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Abstract

We consider a class of nonlinear Schrödinger / Gross-Pitaveskii (NLS-GP) equa-
tions, i.e. NLS with a linear potential. We obtain conditions for a symmetry breaking
bifurcation in a symmetric family of states as N , the squared L2 norm (particle number,
optical power), is increased. In the special case where the linear potential is a double-
well with well separation L, we estimate Ncr(L), the symmetry breaking threshold.
Along the “lowest energy” symmetric branch, there is an exchange of stability from
the symmetric to asymmetric branch as N is increased beyond Ncr.
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1 Introduction

Symmetry breaking is a ubiquitous and important phenomenon which arises in a wide range
of physical systems. In this paper, we consider a class PDEs, which are invariant under a
symmetry group. For sufficiently small values of a parameter, N , the preferred (dynami-
cally stable) stationary (bound) state of the system is invariant under this symmetry group.
However, above a critical parameter, Ncr, although the group-invariant state persists, the
preferred state of the system is a state which (i) exists only for N > Ncr and (ii) is no longer
invariant. That is, symmetry is broken and there is an exchange of stability.

Physical examples of symmetry breaking include liquid crystals [24], quantum dots [27],
semiconductor lasers [9] and pattern dynamics [23]. This article focuses on spontaneous sym-
metry breaking, as a phenomenon in nonlinear optics [3, 16, 14], as well as in the macroscopic
quantum setting of Bose-Einstein condensation (BEC) [1]. Here, the governing equations are
partial differential equations (PDEs) of nonlinear Schrödinger / Gross-Pitaevskii type (NLS-
GP). Symmetry breaking has been observed experimentally in optics for two-component
spatial optical vector solitons (i.e., for self-guided laser beams in Kerr media and focusing
cubic nonlinearities) in [3], as well as for the electric field distribution between two-wells
of a photorefractive crystal in [16] (and between three such wells in [14]). In BECs, an
effective double well formed by a combined (parabolic) magnetic trapping and a (periodic)
optical trapping of the atoms may have similar effects [1], and lead to “macroscopic quantum
self-trapping”.

Symmetry breaking in ground states of the three-dimensional NLS-GP equation, with
an attractive nonlinearity of Hartree-type and a symmetric double well linear potential, was
considered in Aschbacher et. al. [2]; see also Remark 2.1. Ground states are positive and
symmetric nonlinear bound states, arising as minimizers of, H, the NLS-GP Hamiltonian
energy subject to fixed, N , the squared L2 norm. For the class of equations considered in [2],
ground states exist for any N > 0. It is proved that for sufficiently large N , any ground state
is concentrated in only one of the wells, i.e. symmetry is broken. The analysis in [2] is an
asymptotic study for large N , showing that if N is sufficiently large, then it is energetically
preferable for the ground state to localize in a single well. In contrast, at small L2 norm
the ground state is bi-modal, having the symmetries of the linear Schrödinger operator
with symmetric double-well potential. For macroscopic quantum systems, the squared L2

norm, denoted by N , is the particle number, while in optics it is the optical power. An
attractive nonlinearity corresponds to the case of negative scattering length in BEC and
positive attractive Kerr nonlinearity in optics.

An alternative approach to symmetry breaking in NLS-GP is via bifurcation theory. It
follows from [21, 20] that a family of “nonlinear ground states” bifurcates from the zero
solution (N = 0) at the ground state energy of the Schrödinger operator with a linear
double well potential. This nonlinear ground state branch consists of states having the
same bi-modal symmetry of the linear ground state. In this article we prove, under suitable
conditions, that there is a secondary bifurcation to an asymmetric state at critical N =
Ncr > 0. Moreover, we show that there is a transfer or exchange of stability which takes
place at Ncr; for N < Ncr the symmetric state is stable, while for N > Ncr the asymmetric
state is stable. Since our method is based on local bifurcation analysis we do not require
that the states we consider satisfy a minimization principle, as in [2]. Thus, quite generally,
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symmetry-breaking occurs as a consequence of the (finite dimensional) normal form, arising
in systems with certain symmetry properties. Although we can treat a large class of problems
for which there is no minimization principle, our analysis, at present, is restricted to small
norm. As we shall see, this can be ensured, for example, by taking the distance between
wells in the double-well, to be sufficiently large.

In [10] the precise transition point to symmetry breaking, Ncr, of the ground state and
the transfer of its stability to an asymmetric ground state was considered (by geometric
dynamical systems methods) in the exactly solvable NLS-GP, with a double well potential
consisting of two Dirac delta functions, separated by a distance L. Additionally, the behavior
of the function Ncr(L), was considered. Another solvable model was examined by numerical
means in [18]. A study of dynamics for nonlinear double wells appeared in [22].

We study Ncr(L), in general. Ncr(L), the value at which symmetry breaking occurs, is
closely related to the spectral properties of the linearization of NLS-GP about the symmetric
branch. Indeed, so long as the linearization of NLS-GP at the symmetric state has no non-
symmetric null space, the symmetric state is locally unique, by the implicit function theorem
[19]. The mechanism for symmetry breaking is the first appearance of an anti-symmetric
element in the null space of the linearization for some N = Ncr. This is demonstrated for a
finite dimensional Galerkin approximation of NLS-GP in [16, 13]. The present work extends
and generalizes this analysis to the full infinite dimensional problem using the Lyapunov-
Schmidt method [19]. Control of the corrections to the finite-dimensional approximation
requires small norm of the states considered. Since, as anticipated by the Galerkin approx-
imation, Ncr is proportional to the distance between the lowest eigenvalues of the double
well, which is exponentially small in L, our results apply to double wells with separation L,
hold for L sufficiently large.

The article is organized as follows. In section 2 we introduce the NLS-GP model and
give a technical formulation of the bifurcation problem. In section 3 we study a finite
dimensional truncation of the bifurcation problem, identifying a relevant bifurcation point.
In section 4, we prove the persistence of this symmetry breaking bifurcation in the full
NLS-GP problem, for N ≥ Ncr. Moreover, we show that the lowest energy symmetric
state becomes dynamically unstable at Ncr and the bifurcating asymmetric state is the
dynamically stable ground state for N > Ncr. Figure 1 shows a typical bifurcation diagram
demonstrating symmetry breaking for the NLS-GP system with a double well potential. At
the bifurcation point Ncr (marked by a circle in the figure), the symmetric ground state
becomes unstable and a stable asymmetric state emanates from it.

The main results are stated in Theorem 4.1, Corollary 4.1 and Theorem 5.1. In partic-
ular, we obtain an asymptotic formula for the critical particle number (optical power) for
symmetry breaking in NLS-GP,

Ncr =
Ω1 − Ω0

Ξ[ψ0, ψ1]
+ O

(

(Ω1 − Ω0)
2

Ξ[ψ0, ψ1]3

)

. (1.1)

Here, (Ω0, ψ0) and (Ω1, ψ1) are eigenvalue - eigenfunction pairs of the linear Schrödinger
operator H = −∆ + V , where Ω0 and Ω1 are separated from other spectrum, and Ξ is
a positive constant, given by (4.1), depending on ψ0 and ψ1. The most important case is
where Ω0 < Ω1 are the lowest two energies (linear ground and first excited states). For
double wells with separation L, we have Ncr = Ncr(L), depending on the eigenvalue spacing
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Figure 1: (Color Online) Bifurcation diagram for NLS-GP with double well potential (6.1)
with parameters s = 1, L = 6 and cubic nonlinearity. The first bifurcation is from the
the zero state at the ground state energy of the double well. Secondary bifurcation to an
asymmetric state at N = Ncr is marked by a (red) circle. For N < Ncr the symmetric state
(thick (blue) solid line) is nonlinearly dynamically stable. For N > Ncr the symmetric state
is unstable (thick (blue) dashed line). The stable asymmetric state, appearing for N > Ncr,
is marked by a thin (red) solid line. The (unstable) antisymmetric state is marked by a thin
(green) dashed line.

Ω0(L) − Ω1(L), which is exponentially small if L is large and Ξ is of order one. Thus, for
large L, the bifurcation occurs at small L2 norm. This is the weakly nonlinear regime in
which the corrections to the finite dimensional model can be controlled perturbatively. A
local bifurcation diagram of this type will occur for any simple even-odd symmetric pair of
simple eigenvalues of H in the weakly nonlinear regime, so long as the eigen-frequencies are
separated from the rest of the spectrum of H ; see Proposition 4.1 and the Gap Condition
(4.7). Therefore, a similar phenomenon occurs for higher order, nearly degenerate pairs of
eigen-states of the double wells, arising from isolated single wells with multiple eigenstates.
Section 6 contains numerical results validating our theoretical analysis.
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2 Technical formulation

Consider the initial-value-problem for the time-dependent nonlinear Schrödinger / Gross-
Pitaevskii equation (NLS-GP)

i∂tψ = Hψ + g(x)K[ ψψ̄ ] ψ, ψ(x, 0) given (2.1)

H = −∆ + V (x). (2.2)

We assume:

(H1) The initial value problem for NLS-GP is well-posed in the space C0([0,∞);H1(IRn)).

(H2) The potential, V (x) is assumed to be real-valued , smooth and rapidly decaying as
|x| → ∞. The basic example of V (x), we have in mind is a double-well potential, consisting
of two identical potential wells, separated by a distance L. Thus, we also assume symmetry
with respect to the hyperplane, which without loss of generality can be taken to be {x1 = 0}:

V (x1, x2, . . . , xn) = V (−x1, x2, . . . , xn). (2.3)

We assume the nonlinear term, K[ψψ], to be attractive, cubic ( local or nonlocal), and
symmetric in one variable. Specifically, we assume the following
(H3) Hypotheses on the nonlinear term:

(a) g(x1, x2, . . . , xn) = g(−x1, x2, . . . , xn) (symmetry)

(b) g(x) < 0 (attractive / focusing)

(c) K[h] =
∫

K(x− y)h(y)dy, K(x1, x2, . . . , xn) = K(−x1, x2, . . . , xn), K > 0.

(d) Consider the map N : H2 ×H2 ×H2 7→ L2 defined by

N(φ1, φ2, φ3) = gK[φ1φ2]φ3. (2.4)

We also write N(u) = N(u, u, u) and note that ∂uN(u) = N(·, u, u) + N(u, ·, u) +
N(u, u, ·). We assume there exists a constant k > 0 such that

‖N(φ0, φ1, φ2)‖L2 ≤ k ‖φ1‖H2‖φ2‖H2‖φ3‖H2. (2.5)

Several illustrative and important examples are now given:
Example 1: Gross-Pitaevskii equation for BECs with negative scattering
length g(x) ≡ −1, K(x) = δ(x)
Example 2: Nonlinear Schrödinger equation for optical media with a nonlocal kernel
g(x) ≡ ±1, K(x) = A exp(−x2/σ2) [17] (see also [4] for similar considerations in BECs).
Example 3: Photorefractive nonlinearities The approach of the current paper can be
adapted to the setting of photorefractive crystals with saturable nonlinearities and appro-
priate optically induced potentials [5]. The relevant symmetry breaking phenomenology is
experimentally observable, as shown in [16].
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Nonlinear bound states: Nonlinear bound states are solutions of NLS-GP of the form

ψ(x, t) = e−iΩtΨΩ(x), (2.6)

where ΨΩ ∈ H1(IRn) solves

H ΨΩ + g(x) K[|ΨΩ|2] ΨΩ − ΩΨΩ = 0, u ∈ H1 (2.7)

If the potential V (x) is such that the operator H = −∆+V (x) has a discrete eigenvalue,
E∗, and correspsonding eigenstate ψ∗, then for energies near E near E∗ and one expects
small amplitude nonlinear bound states, which are to leading order small multiples of ψ∗.
This is the standard setting of bifurcation from a simple eigenvalue [19], which follows from
the implicit function theorem.

Theorem 2.1 [20, 21] Let (Ψ, E) = (ψ∗, E∗) be a simple eigenpair, of the eigenvalue problem
HΨ = ΩΨ, i.e. dim{ρ : (H − E∗)ρ = 0} = 1. Then, there exists a unique smooth curve of
nontrivial solutions α 7→ ( Ψ(·;α),Ω(α) ), defined in a neighborhood of α = 0, such that

ΨΩ = α
(

ψ0 + O(|α|2)
)

, Ω = Ω0 + O(|α|2), α→ 0. (2.8)

Remark 2.1 For a large class of problems, a nonlinear ground state can be characterized
variationally as a constrained minimum of the NLS / GP energy subject to fixed squared L2

norm. Define the NLS-GP Hamiltonian energy functional

HNLS−GP [Φ] ≡
∫

|∇Φ|2 + V |Φ|2 dy +
1

2

∫

g(y)K[|Φ|2] dy (2.9)

and the particle number (optical power)

N [Φ] =

∫

|Φ|2 dy, (2.10)

where

K[|Φ|2] =

∫

K(x− y) |Φ(x)|2 |Φ(y)|2 dy. (2.11)

In particular, the following can be proved:

Theorem 2.2 Let Iλ = infN [f ]=λ H[f ]. If −∞ < Iλ < 0, then the minimum is attained
at a positive solution of (2.7). Here, Ω = Ω(λ) is a Lagrange multiplier for the constrained
variational problem.

In [2] the nonlinear Hartree equation is studied; K[h] = |y|−1 ⋆h, g ≡ −1. It is proved that if
V (x) is a double-well potential, then for λ sufficiently large, the minimizer does not have the
same symmetry as the linear ground state. By uniqueness, ensured by the implicit function
theorem, for small N , the minimizer has the same symmetry as that as the linear ground
state and has the expansion (2.8); see [2] and section 4.

We make the following

Spectral assumptions on H

6



(H4) H has a pair of simple eigenvalues Ω0 and Ω1. ψ0 and ψ1, the corresponding (real-
valued) eigenfunctions are, respectively, even and odd in x1.

Example 2.1 The basic example: Double well potentials
A class of examples of great interest is that of double well potentials. The simplest example,
in one space dimension, is obtained as follows; see section 8 for the multidimensional case.
Start with a single potential well (rapidly decaying as |x| → ∞), v0(x), having exactly one
eigenvalue, ω, H0ψω = (−∆ + v0(x))ψω = ωψω; see Figure (2a). Center this well at x = −L
and place an identical well, centered at x = L. Denote by VL(x) the resulting double-well
potential and HL denote the Schrödinger operator:

HL = −∆ + VL(x) (2.12)

There exists L > L0, such that for L > L0, HL has a pair of eigenvalues, Ω0 = Ω0(L) and
Ω1 = Ω1(L), Ω0 < Ω1, and corresponding eigenfunctions ψ0 and ψ1; see Figure (2b). ψ0 is
symmetric with respect to x = 0 and ψ1 is antisymmetric with respect to x = 0. Moreover,
for L sufficiently large, |Ω0 − Ω1| = O(e−κL), κ > 0; see [8]; see also section 8.

(a) (b)
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Figure 2: This figure demonstrates a single and a double well potential and the spectrum of
H and HL respectively. Panel (a) shows a single well potential and under it the spectrum of
H , with an eigenvalue marked by a (red) mark ‘o’ at ω and continuous spectrum marked by
a (black) line for energies ω ≥ 0. Panel (b) shows the double well centered at ±L and the
spectrum of HL underneath. The eigenvalues Ω0 and Ω1 are each marked by a (blue) mark
‘*’ and a (green) mark ‘x’ respectively on either side of the location ω - (red) mark ‘o’. The
continuous spectrum is marked by a (black) line for energies Ω ≥ 0.
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The construction can be generalized. If −∆ + v0(x) has m bound states, then forming a
double well VL, with L sufficiently large, HL = −∆ + VL will have m− pairs of eigenvalues:
(Ω2j ,Ω2j+1), j = 0, . . . , m− 1, eigenfunctions ψ2j (symmetric) and ψ2j+1 anti-symmetric.

By Theorem 2.1, for small N , there exists a unique non-trivial nonlinear bound state,
bifurcating from the zero solution at the ground state energy, Ω0, of H . By uniqueness,
ensured by the implicit function theorem, these small amplitude nonlinear bound states
have the same symmetries as the double well; they are bi-modal. We also know from [2] that
for sufficiently large N the ground state has broken symmetry. We now seek to elucidate
the transition from the regime of N small to N large.

We work in the general setting of hypotheses (H1)-(H4). Define spectral projections
onto the bound and continuous spectral parts of H :

P0 = (ψ0, ·)ψ0, P1 = (ψ1, ·)ψ1, P̃ = I − P0 − P1 (2.13)

Here,

(f, g) =

∫

f̄g dx. (2.14)

We decompose the solutions of Eq. (2.7) according to

ΨΩ = c0ψ0 + c1ψ1 + η, η = P̃ η. (2.15)

We next substitute the expression (2.15) into equation (2.7) and then act with projections
P0, P1 and P̃ to the resulting equation. Using the symmetry and anti-symmetry properties
of the eigenstates, we obtain three equations which are equivalent to the PDE (2.7):

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0 + a0011c
2
1c̄0 + (ψ0g,R(c0, c1, η)) = 0

(2.16)

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1 + a1010c
2
0c̄1 + (ψ1g,R(c0, c1, η)) = 0

(2.17)

(H − Ω) η = −P̃ g [ F (·; c0, c1) + R(c0, c1, η) ] (2.18)

F (·, c0, c1) is independent of η and R(c0, c1, η) contains linear, quadratic and cubic terms in
η. The coefficients aklmn are defined by:

aklmn = ( ψk, gK[ψlψm]ψn ) (2.19)

We shall study the character of the set of solutions of the system (2.16), (2.17), (2.18)
restricted to the level set

∫

|ΨΩ|2dx = N ⇐⇒ |c0|2 + |c1|2 +

∫

|η|2dx = N (2.20)

as N varies.
Let Ω0 and Ω1 denote the two lowest eigenvalues ofHL. We prove (Theorem 4.1, Corollary

4.1, Theorem 5.1):
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• There exist two solution branches, parametrized by N , which bifurcate from the zero
solution at the eigenvalues, Ω0 and Ω1.

• Along the branch, (Ω,ΨΩ), emanating from the solution (Ω = Ω0,Ψ = 0) , there is a
symmetry breaking bifurcation at N = Ncrit > 0. In particular, let ucrit denote the
solution of (2.7) corresponding to the value N = Ncrit. Then, in a neighborhood ucrit,
for N < Ncrit there is only one solution of (2.7), the symmetric ground state, while for
N > Ncrit there are two solutions one symmetric and a second asymmetric.

• Exchange of stability at the bifurcation point: For N < Ncrit the symmetric state
is dynamically stable, while for N > Ncrit the asymmetric state is stable and the
symmetric state is exponentially unstable.

3 Bifurcations in a finite dimensional approximation

It is illustrative to consider the finite dimensional approximation to the system (2.16,2.17,2.18),
obtained by neglecting the continuous spectral part, P̃ u. Let’s first set η = 0, and therefore
R(c0, c1, 0) = 0. Under this assumption of no coupling to the continuous spectral part of H ,
we obtain the finite dimensional system:

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0 + a0011c
2
1c̄0 = 0 (3.1)

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1 + a1010c
2
0c̄1 = 0 (3.2)

|c0|2 + |c1|2 = N (3.3)

Our strategy is to first analyze the bifurcation problem for this approximate finite-dimensional
system of algebraic equations. We then treat the corrections, coming from coupling to the
continuous spectral part of H , η, perturbatively.

For simplicity we take cj real: cj = ρj ∈ IR; see section 4. Then,

ρ0

[

Ω0 − Ω + a0000ρ
2
0 + (a0110 + 2a0011) ρ

2
1

]

= 0 (3.4)

ρ1

[

Ω1 − Ω + a1111ρ
2
1 + (a1001 + 2a1010) ρ

2
0

]

= 0 (3.5)

ρ2
0 + ρ2

1 − N = 0. (3.6)

Introduce the notation
P0 = ρ2

0, P1 = ρ2
1 (3.7)

Then,

F0(P0,P1,Ω;N ) = P0 [ Ω0 − Ω + a0000P0 + (a0110 + 2a0011)P1 ] = 0

F1(P0,P1.Ω;N ) = P1 [ Ω1 − Ω + a1111P1 + (a1001 + 2a1010)P0 ] = 0

FN (P0,P1,Ω;N ) = P0 + P1 − N = 0. (3.8)

Solutions of the approximate system
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(1) Q(0)(N ) = ( P(0)
0 ,P(0)

1 ,Ω(0) ) = ( N , 0,Ω0 + a0000N ) - approximate nonlinear
ground state branch

(2) Q(1)(N ) = ( P(1)
0 ,P(1)

1 ,Ω(1) ) = ( 0,N ,Ω1 + a1111N ) - approximate nonlinear
excited state branch

Thus we have a system of equations F(Q,N ) = 0, where F : (IR+ × IR+ × IR)× IR+ →
IR3×IR+, mapping (Q,N ) → F(Q,N ) smoothly. We have that F(Q(j)(N ),N ) = 0, j = 0, 1
for all N ≥ 0. A bifurcation (onset of multiple solutions) can occur only at a value of N∗

for which the Jacobian dQF(Q(j)(N∗);N∗) is singular. The point (Q(j)(N∗);N∗) is called a
bifurcation point. In a neighborhood of a bifurcation point there is a multiplicity of solutions
(non-uniqueness) for a given N . The detailed character of the bifurcation is suggested by
the nature of the null space of dQF(Q(j)(N∗);N∗).

We next compute dQF(Q(j)(N );N ) along the different branches in order to see whether
and where there are bifurcations.

The Jacobian is given by

dQF(Q(j)(N );N ) =
∂(F0,F1,FN )

∂(P0,P1,Ω)
=





Ω0 − Ω + 2a0000P0 + (a0110 + a0011)P1 (a0110 + 2a0011)P0 −P0

(a1001 + 2a1010)P1 Ω1 − Ω + 2a1111P1 + (a0110 + 2a1010)P0 −P1

1 1 0



 (3.9)

A candidate value of N for which there is a bifurcation point along the “ground state
branch” is one for which

det
(

dQF(Q(0)(N );N )
)

= 0 ⇐⇒ N = N (0)
cr ≡ Ω1 − Ω0

a0000 − (a1001 + 2a1010)
(3.10)

Since the parameter N is positive, we have

Proposition 3.1 (a) Q(0)(N (0)
cr ) = (N (0)

cr , 0,Ω0 + a0000N (0)
cr ;N (0)

cr ) is a bifurcation point

for the approximating system (3.4-3.6) if N (0)
cr is positive.

(b) For the double well with well-separation parameter, L, we have that N (0)
cr (L) > 0 for

L sufficiently large.

Proof: We need only check (b). This is easy to see, using the large L approximations of ψ0

and ψ1 in terms of ψω, the ground state of H = −∆ + V (x), the “single well” operator:

ψ0 ∼ 2−1/2 ( ψω(x− L) + ψω(x+ L) )

ψ1 ∼ 2−1/2 ( ψω(x− L) − ψω(x+ L) ) ; (3.11)

see Proposition 8.1 in section 8.

Excited state branch

det
(

dQF(Q(1)(N );N )
)

= 0 ⇐⇒ N (1)
∗ =

Ω1 − Ω0

a0110 + 2a0011 − a1111
(3.12)
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Remark 3.1 For the double well with well-separation parameter, L, we have that N (1)
∗ (L) < 0

for L sufficiently large, as can be checked using the approximation (3.11). Therefore Q(1)(N (1)
∗ )

is not a bifurcation point of the approximating system (3.8).

Summary: Assume N is sufficiently small. The finite dimensional approximation (3.8)
predicts a symmetry breaking bifurcation along the nonlinear ground state branch and that
no bifurcation takes place along the anti-symmetric branch of nonlinear bound states.

4 Bifurcation / Symmetry breaking analysis of the PDE

In this section we prove the following

Theorem 4.1 (Symmetry Breaking for NLS-GP) Consider NLS-GP with hypotheses
(H2)-(H4). Let aklmn be given by (2.19) and

Ξ[ψ0, ψ1, g] ≡ a0000 − a1001 − 2a1010

=
(

ψ2
0, gK[ψ2

0]
)

−
(

ψ2
1 , gK[ψ2

0]
)

− 2 (ψ0ψ1, gK[ψ0ψ1]) > 0. (4.1)

Assume
Ω1 − Ω0

Ξ[ψ0, ψ1]2
is sufficiently small. (4.2)

Then, there exists Ncr > 0 such that

(i) for any N ≤ Ncr, there is (up to the symmetry u 7→ u eiγ) a unique ground state, uN ,
having the same spatial symmetries as the double well.

(ii) N = Ncr, u
sym
Ncr

is a bifurcation point. For N > Ncr, there are, in a neighborhood
of N = Ncr, u

sym
Ncr

, two branches of solutions: (a) a continuation of the symmetric
branch, and (b) a new asymmetric branch.

(iii) The critical N - value for bifurcation is given approximately by

Ncr =
Ω1 − Ω0

Ξ[ψ0, ψ1]

[

1 + O
(

Ω1 − Ω0

Ξ[ψ0, ψ1]2

)]

Corollary 4.1 Fix a pair of eigenvalues, (Ω2j , ψ2j), (Ω2j+1, ψ2j+1) of the linear double-well
potential, VL(x); see Example 2.1. For the NLS-GP with double well potential of well-
separation L, there exists L̃ > 0, such that for all L ≥ L̃, there is a symmetry breaking
bifurcation, as described in Theorem 4.1, with Ncr = Ncr(L; j).

Remark 4.1 Ω1(L) − Ω0(L) = O(e−κL) for L large. The terms in Ξ[ψ0, ψ1](L) are O(1).
Therefore, for the double well potential, VL(x), the smallness hypothesis of Theorem 4.1 holds
provided L is sufficiently large.
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To prove this theorem we will establish that, under hypotheses (4.1)-(4.2), the character
of the solution set (symmetry breaking bifurcation) of the finite dimensional approximation
(3.1-3.3) persists for the full (infinite dimensional) problem:

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0 + a0011c
2
1c̄0 + (ψ0g,R(c0, c1, η)) = 0

(4.3)

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1 + a1010c
2
0c̄1 + (ψ1g,R(c0, c1, η)) = 0

(4.4)

(H − Ω) η = −P̃ g [ F (·; c0, c1) + R(c0, c1, η) ] , η = P̃ η (4.5)

|c0|2 + |c1|2 +

∫

|η|2 = N . (4.6)

We analyze this system using the Lyapunov-Schmidt method. The strategy is to solve
equation (4.5) for η as a functional of c0, c1 and Ω. Then, substituting η = η[c0, c1,Ω]
into equations (4.3), (4.4) and (4.6), we obtain three closed equations, depending on a
parameter N , for c0, c1 and Ω. This system is a perturbation of the finite dimensional
(truncated) system: (3.1, 3.2) and (3.3). We then show that under hypotheses (4.1)-(4.2)
there is a symmetry breaking bifurcation. Finally, we show that the terms perturbing the
finite dimensional model have a small and controllable effect on the character of the solution
set for a range of N , which includes the bifurcation point. Note that, in the double well
problem, hypotheses (4.1)-(4.2) are satisfied for L sufficiently large, see Proposition 8.2.

We begin with the following proposition, which characterizes η = η[c0, c1,Ω].

Proposition 4.1 Consider equation (4.5) for η. By (H4) we have the following:

Gap Condition : |Ωj − τ | ≥ 2d∗ for j = 0, 1 and all τ ∈ σ(H) \ {Ω0,Ω1} (4.7)

Then there exists n∗, r∗ > 0, depending on d∗, such that in the open set

|c0| + |c1| < r∗ (4.8)

‖c0ψ0 + c1ψ1 + η‖H2 < n∗(d∗)

dist(Ω, σ(H) \ {Ω0,Ω1}) > d∗, (4.9)

the unique solution of (2.18) is given by the real-analytic mapping:

(c0, c1,Ω) 7→ η[c0, c1,Ω], (4.10)

defined on the domain given by (4.8,4.9). Moreover there exists C∗ > 0 such that:

‖ η[c0, c1,Ω] ‖H2 ≤ C∗(|c0| + |c1|)3 (4.11)

Proof: Consider the map
N : H2 ×H2 ×H2 7→ L2

N(φ0, φ1, φ2) = gK[φ1φ2]φ3.

12



By assumptions on the nonlinearity (see section 2), there exists a constant k > 0 such that

‖N(φ0, φ1, φ2)‖L2 ≤ k‖φ1‖H2‖φ2‖H2‖φ3‖H2 . (4.12)

Moreover the map being linear in each component it is real analytic. 1

Let c0, c1 and Ω be restricted according the inequalities (4.8,4.9). Equation (2.18) can be
rewritten in the form

η + (H − Ω)−1P̃N [c0ψ0 + c1ψ1 + η] = 0. (4.13)

Since the spectrum of HP̃ is bounded away from Ω by d∗, the resolvent:

(H − Ω)−1P̃ : L2 7→ H2

is a (complex) analytic map and bounded uniformly,

‖(H − Ω)−1P̃‖L2 7→H2 ≤ p(d−1
∗ ), (4.14)

where p(s) → ∞ as s → ∞. Consequently the map F : C
2 × {Ω ∈ C : dist(Ω, σ(H) \

{Ω0,Ω1} } ≥ d∗} ×H2 7→ H2 given by

F (c0, c1,Ω, η) = η + (H − Ω)−1P̃N [ c0ψ0 + c1ψ1 + η ] (4.15)

is real analytic. Moreover,

F (0, 0,Ω, 0) = 0, DηF (0, 0,Ω, 0) = I.

Applying the implicit function theorem to equation (4.13), we have that there exists n∗(Ω), r∗(Ω)
such that whenever |c0| + |c1| < r∗ and ‖c0ψ0 + c1ψ1 + η‖H2 < n∗ equation (4.13) has an
unique solution:

η = η(c0, c1,Ω) ∈ H2

which depends analytically on the parameters c0, c1, Ω. By applying the projection operator
P̃ to the (4.13) which commutes with (H−Ω)−1 we immediately obtain P̃ η = η, i.e. η ∈ P̃L2.

We now show that n∗, r∗ can be chosen independent of Ω, satisfying (4.9). The implicit
function theorem can be applied in an open set for which

DηF (c0, c1,Ω, η) = I + (H − Ω)−1P̃DηN [ c0ψ0 + c1ψ1 + η ]

is invertible. For this it suffices to have:

‖ (H − Ω)−1P̃DηN [ c0ψ0 + c1ψ1 + η] ‖H2 ≤ Lip < 1

A direct application of (4.12) and (4.14) shows that

‖(H − Ω)−1P̃DηN [ c0ψ0 + c1ψ1 + η] ‖H2 ≤

3k p(d−1
∗ ) ‖c0ψ0 + c1ψ1 + η‖2

H2 (4.16)

1The trilinearity follows from the implicit bilinearity of K in formulas (2.16)-(2.18).
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Fix Lip = 3/4. Then, a sufficient condition for invertibility is

3k p(d−1
∗ ) ‖c0ψ0 + c1ψ1 + η‖2

H2 ≤ Lip = 3/4. (4.17)

which allows us to choose n∗ = 1
2

√

1
kp(d−1

∗
)
, independently of Ω.

But, if (4.17) holds, then, from (4.16), the H2 operator

(H − Ω)−1P̃N [ c0ψ0 + c1ψ1 + · ]

is Lipschitz with Lipschitz constant less or equal to Lip = 3/4. The standard contraction
principle estimate applied to (4.13) gives:

‖η‖H2 ≤ 1

1 − Lip
‖(H − Ω)−1P̃N [ c0ψ0 + c1ψ1 ] ‖H2

≤ 4p(d−1
∗ ) k‖c0ψ0 + c1ψ1‖3

H2. (4.18)

Plugging the above estimate into (4.17) gives:

‖c0ψ0 + c1ψ1‖H2 + 4p(d−1
∗ ) k‖c0ψ0 + c1ψ1‖3

H2 ≤ 1

2
√

p(d−1
∗ )k

Since the left hand side is continuous in (c0, c1) ∈ C2 and zero for c0 = c1 = 0 one can
construct r∗ > 0 depending only on d∗, k such that the above inequality, hence (4.17) and
(4.18), all hold whenever |c0| + |c1| ≤ r∗. Finally, (4.11) now follows from (4.18).QED

In particular, for the double well potential we have the following

Proposition 4.2 Let V = VL denote the double well potential with well-separation L. There
exists L∗ > 0, ε(L∗) > 0 and d∗(L∗) > 0 such that for L > L∗, we have that for (c0, c1,Ω)
satisfying dist(Ω, σ(H) \ {Ω0,Ω1}} } ≥ d∗(L∗) and |c0| + |c1| < ε(L∗) η[c0, c1,Ω] is defined
and analytic and satisfies the bound (4.11) for some C∗ > 0.

Proof: Since Ω0, Ω1, ψ0 and ψ1 can be controlled, uniformly in L large, via the approxi-
mations (3.11), both d∗ and r∗ in the previous Proposition can be controlled uniformly in L
large. QED

Next we study the symmetries of η(c0, c1,Ω) and properties of R(c0, c1, η) which we will
use in analyzing the equations (2.16)-(2.17). The following result is a direct consequence of
the symmetries of equation (2.18) and Proposition 4.1:

Proposition 4.3 We have

η(eiθc0, e
iθc1,Ω) = eiθη(c0, c1,Ω), for 0 ≤ θ < 2π, (4.19)

η(c0, c1,Ω) = η(c0, c1,Ω) (4.20)

in particular

η(eiθc0, c1 = 0,Ω) = eiθη(c0, c1 = 0,Ω), (4.21)

η(c0 = 0, eiθc1,Ω) = eiθη(c0 = 0, c1,Ω), (4.22)
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η(c0, 0,Ω) is even in x1, η(0, c1,Ω) is odd in x1 and if c0, c1 and Ω are real valued, then
η(c0, c1,Ω) is real valued.

In addition

〈 ψ0,R(c0, c1, η) 〉 = c0 f0 ( c0, c1,Ω ) (4.23)

〈 ψ1,R(c0, c1, η) 〉 = c1 f1 ( c0, c1,Ω ) (4.24)

where, for any 0 ≤ θ < 2π

fj

(

eiθc0, e
iθc1,Ω

)

= fj ( c0, c1,Ω ) , j = 0, 1 (4.25)

fj(c0, c1,Ω ) = fj

(

c0, c1,Ω
)

, j = 0, 1 (4.26)

|fj ( c0, c1,Ω )| ≤ C(|c0| + |c1|)4, j = 0, 1 (4.27)

for some constant C > 0. Moreover, both f0 and f1 can be written as absolutely convergent
power series:

fj(c0, c1,Ω) =
∑

k+l+m+n≥4, k−l+m−n=0, m+n=even

bjklmn(Ω)ck0 c
l
0 c

m
1 cn1 , j = 0, 1, (4.28)

where bjklmn(Ω) are real valued when Ω is real valued. In particular, if c0, c1 and Ω are real
valued, then fj (c0, c1,Ω ) is real valued and, in polar coordinates, for c0, c1 6= 0, we have

fj(|c0|, |c1|,∆θ,Ω) =
∑

k+m≥2, p∈Z

bjkmp(Ω)eip2∆θ|c0|2k|c1|2m, j = 0, 1, (4.29)

where ∆θ is the phase difference between c1 ∈ C and c0 ∈ C.

Proof of Proposition 4.3: We start with (4.19) which clearly implies (4.21)-(4.22). We fix
Ω and suppress dependence on it in subsequent notation. From equation (4.13) we have:

η(eiθc0, e
iθc1)

= −(H − Ω)−1P̃N(eiθc0ψ0 + eiθc1ψ1 + η, eiθc0ψ0 + eiθc1ψ1 + η, eiθc0ψ0 + eiθc1ψ1 + η)

= −(H − Ω)−1P̃ eiθN(c0ψ0 + c1ψ1 + e−iθη, c0ψ0 + c1ψ1 + e−iθη, c0ψ0 + c1ψ1 + e−iθη)

where we used
N(aφ1, bφ2, cφ3) = abcN(φ1, φ2, φ3). (4.30)

Consequently

e−iθη(eiθc0, e
iθc1) = −(H−Ω)−1P̃N [ c0ψ0+c1ψ1+e

−iθη, c0ψ0+c1ψ1+e
−iθη, c0ψ0+c1ψ1+e

−iθη]

which shows that both e−iθη(eiθc0, e
iθc1) and η(c0, c1) satisfy the same equation (4.13). From

the uniqueness of the solution proved in Proposition 4.1 we have the relation (4.19).
A similar argument (and use of the complex conjugate) leads to (4.20) and to the parities

of η(c0, 0) and η(0, c1).
To prove (4.23) and (4.24), recall that

R (c0, c1, η(c0, c1,Ω)) = N(c0ψ0 + c1ψ1 + η, c0ψ0 + c1ψ1 + η, c0ψ0 + c1ψ1 + η)

− N(c0ψ0 + c1ψ1, c0ψ0 + c1ψ1, c0ψ0 + c1ψ1). (4.31)
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Consider first the case c1 = ρ1 ∈ R. Note that

〈 ψ1g,R(c0, ρ1 = 0, η(c0, 0)) 〉 = 0.

Indeed, for ρ1 = 0, all the functions in the arguments of R are even functions (in x1) making
R an even function. Since ψ1 is odd we get that the above is the integral over the entire
space of an odd function, i.e. zero. Since 〈 ψ1,R(c0, ρ1, η(c0, ρ1)) 〉 is analytic in ρ1 ∈ R by
the composition rule, and its Taylor series starts with zero we get (4.24) for real c1 = ρ1. To
extend the result for complex values c1 we use the rotational symmetry of R, namely from
(4.19), (4.30) and (4.31) we have

R
(

eiθc0, e
iθc1, η(e

iθc0, e
iθc1,Ω)

)

= eiθR (c0, c1, η(c0, c1,Ω)) , 0 ≤ θ < π

hence (4.24) holds for c1 = |c1|e−iθ by extending f1 via the equality (4.25).
A very similar argument holds for (4.23). Equation (4.27) follows from the definition of

R and (4.11). Equation (4.26) follows from (4.20).
We now turn to a proof of the expansions for fj : (4.28) and (4.29). Note first that both

f0 and f1 are real analytic in c0, c1 by analyticity of R in (4.23)-(4.24); see (4.31). Note also
that η is real analytic by Proposition 4.1 while N is trilinear. Hence, both f0 and f1 can be
written in power series of the type (4.28). Estimate (4.27) implies that k + l + m + n ≥ 4,
while the rotational invariance (4.25) implies k−l+m−n = 0. The following parity argument
shows why m+ n hence m− n = l − k and k + l are all even. Assume m + n is odd. Note
that because of (4.23), b0klmn is the scalar product between an even function (in x1) ψ0 and
the term in the power series of R in which ψ1 is repeated m+ n times. The latter is an odd
function (in x1) because ψ1 is an odd function and it is repeated an odd number of times.
The scalar product and hence b0klmn for m + n odd will be zero. A similar argument holds
for b1klmn, m+n odd. Finally bjklmn(Ω) are real valued when Ω is real because they are scalar
products of real valued functions.

The form (4.29) of the power series follows directly from (4.28) by expressing c0 and c1
in their polar forms: c0 = |c0|eiθ0 and c1 = |c1|eiθ1, ∆θ = θ1 −θ0, and using that m+n, k+ l
and m− n = −(k − l) are all even. The proof of Proposition 4.3 is now complete.

4.1 Ground state and excited state branches, pre-bifurcation

In this section we prove part (i) of Theorem 4.1 as well as a corresponding statement about
the excited state. In particular, we show that for sufficiently small amplitude, the only
nonlinear bound state families are those arising via bifurcation from the zero state at the
eigenvalues Ω0 and Ω1. This is true for general potentials with two bound states. Here,
however we can determine threshold amplitude, Ncr, above which the solution set changes.

A closed system of equations for c0, c1 and Ω, parametrized by N , is obtained upon
substitution of η[c0, c1,Ω], (Proposition 4.1) into (4.3-4.6). Furthermore, using the structural
properties (4.23-4.24) of Proposition 4.3, we obtain:

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0 + a0011c
2
1c̄0 + c0f0(c0, c1,Ω) = 0 (4.32)

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1 + a1010c
2
0c̄1 + c1f1(c0, c1,Ω) = 0 (4.33)

|c0|2 + |c1|2 + O
(

|c0|2 + |c1|2
)3

= N (4.34)
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This system of equations is valid for |c0| + |c1| < r∗, independent of L, the distance between
wells.

If we choose c1 = 0, then the second equation in the system (4.32) is satisfied. In this
case, a non-trivial solution requires c0 6= 0. The first equation, (4.33), after factoring out c0
becomes

Ω0 − Ω + a0000|c0|2 + f0(|c0|, 0,Ω) = 0 (4.35)

where we used (4.25) to eliminate the phase of the complex quantity c0. Since Ω is real (4.35)
becomes one equation with two real parameters Ω, |c0|. Since the right hand side of (4.35)
vanishes for Ω = Ω0 and |c0| = 0 and since the partial derivative of this function with respect
to Ω, evaluated at this solution, is non-zero, we have by the implicit function theorem that
there is a unique solution

Ω = Ωg(|c0|) = Ω0 + a0000|c0|2 + O(|c0|4). (4.36)

By (4.34), for small amplitudes, the mapping from |c0|2 + |c1|2 to N is invertible. The family
of solutions

|c0| 7→
(

|c0|eiθ, |c1| = 0,Ω = Ωg(|c0|)
)

, θ0 ∈ [0, 2π)

defined for |c0| sufficiently small, corresponds to a family of symmetric nonlinear bound
states, uN with ‖uN‖2

L2 = N , bifurcating from the zero solution at the linear eigenvalue Ω0

uN = ( |c0|ψ0(x) + η[|c0|, 0,Ωg(|c0|](x) ) eiθ0 , θ0 ∈ [0, 2π)

Ω = Ωg(|c0|);
see, for example, [20, 21]. Since both ψ0 and η(|c0|, 0,Ωg) are even (in x1) we infer that uN
is symmetric (even).

Remark 4.2 A similar result holds for the case c0 = 0 leading to the anti-symmetric excited
state branch.

Proposition 4.4 For |c0| + |c1| sufficiently small, these two branches of solutions, are the
only solutions non-trivial solutions of (2.7).

Proof: Indeed, suppose the contrary. By local uniqueness of these branches, ensured by the
implicit function theorem, a solution not already lying on one of these branches must have
both c0 and c1 nonzero. Now, divide the first equation by c0, the second equation by c1, and
subtract the results. Introducing polar coordinates:

c0 = ρ0e
iθ0 , c1 = ρ1e

iθ1 , ∆θ = θ1 − θ0, (4.37)

we obtain:

Ω1 − Ω0 = a0000ρ
2
0 +

(

a0110 + a0011 + a0011e
i2∆θ

)

ρ2
1 + f0 ( ρ0, ρ1,∆θ,Ω)

− a1111ρ
2
1 −

(

a1001 + a1010 + a1010e
−i2∆θ

)

ρ2
0 − f1 ( ρ0, ρ1,∆θ,Ω) . (4.38)

The left hand side is nonzero while the right hand side is continuous, uniformly for Ω satis-
fying (4.9) and zero for ρ0 = 0 = ρ1. Equation (4.38) cannot hold for |ρ0| + |ρ1| < ε where
ε > 0 is independent of Ω. This completes the proof of Proposition 4.4.

Note, however that nothing can prevent (4.38) to hold for larger ρ0 and ρ1 possibly leading
to a third branch of solutions of (2.7). In what follows, we show that this is indeed the case
and the third branch bifurcates from the ground state one at a critical value of ρ0 = ρ∗0.
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4.2 Symmetry breaking bifurcation along the ground state / sym-
metric branch

A consequence of the previous section is that there are no bifurcations from the ground state
branch for sufficiently small amplitude. We now show seek a bifurcating branch of solutions
to (2.16-4.34), along which c0 · c1 6= 0. As argued just above, along such a new branch one
must have:

Ω0 − Ω + a0000ρ
2
0 +

(

a0110 + a0011 + a0011e
i2∆θ

)

ρ2
1 + f0(ρ0, ρ1,∆θ,Ω) = 0 (4.39)

Ω1 − Ω + a1111ρ
2
1 +

(

a1010 + a1001 + a1010e
−i2∆θ

)

ρ2
0 + f1(ρ0, ρ1,∆θ,Ω) = 0 (4.40)

We first derive constraints on ∆θ. Consider the imaginary parts of the two equations
and use the expansions (4.29) and the fact that Ω is real:

a0011 sin(2∆θ)ρ2
1 +

∑

k+m≥2, p∈Z

b0kmp(Ω) sin(p2∆θ)ρ2k
0 ρ

2m
1 = 0

a1010 sin(2∆θ)ρ2
0 +

∑

k+m≥2, p∈Z

b1kmp(Ω) sin(p2∆θ)ρ2k
0 ρ

2m
1 = 0.

Since both left hand sides are convergent series in ρ0, ρ1, then all their coefficients must be
zero. Hence sin(2∆θ) = 0 or, equivalently:

∆θ ∈
{

0,
π

2
, π,

3π

2

}

(4.41)

Case 1: ∆θ ∈ {0, π}:
Here, the system (4.39)-(4.40) is equivalent with the same system of two real equations with
three real parameters ρ0 ≥ 0, ρ1 ≥ 0 and Ω :

F0(ρ0, ρ1,Ω)
def
= Ω0 − Ω + a0000ρ

2
0 + (a0110 + 2a0011) ρ

2
1 + f0(ρ0, ρ1,Ω) = 0 (4.42)

F1(ρ0, ρ1,Ω)
def
= Ω1 − Ω + a1111ρ

2
1 + (2a1010 + a1001) ρ

2
0 + f1(ρ0, ρ1,Ω) = 0 (4.43)

We shall prove that there is a bifurcation point along the symmetric branch using (4.1)-(4.2),
which depend on discrete eigenvalues and eigenstates of −∆ + V (x). These properties are
proved for the double well in section 8, an Appendix on double wells.

We begin by seeking the point along the ground state branch (ρ∗0, 0,Ωg(ρ
∗
0)) from which

a new family of solutions of (4.42)-(4.43), parametrized by ρ1 ≥ 0, bifurcates; see (4.36).
Recall first that for any ρ0 ≥ 0 sufficiently small, F0 (ρ0, 0,Ωg(ρ0)) = 0. A candidate for

a bifurcation point is ρ∗0 > 0 for which, in addition,

F1(ρ
∗
0, 0,Ωg(ρ

∗
0)) = 0 (4.44)

Using (4.1) and (4.2) one can check that

F1(ρ0, 0,Ωg(ρ0)) = Ω1 − Ω0 +
(

a1001 + 2a1010 − a0000 + O(ρ2
0)

)

ρ2
0 = 0 (4.45)
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has a solution:

ρ∗0 =

√

Ω1 − Ω0

|a1001 + 2a1010 − a0000|

[

1 + O
(

Ω1 − Ω0

|a1001 + 2a1010 − a0000|2
)]

(4.46)

We now show that a new family of solutions bifurcates from the symmetric state at (ρ∗0, 0,Ωg(ρ
∗
0)).

This is realized as a unique, one-parameter family of solutions

ρ1 7→ (ρ0(ρ1), ρ1,Ωasym(ρ1)) (4.47)

of the equations:
F0(ρ0, ρ1,Ω) = 0, F1(ρ0, ρ1,Ω) = 0 (4.48)

To see this, note that by the preceding discussion we have Fj(ρ
∗
0, 0,Ωg(ρ

∗
0)) = 0, j = 1, 2.

Moreover, the Jacobian:

∣

∣

∣

∣

∂(F0, F1)

∂(ρ0,Ω)
(0, ρ∗0,Ωg(ρ

∗
0))

∣

∣

∣

∣

= 2ρ∗0(a1001 + 2a1010 − a0000 + O(ρ∗20 )),

is nonzero because ρ∗0 > 0 and

a1001 + 2a1010 − a0000 + O(ρ∗20 )) < 0 (4.49)

since ρ∗0 solves (4.45) and Ω1−Ω0 > 0. Therefore, by the implicit function theorem, for small
ρ1 > 0, there is a unique solution of the system (4.42)-(4.43):

ρ0 = ρ0(ρ1) = ρ∗0 +
ρ2

1

2ρ∗0

(

a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)

+ O(ρ4
1) (4.50)

Ω = Ωasym(ρ1) = Ωg(ρ
∗
0) + ρ2

1

(

a1111 + (2a1010 + a1001)
a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)

+ O(ρ4
1),

(4.51)

Remark 4.3 (1) Due to equivalence of N and ρ2
0 + ρ2

1 as parameters, for small amplitude,
we have that symmetry is broken at

Ncr ∼ Ω1 − Ω0

|a0000 − a1001 − 2a1010|
(4.52)

(2) Note also that we have the family of solutions

eiθ (ρ0(ρ1)ψ0 ± ρ1ψ1 + η(ρ0(ρ1),±ρ1,Ωasym(ρ1))) , 0 ≤ θ < 2π, ρ1 > 0. (4.53)

Here the ± is present because the phase difference ∆θ between c0 and c1 can be 0 or π, see
(4.41) and immediately below it. Because ρ0 6= 0 6= ρ1 this branch is neither symmetric nor
anti-symmetric. Thus, symmetry breaking has taken place. In the case of the double well,
the ± sign in (4.53) shows that the bound states on this asymmetric branch tend to localize
in one of the two wells but not symmetrically in both; see also, [2], [18], [10],.....
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Case 2: ∆θ ∈
{

π
2
, 3π

2

}

:
In both cases the system (4.39)-(4.40) is equivalent to the same system of two real equations,
depending on three real parameters ρ0 ≥ 0, ρ1 ≥ 0, Ω :

F0(ρ0, ρ1,Ω)
def
= Ω0 − Ω + a0000ρ

2
0 + a0110ρ

2
1 + f0(ρ0, ρ1,Ω) = 0 (4.54)

F1(ρ0, ρ1,Ω)
def
= Ω1 − Ω + a1111ρ

2
1 + a1001ρ

2
0 + f1(ρ0, ρ1,Ω) = 0 (4.55)

As before, in order to have another bifurcation of the symmetric branch it is necessary to
find a point, ( ρ∗∗0 , 0,Ωg(ρ

∗∗
0 ) ), for which:

F1(ρ
∗∗
0 , 0,Ωg(ρ

∗∗
0 ) = Ω1 − Ω0 + (a1001 − a0000) ρ

∗∗2
0 + O(ρ∗∗40 ) = 0. (4.56)

If such a point would exist we will have ρ∗∗0 > ρ∗0 because a1001 −a0000 > 2a1010 +a1001 −a0000

due to a1010 < 0. Hence this bifurcation would occur later along the symmetric branch
compared to the one obtained in the previous case. Consequently the new branch will be
unstable because, as we shall see in the next section, it bifurcates from a point where the
L+ operator already has two negative eigenvalues.

Moreover, it is often the case (see also the numerical results of section 6) that the equation
(4.56) has no solution due to the wrong sign of the dominant coefficient, i.e. a1001−a0000 > 0.
This can be easily checked, in particular, e.g., for g = −1 and large separation between the
potential wells, using (3.11).

5 Exchange of stability at the bifurcation point

In this section we consider the dynamic stability of the symmetric and asymmetric waves,
associated with the branch bifurcating from the zero state at the ground state frequency,
Ω0, of the linear Schrödinger operator −∆ + V (x); see figure 1. The notion of stability with
which we work is H1 - orbital Lyapunov stability.

Definition 5.1 The family of nonlinear bound states {ΨΩ e−iΩt : θ ∈ [0, 2π) } is H1 -
orbitally Lyapunov stable if for every ε > 0 there is a δ(ε) > 0, such that if the initial data
u0 satisfies

inf
θ∈[0,2π)

‖u0(·) − ΨΩ(·)eiθ‖H1 < δ ,

then for all t 6= 0, the solution u(x, t) satisfies

inf
θ∈[0,2π)

‖u(·, t) − ΨΩ(·)eiθ‖H1 < ε.

In this section we prove the following theorem:

Theorem 5.1 The symmetric branch is H1 orbitally Lyapunov stable for 0 ≤ ρ0 < ρ∗0, or
equivalently 0 < N < Ncr. At the bifurcation point ρ0 = ρ∗0 (N = Ncr), there is a exchange
of stability from the symmetric branch to the asymmetric branch. In particular, for N > Ncr

the asymmetric state is stable and the symmetric state is unstable.
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We summarize basic results on stability and instability. Introduce L+ and L−, real and
imaginary parts, respectively, of the linearized operators about ΨΩ:

L+ = L+[ΨΩ]· = (H − Ω) · + ∂uN(u, u, u) |ΨΩ
·

≡ (H − Ω) · +DuN [ΨΩ](·)
L− = L−[ΨΩ]· = (H − Ω) · +N(ΨΩ,ΨΩ,ΨΩ)(ΨΩ)−1 · (5.1)

By (2.7) and (2.4), L−ΨΩ = 0.
We state a special case of known results on stability and instability, directly applicable

to the symmetric branch which bifurcates from the zero state at the ground state frequency
of −∆ + V .

Theorem 5.2 [25, 26, 7]

(1) (Stability) Suppose L+ has exactly one negative eigenvalue and L− is non-negative.
Assume that

d

dΩ

∫

|ΨΩ(x)|2dx < 0 (5.2)

Then, ΨΩ is H1 orbitally stable.

(2) (Instability) Suppose L− is non-negative. If n−(L+) ≥ 2 then the linearized dynam-
ics about ΨΩ has spatially localized solution which is exponentially growing in time.
Moreover, ΨΩ is not H1 orbitally stable.

First we claim that along the branch of symmetric solutions, bifurcating from the zero
solution at frequency Ω0, the hypothesis on L− holds. To see that the operator L−[ΨΩ]
is always non-negative, consider L−[ΨΩ0] = L−[0] = −∆ + V − Ω0. Clearly, L−[0] is a
non-negative operator because Ω0 is the lowest eigenvalue of −∆ + V . Since clearly we have
L−ΨΩ = 0, 0 ∈ spec(L−[ΨΩ]). Since the lowest eigenvalue is necessarily simple, by continuity
there cannot be any negative eigenvalues for Ω sufficiently close to Ω0. Finally, if for some
Ω, L− has a negative eigevalue, then by continuity there would be an Ω∗ for which L−[ΨΩ∗

would have a double eigenvalue at zero and no negative spectrum. But this contradicts that
the ground state is simple. Therefore, it is the quantity n−(L+), which controls whether or
not ΨΩ is stable.

Next we discuss the slope condition (5.2). It is clear from the construction of the
branch Ω 7→ ΨΩ that (5.2) holds for Ω near Ω0. Suppose now that ∂Ω

∫

|ΨΩ|2 = 0.
Then, 〈ΨΩ, ∂ΩΨΩ〉 = 0. As shown below, L+ has exactly one negative eigenvalue for
Ω sufficiently near Ω0. It follows that L+ ≥ 0 on {ΨΩ}⊥ [25, 26]. Therefore, we have

(L
1
2
+∂ΩΨΩ, L

1
2
+∂ΩΨΩ) = (L+∂ΩΨΩ, ∂ΩΨΩ) = (ΨΩ, ∂ΩΨΩ) = 0. Therefore, L

1
2
+∂ΩΨΩ = 0, im-

plying ΨΩ = L+∂ΩΨΩ = 0, which is a contradiction. It follows that (5.2) holds so long as
L+ > 0 on {ΨΩ}⊥ and when (5.2) first fails, it does so due to a non-trivial element of the
nullspace of L+.

Therefore ΨΩ is stable so long as n−(L+) does not increase. We shall now show that for
N < Ncr, n−(L+[ΨΩ]) = 1 but that along the symmetric branch for N > Ncr n−(L+[ΨΩ]) =
2. Furthermore, we show that along the bifurcating asymmetric branch, the hypotheses of
Theorem 5.2 ensuring stability hold.
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Remark 5.1 For simplicity we have considered the most important case, where there is
a transition from dynamical stability to dynamical instability along the symmetric branch,
bifurcating from the ground state of H. However, our analysis which actually shows that
along any symmetric branch, associated with any of the eigenvalues, Ω2j , j ≥ 0 of H, there

is a critical N = Ncr(j), such that as N is increased through Ncr(j), n−(L
(j)
+ ) the number of

negative eigenvalues of the linearization about the symmetric state along the jth symmetric
branch increases by one. By the results in [11, 6, 15], this has implications for the number
of unstable modes of higher order (j ≥ 1) symmetric states.

Consider the spectral problem for L+ = L+[ΨΩ]:

L+[ΨΩ]φ = µφ (5.3)

We now formulate a Lyapunov-Schmidt reduction of (5.3) and then relate it to our formu-
lation for nonlinear bound states. We first decompose φ relative to the states ψ0, ψ1 and
their orthogonal complement:

φ = α0ψ0 + α1ψ1 + ξ, (ψj , ξ) = 0, j = 0, 1

Projecting (5.3) onto ψ0, ψ1 and onto the range of P̃ we obtain the system:

〈 ψ0, L+[ΨΩ](α0ψ0 + α1ψ1 + ξ) 〉 = µα0 (5.4)

〈 ψ1, L+[ΨΩ](α0ψ0 + α1ψ1 + ξ) 〉 = µα1 (5.5)

(H − Ω)ξ +DuN [ΨΩ](α0ψ0 + α1ψ1 + ξ) = µξ. (5.6)

The last equation can be rewritten in the form:
[

I + (H − Ω − µ)−1P̃DuN [ΨΩ]
]

ξ = −(H − Ω − µ)−1P̃DuN [ΨΩ](α0ψ0 + α1ψ1) (5.7)

The operator on the right hand side of (5.7) is essentially the Jacobian studied in the proof of
Proposition 4.1, evaluated at Ω+µ. Hence, by the proof of Proposition 4.1, if Ω+µ satisfies
(4.9) and ‖ΨΩ‖H2 ≤ N∗, then the operator I + (H −Ω−µ)−1P̃DuN [ΨΩ] is invertible on H2

and (5.7) has a unique solution

ξ
def
= ξ[µ, α0, α1,Ω]

≡ Q[µ,ΨΩ](α0ψ0 + α1ψ1) (5.8)

= −(I + (H − Ω − µ)−1P̃DuN [ΨΩ])−1(H − Ω − µ)−1P̃DuN [ΨΩ](α0ψ0 + α1ψ1)

= O
[

(|ρ0| + |ρ1|)2
]

[ α0ψ0 + α1ψ1] .

The last relation follows fromDuN [ψ] being a quadratic form in ΨΩ = ρ0ψ0+ρ1ψ1+O((|ρ0|+
|ρ1|)3).

Substitution of the expression for ξ as a functional of αj into (5.4) and (5.5) we get a
closed system of two real equations:

(Ω0 − Ω)α0 + 〈ψ0, DuN [ΨΩ] (I +Q[µ,ΨΩ]) (α0ψ0 + α1ψ1)〉 = µ α0

(Ω1 − Ω)α1 + 〈ψ1, DuN [ΨΩ] (I +Q[µ,ΨΩ]) (α0ψ0 + α1ψ1)〉 = µ α1 (5.9)

The system (5.9) is the Lyapunov Schmidt reduction of the linear eigenvalue problem for L+

with eigenvalue parameter µ. Our next step will be to write it in a form, relating it to the
linearization of the Lyapunov Schmidt reduction of the nonlinear problem.
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Remark 5.2 For ‖ΨΩ‖H2 ≤ n∗, the above system is equivalent to the eigenvalue problem
for the operator L+[ΨΩ] with eigenvalue parameter µ as long as 4.9) holds with Ω replaced by
Ω + µ. This restriction on the spectral parameter, µ, is in fact very mild and has no impact
on the analysis. This is because we are primarily interested in µ near zero, as we are are
interested in detecting the crossing of an eigenvalue of L+ from positive to negative reals as
N is increased beyond some Ncr. Values of µ for which (4.9) does not hold, do not play a
role in any change of index, n−(L+).

First rewrite (5.9) as

(Ω0 − Ω − µ)α0 + 〈ψ0, DuN [ΨΩ] (I +Q[0,ΨΩ]) (α0ψ0 + α1ψ1)〉 (5.10)

+ 〈ψ0, DuN [ΨΩ] ∆Q[µ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0

(Ω1 − Ω − µ)α1 + 〈ψ1, DuN [ΨΩ] (I +Q[0,ΨΩ]) (α0ψ0 + α1ψ1)〉
+ 〈ψ1, DuN [ΨΩ] ∆Q[µ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0. (5.11)

Here,
∆Q [µ,ΨΩ] = Q [µ,ΨΩ] − Q [0,ΨΩ] . (5.12)

Note that terms involving ∆Q in (5.10,5.11) are of size O[(ρ2
0 + ρ2

1)µαj ].

Proposition 5.1

Q[0,ΨΩ](α0ψ0 + α1ψ1) = ∂ρ0η[ρ0, ρ1,Ω] α0 + ∂ρ1η[ρ0, ρ1,Ω] α1 (5.13)

Proof of Proposition 5.1: Recall that η satisfies

F (ρ0, ρ1,Ω, η) ≡ η + (H − Ω)−1P̃N [ ρ0ψ0 + ρ1ψ1 + η ] = 0, (5.14)

Differentiation with respect to ρj , j = 0, 1 yields
(

I + (H − Ω)−1P̃DuN [ΨΩ]
)

∂ρj
η = − ( H − Ω )−1 P̃DuN [ΨΩ]ψj , (5.15)

where
ΨΩ = ρ0ψ0 + ρ1ψ1 + η[ρ0, ρ1,Ω].

Thus,
∂ρj

η = Q[0,ΨΩ] ψj , (5.16)

from which Proposition 5.1 follows.
We now use Proposition 5.1 to rewrite the first inner products in equations (5.10)-(5.11).

For k = 0, 1

〈ψk, DuN [ΨΩ] (I +Q[0,ΨΩ]) (α0ψ0 + α1ψ1)〉

=
1

∑

j=0

〈ψk, DuN [ρ0ψ0 + ρ1ψ1 + η](ψj + ∂ρj
η)〉αj

=
1

∑

j=0

∂

∂ρj
〈ψk, N [ΨΩ]〉 αj

=

1
∑

j=0

∂ρj
〈ψk, N [ρ0ψ0 + ρ1ψ1]〉 αj + ∂ρj

[ ρkfk(ρ0, ρ1,Ω) ] , (5.17)
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where N [ψΩ] = N [ρ0ψ0 + ρ1ψ1] + R; see equations (2.16-2.18), (4.23-4.24). Therefore, the
Lyapunov-Schmidt reduction of the eigenvalue problem for L+ becomes

(Ω0 − Ω − µ)α0 +
∑1

j=0 ∂ρj
〈ψ0, N [ρ0ψ0 + ρ1ψ1]〉 αj + ∂ρj

[ ρ0f0(ρ0, ρ1,Ω) ] (5.18)

+ 〈ψ0, DuN [ΨΩ] ∆Q[µ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0

(Ω1 − Ω − µ)α1 +
∑1

j=0 ∂ρj
〈ψ1, N [ρ0ψ0 + ρ1ψ1] 〉 αj + ∂ρj

[ ρ1f1(ρ0, ρ1,Ω) ]

+ 〈ψ1, DuN [ΨΩ] ∆Q[µ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0. (5.19)

This can be written succinctly in matrix form as

[ M − µ + C(µ) ]

(

α0

α1

)

=

(

0
0

)

, (5.20)

where

M = M [Ω, ρ0, ρ1]
(

Ω0 − Ω + 3a0000ρ
2

0
+ (a0110 + 2a0011)ρ

2

1
+ ∂ρ0

(ρ0f0) 2(a0110 + 2a0011)ρ0ρ1 + ∂ρ1
(ρ0f0)

2(2a1010 + a1001)ρ0ρ1 + ∂ρ0
(ρ1f1) (Ω1 − Ω) + 3a1111ρ

2

1
+ (2a1010 + a1001)ρ

2

0
+ ∂ρ1

(ρ1f1)

)

(5.21)

and
C(µ)lm = 〈ψl, DuN [ΨΩ]∆Q[µ,ΨΩ]ψm〉, l,m = 0, 1. (5.22)

Note that
C(µ = 0) = 0. (5.23)

Recall that µ is the spectral parameter for the eigenvalue problem L+, (5.3) and we are
interested in n−(L+[ΨΩ]), the number of negative eigenvalues along a family of nonlinear
bound states Ω 7→ ΨΩ. By Theorem 5.2 n−(L+) determines the stability or instability of a
particular state. This question has now been mapped to the problem of following the roots
of

D(µ, ρ0, ρ1) = det(µI −M − C(µ)) = 0, (5.24)

where ρ0 and ρ1 are parameters along the different branches of nonlinear bounds states.
Since C(µ), defined in (5.22) is small for small amplitude nonlinear bound states, we expect
the roots, µ, to be small perturbations of the eigenvalues of the matrix M . We study
these roots along the symmetric (M = M(Ωg(ρ0), ρ0, 0)) and asymmetric branch (M =
M(Ωasym(ρ1), ρ0(ρ1), ρ1)) using the implicit function theorem.

Symmetric branch:
Along the symmetric branch:

ρ1 = 0, ρ0 ≥ 0, Ω = Ωg = Ω0 + a0000ρ
2
0 + O(ρ4

0), ΨΩ = ρ0ψ0 + η(ρ0, 0,Ω) = symmetric.

Thus, D = D(µ, ρ0). Moreover, the system (5.20) is diagonal. This is because Q, and hence
∆Q, preserve parity at a symmetric ΨΩ; see their definitions (5.8) and (??). Therefore
C01 = 0 = C10, each the scalar product of an even and an odd function. Moreover from (4.29)

we get:
∂fj

∂ρ1
(ρ0, 0,Ω) = 0, j = 0, 1.
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Therefore, the matrix µI −M − C(µ) is diagonal and µ is an eigenvalue of L+[ψΩg(ρ0)] if
and only if µ is a root of either

P0(µ, ρ0) ≡ µ−M00(ρ0) − C00(µ, ρ0) = 0 (5.25)

or
P1(µ, ρ0) ≡ µ−M11(ρ0) − C11(µ, ρ0) = 0 (5.26)

Both P0 and P1 are analytic in µ and ρ0 and it is easy to check that

P0(0, 0) = 0, ∂µP0(0, 0) = 1

and
P1(Ω1 − Ω0, 0) = 0, ∂µP1(Ω1 − Ω0, 0) = 1.

Formally differentiating (5.25) or (5.26) with respect to ρ0 gives:

∂ρ0µj =
∂ρ0Mjj + ∂ρ0Cjj

1 − ∂µCjj
. (5.27)

By the implicit function theorem (5.25) and (5.26) define, respectively, µ0 and µ1 as smooth
functions of ρ provided

|∂µCjj| < 1, j = 0, 1 (5.28)

A direct calculation using (5.8) and estimates (4.12), (4.14) shows that in the regime of
interest: Ω satisfying (4.9), it suffices to have

‖ΨΩ‖H2 ≤ n∗ (9 max(‖ψ0‖H2 , ‖ψ1‖H2))−
1
4 (5.29)

where n∗ is given by Proposition 4.1. The latter can be reduced to an estimate on ρ0 via the
above definition of ΨΩ and (4.18) as in the end of the proof of Proposition 4.1.

Therefore, under conditions (4.9) and (5.29), we have a unique solution µ0, respectively
µ1, of (5.25), respectively (5.26). Moreover, the two solutions are analytic in ρ0 and, for
small ρ0, we have the following estimates:

µ0 = 2a0000ρ
2
0 + O(ρ4

0) < 0 (5.30)

µ1 = Ω1 − Ω0 + O(ρ2
0) > 0, (5.31)

where we used a0000 ≡ g〈ψ2
0, K[ψ2

0]〉 < 0, and µ1(ρ0 = 0) = Ω1 − Ω0 > 0.
We claim that µ1 changes sign for the first time at ρ0 = ρ∗0. Indeed, by continuity, the

sign can only change when µ1 = 0, i.e. when (5.26) has a solution of the form (0, ρ0). Since
C11(0, ρ0) = 0, see (5.23), (5.26) becomes

0 = M11(ρ0) = Ω1 − Ωg(ρ0) + (2a1010 + a1001)ρ
2
0 + f1(ρ0, 0,Ωg) = F1(ρ0, 0,Ωg(ρ0));

see (5.21) and note that ρ1 = 0. But this equation is the same as (4.44), which determines ρ∗0,
then bifurcation point. Thus, as expected, D(µ, ρ0) = 0 has a root ρ1(ρ

∗
0) = 0 or equivalently

L+ has a zero eigenvalue at the bifurcation point. Note that the associated null eigenfunction
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has odd parity in one space dimension, and is more generally, non-symmetric and changes
sign.

To see that µ1(ρ0) changes sign at ρ0 = ρ∗0 we differentiate (5.26) with respect to ρ0 at
ρ0 = ρ∗0 and obtain from (5.27) that

∂ρ0µ1 =
∂ρ0M11 + ∂ρ0C11

1 − ∂µC11

< 0.

This follows because the denominator is positive, by (5.28), while direct calculation gives for
the numerator:

∂ρ0M11(ρ
∗
0) + ∂ρ0C11(ρ

∗
0) = 2ρ∗0

(

a1001 + 2a1010 − a0000 + O(ρ∗20 )
)

< 0

see (4.49). Therefore µ1 becomes negative for ρ0 > ρ∗0 at least when |ρ0−ρ∗0| is small enough.
In conclusion, L+[Ωg(ρ0)] has exactly one negative eigenvalue for 0 ≤ ρ0 < ρ∗0 and two

negative eigenvalues for ρ0 > ρ∗0 and |ρ0 − ρ∗0| small. Therefore, following the criteria of
[25, 26, 7, 11, 6, 12], the symmetric branch is stable for 0 ≤ ρ0 < ρ∗0 and becomes unstable
past the bifurcation point.

Asymmetric branch: Stability for N > Ncr

Finally, we study the behavior of eigenvalue problem (5.20) on the asymmetric branch:

0 ≤ ρ1 ≪ 1

ρ0 = ρ0(ρ1) = ρ∗0 +
ρ2

1

2ρ∗0

(

a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)

+ O(ρ4
1) (5.32)

Ω = Ωasym(ρ1) = Ωg(ρ
∗
0) + ρ2

1

(

a1111 + (2a1010 + a1001)
a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)

+O(ρ4
1), (5.33)

ΨΩ = ρ0(ρ1)ψ0 + ρ1ψ1 + η(ρ0(ρ1), ρ1,Ωasym(ρ1))

The eigenvalues will be given by the zeros of the real valued function

D(µ, ρ1) = det(µI −M(ρ1) − C(µ, ρ1)), (5.34)

which is analytic in µ and ρ1 for Ω + µ satisfying (4.9) and ρ1 small. Note that at ρ1 = 0
we are still on the symmetric branch at the bifurcation point ρ0 = ρ∗0. Hence, the matrix is
diagonal and

D(µ, 0) = P0(µ, ρ
∗
0)P1(µ, ρ

∗
0), (5.35)

where Pj, j = 0, 1 are defined in (5.25)-(5.26). In the previous subsection we showed that
each Pj(·, ρ∗0) has exactly one zero, µj, on the interval −∞ < µ < d∗−Ωg(ρ

∗
0) > 0. The zeros

were simple, by our implicit function theorem application in which,

∂µPj(µj, ρ
∗
0) = 1 − ∂µCjj > 0, (5.36)

see (5.28). In addition one can easily deduce that limµ→−∞ Pj(µ, ρ
∗
0) = −∞ by using the

definitions (5.22), (5.12) and the fact that ‖(H − Ω − µ)−1‖L2→H2
µ→−∞→ 0 which implies

‖Q[µ,ΨΩ]‖H2→H2
µ→−∞→ 0.
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Consequently D(·, 0) has exactly two simple zeros µ0 < 0 and µ1 = 0 on the interval
−∞ < µ ≤ (−d∗ − Ωg(ρ

∗
0))/2 > 0, which are both simple and limµ→−∞D(µ, 0) = ∞. It is

well known, and a consequence of continuity arguments and of the implicit function theorem,
that the previous statement is stable with respect to small perturbations. More precisely,
there exists ε > 0 such that whenever |ρ1| < ε, D(·, ρ1) has exactly two zeros µ0(ρ1) < 0 and
µ1(ρ1) on the interval −∞ < µ ≤ (−d∗ −Ωg(ρ

∗
0))/2 > 0, which are both simple and analytic

in ρ1.
Since we are interested in n−(L+), the number of negative eigenvalues of L+, we still

need to determine the sign of µ1(ρ1). In what follows we will show that its derivatives satisfy

∂ρ1µ1(0) = 0, ∂2
ρ1
µ1(0) > 0. (5.37)

We can then conclude that for 0 < ρ1 ≪ 1, µ1(ρ1) > 0, and L+ has exactly one (simple)
negative eigenvalue, µ0(ρ1). Therefore, the asymmetric branch is stable.

We now prove (5.37). By differentiating

D(µ1(ρ1), ρ1) = 0 (5.38)

once with respect to ρ1 at ρ1 = 0 we get

∂µD(0, 0)∂ρ1µ1(0) + ∂ρ1D(0, 0) = 0

Using (5.35) we obtain

∂µD(0, 0) = P0(0, ρ
∗
0)∂µP1(µ1 = 0, ρ∗0) > 0 (5.39)

where we used (5.36) and that P0(0, ρ
∗
0) = −M00(ρ

∗
0) > 0. Using (5.34) and (5.23) we obtain

∂ρ1D(0, 0) =
∂ det(M)

∂ρ1

(ρ1 = 0) = det 10 + det 01, where (5.40)

det ij = the determinant evaluated at ρ1 = 0 of the matrix obtained from M by differen-
tiating the first row i times, respectively the second row j times. det ij can be evaluated
using (4.28), (4.44), and (5.33).

Note that the second row of det 10 is zero and therefore det 10 = 0. Furthermore, det 01 is
zero because its second column is zero. Therefore, by (5.40) we have ∂ρ1µ1(0) = 0..

We now calculate ∂2
ρ1
µ1(ρ1 = 0). Differentiate (5.38) twice with respect to ρ1 at ρ1 = 0

and use ∂ρ1µ1(0) = 0 to obtain:

∂µD(0, 0)∂2
ρ1
µ1(0) + ∂2

ρ1
D(0, 0) = 0.

which implies, by (5.39)

sign(∂2
ρ1
µ1(0)) = −sign(∂2

ρ1
D(0, 0)).
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But, as before, (5.34) and (5.23) imply

∂2
ρ1
D(0, 0) =

∂2 det(M)

∂ρ2
1

(0) = det 20 + 2 det 11 + det 02 < 0.

The last inequality is a consequence of the following argument. First, det 20 = 0, since its
second row zero. A direct calculation using the definition of M and relations (5.32) show:

det 11 = −4(a0110 + 2a0011)(2a1010 + a1001)ρ
∗2
0 + O(ρ∗40 )

det 02 = 8a0000a1111ρ
∗2
0 + O(ρ∗40 )

Note that in the limit of large well-separation limit (L >> 1), all coefficients aklmn = aklmn(L)
converge to the same value gα2 < 0. This implies

2 det 11 + det 02 = (−64g2α4 + O(e−τL))ρ∗20 + O(ρ∗40 ) < 0.

Therefore, ∂2
ρ1
µ1(0) > 0 and the proof of Theorem 5.1 is now complete.

6 Numerical study of symmetry breaking

Symmetry breaking bifurcation for fixed well-separation, L
In this section we numerically compute the bifurcation diagram for the lowest energy

nonlinear bound state branch for NLS-GP (2.1) and compare these results to the predictions
of the finite dimensional approximation Eqs. (3.8. Specifically, we numerically compute the
bifurcation structure of Eq. (2.1) for a double-well potential, VL(x), of the form:

V (x) = V0

[

1√
4πs2

exp

(

−(x− L/2)2

4s2

)

+
1√
4πs2

exp

(

−(x+ L/2)2

4s2

)]

. (6.1)

The potential for V0 = −1 , s = 1 and L = 6 has two discrete eigenvalues Ω0 = −0.1616
and Ω1 = −0.12 and a continuous spectral part for Ω > 0. The linear eigenstates can
also be obtained and used to numerically compute the coefficients of the finite dimensional
decomposition of Eqs. (3.8) as a0000 = −0.09397, a1111 = −0.10375, a0011 = a1010 = a1001 =
a0110 = −0.08836 (for g = −1). Then, using (3.10), we can compute the approximate
threshold in N for bifurcation of an asymmetric branch (and the destabilization of the
symmetric one):

Ncr ∼ N (0)
cr = 0.24331, Ωcr ∼ Ω(0)

cr ≡ Ω0 + a0000 N (0)
cr = −0.18447.

We expect good agreement because the values of s and L suggest the regime of large L,
where our rigorous theory holds.

Using numerical fixed-point iterations (in particular Newton’s method), we have obtain
the branches of the nonlinear eigenvalue problem (2.7). To study the stability of a solution,
u0, of (2.7), consider the evolution of a small perturbation of it:

u = e−iΩt
[

u0(x) +
(

p(x)eλt + q(x)eλ̄t
)]

. (6.2)
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Keeping only linear terms in p, q, we obtain a linear evolution equation, whose normal
modes satisfy a linear eigenvalue problem with spectral parameter, which we denote by λ
and eigenvector (p(x), q̄(x))T .

Our computations for the simplest case of the cubic nonlinearity with K[ψψ̄] = ψψ̄
are shown in Figure 3 (for g(x) = −1). In particular, the top subplot of panel (a) shows
the full numerical results by thin lines (solid for the symmetric solution, dashed for the
bifurcating asymmetric and dash-dotted for the anti-symmetric one) and compares them with
the predictions based on the finite dimensional truncation, (3.8) shown by the corresponding
thick lines. The approximate threshold values Ncr and Ωcr are found numerically to be
Ω

(0)
cr ≈ −0.1835, N (0)

cr ≈ 0.229. This suggests a relative error in its evaluation by the finite-
dimensional reduction of less than 1%. This critical point is indicated by a solid vertical
(black) line in panel (a). For Ω > Ω

(0)
cr , there exist two branches in the problem, namely

the one that bifurcates from the symmetric linear state (this branch exists for Ω < Ω0) and
the one that bifurcates from the anti-symmetric linear state (and, hence, exists for Ω < Ω1).

For Ω < Ω
(0)
cr , the symmetric branch becomes unstable due to a real eigenvalue (see bottom

subplot of panel (a)), signalling the emergence of a new branch, namely the asymmetric one.
All three branches are shown for Ω = −0.25 (indicated by dashed vertical (black) line in
panel (a)) in panel (b) and their corresponding linearization spectrum (λr, λi) is shown for
the eigenvalues λ = λr + iλi.

Symmetry breaking threshold, Ncr(L) as L varies

We now investigate the limits of validity of N (0)
cr (L) as an approximation to Ncr(L) by

varying the distance L between the potential wells (6.1). For L large, N (0)
cr , given by equation

(3.10), is close to the actual Ncr(L), the exact threshold. In this case the eigenvalues of
−∂2

x + VL(x), Ω0(L) and Ω1(L), are close to each other; see Remark 4. Therefore, the
bifurcation occurs for small N and one is in the regime of validity of Theorem 4.1. In figure
4 we display a comparison between the estimate for Ncr based on the finite dimensional
truncation, N (0)

cr , and the actual Ncr. For large L the two values are close to each other.
As L is decreased the wells approach one another and eventually, at L = 0, merge to form
a single well potential. As L is decreased, the eigenvalues of the linear bound states Ω0(L)
and Ω1(L) move farther apart. For some value of L, Ld, the eigenvalue of the excited state,

Ω1(L), merges at Ω = 0, into the continuous spectrum. For L < Ld the estimate N (0)
cr is

not correct. In fact, N (0)
cr (L) → ∞, while the actual value of Ncr(L) appears to be remain

finite. In Figure 4a we observe that for L < 2, N (0) and Ncr diverge from one another
and eventually the approximation N (0)

cr (L) tends to infinity, while the actual Ncr(L) remains
finite. Moreover, in Figure 4b we show a bifurcation diagram for small L in which the discrete
(excited state) eigenvalue of −∂2

x + VL, Ω1, does not exist, and yet there exists a symmetry
breaking point Ncr.

More general nonlinearities
To simplify the analysis, we assumed a cubic nonlinearity in NLS-GP. The analogue of

the finite-dimensional approximation (3.8) can be derived, for more general nonlinearities,
by the same method. In this section we present numerical computations for general power
law nonlinearities such as K[ψψ̄] = (ψψ̄)p and observe similar phenomena to the cubic
case p = 1. This is illustrated e.g. in Figure 5, presenting our numerical results for the
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Figure 3: (Color Online) The figure shows the typical numerical bifurcation results for the
cubic case and their comparison with the finite dimensional analysis of Section 3. Panel
(a) shows the bifurcation diagram in the top subplot and the relevant real eigenvalues in
the bottom subplot. In the top, the solid (blue) line represents the symmetric branch, the
dash-dotted (green) line the anti-symmetric branch, while the dashed (red) line represents
the bifurcating asymmetric branch. The thin lines indicate the numerical findings, while the
thick ones show the corresponding finite-dimensional, weakly nonlinear predictions. The solid
vertical (black) line indicates the critical point (of Ω ≈ −0.1835) obtained numerically. The
dashed vertical (black) line is a guide to the eye for the case with Ω = −0.25, whose detailed
results are shown in panel (b). The bottom subplot of panel (a) shows the real eigenvalue (as
a function of Ω) of the symmetric branch that becomes unstable for Ω < −0.1835. Panel (b)
shows using the same symbolism as panel (a) the symmetric (left), anti-symmetric (middle)
and asymmetric (right) branches and their linearization eigenvalues (bottom subplots) for
Ω = −0.25. The potential is shown by a dotted black line.

quintic case of p = 2 (the relevant curves are analogous to those of Figure ??). It can be
observed that the higher order case possesses a similar bifurcation diagram as the cubic case.
However, the critical point for the emergence of the asymmetric branch is now shifted to
Ω

(0)
cr ≈ −0.1725, i.e., considerably closer to the linear limit. In fact, we have also examined

the septic case of p = 3, finding that the relevant critical point is further shifted in the latter
to Ω

(0)
cr = −0.168. This can be easily understood as cases with higher p are well-known to

be more prone to collapse-type instabilities (see e.g. [25]). It may be an interesting separate

venture to identify Ω
(0)
cr as a function of p, and possibly obtain a p⋆ such that ∀Ω < Ω0, the

symmetric branch is unstable. We also note in passing that bifurcation diagrams for higher
values of p may also bear additional (to the shift in Ω

(0)
cr ) differences from the cubic case; one

such example in Figure 5 is given by the presence of a linear instability (due to a complex
eigenvalue quartet emerging for Ω < −0.224) for the anti-symmetric branch. The latter was
found to be linearly stable in the cubic case of Fig. 3.

Nonlocal nonlinearities
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Figure 4: (Color Online) The figure demonstrates the validity of N (0)
cr (L) as an approximation

to Ncr(L). Panel (a) compares the linear finite dimensional estimation for the bifurcation

point N (0)
cr (L) and the actual numerical bifurcation point Ncr. The computations are for the

double well potential (6.1) V0 = −1 and s = 1
4

and cubic nonlinearity. The curve Ncr(L)

is marked by a solid (black) line and the curve N (0)
cr (L) is marked by a dotted (blue) line.

Panel (b) shows a numerical bifurcation diagram for the double well potential (6.1) V0 = −1,
s = 1

4
and L = 1.3. The bifurcation point Ncr is marked by a (red) circle. For N < Ncr the

ground state marked by a thick (blue) solid line is stable. For N > Ncr the ground state
is unstable and marked by a thick (blue) dashed line. The stable asymmetric state which
appears for N > Ncr is marked by a thin (red) solid line. The unstable antisymmetric state
(ΩN

1 ) is marked by a thin (light green) dashed line. The point N for which the antisymmetric
state appears in the discrete spectrum is marked by a (black) square. Notice that in this
bifurcation diagram there is also a bifurcation from the antisymmetric branch. The state
which bifurcates from the antisymmetric state is marked by a (dark green) thin dotted line.

Finally, we consider the case of nonlocal nonlinearities, depending on a parameter ǫ, the
range of the nonlocal interaction. In particular, consider the case of a non-local nonlinearity
of the form:

K[ψψ̄] =

∫ ∞

−∞

K(x− y)ψ(y)ψ̄(y)dy, (6.3)

where

K(x− y) =
1

2πǫ2
e−

(x−y)2

2ǫ2 . (6.4)

Here, ǫ > 0 is a parameter controlling the range of the non-local interaction. As ǫ tends to
0, K(x− y) → δ(x− y) and we recover the “local” cubic limit. limit. The form of the finite
dimensional reduction, (3.8), does not change; the only modification is that the coefficients
aklmn are now functions of the range of the interaction ǫ. The dependence of the coefficients,
aklmn on ǫ is displayed in panel (a) of Fig. 6. The solid (blue) line shows |a0000|, the dashed
(green) one corresponds to |a1111|, the dash-dotted (red) one to |a1001| = |a0110| (due to
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Figure 5: Same as Figure ?? but for the quintic nonlinearity. This serves to illustrate the
analogies between the bifurcation pictures but also their differences (shifted critical point
and also partial instability of the anti-symmetric branch).

symmetry), while the thick solid (black) one to |a0101| = |a0011| = |a1010|. Notice in the
inset how the coefficients asymptote smoothly to their “local” limit. Additionally, note the
expected asymptotic relation a1001 = a0011. Also note the significant (decaying) dependence
of the relevant coefficients on the range of the interaction. The nature of this dependence
indicates that while the character of the bifurcation may be the same as in the case of local
nonlinearities, its details (such as the location of the critical points) depend sensitively on
the range of the non-local interaction. This is illustrated in panel (b) for the specific case
of ǫ = 5. In this panel (which is analogous to panel (a) of Figure 3, but for the non-local
case) the critical point for emergence of the asymmetric branch/instability of the symmetric

branch is shifted to Ω
(0)
cr = −0.2466 (and the corresponding Ncr = 1.4353) in comparison to

the numerically obtained value of Ω
(0)
cr ≈ −0.256; the relative error in the identification of

the critical point (by the finite-dimensional reduction) is in this case of the order of 3.7%,
which can be attributed to the more strongly nonlinear (i.e., occurring for higher value of

N (0)
cr ) nature of the bifurcation. However, as the finite-dimensional approximation still yields

a reliable estimate for the location of the critical point, in panel (c) we use it to obtain an

approximation to the location of the critical point (Ω
(0)
cr ,N (0)

cr ) as a function of the non-locality
parameter ǫ.

7 Concluding remarks

We have studied the spontaneous symmetry breaking for a large class of NLS-GP equations,
with double-well potentials. Our analysis of the symmetry breaking bifurcation and the
exchange of stability is based on an expansion, which to leading order in amplitude, is a
superposition of a symmetric - antisymmetric pair of eigenstates of the linear Hamiltonian,
H , whose energies are separated (gap condition (4.7) ) from all other spectra of H . This
gap condition holds for sufficiently large L but breaks down as L decreases. Nevertheless,
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numerical studies show the existence of a finite threshold for symmetry breaking. A theory
encompassing this phenomenon is of interest and is currently under investigation.

8 Appendix - Double wells

In this discussion, we are going to follow the analysis of [8]. Consider a (single well) real
valued potential v0(x) on Rn such that v0(x) ∈ Lr + L∞

ε for all 1 ≤ r ≤ q where q ≥
max(n/2, 2) for n 6= 4, q > 2 for n = 4. Then, multiplication by v0 is a compact operator
from H2 to L2 and

H0 = −∆ + v0(x)

is a self adjoint operator on L2 with domain H2.
Consider now the double well potential:

VL = TLv0T−L +RTLv0T−LR

where TL and R are the unitary operators:

TLg(x1, x2, . . . , xn) = g(x1 + L, x2, . . . , xn)

Rg(x1, x2, . . . , xn) = g(−x1, x2, . . . , xn)

and the self adjoint operator:
HL = −∆ + VL(x)

Proposition 8.1 Assume that ω < 0 is a nondegenerate eigenvalue of H0 separated from
the rest of the spectrum of H0 by a distance greater than 2d∗. Denote by ψω its corresponding
e-vector, ‖ψω‖L2 = 1. Then there exists L0 > 0 such that for L ≥ L0 the following are true:

(i) HL has exactly two eigenvalues Ω0(L) and Ω1(L) nearer to ω than 2d∗. Moreover
limL→∞ Ωj(L) = ω, j = 0, 1.

(ii) One can choose the normalized eigenvectors ψj(L), ‖ψj(L)‖L2 = 1, corresponding to
the e-values Ωj(L), j = 0, 1 such that they satisfy:

lim
L→∞

‖ψj(L) − (TLψω + (−1)jRTLψω)/
√

2‖H2 = 0, j = 0, 1.

(iii) If PL
j are the orthogonal projections in L2 onto ψj(L), j = 0, 1 and P̃L = Id−PL

0 −PL
1

then there exists d > 0 independent of L such that:

‖(HL − Ω)−1P̃L‖L2 7→H2 ≥ d, for all L ≥ L0 and |Ω − ω‖ ≤ d∗.

Proof: For (i) we refer the reader to [8]. The L2 convergence in (ii) has also been proved
there. The H2 convergence follows from the following compactness argument. Let:

ψL
j = nLψj(L), j = 0, 1
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where nL is such that ‖ψL
j ‖H2 = 1, j = 0, 1. From the eigenvector equations: (HL −

Ω(L))ψL = 0, where we dropped the index j = 0, 1 and the convergence Ω(L) → ω, see part
(i), we get

lim
L→∞

‖(−∆ − ω + VL)ψL‖L2 = 0. (8.1)

Denote:
gL = (−∆ − ω)ψL ∈ L2. (8.2)

Since −∆ − ω : H2 7→ L2 is bounded there exists a constant C > 0 independent of L such
that

‖gL‖L2 ≤ C.

Since ω < 0, −∆ − ω : H2 7→ L2 has a continuous inverse then (8.1) is equivalent to:

gL + VL(−∆ − ω)−1gL → 0, in L2.

By expanding VL we get

gL + TLv0(−∆ − ω)−1T−LgL +RTLv0(−∆ − ω)−1T−LRgL → 0. (8.3)

But v0(−∆ − ω)−1 : L2 7→ L2 is compact while the translation and reflection operators are
unitary. These and the uniform boundedness of gL lead to the existence of ψ ∈ L2 and
ψ̃ ∈ L2 and a subsequence of gL, which we will redenote by gL, such that

lim
L→∞

‖v0(−∆ − ω)−1T−LgL − ψ‖L2 = 0 and lim
L→∞

‖v0(−∆ − ω)−1T−LRgL − ψ̃‖L2 = 0. (8.4)

By plugging in (8.3) and multiplying to the left by T−L we get

lim
L→∞

‖T−LgL + ψ +RT2Lψ̃‖L2 = 0.

But RT2Lψ̃ converges weakly to zero, hence T−LgL converges weakly to −ψ. By plugging
now in (8.4) and using compactness we get:

ψ + v0(−∆ − ω)−1ψ = 0.

The latter shows that (−∆ − ω)−1ψ is an eigenvector of −∆ + v0 corresponding to the
eigenvalue ω. By nondegeneracy of ω we get

ψ = −n(−∆ − ω)ψω, (8.5)

where n is a constant. A similar argument shows

ψ̃ = −ñ(−∆ − ω)ψω, (8.6)

where ñ is a constant.
Combining (8.1)-(8.6) we get

lim
L→∞

‖(−∆ − ω)(ψL − nTLψω − ñRTLψω)‖L2 = 0 (8.7)
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which by the continuity of (−∆ − ω)−1 : L2 7→ H2 implies

lim
L→∞

‖ψL − nTLψω − ñRTLψω‖H2 = 0

Using now that ‖ψL‖H2 = 1 and that the rescaled ψL
j such that it has norm 1 in L2 converges

to (TLψω + (−1)jRTLψω)/
√

2 we get the conclusion of part (ii) for a subsequence first, then,
by uniqueness of the limit, for all L→ ∞.

For part (iii), it suffices to show that there are no sequences (ΩL, ψ
L) ∈ [ω−d∗, ω+d∗]×H2

with ‖ψL‖H2 = 1 and ψL⊥ψj(L), j = 0, 1 in L2 such that

lim
L→∞

‖(HL − ΩL)ψL‖L2 = 0. (8.8)

The spectral estimate:

‖(HL − ΩL)ψL‖L2 ≥ dist(ΩL, σ(HL)\{Ω0(L),Ω1(L)})‖ψL‖L2 ≥ d∗‖ψL‖L2,

combined with (8.8) implies
lim

L→∞
‖ψL‖L2 = 0. (8.9)

In principle we can now employ the compactness argument in part (ii) to get

lim
L→∞

‖ψL‖H2 = 0 (8.10)

which will contradict ‖ψL‖H2 = 1. More precisely, (8.8)-(8.9) imply

lim
L→∞

‖(−∆ − ω − d∗ + VL)ψL‖L2 = 0

which, by repeating the argument after (8.1) with ω replaced by ω + d∗, gives

lim
L→∞

‖ψL + TLψω+d∗ +RTLψ̃ω+d∗‖H2 = 0

where ψω+d∗ and ψ̃ω+d∗ are eigenvectors of −∆ + v0 corresponding to eigenvalue ω+ d∗. But
the latter is not actually an eigenvalue, hence ψω+d∗ = 0 and ψ̃ω+d∗ = 0. These show (8.10)
and finishes the proof of part (iii).

The proposition is now completely proven.

Proposition 8.2

a1001 + 2a1010 − a0000 ≤ −γ < 0, and (8.11)

Ω1 − Ω0

|a1001 + 2a1010 − a0000|2
→ 0 as L ↑ ∞, (8.12)

These are now obvious from definition of aijkl, the continuity of N : H2 × H2 × H2 7→
L2 and the H2 convergence of ψj(L) to the translations and reflections of the single well
eigenvector, see Proposition 8.1 part (ii).
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Figure 6: This figure shows the nonlocal analog of Figure 3. Panel (a) shows the dependence
of the (absolute value of the) coefficients of the finite-dimensional approximation on the
non-locality parameter ǫ (ǫ = 0 denotes the “local” nonlinearity limit). The solid (blue)
line denotes a0000, the dashed (green) a1111, the dash-dotted (red) a0110, while the thick solid
(black) one denotes a0101. Panel (b) is analogous to panel (a) of Figure 3, but now shown
for the non-local case, with the non-locality parameter ǫ = 5. Finally, panel (c) shows
the dependence of the critical point of the finite dimensional bifurcation (N⋆,Ω⋆), on the
non-locality parameter ǫ.
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