with αs,p, βs,p real on the right-hand side of (1.1). We remark on
the analysis of this more complete model at the end of this section; see Remark 1.1. In
a waveguide setting, which is of importance in optical communications, the equations
take the form

i∂tus = Hus + iε|up|2us,
i∂tup = Hup − iε|us|2up,(1.2)

where

H = −Δ + V.

Here, us = us(x, t) and up = up(x, t) denote, respectively, the signal and pump
complex electric field envelopes. Systems (1.1) and (1.2) are valid, assuming the
paraxial approximation. Δ denotes the Laplace operator with respect to x (x ∈ R

1 or
x ∈ R

2). The longitudinal coordinate (z), a time-like variable with which propagation
distance is measured, is denoted by t. In the waveguide setting, the “potential”
V (x) is determined by the transverse refractive index profile of the waveguide. The
parameter ε measures the size of the nonlinear effects relative to the linear effects
(e.g., diffraction, dispersion). The particular application to optical communications
is discussed in Appendix A.

Our study of systems (1.2) and (1.1) is motivated by a fundamental issue aris-
ing in the modeling of the Raman interaction in a waveguide setting. In optical
communication applications, the weak signal field whose envelope encodes bits of in-
formation is amplified by the strong pump field. This process takes place in an optical
fiber waveguide, with one transverse localized state or “guided mode” and radiation
modes. Raman amplification of the signal is based on the intended net transfer of
energy from the pump to the signal. Physicists have found that good agreement with
experiment is achieved by an ODE model, in which one neglects the effect of nonlinear
coupling of bound states to radiation modes:

∂tIs = εgsIsIp,

∂tIp = −εgpIsIp,

Is ∼ |us|2, Ip ∼ |up|2,(1.3)

where gs,p are coefficients depending on the properties of the fundamental modes, e.g.,
on frequency and the so-called effective area.

A satisfactory explanation for the above approximation has been lacking; see,
for example, [3]. This motivated us to consider the Raman energy transfer problem
in the context of the model (1.2). We have found an explanation for the above
statement about energy transfer using ideas and methods of resonance and averaging.
In particular, in Theorem 3.1 we establish that if the initial field energy, which is not
small, is in the guided mode, then this property persists with negligible error on the
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length scale of physical interest, O(ε−1), and therefore the model (1.3) applies. Note
that on the time interval of order ε−1, the radiation of size ε can grow to become of
order O(1) (since the rate of radiation change is of order O(ε)).

The proof of Theorem 3.1 requires a good understanding of the large time dynam-
ics of the flow defined by (1.2). Thus we consider the question of global existence of
the initial value problem for such systems and we have derived results of independent
interest. The standard approach to controlling the large time dynamics is to first
prove local in time existence of the solutions to the initial value problem in a “nat-
ural” Banach space. A “natural” space is often one in which the physically relevant
conserved integrals are defined. We formulate initial value problem for system (1.2)
as a system of integral equations and prove that there are local solutions using fixed
point argument; see sections 2 and 4. Global existence in time then follows from an
appropriate a priori bound on the norm of this Banach space. If this norm remains
bounded in terms of conserved integrals of the flow, global existence holds.

The ideas we use to prove global existence apply to both systems (1.1) and (1.2).
Equations (1.1) and (1.2) have the L2 (energy) conservation law

P[us(t), up(t)] ≡
∫ +∞

−∞
(|us|2 + |up|2) dx = P[us(0), up(0)] ≡ P0.(1.4)

Unfortunately, L2 is a very weak space in which to control the nonlinear flow. Unlike
the nonlinear Schrödinger equation, a Hamiltonian system, (1.2) and (1.1) do not
have a second conserved integral (Hamiltonian), which controls ‖∇us,p‖L2 , and from
which sufficient a priori control follows for global existence to hold.

We find that the key to a global existence theory is the following space-time
integral a priori bound, which is a consequence of the form of the nonlinear Raman
interaction terms: ∫ T

0

dt

∫
|us|2|up|2 dx ≤ 1

2
P0.(1.5)

Remark 1.1. We believe our theory can be extended to system (1.1) with Kerr
effect included. An essential ingredient is the space-time estimate (1.5), which holds
for the more general system. However, a more technical analysis is required to obtain
closed space-time estimates in the presence of Kerr effect terms. This is work in
progress.

Outline of the paper. The paper is structured as follows. We first consider
system (1.2) in one space dimension and one time dimension. In section 2 we prove
global well-posedness for the solution of the initial value problem. The key to this
result are certain a priori estimates, whose point of departure is the L2 conservation
law (1.4) and the space-time a priori bound (1.5). This space-time estimate implies
that (1.2) may be viewed as an inhomogeneous system of equations for us and up,
with a source term, which is bounded in a space-time norm. Strichartz estimates [8]
are then used to bound us and up individually in space-time norms and then finally
in classical Sobolev norms. In section 3 the energy transfer from the bound mode
of a single mode waveguide to radiation modes is studied by estimating nonresonant
oscillating terms. Section 4 contains a theory of well-posedness in the case of two
transverse dimensions. Finally, there are two appendices: one with a detailed discus-
sion of the motivating application to optical communications and a second in which
we prove a normal result, based on the special symmetries of the system, which is of
independent interest.



4 MICHAEL I. WEINSTEIN AND VADIM ZHARNITSKY

2. Existence theory on R
1. In this section we prove that system (1.2) has a

unique global solution in an appropriate (physical) function space. In subsection 2.1
we provide the required operator estimates we shall require. In subsection 2.2 we de-
rive certain a priori bounds which are satisfied by solutions of (1.2). In subsection 2.3
existence in a “weak” space is proved. In section 2.4 it is shown how to extend these
results to Hs.

2.1. Estimates for the linear flow. We first introduce the fundamental solu-
tion of the Schrödinger equation.

(1) The solution of the initial value problem

i∂tu = −∂2
xu, u(0, x) = f(2.1)

is denoted by U0(t)f and U0(t) is called the free propagator.
(2) The solution of the initial value problem

i∂tu = (−∂2
x + V (x))u = Hu, u(0, x) = f(2.2)

is denoted by U(t)f .
The operator, H, may have spectrum consisting of continuous and discrete parts,

with associated spectral projections Pc and Pb = I − Pc. We shall assume that H
has finitely many point eigenvalues. Intuitively, on the range of Pc we expect U(t) to
behave dispersively in a manner similar to U0(t). We use dispersive estimates which
involve space-time integrals, often referred to as estimates of Strichartz type; see [8]
and [9]. The proofs of the space-time estimates for the free Schrödinger equation in
the form we use are due to Ginibre and Velo [12] and, in the inhomogeneous case, to
Yajima [10] and Cazenave and Weissler [11]. For complete proofs see, for example,
Theorems 3.3 and 3.4 of [4].

We now introduce the function spaces and the notation of an admissible pair in
terms of which the space-time estimates are expressed.

(3) For a real interval I and a Banach space X, we denote by Lp(I,X) the
Banach space of functions u : I → X for which

∫
I
‖u(t)‖pX dt is finite.

(4) A pair of real numbers (q, r) is called admissible (for dimension n = 1) if

2

q
=

1

2
− 1

r
, r ∈ [2,∞].(2.3)

We now state Strichartz-type estimates for U(t) for the initial value problem (2.2)
and the inhomogeneous problem

i∂tu = Hu + Pcg.(2.4)

Theorem 2.1. Assume that V satisfies

∫ +∞

−∞
|V (x)|(1 + |x|)5/2 dx < ∞.(2.5)

Thus, H has finitely many negative eigenvalues and continuous spectrum extending
from 0 to +∞, with associated spectral projections Pb and Pc.

1

1Finiteness of negative discrete spectrum and continuity of spectrum from [0,∞) follows from
sufficient decay of the potential.
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Let (q, r) be an admissible pair. For any f ∈ L2, U0(t)f and U(t)Pcf are of class
Lq(R, Lr) and satisfy the estimates

‖U0(·)f‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,(2.6)

‖U(·)Pcf‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,

where C depends only on q.
Theorem 2.2. Let V satisfy (2.5) and let (γ, ρ) be an admissible pair (2/γ =

1/2 − 1/ρ), f ∈ Lγ
′
([0, T ], Lρ

′
), where (γ′, ρ′) is conjugate to (γ, ρ). Then for any

admissible pair (q, r) (2/q = 1/2 − 1/r)

∥∥∥∥
∫ t

0

U0(t− τ)f(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),∥∥∥∥
∫ t

0

U(t− τ)Pcf(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),(2.7)

where C depends only on q, γ.
The proofs rely on the Lp − Lp

′
estimates for the free Schrödinger equation

‖U0(t)f‖Lp ≤ (4π|t|)− 1
2+ 1

p ‖f‖Lp′ .(2.8)

In the case of a Schrödinger equation with a potential in one space dimension the
analogous estimate for U(t)Pc was established by Weder [5]. Adapting the proofs
in [4], for the free propagator U0(t), and using Weder’s estimate, one obtains the
Strichartz-type estimates for Schrödinger equation with a potential.

The following corollary, easily derived from the previous estimates by a change
of variables, concerns the dependence of space-time estimates on a parameter, which
arises when we rescale (1.2).

Corollary 2.3. Consider a one-parameter family of Schrödinger initial value
problems

i∂tu = βHu,

u(x, 0) = f(x),(2.9)

where β ∈ [β0,∞) with β0 > 0. Assume that the potential, V (x), satisfies (2.5).
Then, the conclusions of Theorems 2.1 and 2.2 hold with β-dependent constants. In
particular, if Uβ(t)f = U(βt)f denotes the solution of the initial value problem (2.9),
then

‖Uβ(·)Pcf‖Lq([0,T ],Lr) ≤ C1(β, q)‖f‖L2 ,(2.10) ∥∥∥∥
∫ t

0

Uβ(t− τ)Pcf(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C2(β, q, γ
′)‖f‖Lγ′ ([0,T ],Lρ′ ),(2.11)

where

C1(β, q) = C11(q)β
− 1

q , C2(β, q, γ
′) = C22(q, γ

′)β−1− 1
q + 1

γ′ .(2.12)

In [6], Weder proves continuity of wave operators for (2.2). We use a special case
of the main theorem from [6].
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Proposition 2.4. Let V satisfy (2.5). Then, there exist wave operators Ω and
Ω∗ satisfying

Ω(I − Δ)Ω∗ = (I + H)Pc.(2.13)

These operators are continuous in H1:

‖Ωf‖H1 ≤ C‖f‖H1 , ‖Ω∗f‖H1 ≤ C‖f‖H1 .(2.14)

2.2. A priori space-time estimates. Essential in the proof that system (1.2)
defines the solution globally in time and that the solution does not develop singularities
are a priori estimates which we now derive. For convenience, we rescale the time
εt = tnew, so the uniform bound on the interval tnew ∈ [0, T ] will correspond to the
interval [0, T/ε] in old time. We will continue to use t as the time variable

∂tus + iβHus = |up|2us,(2.15)

∂tup + iβHup = −|us|2up,(2.16)

where β := ε−1 is a dispersion/diffraction parameter and β ∈ [β0,∞].
Multiplication of (2.15) by us, taking the real part of the resulting equation and

integrating over all gives

d

dt

∫
|us|2 dx = 2

∫
|us|2|up|2 dx.(2.17)

Similarly, multiplication of (2.16) by up yields

d

dt

∫
|up|2 dx = −2

∫
|us|2|up|2 dx.(2.18)

Equations (2.17) and (2.18) express the gain of signal energy at the expense of
pump energy and the depletion of pump energy at the expense of signal energy; see
(1.2).

Addition of (2.17) and (2.18) yields the conservation law

d

dt

∫
|us|2 + |up|2 dx = 0(2.19)

or ∫
|us|2 + |up|2 dx =

∫
|us(0)|2 + |up(0)|2 dx ≡ P0.(2.20)

An important step in our analysis is to use the energy dissipation identity (2.18).
Integration of (2.18) over time interval [0, T ] yields

2

∫ T

0

∫
|us(x, t)|2|up(x, t)|2 dx dt =

∫
|up(x, 0)|2 dx−

∫
|up(x, t)|2 dx.(2.21)

A simple consequence of (2.21) is the following space-time bound.
Proposition 2.5 (a priori space-time estimate). Let (us, up) denote a solution

of (2.15)–(2.16) in the sense of Theorem 2.9. Then,∫ T

0

∫
|us|2|up|2 dx dt ≤ 1

2
P0.(2.22)
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Remark 2.6. Since in Theorem 2.9 we assume that the initial conditions are
merely L2, strictly speaking the above derivation of the bound (2.22) is not valid,
since the manipulations require that the solution is a classical solution of the PDE,
i.e., pointwise differentiable in space and time. At the end of section 2.3, we sketch a
proof of (2.22) for the case of L2 initial data.

Equations (2.16) and (2.15) can both be viewed as inhomogeneous Schrödinger
equations of the form

i∂tU = βHU + g(2.23)

with a source term g given by

g = |up|2us or g = −|us|2up.(2.24)

We next show that the a priori estimate (2.22) implies bounds on the source terms
(2.24) which are suitable for application of the inhomogeneous Strichartz estimate of
Theorem 2.2.

Proposition 2.7. Let g denote either term in (2.24). Then, for any T > 0 and
any κ ∈ [0, 2],

∫ T

0

∣∣∣∣
∫

|g| dx
∣∣∣∣
κ

dt ≤ 2−
κ
2 Pκ0 T

2−κ
2 .(2.25)

In particular, for κ ∈ [1, 2] and g ∈ Lκ([0, T ], L1),

‖g‖Lκ([0,T ],L1) ≤ 2−
1
2P0T

2−κ
2k .(2.26)

To prove Proposition 2.7, let g = −|us|2up. The proof for g = |up|2us is analogous.
By the Cauchy–Schwarz inequality,

∣∣∣∣
∫

|us|2|up| dx
∣∣∣∣ ≤

(∫
|us|2 dx

) 1
2
(∫

|us|2|up|2 dx
) 1

2

.(2.27)

Squaring this inequality and integrating the result over the time interval [0, T ] yields,
after using that the L2 norm of us is bounded by P0, that

∫ T

0

∣∣∣∣
∫

|us|2|up| dx
∣∣∣∣
2

dt ≤ 1

2
P2

0 .(2.28)

This handles the case κ = 2. For κ = 0 the trivial bound of T holds. The result
follows by interpolation.

Using the a priori bounds of Proposition 2.7 we can now estimate the solution in
Lq([0, T ], Lr) spaces, for admissible (q, r).

Theorem 2.8 (a priori bounds in Lq([0, T ], Lr)). Let (q, r) be an admissible pair;
see (2.3). Then, any solution (us, up) of system (2.15)–(2.16) for 0 ≤ t ≤ T satisfies
the bounds

‖us‖Lq([0,T ],Lr) ≤ C
(
P0 + P 1

2
0

)
(T + 1),

‖up‖Lq([0,T ],Lr) ≤ C
(
P0 + P 1

2
0

)
(T + 1),(2.29)

where C depends only on q, γ, and β0.
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Proof of Theorem 2.8. We estimate ‖us‖Lq([0,T ],Lr). The corresponding estimate
for up is similar. Equation (2.15) can be rewritten as an equivalent integral equation:

us(t) = Uβ(t)us(0) +

∫ t

0

Uβ(t− τ)|up(τ)|2us(τ)dτ.(2.30)

To estimate the space-time norm of us, we apply Corollary 2.3 to the continuous
spectral part and estimate the finite-dimensional (bound state) part of us separately.
For ease of presentation we assume that H has only one spatial localized bound state
solution, φ(x); the proof is the same for any finite number of bound states. Estimation
of (2.30) using Corollary 2.3 gives

‖us‖Lq([0,T ],Lr)(2.31)

≤ C

∥∥∥∥Uβ(t)us(0) +

∫ t

0

Uβ(t− τ)|up(τ)|2us(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C1(‖us(0)‖L2 + 〈us(0), φ〉‖φ‖Lq([0,T ],Lr)) + C2‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

+

∥∥∥∥
∫ t

0

Uβ(t− τ)〈|up(τ)|2us(τ), φ〉φdτ
∥∥∥∥
Lq([0,T ],Lr)

≤ C1(1 + T q
−1‖φ‖L2‖φ‖Lr )‖us(0)‖L2 + C2‖u2

pus‖Lγ′ ([0,T ],Lρ′ )

+

∥∥∥∥
∫ t

0

e−iλ(t−τ)〈|up(τ)|2us(τ), φ〉φdτ
∥∥∥∥
Lq([0,T ],Lr)

.

The last integral is estimated as follows: using that∣∣∣∣
∫ t

0

〈|up(τ)|2us(τ), φ〉φdτ
∣∣∣∣ ≤

∣∣∣∣
∫ t

0

|φ(x)|
∫

|φ(x)| · |u2
p(x, τ)us(x, τ)| dxdτ

∣∣∣∣
≤ |φ(x)|

∫ t

0

‖φ‖Lρ · ‖u2
pus‖Lρ′dτ

≤ |φ(x)| · ‖φ‖Lγ([0,T ],Lρ) · ‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

we have ∥∥∥∥
∫ t

0

e−iλ(t−τ)〈|up(τ)|2us(τ), φ〉φdτ
∥∥∥∥
Lq([0,T ],Lr)

≤ ‖φ‖Lγ([0,T ],Lρ) · ‖φ‖Lq([0,T ],Lr) · ‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

= ‖φ‖Lρ · ‖φ‖Lr · ‖u2
pus‖Lγ′ ([0,T ],Lρ′ ) · T γ

−1+q−1

.

Now Proposition 2.7 implies a bound on ‖u2
pus‖Lγ′ ([0,T ],Lρ′ ), where ρ′ = 1 and

γ′ ∈ [0, 2]. Note that the exponents γ and ρ, dual to γ′ and ρ′ = 1, form an admissible
pair provided γ = 4 and γ′ = 4/3.2

Setting γ′ = 4/3 and ρ′ = 1 in (2.31) and applying Proposition 2.7 with κ = γ′ =
4/3 implies

‖us‖Lq([0,T ],Lr) ≤ C1(1 + T 1/q‖φ‖L2‖φ‖Lr )‖us(0)‖L2

+C2‖u2
pus‖L 4

3 ([0,T ],L1)
+ T 1/4+1/q‖φ‖L∞‖φ‖Lr‖u2

pus‖L 4
3 ([0,T ],L1)

≤ C1(1 + T
1
q )P 1

2
0 + C2P0T

1
4 + C3P0T

1
2+ 1

q ≤ C(P0 + P 1
2
0 )(T + 1),(2.32)

2Indeed, since 1/ρ′ + 1/ρ = 1, 1/γ + 1/γ′ = 1, and 2/γ = 1/2 − 1/ρ, we have ρ = ∞, γ = 4, and
γ′ = 4/3.
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where C1, C2, C3 depend on the corresponding norms of φ and we used that 4 ≤ q ≤
∞. This completes the proof of Theorem 2.8.

2.3. Existence in L8(R+, L4) ∩ L∞(R+, L2). In this subsection we prove
existence of solutions in a function space X (T ) defined by

X (T ) = L8([0, T ], L4) ∩ L∞([0, T ], L2)(2.33)

with the norm

‖u‖X (T ) = ‖u‖L8([0,T ],L4) + ‖u‖L∞([0,T ],L2)(2.34)

= ‖u‖8,4 + ‖u‖∞,2,(2.35)

the latter being written when there is no ambiguity. For the two-dimensional field
(us, up), we naturally define the norm

‖us, up‖X (T ) = ‖us‖X (T )+‖up‖X (T ) = ‖us‖8,4+‖us‖∞,2+‖up‖8,4+‖up‖∞,2.(2.36)

Since Theorem 2.8 gives a priori control of solutions in Lq([0, T ], Lr) spaces for
any admissible pairs (q, r), it is natural to obtain a local existence theorem in a space,
where the maximal time of existence depends only on Lq([0, T ], Lr) bounds. Then,
global existence follows from Theorem 2.8; see the discussion below.

Define the mapping

(us, up) 
→ Aβ(us, up) ≡
(
A

(s)
β (us, up), A

(p)
β (us, up)

)
,(2.37)

where

A
(s)
β (us, up) = Uβ(t)us(0) +

∫ t

0

Uβ(t− τ)|up(τ)|2us(τ)dτ,(2.38)

A
(p)
β (us, up) = Uβ(t)up(0) −

∫ t

0

Uβ(t− τ)|us(τ)|2up(τ)dτ.(2.39)

Then, the above evolution equation has the equivalent formulation as a fixed point
problem.

For initial data (us(0), up(0)) ∈ L2, find (us, up) ∈ X (T ) for some T > 0 such
that

(us, up) = Aβ(us, up).(2.40)

Our local existence theorem is the following.

Theorem 2.9 (local existence).

(1) Given initial data (us(0), up(0)) ∈ L2, there exist a T > 0 and a unique
solution (us, up) ∈ X (T ) of (2.40). This local solution satisfies the a priori estimate
(2.22).

(2) Let Tmax > 0 denote the maximal time of existence. Either Tmax = ∞ (global
existence in time) or

Tmax < ∞ and lim sup
T→Tmax

‖(us, up)‖X (T ) = ∞.(2.41)
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Using the local existence theory of Theorem 2.9 and the a priori bounds of The-
orem 2.8, we have Tmax = ∞. Therefore, the following result holds.

Theorem 2.10 (global existence). For any initial data (us(0), up(0)) in L2,
(2.40) has a unique global solution of class L8(R+, L

4) ∩ L∞(R+, L
2).

We need only prove the local existence Theorem 2.9. The proof follows from
the next two propositions in which we establish that for L2 initial conditions and T
sufficiently small,

(i) the transformation Aβ maps a specified ball B(T ) in X (T ) into itself and
that

(ii) Aβ is a contraction mapping on B(T ).
Proposition 2.11. Let (us(0), up(0)) be in L2. Define the ball in X (T )

B(T ) = {(us, up) ∈ X (T ) : ‖(us, up)‖X (T ) ≤ 2C(‖us(0)‖2 + ‖up(0)‖2)},(2.42)

where C is found in the proof below. There exists T0 > 0 such that for any T < T0,
the ball is mapped into itself, i.e., Aβ(B(T )) ⊂ B(T ) for any β ∈ [β0,∞], with T0

depending on β0.

Proof of Proposition 2.11. We estimate the action of A
(s)
β . The estimation for

A
(p)
β is similar.

Following the proof of Theorem 2.8, we obtain a similar inequality

‖A(s)
β (us, up)‖q,r ≤ ‖Uβ(t)us(0)‖q,r +

∥∥∥∥
∫ t

0

Uβ(t− τ)|up|2us
∥∥∥∥
q,r

≤ C1(1 + T )‖us(0)‖2 + C2(1 + T )‖u2
pus‖γ′,ρ′ ,

where C1, C2 depend on φ.
Estimation of the cubic term proceeds as follows. By the Cauchy–Schwarz in-

equality,

‖u2
pus‖γ′,ρ′ =

[∫ T

0

(∫
|u2
pus|ρ

′
dx

)γ′/ρ′

dt

]1/γ′

≤
[∫ T

0

(∫
|up|4ρ′ dx

)γ′/ρ′

dt

]1/2γ′ [∫ T

0

(∫
|us|2ρ′ dx

)γ′/ρ′

dt

]1/2γ′

.

Set ρ′ = 1 and therefore γ′ = 4/3. Then the last expression becomes

=

[∫ T

0

(∫
|up|4 dx

)4/3

dt

]3/8 [∫ T

0

(∫
|us|2 dx

)4/3

dt

]3/8

(2.43)

and by Hölder’s inequality, applied to each factor, we have the bound

≤
⎡
⎣
[∫ T

0

(∫
|up|4 dx

)2

dt

](2/3)·(3/8) [∫ T

0

13 dt

](1/3)
⎤
⎦

3/8 [
supt‖us(t)‖2·(4/3)

2 T
]3/8

≤ ‖up‖2
8,4‖us‖∞,2T

1/2.

Adding up all the terms, we obtain∥∥∥A(s)
β (us, up)

∥∥∥
X (T )

≤ C(‖us(0)‖2 + ‖up‖2
8,4‖us‖∞,2T

1
2 )(1 + T ),∥∥∥A(p)

β (us, up)
∥∥∥
X (T )

≤ C(‖up(0)‖2 + ‖us‖2
8,4‖up‖∞,2T

1
2 )(1 + T ),
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where C = max{C1, C2}. Finally, combining the last two terms, we have

‖Aβ(us, up)‖X (T ) ≤ C(‖us(0)‖2 + ‖up(0)‖2 + ‖(us, up)‖3
X (T )T

1
2 )(1 + T ).(2.44)

Assume now that ‖(us, up)‖X (T ) ≤ 2C(‖us(0)‖2 + ‖up(0)‖2) and that T is suffi-
ciently small; then Aβ maps B(T ) into itself. This completes the proof of Propo-
sition 2.11.

Proposition 2.12. For T < T1 ≤ T0 sufficiently small, the transformation, Aβ,
is a contraction on B(T ). That is,

‖Aβ(us, up) −Aβ(vs, vp)‖X (T ) ≤ q‖(us − vs, up − vp)‖X (T ),(2.45)

where 0 < q < 1.
Proof of Proposition 2.12. Consider the first component of the map. By Corol-

lary 2.3,

‖A(s)
β (us, up) −A

(s)
β (vs, vp)‖q,r ≤ C2‖|up|2us − |vp|2vs‖ 4

3 ,1

≤ ‖u2
p(us − vs)‖ 4

3 ,1
+ ‖upvs(up − vp)‖ 4

3 ,1

+ ‖vpvs(up − vp)‖ 4
3 ,1

.

These terms are all estimated in a similar manner. We focus on the second term.
First, by the Cauchy–Schwarz inequality,

‖upvs(up−vp)‖ 4
3 ,1

≤
[∫ T

0

(∫
|up|2|vs|2 dx

)4/3

dt

]3/8[∫ T

0

(∫
|up−vp|2dx

)4/3

dt

]3/8

≤
[∫ T

0

(∫
|up|2|vs|2 dx

)4/3

dt

]3/8

T 3/8‖up−vp‖∞,2.

Another application of the Cauchy–Schwarz inequality to the spatial integral in the
first factor in the previous expression and then Hölder’s inequality to the time integral
gives

[∫ T

0

(∫
|up|4 dx

)4/3

dt

]3/16 [∫ T

0

(∫
|vs|4 dx

)4/3

dt

]3/16

T 3/8‖up − vp‖∞,2

≤ ‖up‖8,4‖vs‖8,4T
2
16T

3
8 ‖up − vp‖∞,2 = ‖up‖8,4‖vs‖8,4T

1/2‖up − vp‖∞,2

≤ ‖up‖8,4‖vs‖8,4T
1/2‖(us − vs, up − vp)‖X (T ).

Adding the estimates for∥∥∥A(s)
β (us, up) −A

(s)
β (vs, vp)

∥∥∥
X (T )

and
∥∥∥A(p)

β (us, up) −A
(p)
β (vs, vp)

∥∥∥
X (T )

(2.46)

and choosing, if necessary, T1 < T0, we obtain the contraction estimate. This com-
pletes the proof.

Remark 2.13. Finally, we give a proof of the space-time bound for solutions with
data in L2.

(1) Existence of solutions for very regular data. Using that Hs is an algebra
for s > 1

2 , it is standard to prove, by a contraction mapping argument, that for
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data in Hs with s ≥ s0 ≥ 2 there is a unique classical solution. However, this
argument requires differentiation of the original system and as a consequence V (x).
This requires imposing unnecessary smoothness assumptions on V . To avoid such
restrictions on V , we observe that the norms ‖·‖H2 = ‖(I+H)Pc ·‖L2 and ‖(I−Δ)·‖L2

are equivalent, by Proposition 2.4; see also Proposition 2.15. Therefore, applying
(I + H)Pc, which commutes with Uβ(·), to the integral equation for (us, up), we
can use standard estimates to obtain a classical solution. An argument of this type
is implemented in section 2.4. Therefore, by the computation of section 2.2, this
classical solution satisfies (2.22).

(2) Continuity of solutions with respect to variations in the initial data. Let
(us, up) denote the solution corresponding to data (us(0), up(0)) and (vs, vp) denote
the solution corresponding to data (vs(0), vp(0)). Both of these are fixed points of
the operator Aβ (see (2.37)) with the corresponding data. By the same estimate as
in the proof of Proposition 2.12 we have (2.45) plus an additional data term on the
right-hand side: ‖(us(0) − vs(0), up(0) − vp(0))‖L2 , where the Strichartz estimate for
the free propagator is applied to the difference of initial conditions. In other words,

‖(us, up) − (vs, vp)‖q,r ≤ C‖(us(0) − vs(0), up(0) − vp(0))‖L2 .(2.47)

(3) Convergence. Finally, take a sequence of initial data in Hs, s ≥ s0 ≥ 2, which
converges in L2 to a limit. For each member of this sequence, the solution satisfies the
space-time bound (2.22). The right-hand side of (2.22) converges by convergence in
L2 of the data and the left-hand side of (2.22) converges by (2.47). Therefore, (2.22)
holds on the interval of existence for any solution with L2 data.

2.4. Existence in H1(R1
+). We consider the existence theory in H1. In this

section we prove the following theorem.
Theorem 2.14. Let (us(0), up(0)) be in H1 and let the potential V satisfy (2.5).

Then there exists a unique global solution for system (1.2) in L∞(R1
+, H

1).
We first observe that our proof of local existence, via the contraction mapping

principle, extends to the space

X1(T ) ≡ C([0, T ], H1) ∩ X (T ).(2.48)

In particular, one needs only to prove that Aβ maps a ball to a ball in this smaller
space and it is a contraction mapping there, for T < T2, where T2 ≤ T1 ≤ T0. This
can be proven by applying (H+I)

1
2Pc to the equations, using equivalence of norms (in

the appropriate spaces): ‖(H + I)
1
2Pc · ‖L2 and ‖ · ‖H1 and carrying out the standard

energy estimates. We use (H+I)Pc rather than I−Δ because functions of H commute
with H and thus we avoid differentiation of the potential V (x). Otherwise, we would
require bounds on norms of ∂xV .

If T ∗
max denotes the maximal time of existence for the solution in X1(T ), then in

view of the a priori estimates in X (T ), global existence (T ∗
max = ∞) will follow from

a priori bounds on (us, up) in H1.
Let

Ac ≡ (I + H)Pc.(2.49)

Applying to system (2.15)–(2.16) operator A1/2
c , we obtain the inequality

∂

∂t

∫
(|A1/2

c us|2 + |A1/2
c us|2)dx(2.50)

≤ 2

∣∣∣∣
∫ (

A1/2
c usA1/2

c (|up|2us) −A1/2
c upA1/2

c (|us|2up)
)
dx

∣∣∣∣ .(2.51)
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Proposition 2.15. Assume that V satisfies condition (2.5). Then the operator

A1/2
c (I − Δ)−1/2 and its inverse are bounded in L2; that is, for any f ∈ L2 both

A1/2
c (I − Δ)−1/2f and (I − Δ)1/2A−1/2

c f are bounded in L2 and

‖A1/2
c (I − Δ)−1/2f‖L2 ≤ C‖f‖L2 ,(2.52)

‖(I − Δ)1/2A−1/2
c f‖L2 ≤ C‖f‖L2 .(2.53)

Proof. This proposition states that the ‖(I − Δ)
1
2 ‖L2 norm and ‖A1/2

c · ‖L2 are
equivalent. Then our strategy will be similar to the proof in the potential-free case

(as if A1/2
c were ∂x).

We prove the proposition using Weder’s result on the continuity of wave oper-
ators [6]. Under the conditions stated above, Weder proves that there exists wave
operator Ω such that

Ω(I − Δ)Ω∗ = Ac,

where Ω is a bounded continuous operator on H1. Then, taking the square root, we
obtain

Ω(I − Δ)−1/2Ω∗ = A−1/2
c .(2.54)

The square root exists since Ac = (I + H)Pc is a positive operator on the subspace
corresponding to the continuous spectrum.

Now it is easy to verify (2.52):

‖A1/2
c (I − Δ)−1/2f‖L2 = ‖Ω(I − Δ)1/2Ω∗(I − Δ)−1/2f‖L2

= ‖(I − Δ)1/2Ω∗(I − Δ)−1/2f‖L2 ≤ C‖Ω∗(I − Δ)−1/2f‖H1

≤ C‖(I − Δ)−1/2f‖H1 ≤ C‖f‖L2 ,

where we have used that Ω, Ω∗ are isometries in L2 and continuous in H1. The other
inequality (2.53) can be proved similarly.

Corollary 2.16. Let f ∈ H1 ∩ Range(Pc). Then

‖A1/2
c f‖2 ≤ C‖(I − Δ)1/2f‖2,(2.55)

‖(I − Δ)1/2f‖2 ≤ ‖A1/2
c f‖2.(2.56)

Proof. Let f = (I − Δ)1/2g in (2.52), with g ∈ H1 ∩ Range(Pc). Then we have

‖A1/2
c g‖L2 ≤ ‖(I − Δ)1/2g‖L2 .

To prove the other inequality (2.56), we write

‖(I − Δ)1/2f‖L2 = ‖(I − Δ)1/2A−1/2
c A1/2

c f‖L2 ≤ ‖A1/2
c f‖L2 .

Proof of Theorem 2.14. First, using the above proposition, we estimate∣∣∣∣
∫ (

A1/2
c usA1/2

c (|up|2us)
)
dx

∣∣∣∣ ≤ ‖A1/2
c us‖2 · ‖A1/2

c (|up|2us)‖2

= ‖A1/2
c us‖2 · ‖A1/2

c (I − Δ)−1/2(I − Δ)1/2(|up|2us)‖2

≤ ‖A1/2
c us‖2 · ‖A1/2

c (I − Δ)−1/2‖B(L2,L2) · ‖(I − Δ)1/2(|up|2us)‖2.
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Using Leibnitz formula for the fraction, see [7],

‖(I − Δ)1/2(fg)‖2 ≤ ‖f‖∞ · ‖(I − Δ)1/2g‖2 + ‖(I − Δ)1/2f‖2 · ‖g‖∞,

we obtain

‖(I − Δ)1/2(|up|2us)‖2 ≤ ‖up‖2
∞‖(I − Δ)1/2us‖2 + 2‖up‖∞‖us‖∞‖(I − Δ)1/2up‖2.

Combining the last two estimates, we obtain

∣∣∣∣
∫ (

A1/2
c usA1/2

c (|up|2us)
)
dx

∣∣∣∣
≤C‖A1/2

c us‖2 · (‖up‖2
∞ + ‖us‖2

∞)(‖(I − Δ)1/2up‖2 + ‖(I − Δ)1/2us‖2)

≤C‖A1/2
c us‖2 · (‖up‖2

∞ + ‖us‖2
∞)(‖(I − Δ)1/2Pcup‖2 + ‖(I − Δ)1/2〈up, φ〉φ‖2

+‖(I − Δ)1/2Pcus‖2 + ‖(I − Δ)1/2〈us, φ〉φ‖2)

≤C(‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2 + 1) · (‖up‖2
∞ + ‖us‖2

∞).

Finally, adding the s and p components of the differential inequalities, we obtain

∂t(‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2) ≤ C(‖up‖2
∞ + ‖us‖2

∞) · (‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2 + 1)

which implies that

‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2

≤ exp

(
C

∫ T

0

[‖us‖2
L∞ + ‖up‖2

L∞ ]

)
(‖A1/2

c us(0)‖2
2 + ‖A1/2

c up(0)‖2
2 + 1).

Applying Hölder’s inequality to the time integral in the exponent we have

∫ T

0

[‖us‖2
L∞ + ‖up‖2

L∞ ] dt ≤ C‖us‖2
L4([0,T ],L∞)T

1
2 + C‖up‖2

L4([0,T ],L∞)T
1
2

= C(‖us‖2
L4([0,T ],L∞) + ‖up‖2

L4([0,T ],L∞))T
1
2

≤ C(P0 + P 1
2
0 )(T

1
4 + T

3
4 )T

1
2 .

The last inequality follows from the a priori space-time estimate of Theorem 2.8 and
the fact that (4,∞) is an admissible pair. We, thus, establish the boundedness of
(us, up) in ‖Ac(·)‖2 norm:

‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2 ≤ K1e
K2(P0+1)(T 2+1)(‖A1/2

c us(0)‖2
2 + ‖A1/2

c up(0)‖2
2 + 1).

Therefore, using the equivalence of norms, see Corollary 2.16, we obtain

‖us(t)‖H1 + ‖up(t)‖H1 ≤ K̃1e
K2(P0+1)(T 2+1)(‖us(0)‖H1 + ‖up(0)‖H1 + 1)(2.57)

for some K1,K2 > 0. This completes the proof of global existence in H1.
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3. Energy transfer from the guided mode to radiation modes. In this
section, we prove that, over time scales of interest (t ≤ O(ε−1)), radiation terms
remain small during the amplification process and the finite-dimensional model (1.3)
is a valid approximation. In the discussion of this section we return to the time-scale,
where nonlinear terms are of order ε:

i∂tus −Hus = iε|up|2us,(3.1)

i∂tup −Hup = −iε|us|2up.(3.2)

For this system, we are going to show that radiation is indeed bounded by Cε on a
time scale of order 1/ε.

To proceed, we first orthogonally decompose a solution of (3.1)–(3.2) into its
bound state and continuous spectral (radiative) parts:

us(x, t) = as(t)φ(x) + Us(x, t),(3.3)

up(x, t) = ap(t)φ(x) + Up(x, t).(3.4)

We prove the following theorem.
Theorem 3.1. Let (us(0), up(0)) ∈ H1 and Pcus(0) = Pcup(0) = 0. Assume

that 0 < ε < ε0 < ∞ and that V satisfies (2.5). Then, for any T > 0 there exists
C(T, ε0) so that

max{‖Us(t)‖H1 , ‖Up(t)‖H1} ≤ C(T, ε0)ε(3.5)

on the interval t ∈ [0, T/ε].
We begin the proof with the following proposition, which follows from the ε-

independent bounds ‖us,p‖H1 ≤ C(T, ε0), (2.57).
Proposition 3.2. Let 0 < ε < ε0 < ∞. Then for any T > 0 there exists C(T, ε0)

such that

‖Us‖H1 , ‖Up‖H1 , |as|, |ap| ≤ C(3.6)

on the interval t ∈ [0, T/ε].
Substitution of (3.3)–(3.4) into (3.1)–(3.2) and projection onto φ and the range

of Pc gives

i∂tas − λas = iε[|ap|2as〈φ3|φ〉 + apas〈φ3|Up〉 + apas〈φ3|Up〉
+ |ap|2〈φ3|Us〉 + · · · + 〈|Up|2Us|φ〉],(3.7)

i∂tap − λap = −iε[|as|2ap〈φ3|φ〉 + asap〈φ3|Us〉 + apas〈φ3|Us〉
+ |as|2〈φ3|Up〉 + · · · + 〈|Us|2Up|φ〉],(3.8)

i∂tUs −HUs = iε[as|ap|2Pcφ3 + apasPcφ
2Up + apasPcφ

2Up

+ |ap|2Pcφ2Us + · · · + Pc|Up|2Us],(3.9)

i∂tUp −HUp = −iε[ap|as|2Pcφ3 + asapPcφ
2Us + apasPcφ

2Us

+ |as|2Pcφ2Up + · · · + Pc|Us|2Up],(3.10)

where H = −∂2
x + V (x) and Hφ = λφ.

Corollary 3.3. The fundamental modes are slowly varying with the rate ε

|∂t|as‖, |∂t|ap‖ ≤ C(T, ε0)ε.
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Proof. This follows from Proposition 3.2 and (3.7)-(3.8). Indeed,

|∂t|as‖ = |∂t|iaseitλ‖ ≤ |∂ti(aseitλ)| = |(i∂t − λ)as| ≤ C(T, ε0)ε.

The same argument leads to a similar estimate for |∂t|ap‖. This ends the proof of the
corollary.

The following estimates are used in the proof of the theorem and can be easily
verified.

Lemma 3.4.

‖Pcf‖2 ≤ ‖f‖2,

‖Pcf‖∞ ≤ ‖f‖∞(1 + ‖φ‖1 · ‖φ‖∞),

‖(H − λ)−1ei(H−λ)tPcf‖2 ≤ C‖f‖2,

‖(H − λ)−1Pc‖H1 ≤ C

dist(Hc, λ)
≤ C

|λ| .

(3.11)

Proof of Theorem 3.1. We now make transformations as = e−iλtAs and Us =
εe−iHtWs to remove rapid oscillations and explicitly show the smallness of radiation.
By hypothesis of Theorem 3.1, we have ‖Ws,p(0)‖H1 ≤ C. Note that by the bounds
of Proposition 3.2 we have ‖Ws,p‖H1 ≤ C(T, ε0)/ε and |As,p| ≤ C(T, ε0).

The slowly varying amplitudes As, Ap satisfy

∂tAs = ε|Ap|2As〈φ3|φ〉 + ε2ApAs〈φ3|e−i(H−λ)tWp〉 + ε2ApAs〈φ3|ei(H−λ)tWp〉
+ ε2|Ap|2〈φ3|e−i(H−λ)tWs|φ〉 + · · · + ε4〈|e−iHtWp|2e−i(H−λ)tWs〉,(3.12)

∂tAp = − ε|As|2Ap〈φ3|φ〉 − ε2AsAp〈φ3|e−i(H−λ)tWs〉 − ε2ApAs〈φ3|ei(H−λ)tWs〉
− ε2|As|2〈φ3|e−i(H−λ)tWp〉 − · · · − ε4〈|e−iHtWs|2e−i(H−λ)tWp|φ〉.(3.13)

Further, Ws,p satisfy

∂tWs = ei(H−λ)tAs|Ap|2Pcφ3

+ eiHt[εApAsPcφ
2e−iHtWp + εApAsPcφ

2eiHtWp

+ ε|Ap|2Pcφ2e−iHtWs + · · · + ε3Pc|e−iHtWp|2e−iHtWs],(3.14)

∂tWp = ei(H−λ)tAp|As|2Pcφ3

+ eiHt[εAsApPcφ
2e−iHtWs + εApAsPcφ

2eiHtWs

+ ε|As|2Pcφ2e−iHtWp + · · · + ε3Pc|e−iHtWs|2e−iHtWp].(3.15)

The goal is now to show that given initial data where W is O(1) (which corresponds
to radiation O(ε)) during the evolution W will remain O(1) on time interval O(1/ε).

In order to do this we integrate the above equations:

Ws(t) = Ws(0) +

∫ t

0

ei(H−λ)sAs|Ap|2Pcφ3ds + ε

∫ t

0

Rsds,(3.16)

where εRs is the ε-order part in (3.14), i.e., the second and the third lines. Integrating
by parts

Ws(t) = Ws(0) +
ei(H−λ)t − 1

i(H − λ)
As|Ap|2Pcφ3

−
∫ t

0

ei(H−λ)s

i(H − λ)
∂s(As|Ap|2)Pcφ3ds + ε

∫ t

0

Rsds(3.17)
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and applying ‖A 1
2
c · ‖L2 , we obtain

‖A 1
2
c Ws(t)‖L2 ≤ ‖A 1

2
c Ws(0)‖L2 +

∥∥∥∥ei(H−λ)t − 1

i(H − λ)
As|Ap|2A

1
2
c Pcφ

3

∥∥∥∥
L2

(3.18)

+C(T, ε0)ε

∫ t

0

∥∥∥∥ei(H−λ)t − 1

i(H − λ)
A 1

2
c Pcφ

3

∥∥∥∥
L2

(3.19)

+ ε

∫ t

0

‖A 1
2
c Rs‖L2ds.

Therefore, we have

‖A 1
2
c Ws(t)‖L2 ≤ ‖A 1

2
c Ws(0)‖L2 + C‖(H − λ)−1A 1

2
c Pcφ

3‖L2(3.20)

+ ε

∫ t

0

(
‖A 1

2
c Pcφ

2Wp‖L2(3.21)

+ · · · + ε2‖A 1
2
c Pc|e−iHtWp|2e−iHtWs‖L2

)
ds.

The terms on the right-hand side in the first line are bounded by a constant. To
estimate the other terms we use the above properties of Ac, (H − λ)−1, etc. We
illustrate how one proceeds with the estimates using the last term:

ε2‖A 1
2
c Pc|e−iHtWp|2e−iHtWs‖L2(3.22)

≤ ε2‖(I − Δ)
1
2 |e−iHtWp|2e−iHtWs‖L2

≤ ε2‖(I − Δ)
1
2 e−iHtWp‖2

L2 · ‖(I − Δ)
1
2 e−iHtWs‖L2(3.23)

≤ ε2‖A 1
2
c e

−iHtWp‖2
L2 · ‖A

1
2
c e

−iHtWs‖L2

≤ ε2‖A 1
2
c Wp‖2

L2 · ‖A
1
2
c Ws‖L2(3.24)

≤ ε2‖Wp‖2
H1 · ‖A

1
2
c Ws‖L2 ≤ C‖A 1

2
c Ws‖L2 ,

where we used equivalence of norms, Leibnitz rule, and the uniform bound ‖Ws,p‖H1 ≤
C/ε. Thus, the inequality takes the form

‖A 1
2
c Ws(t)‖L2 ≤ B + εK

∫ t

0

(‖A 1
2
c Wp‖L2 + · · · + ‖A 1

2
c Ws‖L2)ds,(3.25)

where B and K do not depend on ε < ε0. Adding the last inequality with the

similar one for the p-component, and then using the notation z(t) = ‖A 1
2
c Ws(t)‖L2 +

‖A 1
2
c Wp(t)‖L2 , we obtain the inequality with modified B and K (but still independent

of ε):

z(t) ≤ B + εK

∫ t

0

z(s)ds.(3.26)

Using the standard Gronwall’s result, we find

z(t) ≤ BeεKt ⇒ z(t) ≤ BeKT ,(3.27)

which proves the bound ‖Ws‖H1 ≤ C(T, ε0).
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Remark 3.5. Using dispersive properties of eitH , it is possible to establish small-
ness of radiation in weaker spaces, namely, in ‖ · ‖L∞ norm. Taking (3.9)–(3.10) for
Us,p and rewriting them in the integral form, we are led to estimate the terms

ε

∫ t

0

eitHas|ap|2Pcφ3ds(3.28)

and

ε

∫ t

0

eitHRsds.(3.29)

After some changes of variables with the aid of standard L∞ decay estimates for the
Schrödinger evolution, one obtains that

‖Us,p‖L∞ ≤ C
√
ε.(3.30)

This argument also extends to the two-dimensional case with even better decay in ε
(see the end of section 4.4).

4. Two-dimensional problem. We now consider the Raman system in the
case of two transverse spatial dimensions

i∂tus − βHus = i|up|2us,(4.1)

i∂tup − βHup = −i|us|2up,(4.2)

where H = −Δ+V (x, y) and we prove analogous existence results and energy transfer
estimates. Our strategy in the two-dimensional case is similar to the one-dimensional
case; therefore, we omit some calculations which can be found in the previous sections.

In the two-dimensional case we require stronger conditions on the potential.
Assumption 4.1. The potential V (x, y) is twice differentiable and

|DαV | ≤ Cα(1 + x2 + y2)−a,

where a > 6 and |α| ≤ 2.
Assumption 4.2. We assume that potential V (x, y) has no zero energy eigenvalues

or resonances.3

These assumptions are required to obtain space-time estimates in the next section.

4.1. Space-time estimates for the propagator. The definition of admissible
pair is modified: (q, r) is admissible (in dimension n = 2) if

1

q
=

1

2
− 1

r
, r ∈ [2,∞].

Theorem 4.3. Assume that the potential V satisfies both assumptions and let
(q, r) be an admissible pair. Then for any f ∈ L2 we have that U0(t)f and U(t)Pcf
are in Lq(R, Lr) and

‖U0(·)f‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,(4.3)

‖U(·)Pcf‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,

3Zero eigenvalues and resonances are obstructions to the optimal time-decay estimates for e−iHt.
Their absence holds generically; see, for example, [10].
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where C depends only on q.
Theorem 4.4. Assume that the potential V satisfies both assumptions, let (γ, ρ)

be an admissible pair, and let f ∈ Lγ
′
([0, T ], Lρ

′
), where (γ′, ρ′) is conjugate to (γ, ρ).

Then for any admissible pair (q, r)∥∥∥∥
∫ t

0

U0(t− τ)f(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),∥∥∥∥
∫ t

0

U(t− τ)Pcf(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),(4.4)

where C depends only on q, γ.
Both Theorems 4.3 and 4.4 are proven by using Yajima’s results [10] on W k,p

continuity of wave operators. The argument follows the proof of Proposition 2.15
and is omitted here. Finally, Corollary 2.3 is valid in the current setting without any
changes as the scaling is independent of the space dimension.

Remark 4.5. The application of Yajima’s results on W k,p continuity of wave
operators is the origin of the more restrictive smoothness assumptions on the potential
V (x). In one space dimension smoothness of V (x) is not required [6].

4.2. A priori space-time estimates. The same argument as in the one-
dimensional case applies here and we obtain the a priori bound of Proposition 2.5, as
well as the bound (2.28) on nonlinear terms.

Theorem 4.6 (a priori bounds in Lq([0, T ], Lr)). Let (q, r) be an admissible pair.
Then any solution (us, up) satisfies the bounds

‖us‖Lq([0,T ],Lr) ≤ C(P0 + 1)(T + 1),(4.5)

‖up‖Lq([0,T ],Lr) ≤ C(P0 + 1)(T + 1).(4.6)

Proof. As in the one-dimensional case, this estimate is proved by a straightforward
application of space-time estimate for Schrödinger equation with a potential and using
a priori estimate on nonlinear terms. Following the proof of Theorem 2.8, we obtain
the same bounds with different ρ, ρ′, γ, γ′. We must impose ρ′ = 1 with ρ = ∞, but
γ = 2 (since in 1/γ = 1/2 − 1/ρ) with γ′ = 2. This results in

‖us‖Lq([0,T ],Lr) ≤ C1‖us(0)‖L2 + C2‖u2
pus‖L2([0,T ],L1)

+‖φ‖L∞‖φ‖LrT 1/2+1/q‖u2
pus‖L2([0,T ],L1)

≤ C1P
1
2
0 + C2P0 + C3P0(T + T

1
2 ),

since q ≥ 2.

4.3. Local existence in H2(R2). We now prove local existence of solutions in
H2 and will extend it to a global solution using our space-time estimates.

Theorem 4.7 (local existence).
(1) Given initial data (us(0), up(0)) ∈ H2(R2), there exist T > 0 and a unique

solution (us, up) ∈ L∞([0, T ], H2(R2)).
(2) Let Tmax > 0 denote the maximal time of existence. Then, either Tmax = ∞

(global existence in time) or

Tmax < ∞ and lim sup
t→Tmax

‖(us, up)‖L∞([0,T ],H2(R2)) = ∞.
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To prove the local existence theorem we have to show that a ball in H2 is mapped
into itself and that the mapping is a contraction.

Consider the same mapping as in the one-dimensional case (2.38)–(2.39). We will
first show that it maps a ball into a ball:

‖A(s)
β (us, up)‖H2 ≤ ‖Uβ(t)us(0)‖H2 +

∥∥∥∥
∫ t

0

Uβ(t− τ)|up|2us
∥∥∥∥
H2

.(4.7)

The first term is estimated as follows:

‖Uβ(t)us(0)‖H2 = ‖(I − Δ)Uβ(t)us(0)‖L2 = ‖(I − Δ)(H + i)(H + i)−1Uβ(t)us(0)‖L2

≤ ‖(I − Δ)(H + i)−1‖B(L2,L2)‖(H + i)Uβ(t)us(0)‖L2 .

Note that the operator (I−Δ)(H+i)−1 is bounded in L2-operator norm. This follows
from the identity

(I − Δ)(H + i)−1 = −I + (I + i− V )(H + i)−1

and the boundedness of V in L∞ and of (H + i)−1 in L2.
Next, we have to establish the bound for

‖(H + i)Uβ(t)us(0)‖L2 = ‖(H + i)us(0)‖L2 = ‖(H + i)(I−Δ)−1(I−Δ)us(0)‖L2

≤ ‖(H + i)(I−Δ)−1‖B(L2,L2)‖(I−Δ)us(0)‖L2 ≤C‖us(0)‖H2 ,

where the operator (H + i)(I − Δ)−1 is bounded by similar calculations as for
(I − Δ)(H + i)−1.

Now, we estimate the second term in (4.7):∥∥∥∥
∫ t

0

Uβ(t− τ)|up|2usdτ
∥∥∥∥
H2

≤ C

∥∥∥∥
∫ t

0

(H + i)Uβ(t− τ)|up|2usdτ
∥∥∥∥
L2

.

To bound this term we write it in the form∫
dx

{∫ t

0

∫ t

0

(H+ i)Uβ(t−τ1)|up(τ1)|2us(τ1)(H− i)Uβ(t−τ2)|up(τ2)|2us(τ2)dτ1dτ2
}

(using Hölder inequality and isometry of Uβ in L2)

≤
∫ t

0

∫ t

0

dτ1dτ2

∣∣∣∣
∫

|(H + i)|up(τ1)|2us(τ1)|2 dx
∣∣∣∣
1
2
∣∣∣∣
∫

|(H + i)|up(τ2)|2us(τ2)|2 dx
∣∣∣∣
1
2

≤ t2 sup
τ∈[0,t]

‖(H + i)u2
p(τ)us(τ)‖2 ≤ Ct2 sup

τ∈[0,t]

‖u2
p(τ)us(τ)‖2

H2

≤ Ct2 sup
τ∈[0,t]

‖up(τ)‖4
H2‖us(τ)‖2

H2 .

Therefore, we finally obtain the bound on the s-part of the map

‖A(s)
β (us, up)‖H2 ≤ C‖us(0)‖H2 + Ct sup

τ∈[0,t]

‖up(τ)‖2
H2‖us(τ)‖H2

and the full map

‖Aβ(us, up)‖L∞([0,t],H2) ≤ C (‖us(0)‖H2 + ‖up(0)‖H2)

+Ct
(‖up‖2

L∞([0,t],H2)‖us‖L∞([0,t],H2)

+ ‖up‖L∞([0,t],H2)‖us‖2
L∞([0,t],H2)

)
.
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With the obtained inequality it is easy to establish the following proposition.

Proposition 4.8. Let (us(0), up(0)) be in H2. Define the ball in L∞([0, T ], H2)
as

B(T ) =
{
(us, up) ∈ L∞([0, T ], H2) : ‖(us, up)‖L∞([0,T ],H2)

≤ 2C(‖us(0)‖H2 + ‖up(0)‖H2)
}
.

Then there exists T0 > 0 such that for any T < T0, the ball is mapped into itself, i.e.,
Aβ(B(T )) ⊂ B(T ) with T0 independent of β.

Next, we have to show that the mapping is a contraction in L∞([0, T ], H2). Con-
sider the first component of the map applied to two different pairs (us, up) and (vs, vp)
with the same initial data (us(0), up(0)) = (vs(0), vp(0)):

‖A(s)
β (us, up) −A

(s)
β (vs, vp)‖L∞([0,t],H2)

≤ CT sup
t∈[0,T ]

‖|up(t)|2us(t) − |vp(t)|2vs(t)‖H2

≤ CT sup
t∈[0,T ]

(‖u2
p(us − vs)‖H2 + ‖upvs(up − vp)‖H2 + ‖vpvs(up − vp)‖H2)

≤ C(‖up, us, vp, vs‖L∞([0,T ],H2))T‖(up − vp, us − vs)‖L∞([0,T ],H2).

Adding both s and p components of the map we obtain

‖Aβ(up, us) −Aβ(vp, vs)‖L∞([0,T ],H2)

≤ TC(‖up, us, vp, vs‖L∞([0,T ],H2))‖(up − vp, us − vs)‖L∞([0,T ],H2).

This inequality implies the following proposition.

Proposition 4.9. There exists T1 : 0 < T1 < T0 sufficiently small such that the
map Aβ is a contraction in the ball B(T ) for any T : 0 < T < T1:

‖Aβ(up, us) −Aβ(vp, vs)‖L∞([0,T ],H2) ≤ q‖(up − vp, us − vs)‖L∞([0,T ],H2),

where q < 1.

Remark 4.10. Whenever there exists a local solution on t ∈ [0, T ], it is bounded
in Lq([0, T ], Lr(R2)). Indeed, a solution in L∞([0, T ], H2) is also in Lq([0, T ], Lr(R2))
and the earlier obtained a priori bounds apply.

4.4. Global existence in H2(R2). In this section we will show that the local
solution obtained via the contraction mapping principle in the previous section can be
extended to a global solution using space-time estimates. We start with establishing
uniform bound in H1 space.

A priori estimates in H1. Proceeding as in the one-dimensional problem (2.4),
we obtain H1 bound. Since (∞, 2) is an admissible pair, we obtain that the solutions
are even uniformly bounded in time on the interval of existence of a local solution:

‖(us, up)‖L∞([0,T ],H1) ≤ C(P0, T )‖(us(0), up(0))‖H1 .(4.8)

Continuation to a global solution using Theorem 4.7 requires an H2 estimate, which
we now derive.
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Global existence in H2. Having established uniform bound in H1, we are ready
to obtain a bound in H2, which will rule out the first alternative in Theorem 4.7 (on
local existence) and, thus, leave the global existence as the only possibility.

Applying H+I to the s component of (4.2) and using energy estimates, we obtain

∂t

∫
|(H + I)us|2 ≤

∫
|(H + I)us| · |(H + I)(|up|2us)|

≤ ‖(H + I)us‖2‖(H + I)(|up|2us)‖2.(4.9)

To estimate the last term, we write∫
|Δ(|up|2us)|2 =

∫
|up|4|Δus|2 + 2

∫
|∇up|2|∇us|2|up|2 +

∫
|∇up|4|us|2

≤ C(‖up‖4
∞ · ‖us‖2

H2 + ‖us‖2
∞ · ‖up‖2

H2 · ‖up‖2
H1

+ ‖up‖2
∞ · ‖us‖2

H2 · ‖us‖2
H1 + ‖up‖2

∞ · ‖up‖2
H2 · ‖up‖2

H1)

and therefore we have∫
|Δ(|up|2us)|2 ≤ C

(
1 + ‖up‖4

∞ + ‖us‖4
∞
) ‖(us, up)‖2

H1 · ‖(us, up)‖2
H2 .

Now, adding the s and p components, we obtain

∂t

∫
(|(H + I)us|2 + |(H + I)us|2)
≤ C(1 + ‖up‖2

∞ + ‖us‖2
∞)(‖(H + I)us‖2

H2 + ‖(H + I)up‖2
H2),

where we have used that ‖(us, up)‖H1 is bounded (see previous paragraph on H1

estimates).
Since (2,∞) is an admissible pair, both

∫ ‖up‖2
∞ dt and

∫ ‖us‖2
∞ dt are bounded,

and we obtain the required bound:

‖(H + I)us‖2
2 + ‖(H + I)up‖2

2 ≤ C(P0, T )ekT (‖(H + I)us(0)‖2
2 + ‖(H + I)up(0)‖2

2)

on the interval t ∈ [0, T ]. Because of the norm equivalence, we also obtain

‖us(t)‖2
H2 + ‖up(t)‖2

H2 ≤ C(P0, T )ekT (‖us(0)‖2
H2 + ‖up(0)‖2

H2).

This bound implies the global existence of solutions in H2.
Radiation losses in two-dimensional amplification model. The analogue

of Theorem 3.1 on the boundedness of radiation in H2 holds with the proof carrying
over from the one-dimensional case. One can also obtain boundedness in L∞ as
described in Remark 3.5 with even faster decay: ε log ε rather than

√
ε.

Appendix A. Application to optical communications. In this section we
provide the details on the Raman model in optical communication systems as well as
the derivation of the reaction-dispersion system. In modern long-haul optical com-
munication systems the signal propagates in the fundamental mode of a single mode
fiber. In an “ideal” lossless optical fiber waveguide the transverse shape of the wave
envelope does not change and there is no transfer of energy from the fundamental
mode to radiation modes. However, in the real systems Rayleigh scattering causes
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attenuation of signal power, thus requiring periodic amplification [1]. A current strat-
egy for amplification of a signal is based on the stimulated Raman effect. Here, light
of a second pump wavelength is co- or counter-propagated in the medium. The stim-
ulated Raman effect is a parametric process in which light of the pump frequency
is transferred to that of the signal frequency. This amplification process is inher-
ently nonlinear and therefore is expected to cause deformation of the transverse mode
shape. There are other linear and nonlinear effects which may need to be taken into
account such as group velocity dispersion, self-phase modulation, and four wave mix-
ing. Also, refractive index depends on the frequency shift between the pump and
signal frequencies.

Regarding linear effects, like group velocity dispersion, in practice they are weaker
compared to the Raman effect assuming that pulses are not too short. However, in
our case, we consider a model problem with both pump and signal being continuous
(constant amplitude) waves. Then dispersion just vanishes.

The refractive index depends on the light frequency. As a result fundamental
modes would be slightly different for pump and signal waves. Here, we assume that
the modes are the same as it simplifies the exposition. All our results can be ob-
tained for the frequency-dependent dispersion/diffraction coefficients with minimal
modifications.

Approximate equations for the Raman interaction of signal and pump in the
waveguide have been derived in [3]. These authors derived a pair of coupled ODEs for
the signal and pump intensities, based on the assumption that all energy is contained
in the fundamental modes. This model compares well with experiment [3] (see also [1]
and the references therein). The authors [3] also discussed why the approximation
was so accurate. They suggested that radiative losses (energy transfer from bound to
radiation modes) is negligible due to the fact that “the wave-guiding action of the fiber
reforms the pump and Stokes waves so that they always have intensities distributions
which are close approximations to those which would exist in the absence of Raman
interaction.” However, this explanation has some limitations as the energy transfer
could occur adiabatically (e.g., like the ionization of an atom). In other words, a weak
process may lead to non-negligible changes after sufficiently long time. In particular,
one might expect that the modes would undergo continuous deformation while also
shedding radiation, so that after the full energy exchange a non-negligible amount of
energy would accumulate in radiative modes and would constitute a significant loss.

To understand these effects, equations which take into account the effects of
diffraction, wave-guiding and amplification should be studied. Naturally, the model
will contain a small parameter: the ratio of diffraction and amplification lengths.

Raman stimulated emission describes the amplification of signal photons (with
frequency ωs) with Stokes down shifted pump photons (with frequency ωp) and is
governed by [3]

∂ns
∂z

= g(ωp − ωs)nsnp,(A.1)

∂np
∂z

= −g(ωp − ωs)nsnp,(A.2)

where ns, np are the number densities of signal and pump photons, respectively, and
the total number of photons per unit volume is conserved ns+np = N . Since we wish
to focus on the effects due to the resonant coupling of the two wave fields (pump and
signal), we ignore other effects, such as amplified spontaneous emission [1] which is
always present, though a small effect.
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Introducing the intensities

Is = hωsns, Ip = hωpnp,(A.3)

where h denotes Planck’s constant, we obtain the corresponding equations

∂Is
∂z

=
g(ωp − ωs)

hωp
IsIp,(A.4)

∂Ip
∂z

= −g(ωp − ωs)

hωs
IsIp.(A.5)

These equations satisfy the photon number conservation relation

Is
ωs

+
Ip
ωp

= constant.(A.6)

In the case of radiative loss, this conservation law would be violated, since some
photons would be lost from the bound waveguide mode to radiation modes. Equations
(A.4)–(A.5) describe the plane wave Raman interaction.

Consider now the propagation of light in a dielectric cylinder waveguide with
longitudinal coordinate, z. Maxwell’s equations [1] imply

ΔE − 1

c2
Ett −∇(∇ · E) =

1

c2
[χ(1)(r, t) ∗ Ett]tt = 0,

where E ∈ R
3 is the electric field and χ(1)(r, t) is the linear susceptibility. Neglecting

vector effects (see, e.g., [1]), we find that the time Fourier transform of E, Ê, satisfies

ΔÊ +
ω2n2(x⊥, ω)

c2
Ê = 0.

Each component of E satisfies

Ezz + Δ⊥E +
ω2n2(x⊥, ω)

c2
E = 0.(A.7)

Next, we introduce the paraxial approximation. Let δ be a small parameter, and
assume the following structure for the refraction index dependence on x⊥:

n2(x⊥, ω) = n2
0(ω) + δ2n2

1(δx⊥/λ0, ω).(A.8)

We also seek E, in the form

E = A((δ/λ0)x⊥, (δ2/λ0)z)e
ikz,(A.9)

where λ0 is the light wavelength and

2π

λ0
= k = ωn0(ω)/c.

Thus, E varies more rapidly in the transverse than longitudinal directions.
Substituting (A.8), (A.9) into (A.7) and multiplying by λ2

0δ
−4 we obtain

AZZ + 2ikλ0δ
−2AZ + δ−2Δ⊥A + δ−2λ2

0(ω
2/c2)n2

1(X⊥) = 0,
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where Z = (δ2/λ0)z, X⊥ = (δ/λ0)x⊥, and (∗)⊥ denotes differentiation with respect
to X⊥. For δ small, we keep the dominant terms, those of order δ−2 and obtain, after
using the relation between k and λ0,

i4πAZ + Δ⊥A +
4π2n1(X⊥, ω)

n2
0

A = 0.(A.10)

Equation (A.10) governs the linear propagation of any light field (signal or pump)
in the paraxial approximation. To obtain a model governing the Raman interaction
of signal and pump fields, us and up, we argue as follows. The signal field envelope
propagates through a medium with refractive index (A.8) corrected by an imaginary
term proportional to i|up|2 corresponding to the Raman amplification by pump. The
pump field envelope, up, propagates through a medium with refractive index (A.8)
corrected by an imaginary term proportional to −i|us|2 corresponding to pump deple-
tion by the signal. The coupled signal and pump envelopes are then taken to satisfy
the system

i∂zus + Δ⊥us − V (ωs,x⊥)us = iεs|up|2us,(A.11)

i∂zup + Δ⊥up − V (ωp,x⊥)up = −iεp|us|2up,(A.12)

where εp,s is the parameter which measures the ratio of the diffraction and nonlinear
lengths. Usually, εp,s is very small [1]. We further assume4 ε = εs = εp and neglect
the dependence of the refractive index on frequency, i.e., V (x⊥, ω) = V (x⊥).

System (A.12) models the Raman energy exchange between the two continuous
waves. We have not included the effects of losses due to the Rayleigh scattering in
order not to burden the exposition. In reality, the Raman amplification length might
be comparable to the effective (loss) length (20 km).

Thus, we have

i∂tus −Hus = iε|up|2us,
i∂tup −Hup = −iε|us|2up,(A.13)

where we use “t” to denote the “time-like” direction, z, x⊥ = x, and

H = −Δ + V (x).(A.14)

We study system (A.13) in the case where H has spectrum consisting of one point
eigenvalue, λ < 0, with corresponding eigenfunction φ, ‖φ‖L2 = 1. The components
of us and up, which are orthogonal to φ, are called radiative components. Our goal
is to prove if for t = 0 the order-one energy is concentrated in φ alone, then on time
scales of order ε−1 the energy in radiative components is at most of order ε.

Appendix B. Normal form theorem. In this section we state a normal
form result on the absence of the terms driving the radiation to any order of the
perturbation theory. While in the main part of the paper we have used only the
fact that these terms can be removed at the first order, we find this result important
and potentially useful in the search for sharper estimates of radiation growth. The
results in this section are formal in the sense that we do not verify the validity of
transformations and of obtained systems.

4Nonlinear coefficient ε is then the same for both fields. Therefore, in this system the energy is
conserved rather than photon number. This is done to simplify the presentation. All results hold for
the “true” model as well.
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For the Raman energy exchange system

i∂tus −Hus = iε|up|2us,(B.1)

i∂tup −Hup = −iε|us|2up,(B.2)

we now use representation

us = us0φ
s
0(x) +

∫ ∞

0

usλφ
s
λ(x)dλ,

up = up0φ
p
0(x) +

∫ ∞

0

upλφ
p
λ(x)dλ,

where H becomes diagonal

Hφ0 = λ0φ0,

Hφλ = λφλ, 〈uλ, φλ〉 = uλ,

where λ0 < 0 corresponds to the fundamental mode and the remaining part of the
spectrum (λ > 0) corresponds to the continuous spectrum. In this representation the
equations take the form

i∂tu
s
0 − λ0u

s
0 = iεC00

00u
p
0u
p
0u
s
0 + iε

∫ ∞

0

C00
λ10u

p
0u
p
0u
s
λ1
dλ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ1μ2

λ10
upμ1

upμ2
usλ1

dμ1dμ2dλ1,

i∂tu
p
0 − μ0u

p
0 = iεC00

00u
s
0u
s
0u
p
0 + iε

∫ ∞

0

Cμ10
00 us0u

s
0u
p
μ1
dμ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ10
λ1λ2

usλ1
usλ2

upμ1
dλ1dλ2dμ1,

i∂tu
s
λ − λusλ = iεC00

0λu
p
0u
p
0u
s
0 + iε

∫ ∞

0

C00
λ1λu

p
0u
p
0u
s
λ1
dλ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ1μ2

λ1λ
upμ1

upμ2
usλ1

dμ1dμ2dλ1,

i∂tu
p
μ − μupμ = iεC0μ

00 u
s
0u
s
0u
p
0 + iε

∫ ∞

0

Cμ1μ
00 us0u

s
0u
p
μ1
dμ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ1μ
λ1λ2

usλ1
usλ2

upμ1
dλ1dλ2dμ1,

where

Cμ1μ2

λ1λ2
=

∫ +∞

−∞
φpμ1

φ
p

μ2
φsλ1

φ
s

λ2
dx.

The natural consequence of the stimulated emission process is the invariance with
respect to the phase shifts of both the signal and the pump modes:

usλi
, upμj

→ usλi
eiψs , upμj

eiψp .

This torus action will be called Gsp-action below.



AUTHOR MUST PROVIDE 27

Consider the class of polynomial vector fields which stay invariant under this
group action. We are going to consider near-identity transformations, which com-
mute with the torus action. Therefore these transformations map a Gsp-invariant
vector field to another Gsp-invariant vector field. We will now invoke these transfor-
mations to remove nonresonant terms from the equations. We first observe that a
polynomial vector field that is invariant with respect to the Gsp-action is generated
by the monomials of this form

es
λu

p
μ1
upμ2

· · ·upμm−1
upμm

usλ1
usλ2

· · ·usλk−1
usλk

usλk+1
,(B.3)

ep
μu

s
λ1
usλ2

· · ·usλm−1
usλm

upμ1
upμ2

· · ·upμk−1
upμk

upμk+1
,(B.4)

where m and k are even numbers.
Definition. The monomial of type (B.3) is called resonant if

μ1 − μ2 + · · · + μm−1 − μm + λ1 − λ2 + · · · + λk−1 − λk + λk+1 − λ = 0

and the monomial of type (B.4) is called resonant if

λ1 − λ2 + · · · + λm−1 − λm + μ1 − μ2 + · · · + μk−1 − μk + μk+1 − μ = 0.

If in a Gsp-invariant vector field initially all the energy is concentrated in funda-
mental modes, then the radiative modes can be excited only through the terms

es
λ|up0|k|us0|lus0 and ep

μ|us0|k|up0|lup0,
while no other radiation driving terms can appear after application of a Gsp-invariant
transformation. These terms are nonresonant, since the corresponding arithmetic
combinations are λ−λ0 and μ−λ0, where λ, μ > 0 and λ0 < 0. Therefore, |λ−λ0| >
|λ0| > 0 and |μ− λ0| > |λ0| > 0.

According to the standard normal form procedure, these terms can be removed
by employing the transformations of the form5

usλ = Us
λ + ε

k+l
2 Cs

λ|Up
0 |k|Us

0 |lUs
0 ,(B.5)

upμ = Up
μ + ε

k+l
2 Cp

μ|Us
0 |k|Up

0 |lUp
0 .(B.6)

Now we formulate the normal form theorem.
Theorem B.1. For any N ≥ 1 there exists a sequence of transformations of the

form (B.5)–(B.6), which bring the system to the form

i∂tU
s
0 − λ0U

s
0 = i

[
εC00

00U
p
0U

p

0U
s
0 +

n1+n2<N+1∑
n1,n2>0

ε
n1+n2

2 Cs
n1,n2

|Up
0 |n1 |Us

0 |n2Us
0

]

+ εRs0(U, ε) + O(εN+1),

i∂tU
p
0 − λ0U

p
0 = −i

[
εC00

00U
s
0U

s

0U
p
0 +

n1+n2<N+1∑
n1,n2>0

ε
n1+n2

2 Cp
n1,n2

|Up
0 |n1 |Us

0 |n2Up
0

]

+ εRp0(U, ε) + O(εN+1),

i∂tU
s
λ − λUs

λ = εRsλ(U, ε) + O(εN+1),

i∂tU
p
μ − μUp

μ = εRpμ(U, ε) + O(εN+1),

5Capitals denote new variables while small ones denote old variables.
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where Rs,p∗ (U, ε) are the terms which vanish if there is no energy in radiative modes
(Us

λ = Up
μ = 0 for all λ, μ > 0 ⇒ R = 0).

Proof. We will prove the theorem by applying a series of nearly identical trans-
formations. We start with the transformation

usλ = Us
λ + εCs

λU
p
0U

p
0U

s
0 .

Straightforward calculations show that in order to remove the corresponding radiation
driving terms, the coefficient Cs

λ must be of the form

Cs
λ =

C00
0λ

i(λ0 − λ)

and similarly to remove pump radiation driving terms, we apply

upμ = Up
μ + εCp

μU
s
0U

s
0U

p
0

with

Cp
μ =

C00
0μ

i(μ0 − μ)
.

Our results from the previous sections indicate that the transformations are valid and
the new system is well defined. Indeed, with the first-order radiation driving terms
removed, the obtained system is equivalent to (3.14)–(3.15).

Next, we formally remove quadratic radiation driving terms. We observe that
all transformations are near-identity ones differing only by fundamental mode am-
plitudes. No small denominators arise due to the gap in the spectrum (between the
eigenvalue and the continuum spectrum). Continuing these transformations, we re-
move higher-order radiation driving terms to order N .

Appendix C. Numerical simulations. We verify some of the results obtained
in this paper by carrying out numerical simulations. We simulate system (1.2) in one
dimension, where the potential is chosen to be V = sech2(x), so that the fundamental
mode can be explicitly calculated. We use the initial data with all the power (L2

norm) contained in fundamental modes.
The numerical simulation uses a Fourier split-step scheme, where evolutions due to

dispersive, potential, and nonlinear interactions are calculated separately. Nonlinear
interaction is solved exactly using the standard solution of the corresponding ODE [1].
Time step is chosen to be Δt = 0.01 and there are 212 Fourier modes. In Figure 1, the
L2 norm of total radiation is calculated after sufficiently long evolution, so that power
exchange between the fields is almost complete. This is done for ε ∈ [0.005, 0.05]. One
can see that the time interval is sufficiently long from Figure 2, where for the smallest
ε = 0.005, the power of both fields contained in the fundamental modes is computed.
Even in this case with the smallest ε (so that the energy exchange takes longer) there
is enough time for the pump field to transfer almost all the power to the signal field.
It appears from Figure 1 that losses due to radiation (L2 norm) scale linearly with
nonlinearity strength ε, as predicted by our analysis.
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Fig. 1. Dependence of radiation power on time. The radiation is “measured” after the evolution
for 75 units of dimensionless time.
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Fig. 2. Power exchange between fundamental modes for the smallest ε = 0.005 after the
evolution for the same time T = 75 (it corresponds to 7500 steps). Note that the pump field is
almost completely “depleted.” This indicates that time interval T = 75 is of sufficient length for the
power exchange to take place.

REFERENCES

[1] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, 1995.
[2] C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model prob-

lem, in Dynamical Systems and Probabilistic Methods in Partial Differential Equations,
Berkeley, CA, 1994, Lectures in Appl. Math. 31, AMS, Providence, RI, 1996, pp. 141–190.

[3] W. P. Urquhart and P. J. Laybourn, Effective core area for stimulated Raman scattering
in single-mode optical fibers, IEEE Proc., 132 (1985), pp. 201–204.

[4] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York, 1999.

[5] R. Weder, Lp −Lp′ estimates for Schrödinger equation on the line and inverse scattering for



30 MICHAEL I. WEINSTEIN AND VADIM ZHARNITSKY

the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), pp. 37–68.
[6] R. Weder, The Wk,p-continuity of the Schrödinger wave operators on the line, Comm. Math.

Phys., 208 (1999), pp. 507–520.
[7] T. Kato and G. Ponce, Commutator estimates and the Euler Navier-Stokes equations, Comm.

Pure Appl. Math., 41 (1988), pp. 891–907.
[8] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solu-

tions of wave equations, Duke Math. J., 44 (1977), pp. 705–714.
[9] I. E. Segal, Space-time decay for solutions of wave equations, Adv. Math., 22 (1976), pp. 305–

311.
[10] K. Yajima, Lp-boundedness of wave operators for two dimensional Schrödinger operators,

Comm. Math. Phys., 208 (1999), pp. 125–152.
[11] T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation

in H1, Manuscripta Math., 61 (1988), pp. 477–494.
[12] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation
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