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Stopping light on a defect
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Gap solitons are localized nonlinear coherent states that have been shown both theoretically and experimen-
tally to propagate in periodic structures. Although theory allows for their propagation at any speed v,
0 < v < ¢, they have been observed in experiments at speeds of approximately 50% of c. It is of scientific and
technological interest to trap gap solitons. We first introduce an explicit multiparameter family of periodic
structures with localized defects, which support linear defect modes. These linear defect modes are shown to
persist into the nonlinear regime, as nonlinear defect modes. Using mathematical analysis and numerical
simulations, we then investigate the capture of an incident gap soliton by these defects. The mechanism of
capture of a gap soliton is resonant transfer of its energy to nonlinear defect modes. We introduce a useful
bifurcation diagram from which information on the parameter regimes of gap-soliton capture, reflection, and
transmission can be obtained by simple conservation of energy and resonant energy transfer principles.
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1. INTRODUCTION

Solitons are important carriers of energy in many physi-
cal systems. The emergence of solitons is understood as
a consequence of the balance of dispersive and nonlinear
effects on the same length scale. Optical temporal soli-
tons have been considered candidates for the bits with
which to transfer information over long distances.!™ Re-
cent advances in fabrication of optical fiber with micro-
structure have rendered the possibility of storing infor-
mation in the form of optical gap solitons a natural
direction for investigation.

Gap solitons are nonlinear bound states that propagate
in periodic structures. Their frequencies lie in the band-
gap of the linear (Floquet—Bloch) frequency spectrum.
These have been anticipated in theoretical research®®
and observed in experiments® ' on sufficiently high-
intensity light propagation in optical fiber with a periodi-
cally varying refractive index (a uniform fiber grating).
In contrast to bare fiber used in long-distance communi-
cations, where the formation length for solitons is of the
order of kilometers, the formation length for gap solitons
is of the order of centimeters. In theory, gap solitons can
travel with any speed v, with 0 < v < ¢, where ¢ denotes
the speed of light. Experiments have demonstrated the
slowing of gap solitons to ~50% c.'?

Gap solitons propagate in fibers with uniform grating
structures. In this paper we examine gratings with lo-
calized defects in the amplitude and phase of the grating.
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We ask whether it is possible to trap moving gap solitons
at the defect location. If so, one can envision this having
important technological applications, e.g., optical buffers
or optical memory. Through a careful series of numerical
experiments, we show how it is possible to trap gap soli-
tons at a defect and elucidate the mechanism by which
light energy is trapped. A similar question has been
studied by Broderick and de Sterke using a point—particle
model for the gap-soliton/defect interaction.'* We com-
pare our results with the conclusions drawn in that study.
Their model of soliton—defect interactions gives rise to a
“particle moving in a potential well” system. While this
model accounts for some of the observed behaviors, we
show in this paper that a complete understanding re-
quires the model to incorporate the extra degrees of free-
dom due to the nonlinear defect modes.’®™17 Although
we refer to gap-soliton capture, it is perhaps better called
capture of gap-soliton energy, for it involves the transfer
of the gap soliton’s energy to a nonlinear defect mode.
Nonuniform gratings have been studied before in other
contexts.’®2°  An apodized grating, in which the
strength of the grating is zero at the end of the fiber and
then gradually increased, may be used to decrease the
grating’s out-of-band reflectivity, as compared with a uni-
form grating.!® A similar effect may be achieved by use
of chirped gratings.2??2 Variable-strength gratings have
also been studied for nonlinear pulse compression.?%2324
One can readily achieve defect structures of the type we
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propose in this paper with cujrrent e-beam technology, es-
pecially the amplitude defects. One would use a phase
plate over the grating region and simply reduce the grat-
ing exposure over a small region (100 um to 1 mm in
length should be easy). Phase slips will be easy when
good stitching between e-beam exposed regions can be
achieved. Then phase slips can be programmed into the
e-beam writing program, and random stitching error
phase slips will not interfere.

This paper is laid out as follows. In Section 2, we de-
rive a variable coefficient version of the nonlinear
coupled-mode equations (NLCME) from an appropriate
one-dimensional nonlinear Maxwell model. In Section 3,
we review a few facts about the gap soliton. We intro-
duce a multiparameter family of defects that support lin-
ear bound states (defect modes) for the coupled-mode
equations in Section 4. We then show that these bounds
states persist in the presence of nonlinearity and study,
by perturbation theory and numerical simulation, how
they are deformed in Section 5. The results of this study
are encoded in bifurcation diagrams that display the in-
tensity as a function of the frequency for (a) nonlinear de-
fect modes and (b) gap solitons of the spatially homoge-
neous problem. With the aid of these diagrams, we
develop a criterion for trapping and an understanding of
its efficiency based on the notions of resonant energy
transfer and energy conservation. Guided by this analy-
sis, in Section 6, we perform a careful series of numerical
experiments to show how the nonlinear bound states in-
teract with the gap soliton to trap light energy. Simula-
tions are carried out for the nondimensional system
(2.12). Section 7 contains a brief discussion of the effect
of nonlinear damping, a nonnegligible effect in certain
highly nonlinear materials, on soliton propagation and
trapping. A summary and discussion of results are given
in Section 8, where a more detailed comparison is made
with the predictions of the previously mentioned particle
model.'* In Appendix A we give physical parameters for
silica fiber,’ discuss nondimensionalization, and tabulate
the dimensional values of parameters corresponding to
the simulations described in Section 6. In Appendix B,
we describe a method for deriving defects supporting lin-
ear bound states with prescribed characteristics.

Finally, we note that our results concerning persistence
of nonlinear defect modes and their role in soliton—defect
interactions are not dependent on the explicit analytical
formulas for the defects. The phenomena we have ex-
plored are robust and hold generally for defects that sup-
port bound states. This is important because physical
relevance requires persistence of the phenomena we ob-
serve under perturbations in the grating structure. The
explicit formulas for the defects play the role of a large
class of grating structures, whose spectral characteristics
can be tuned by adjustment of simple parameters, and
whose effect on soliton—defect interactions can be system-
atically explored.?®

2. COUPLED-MODE THEORY IN A
GRATING WITH DEFECTS

We consider propagation of light in one dimension in an
optical fiber with a refractive index that is a spatially lo-
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calized perturbation about a uniformly periodic index.
We model the propagation of low-intensity light, confined
to a core mode of the fiber by the wave equation,

[n*(2)E(z, t)] = ¢?5°E, 2.1
where the refractive index is given by
1
n=n-+An EW(Z) + v(z)cos[2kpz + 2D(2)];.

(2.2)

Here, 2 denotes the refractive index of the bare fiber and
An, the index contrast, is assumed small. The functions
v, ®, and W model the defect and are assumed to vary
slowly compared with the rapid sinusoidal variation of
the refractive index. A spatially localized deviation from
a uniformly periodic structure of period

d = nlkp (2.3)
is obtained by taking
v(z) = 1, 9,®(z) — 0, 9,W(z) — 0, as |z| — .

Low-intensity light propagating in the bare fiber (An
= 0) is governed by the spatially homogeneous linear
wave equation that supports independently propagating,
forward, and backward plane-wave solutions E . exp[i(kz
— wt)], where

ck
w = iT. (24)

n
The periodic structure (An # 0) couples these back-
ward and forward components. This effect is most pro-
nounced for wavelengths in the medium at or near \
= 2d or equivalently the (free space) Bragg wavelength,

For modeling propagation in the nonlinear regime we
assume an instantaneous nonlinear polarization®:

PNL = 60X(3)E3. (25)

Combining this with Eq. (2.2), the squared index of re-
fraction with linear and nonlinear effects included is then

n?(z, E?) = %2 + nAnW(z) + 27Anv(z)
X cos[2kpz + 2P (2)] + xPEZ. (2.6)

For high intensities the electric field evolves under the
nonlinear wave equation?%:

?[n%(z, E)E] = c?J’E. (2.7)

So that we can systematically obtain equations of evo-
lution for the forward and backward carrier-wave enve-
lopes, we make explicit our assumptions on the medium.
We assume that the variation of the refractive index is
weak and that the deviation from periodicity is small, i.e.,
there exists a small parameter ¢ < 1 such that

An = O(e),
oW = O(g), d,v = 0(¢), 3, = Oe), D = O(&?).

Due to the periodic structure, we expect coupling of for-
ward and backward wave components. This coupling is
strongest if the wavelength and period are chosen accord-
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ing to the above Bragg condition. We now make a
multiple-scales ansatz, choosing the carrier wave number
in Bragg resonance with the medium,

E =¢e (z, t)expli(kgz + ® — wpt)]
+ e (z, t)exp[ —i(kgz + ® + wpt)] + Eq,
(2.8)

where the wave number £ and frequency wp satisfy the
dispersion relation (2.4).2” The first two terms in Eq.
(2.8) consist of slowly modulated forward and backward
waves. The regime we consider is specified by the above
assumptions on the medium and assumptions on the field
amplitude, which we take to satisfy

xP|E? = O(e).

The latter ensures a balance of nonlinearity and photonic-
band dispersion due to the periodic structure. We there-
fore anticipate that the amplitudes e . will be slowly vary-
ing and will satisfy

atei = 0(8)7 ﬁzei = 0(8)7
ﬂtzei = O(&?), ﬁfei = O(&?).

The envelope functions e. in Eq. (2.8) are finally deter-
mined by the constraint that the correction terms are of
higher order in ¢ over a time scale and length scale of or-
der O(s™1),

Eile. = O(s). (2.9)

The condition (2.9) requires the removal of resonant forc-
ing terms in the equation for E,;. This is equivalent to
the constraint that e .. satisfy the variable coefficient non-
linear coupled-mode equations:

T_L =~
i;ﬁteJr +id,e, + kK(z)e. + V(z)e,

+ f‘(|e+|2 + 2|e,|2)e+ =0,
n

i—de_ —ide_ + K(z)e, + V(z)e_
c

+ T(le | + 2|e e =0. (2.10)

The coefficient functions in Eqs. (2.10) are defined in
terms of the parametric functions that characterize the
index profile (2.2)%8:

TAn _ TAn
K(z) v(z), V(z) = —W(z) - ®'(2),
\p \p

3y ®
= . (2.11)

Fig. 1. Solid and dashed curves are two different periodic index
profiles with localized defects having the same “spectral charac-
teristics” (see Subsection 4.B).

Vol. 19, No. 7/July 2002/J. Opt. Soc. Am. B 1637

Our point of view is to specify grating parametric func-
tions W(z), v(z) and ®(z) through the constitutive law
(2.2). These determine the functions x(z) and ‘Nf(z), aris-
ing in the coupled-mode equations, governing the nonlin-
ear propagation. Note the appearance of the combina-
tion of W and ®’ in the definition of V in Egs. (2.11).
Therefore spectral characteristics arising due to a
nonoscillatory variation (W) in the index can be, within
this approximation, equivalently achieved through phase
variations (®). The solid and dashed curves in Fig. 1 are
of index profiles that are equivalent in this sense; see also
Subsection 4.B.

The assumptions on the variable coefficients guarantee
that, away from the defect, the system approaches the
constant coefficient nonlinear coupled-mode equations
(NLCME),

wAn
\g
We introduce typical dimensional length, Z, time, 7
= Znlc, and electric field, £&. Using these, we define
nondimensional spatial and temporal variables Z and 7,
and electric field E ., given by

Zn

z=2Z, t=—T, e. =¢&E..
c

V(z) - 0, ®(z) — Ko =

Then Egs. (2.10) can be expressed in nondimensional
form as

i0pE , + idzE . + x(Z)E_ + V(Z)E .,
+ T(E.* + 2|E |PE, = 0,
i0,E_+ k(Z)E, + V(Z)E _
+ IT(E_|?> + 2|E.])E_

iopE_ —

0, (2.12)
where

k(Z) = Zr(Z2Z), V(Z) = 2V(2Z),
I = z&7T. (2.13)

Our analysis and computer simulations are carried out
for the nondimensional system (2.12). Conversions to di-
mensional form are given for important quantities in Ap-
pendix A. Note that f, and therefore I', is positive; see
Eqgs. (2.11). We shall refer to Egs. (2.12) as the variable-
coefficient nonlinear coupled-mode equations, (variable
NLCME), and to the case where V = 0 and « is constant
as NLCME.

3. GAP SOLITON

Consider the constant coefficient NLCME with « = «.,
and V = 0. The linearized equation about the zero solu-
tion has a “gap” in the continuous spectrum. There are
no plane-wave solutions with frequencies in the range
(=K., K.); see Subsection 4.A. The nonlinear equations
support a family of traveling pulses called gap solitons.%”
The family is parameterized by a velocity v and a detun-
ing parameter Swith [v]| < 1and 0 < § < 7. Itis given

by
Kol 1
E, = saexp(in) E Z(sin d)exp(iso)

X sech(6 — 16/2),
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_= —aexp(in) A(sm dexp(iso)
X sech(6 + 16/2) (3.1)
where
1 1= p)\ 4
T ﬁ, 1+v ’
0 = yr.(sin 8)(Z — vT),
o = yr,(cos 8)(vZ — T),
2(1 — v?) .
“= N gz &7 sienled),
. exp(20) + exp(—id) 20/(3-v2)
e -
xp(i 1) oxp(20) + oxp(i)

The temporal frequency of the gap soliton is «..y cos &,
which is inside the bandgap for |v| < sin §, although in a
reference frame moving at speed v, the frequency is al-
ways in the bandgap. We define the maximum intensity
1.« and the total intensity I,,; and give their values for
the gap soliton:

kN1 — 02 1)

I, = E,?2+|E_|?)) = ——————sin’—
max mZaX(| +| | | ) F(3 _ 02) S 9 ’
° ) ) 4(1 — v%)6
Iyt = f_x(|E+| +|E_[HdZ = Te-03 62

and the full width at half-maximum (FWHM) by

241 — v? S

FWHM = ———cosh ' \/1 + cosZE. (3.3)

K. sin &

The square root of the total intensity I is often referred
to as the L2 norm. In Fig. 2, we plot the intensity as a
function of frequency for the stationary (v = 0) gap soli-
ton. This curve is parameterized by

4r
3r

==

2
ar

[tot‘

—Keo 0 Koo
W

Fig. 2. Intensity of the stationary gap soliton as a function of its
frequency.
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w(8) = Kk, 088, Ii(5) = ar for 6 € [0, 7].

Results on linearized stability and instability of gap soli-
tons in various parameter regimes are obtained by
Barashenkov et al.?®

4. DEFECTS AND LINEAR DEFECT MODES

The functions V(Z) and «(Z) define a defect in our peri-
odic medium, and we now seek the linear modes associ-
ated with this defect. These are solutions of the linear
coupled-mode equations:

idpE, +1i9,E, + k(Z)E_+ V(Z)E, =

iopE_ —idzE_ + k(Z)E, + V(Z)E_ = 0. (4.1)
This may be rewritten as

[idp + io3d; + V(Z) + k(Z)o(]E = 0, (4.2)

where
0 1
1 0)
Substitution of the Ansatz

E
E = (EJ:), o1 =

1 0
o3 = 0 -1/ (4.3)

E(Z) = exp(—iwT)exp

Z
i f V({)dg}F(Z) (4.4)
0

yields
o u(Z)
u(Z) “lw
z
u(Z) = ik(Z)exp —2if V(g’)d{}. (4.6)
0

Solutions of the form (4.4), which are square integrable in
Z, are called defect modes. Solutions of the form (4.4),
which are bounded and oscillatory in Z, are called radia-
tion modes. The set of frequencies, w, corresponding to
defect modes and radiation modes is called the spectrum
of Eq. (4.5).

One can pose the question: Can prescribed spectral
characteristics of Eqgs. (4.1) (e.g., defect modes and reflec-
tion and transmission spectra) be achieved by appropriate
choice of u(Z) [«(Z) and V(Z)]? Song and Shin approach
this problem, in the context of grating and filter design,
using the Gelfand-Levitan—Marchenko approach to in-
verse scattering®’; see also Weinstein.?! This method can
be used to characterize gratings with desired spectral
characteristics.3%-32

A. Radiation Modes for a General Localized Defect
We suppose that the function u in Eq. (4.5) has the
asymptotic behavior

u(Z) — pexp(if.), Z — *o=,

corresponding to a spatially localized defect in the peri-
odic structure.

The values of w lying in the continuous spectrum are
then characterized by the equation
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Fig. 3. Dispersion relation (4.7), showing a bandgap.

P lw pexp(ih-)
J =
Z pexp(—if.) —iw

Seeking solutions of the form exp(iQZ)v, with @ real,
we find that there are nontrivial solutions v provided

w? = p? + Q2 4.7)

Therefore the continuous spectrum consists of the real
axis minus a gap (photonic bandgap), —p < w < +p; see
Fig. 3.

B. Dark-Soliton Defect Gratings

It is interesting to note that the system (4.5), characteriz-
ing the modes of the modulated periodic structure, is the
Zakharov—Shabat eigenvalue problem associated,
through the inverse-scattering transform, with the defo-
cusing nonlinear Schrodinger equation (NLS)3%33:

idu — deu + 2lul’u. (4.8)

If u(Z, 7) satisfies Eq. (4.8), then for each 7, (a) the spec-
trum of Eq. (4.5) is independent of 7 and (b) as 7 varies,
the eigenfunctions and radiation modes of Eq. (4.5) evolve
in a trivial (linear) and explicitly computable manner.
That is, Eq. (4.8) defines an isospectral deformation of the
eigenvalue problem (4.5) and therefore, by Eq. (4.6), pro-
vides a rich class of potentials, u(Z), and therefore modu-
lated gratings («(Z), V(Z)) with the same spectral char-
acteristics.

From the inverse-scattering theory of Eq. (4.8), we
learn that the bound states and continuum radiation
modes associated with Eq. (4.5) can be “mapped,” respec-
tively, to the dark solitons and radiation modes of Eq.
(4.8). In this section we explore those grating profiles
that correspond to the simplest dark-soliton solutions of
Eq. (4.8).

Since the eigenvalue problem for the pair (F(Z), o) is
self-adjoint, w varies over the real numbers. Further-
more, the set of all » satisfying |w| = p is continuous
spectrum. There are no eigenvalues embedded in the
continuous spectrum. Therefore if the eigenvalue prob-
lem (4.5) has eigenvalues, they must occur in the gap
|w| < p. Of interest is the following.
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Inverse Problem

Given N numbers w1 ,..., oy, satisfying |o;| < p, find po-
tentials, u(Z), for which these are the eigenvalues of the
eigenvalue problem (4.5).

This inverse problem has many solutions. A remark-
able class of solutions are those for which the reflection
coefficient associated with Eq. (4.5) is zero. These are
the dark N-soliton solutions of defocusing NLS.

Dark Solitons (N = 1)
Let £ # 0 be arbitrary and |o| < p. Let
p=|o+ ik|.
Define
u(Z) = —exp(i¢)[w — ik tanh(kZ)], (4.9)

where ¢ is left unspecified to this point.

It can be verified easily that w is an eigenvalue of Eq.
(4.5) with corresponding eigenfunction

FZz) = sech(kZ). (4.10)

12 ¢ )
i eXP( 4 ),
Therefore E+ are given by

i k tanh(kZ)
exp _
&=
£ | =

—arctan
2 w

1 exp(—i¢)exp

i k tanh(kZ )}
——arctan——
2 w

X exp(—iwt)sech(kZ). (4.11)

Specification of the Grating with Prescribed Defect
Energy

A grating is specified by the functions V(Z) and «(Z)
[Egs. (2.11) and (2.13)]. Using Eq. (4.6), we obtain a re-
lation between a family of “dark solitons,” u(Z), and the
functions V and «:

ik(Z)exp —2ifZV(s)ds} = exp(i¢)[w — ik tanh(kZ)].
' (4.12)

Choosing ¢ = 7/2, this yields
k(Z) = [w? + k% tanh?(kZ)]"2, (4.13)

V(Z) = %k%[w? + k2tanh?(kZ)] ! sech?(k2),
(4.14)
and sets the term
iexp(—igp) =1

in Egs. (4.10) and (4.11). Note that the limit ® — 0 of
the defect definition (4.14) is singular:

k(z) = |k tanh(kZ)|,

V(Z) = igé‘(Z), (4.15)

where 6(Z) denotes the Dirac delta function and the sign
on V(Z) depends on the direction on which the limit
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o — 0 is taken. Instead, taking V(Z) = 0, » = 0, and
exp(i¢p) = =1 in Eq. (4.12) yields the continuous limit

k(Z) = —ktanhkZ, (4.16)
1
F(Z) = (Ii>secth. (4.17)

Recall that in our coupled-mode system, the medium is
characterized by three functions: », W, and ®. From our
solution we see by Eqs. (2.11) that Eq. (4.13) [or (4.16)]
uniquely determines v. However, from Eqs. (2.11) we see
that Eq. (4.14) specifies only a linear combination of W
and @', giving one some freedom in how to design a me-
dium with the desired spectral characteristics. In Fig. 1
two gratings with identical », x, and V are displayed.
The solid curve corresponds to the choice ®(Z) = 0 (no
phase shift in the refractive index), and the dashed curve
corresponds to the choice W(Z) = 0 (no modulation to the
nonoscillatory component of the refractive index).

C. More General Defect Gratings
In this subsection we consider a class of defect gratings
that generalizes those studied in the previous subsection:

k(Z) = Jo? + n2k%tanh?(kZ), (4.18)

wnk? sech?(kZ)
2[w? + n?k2tanh%(kZ)]’

V(Z) = (4.19)

We shall use this class of defects extensively in numerical
simulations. This family of defects can be obtained by
specifying an exponentially localized eigenfunction of Eq.
(4.5) and then deriving a potential for which this function
is a bound state. The calculation is presented in Appen-
dix B. The generalization of the eigenmode (4.11) is

exp
5
| =

—arctan
2 w

i nk tanh(kZ)}

exp| —— arctan
P 2

w

i nk tanh(kZ)}

X exp(—iwt)sech™(kZ). (4.20)

When n > 1 in Eqgs. (4.18) and (4.19), then the linearized
equations (4.1) have multiple bound states. For ex-

1

05 05
@ " J,\\
0 \ 0 <
~
-05 -05
Z4 -2 0 24 -2 0
05 e 05 R
(b} o = ' 0 =\ =
Y e
-05 -05 \
-4 -2 [} -4 -2 [}
06 o2 -
0.4 =g~
)y -0.2
0.2 04
- -0.
0 -~ N -06
-02 -
-4 -2 0 -4 -2 0

Fig. 4. Three eigenmodes for the defects (4.18) and (4.19) with
In each plot, E, is in the left column
Solid and dashed curves correspond to

(0, B, n) =(-1,2,2).
and E_ is in the right.

1

real and imaginary parts, respectively.
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ample, when (w, &k, n) = (=1, 2, 2), there are three ei-
genvalues, wg = —1 and w.; = +13. The eigenfunc-
tions are shown in Fig. 4.

The photonic-bandgap width is determined by the
asymptotic behavior of x in Eq. (4.18) and is given by
2k., , where

k. = lim k(Z) = Vo? + n2k2. (4.21)
|Z] -

In our computer simulations (see Section 6) we set k2
= k% = C?/n?, thereby fixing the gap width equal to
2(w? + C?)Y2 and vary the defect width by varying the
parameter n.

The defect k(Z) varies between the values x, = |w| and
k. = (@ + n2k2)V2. Therefore the “depth” A, of the de-
fect is given by

A, = Vo? + n2k2 - |o|. (4.22)

We define the defect width (FWHM) to be given by
twice the value of Z for which «(Z) = 1/2(kq + «..), yield-
ing

\/2|ou|\/w2 + n2k2 + n2k? - 20?2

2nk

2
FWHM = Etanhf1
(4.23)

in the nondimensional setting. Dimensional values for
the defect depth and width are provided in Appendix A.

5. NONLINEAR DEFECT MODES

In this section we show that the linear defect modes of
Section 4, upon inclusion of nonlinear terms, deform into
nonlinear defect modes, in a sense made precise below.
We begin by observing that the dimensionless nonlinear
coupled-mode equations (2.12) can be written in the vec-
tor form,

[i(dp + 030,) + o1x(Z) + V(Z)]E + TN(E, E*)E = 0,
(5.1)

where E is the two-vector with components E., o;, and

oy are displayed in Eq. (4.3), and the N(E, E*) defines
the nonlinear term:

E.|)? + 2|E_|? 0

* =
NE, E") 0 |2 + 2|E, 2]

We define a nonlinear defect mode of Eq. (5.1) to be a spa-
tially localized solution of Eq. (5.1) of the form

E(Z,T) = exp(—iwT)EZ), (5.2)
where £ and o satisfy the nonlinear eigenvalue equation

[0+ 030, + o1k(Z) + V(Z)]E + TN(E, £)E = 0.
(5.3)

Perturbative construction of nonlinear defect modes.
We assume that all eigenvalues of the linearized problem
(4.1) are simple, which has been found numerically for
the family of defects investigated. Let E,
= exp(—iw'"T)E(Z) denote a linear defect mode. That
is, £y(Z) is a spatially localized solution of the linearized
eigenvalue equation
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[0 + iosd, + o1k(Z) + V(Z)]E =0, (5.4)

for which we constructed defects and defect modes in Sec-
tion 4.

We then seek to construct nonlinear bound states of the
form (5.2) as perturbations of the linear bound states:

EZ) = alEy(Z) + |a/|2E1(Z) + O(|af|4)],
o= + w(1)|a‘2 + (’)(|a|4), (5.5)

and « is a small parameter. Since for any w, &(Z) = 0 is
a solution of Eq. (5.4), solutions of the form (5.5) are said
to bifurcate from the trivial solution at o = »'?.
Substitution of Egs. (5.5) into (5.1) yields a hierarchy of
inhomogeneous linear equations beginning with

O(1) : LoE, = 0, (5.6a)

O(|al?) : LeE; = —wVEy — TN(E,, E§)E,, (5.6b)
where
Lo= 09+ i0c30, + o1+ V

is a linear self-adjoint operator. The first equation in
Egs. (5.6) holds if E, = &, for any linear defect mode &,
of frequency w'®”. The eigenvalue »'® is necessarily of
multiplicity one. The second equation in Egs. (5.6) is
solvable for a localized correction term, &, if and only if
the right-hand side of the equation is orthogonal to the
null space (zero-energy subspace) of £,. Imposing this
orthogonality condition yields the following equation that
determines the value of o'V:

(&M Ey + TN(&, £)&) = 0. (5.7
We obtain from Eq. (5.7)
(&IN(&, £5)&)
(ol o)

It follows that the nonlinear defect mode bifurcating
from the linear defect mode of frequency w'® is

E(Z, T) = exp(—iwT)a[&(2) + |a|?6(Z) + O(al")],

ol = —

o =00+ a0 + O(al*).

We refer to the nonlinear defect mode bifurcating from
o = 0 as an 0! nonlinear defect mode. Since I' > 0
(see Section 2), the bifurcating states have frequencies be-
low w'®. A rigorous proof of the existence of bifurcating
nonlinear defect modes and the validity of this expansion
can be given in a manner analogous to that carried out in
the context of the nonlinear Schrodinger equation case.?*

In order to go beyond the small amplitude (a small)
perturbative regime, we have solved the nonlinear eigen-
value problem for arbitrary amplitudes by numerical
simulation. We do this by discretizing the nonlinear ei-
genvalue problem (5.3), specifying the total intensity
[|E|*dZ, and solving the resulting nonlinear equations
for w and the function values simultaneously. A plot of
the intensity versus frequency for one such family of de-
fect modes is shown in Fig. 5. For the spatially homoge-
neous case, gap solitons are seen to bifurcate from the
zero state at the right endpoint of the continuous spec-
trum, @ = k,, = \17. For the given defect, a branch of
nonlinear defect modes bifurcates from the zero state at
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Fig. 5. Intensity versus frequency for the gap soliton (bold) and
a nonlinear defect mode with parameters (wq, 2) = (=1, 4).

0'® = wy = —1. The nonlinear defect mode and its fre-
quency become difficult to compute as the frequency w of
the nonlinear mode approaches an endpoint of the con-
tinuous spectrum, because the exponential decay rate de-
creases and larger spatial intervals must be used in order
to compute the exponential tail.

If nonlinear defect modes are to store electromagnetic
energy, then they must be stable. We numerically exam-
ined their stability properties by solving the evolution
equation (5.1) for initial conditions that were a perturba-
tion of a nonlinear ground-state defect mode. For ex-
ample, initial data given by some multiple of the linear
ground state (4.20) was taken. In these simulations the
solution quickly evolved into a nonlinear ground state
with an amplitude and frequency determined by Eq. (5.1).
An additional feature is a “breathing oscillation” of the so-
lution’s amplitude and width. This oscillation does not
grow with time, suggesting that in these regimes that we
simulate, the nonlinear ground state is neutrally stable.

Barashenkov et al. have shown that gap solitons of suf-
ficient amplitude can exhibit oscillatory instabilities.?®
Nonlinear defect modes might also be unstable at large
amplitudes. In the case of the NLS, it has been shown
that a defect can actually stabilize solitons that are un-
stable when no defect is present.?* For more discussion
of the stability issue, see Section 8.

6. COMPUTER SIMULATIONS OF A GAP
SOLITON INCIDENT ON A DEFECT

In Section 3 we discussed gap solitons, the fundamental
nonlinear bound state of propagation in a uniform peri-
odic structure. In Section 4 we then considered the lin-
ear modes of a periodic structure with a defect and, in
Section 5, the nonlinear defect modes that bifurcate from
these linear defect modes. In this section we study by
computer simulation the dynamics of a gap soliton inci-
dent on a defect.

In Section 2, we derived a nondimensional form of the
coupled-mode equations with nondimensional parameters
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«k(Z), V(Z), and I" given by Eq. (2.13). By an additional
rescaling of the nondimensional variables Z, T, and E -,
we may redefine the equations so that I' = 1 and «., takes
the form given in Eq. (4.21). In other words, ., and I
can be set arbitrarily, and the results can always be
mapped to a physical system.

Simulations indicate complex interactions between the
incident gap soliton (Section 3) and the modes of defect
(Sections 4 and 5). An understanding of the dynamics
and the potential for trapping requires an understanding
of the energy exchange between the gap-soliton mode and
nonlinear defect modes. Our numerical simulations give
strong support to the following principle suggested by the
notions of resonant energy transfer and energy conserva-
tion:

Principle governing soliton—defect interactions. Con-
sider a gap soliton incident on a defect with sufficiently
low incident velocity. The gap soliton will transfer its en-
ergy to a nonlinear defect mode, and thereby be trapped,
if there exists a nonlinear defect mode of the same fre-
quency (resonance) and lower total intensity (energetic
accessibility). Otherwise, the gap-soliton energy will be
reflected and/or transmitted.

We now describe our numerical experiments that ex-
plore the validity of this principle. The defects described
in Section 4 are members of a three-parameter (w,, &, n)
family, and the gap solitons are described by two param-
eters (v, 6). While it is not possible to investigate all of
the soliton—defect interactions in this five-dimensional
space, we have performed a large number of simulations,
and we were able to draw some general conclusions. We
concentrate on gap solitons of comparable width and am-
plitude to the defects; thus linear and nonlinear interac-
tions are likely to be strong and balanced. Physical ex-
periments have so far produced pulses with relatively
large values for v and small values for &, so we make some
attempt to trap gap solitons in this parameter regime.
Dimensional equivalents for most of the nondimensional
experiments are given in Appendix A. Intensities range
from 130 to 1800 GW/cm?, pulse widths are between 1.3
and 4.4 mm, and defect widths are between 1.6 and 4.7
mm (FWHM). In this section, the frequency of the linear
defect mode is given by w;, while @ = k. cos ¢ is the fre-
quency of a stationary gap soliton. Finally, note that we
have not investigated the “sharpness” of the above prin-
ciple, since we have not taken solitons with frequency w
arbitrarily near the linear defect-mode (bifurcation) fre-
quencies, w; .

A. Experiment 1: Gap Soliton Incident on a Dark-
Soliton Defect Gratings

We first consider the simplest case of pulses interacting
with the dark-soliton defect gratings defined in Egs.
(4.13) and (4.14). We consider a defect with £ = 4 and
wy = —1. This defect supports a single nonlinear bound
state. The key insight into predicting whether the gap
soliton interacts strongly with the defect is found by ex-
amining Fig. 5. A gap soliton with frequency w
= k. cos o will interact most strongly with the defect if a
nonlinear defect mode exists with the same frequency and
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equal or less total intensity. If it does, then it is possible
for the gap soliton to resonantly transfer its energy to the
defect mode. The relevant mechanism seems not to be
the slowing of the soliton, but rather this transfer of en-
ergy. Note from the figure that for o < —1 (5 > 1.82)
such modes exist, and for larger o they do not. Of course,
the gap-soliton frequency-intensity curve given in the fig-
ure applies only in the case v = 0, but it is useful for mak-
ing predictions for small v.

Experiment 1.1 (Reflection/Transmission)

With the defect parameters set, we then investigate a
two-parameter family of gap solitons indexed by the ve-
locity v and the detuning 8. Our first experiment is for
detuning & = 0.9. Through inspection, the pulse is of
comparable depth and width to the defect, so it seems an
ideal candidate for capture; see Fig. 6. However, the cen-
tral frequency of this gap soliton at small velocities is
Ko COS 6~ 2.56 > wy, = —1, so we do not expect the defect
mode to be strongly forced by the gap soliton.

Indeed, although we observe a slowing, and therefore
delay, of the gap soliton, we do not find significant excita-
tion of the defect mode or trapping. We find that below a
critical velocity v ~ 0.257, all gap solitons are reflected,
and above this speed they are transmitted. The closer
the incoming pulse comes to this incoming velocity, the
longer it remains in the neighborhood of the defect before
being ejected and the velocity of the outgoing pulse is ap-
proximately that of the incoming pulse.

In Fig. 7, we show the evolution of two gap solitons in-
cident on the defect, both very close to the critical velocity,
showing clearly the effects discussed above.

Interestingly, the gap soliton slows down when it nears
the defect (Fig. 7 for times between 20 and 30). This is
somewhat unexpected; as the defect supports a bound
state, one intuitively expects the soliton center of mass to
move as a “classical particle in a potential well.” Instead
the soliton behaves more like a classical particle encoun-
tering a potential barrier. Broderick and de Sterke con-
jecture that, if a defect supports bound states, then a par-
ticle approaching it should “see” a potential well, and if it
supports no bound state, then an approaching gap soliton
should see a barrier.!> Our numerical simulations and
theory, based on energy conservation and resonant energy
transfer, illustrate that the situation is more complex.
Indeed, both the “potential well like” and “potential bar-
rier like” behavior are possible for a defect that supports
bound states.

-8 -6 -4 -2 0 2 4

Fig. 6. (Experiment 1.1) Initial value of |[E_ |2 + |E_|? (solid
curve), which gives the approximate strength of the nonlinear
forcing, and of the defect x(Z) — k. (dashed), which gives the
forcing due to the defect.
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Fig. 7. (Experiment 1.1) (a) Gap soliton with v = 0.2565 is re-
flected by a defect at Z = 0. (b) Slightly faster gap soliton with
v = 0.257 is transmitted.

The reflection of these gap solitons is well explained by
Fig. 5. To test the soliton—defect interaction principle,
we postprocess the numerical experiment as follows. At
each time step, we compute the projection of the solution
onto the linear mode of this defect, and we find that when
the gap soliton is directly over the defect, the projection
onto the bound state accounts for only 6% of the total L2
norm of the solution, and after the soliton escapes, the
projection accounts for less than 0.2% of the solution. As
there is no resonant exchange of energy between soliton
and defect mode, the soliton escapes.

Experiment 1.2 (Trapping for Larger Intensities)

Figure 5 suggests that gap solitons with larger values of
the detuning 6 may interact more strongly with the de-
fect. We therefore run the experiment again with §
= 2 (frequency w = —1.72) below w,, and v = 0.2, the
results of which are shown in Fig. 8. When the soliton
encounters the defect, it seems to split into three parts:
a transmitted soliton, a trapped mode, and radiation.
The mode that remains at the defect has only ~16% of the
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total intensity of the incoming gap soliton. Remarkably,
at the end of the computation, the captured state’s fre-
quency is approximately o = —1.7, and the solution’s to-
tal intensity is such that the trapped energy is described
by a point very close to the nonlinear bound-state curve of
Fig. 5. This supports the first part of our soliton—defect
interaction principle. For small values of v, the ampli-
tude and frequency of the trapped state do not seem to de-
pend on v. Above a certain larger velocity, significantly
less energy is trapped by the defect, suggesting that the
interaction principle needs refinement for large velocities.

Experiment 1.3 (Refining Results)

Clearly, this computation shows that we can use a defect
to trap a significant portion of the electromagnetic energy
in a gap soliton. However, to this point, the gap solitons
we have captured have had very high intensities, and fur-
ther, only a small amount of the soliton’s energy is
trapped by the defect. It is of interest to trap lower-
intensity pulses, and it would be preferable if a larger
fraction of the soliton’s energy were trapped by the defect.
The nonlinear defect modes always bifurcate to the left
from the linear defect-mode frequency for increasing in-
tensity. Consider the defect defined by Egs. (4.13) and
(4.14) with £ = 4 as before, but now letting w, = 1. This
leaves «(Z) unchanged, while changing the sign of V(Z).
This moves the base of the nonlinear bound-state curve to
wo = +1, so that the intensity-frequency curves for the
nonlinear defect mode and the gap solitons are signifi-
cantly closer together; see Fig. 9. If we examine the in-
teraction of § = 7/2 (w = 0) gap solitons with each of
these defects, the bifurcation diagrams anticipate that
the wy = 1 defect will capture a lot of energy from the
pulse, while the wy = —1 defect will reflect or transmit
the pulse, depending on its incoming velocity. Numerical
experiments show this to be the case.

We can further improve trapping using the dark-soliton
family of defects by increasing the ratio wq/«... The gap
edge is at .. = (wg + £2)Y2, while the defect-mode curve
starts at w, and goes left with increasing intensity. The
problem with this approach is that as wy — k.., the width
of the gap increases without bound, while its depth goes
to zero.

-3

Intensity

|
o

0 Time

Position

Fig. 8. (Experiment 1.2) With § = 2, a defect mode of significant
intensity remains behind after the soliton passes through. (Due
to the absorbing boundary conditions used in the simulations,
the gap soliton dissipates as it approaches the edge of the com-
putational domain).
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Fig. 9. Intensity versus frequency for the gap soliton (bold) and
a nonlinear mode for defect with parameters (wq, k) = (1, 4).
Although the defect is the same as that used in Fig. 5 excepting
a sign in the definition of V(Z), the defect-mode curve is further
to the right and closer to the gap-soliton curve, predicting greatly
improved trapping.

Intensity

Frequency

Fig. 10. Intensity versus frequency for the gap soliton (bold)
and the three nonlinear modes for the defect with parameters
(wg, k, n) = (—1,2,2). Trapping is possible for frequencies on
the thickened section of the gap-soliton curve.

B. Experiment 2: Gap-Soliton Incident on Grating
Defects Supporting Multiple Bound States

We now show how to use the generalized dark-soliton de-
fects of Subsection 4.C to more efficiently capture solitons.
As pointed out in the paragraph following Eq. (4.21), we
can use defects given by Egs. (4.18) and (4.19) to fix the
spectral gap and study the interaction of gap solitons with
defects of different widths. We next study gap solitons
incident on a grating of this form with (w, &, n)
= (—1,2,2). This defect is twice the width of the dark-
soliton defect grating of Subsection 6.A, but has the same
limiting profile far from the defect region. From Appen-
dix B, the defect supports three linear bound states, with
ground-state frequency w, = —1 and excited states w.;
= +./13. Branches of nonlinear defect modes bifurcate
from each of these linear modes. Figure 10 is the analog
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of Fig. 5 for this defect. To the left of the indicated fre-
quency w, , the w,-nonlinear defect mode has greater in-
tensity than does the gap soliton. The frequencies w_1,
wg, w, , and w,; divide the bandgap into five regions. In
the regions —«.. < w < wy and 0w, < o < w,; we expect,
by the same mechanisms as in Experiment 1.2, to find
trapping of energy, while in the regions wy, < o < w, and
w1 < o < k., we do not expect trapping. In the seg-
ment —k., < w < w_;, we expect complex behavior be-
cause two trapped nonlinear modes coexist. We expect
the most efficient capture for solitons with frequency
slightly greater than w,, for which a nonlinear bound
state exists of slightly lower total intensity than that of
the incoming pulse.

Experiment 2.1 (The Trapping Region w, < o < w.q)
(2.1a). We first examine gap solitons with § = 0.9 (w
~ 2.6), which lie just to the right of w, in Fig. 10. Trap-
ping here is relatively efficient because a soliton can
transfer almost all its amplitude to the nonlinear defect
mode of the same frequency and slightly lower intensity.
We find trapping for gap solitons slower than a critical ve-
locity of v, =~ 0.102. In Fig. 11, we show the evolution of
a gap soliton, initially propagating to the right, which
gets trapped. In Fig. 12, we show the position versus
time plot for a gap soliton that gets trapped and one that
escapes. In both cases, the gap soliton speeds up on
reaching the defect, consistent with the defect acting as a
potential well. Figure 13 shows the output soliton veloc-
ity as a function of the soliton input velocity in a region
near the critical velocity. The figure indicates a sharp
transition at a critical velocity from gap solitons that are
trapped to gap solitons that propagate through.

Although the NLCME system (2.12) conserves I, ra-
diation may carry some energy away from the defect.
The computations are performed on a finite domain with
absorbing boundary conditions; thus radiation losses can
be measured by monitoring the local L2 norm, i.e.,

172
local L% norm = (f E.?+ |E_|?2dZ| ,
D

where D is a bounded region containing the defect; see
Fig. 14. By time ¢ = 120, the energy has been trans-

Intensity

-8

Position 0

Fig. 11. (Experiment 2.1a) Typical picture of the capture of a
gap soliton by a defect centered at Z = 0.
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Fig. 12. (Experiment 2.1a) The position versus time of an escap-
ing and a captured gap soliton. Note that the instantaneous ve-
locity increases when the gap soliton is in the defect region (Z
near zero). 6 = 0.9 and v near v, ~ 0.103, the potential as de-
scribed in Subsection 6.B.
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Fig. 13. (Experiment 2.1a) Initial velocity (v;) versus final ve-
locity (vy) of the gap soliton; parameters are as in Fig. 12 with

variable v.

ferred from the soliton to the nonlinear defect mode, but
the system continues losing energy to radiation at a con-
stant rate for the length of the simulation.

(2.1b). For the slightly smaller value of § = 0.6, the dis-
tance between the gap-soliton curve and the nearby
defect-mode curve in Fig. 10 is increased. Some of the
energy is deposited in a defect mode, whereas the remain-
ing energy appears to propagate as a diminished gap soli-
ton plus small radiation; see Fig. 15.

There is not space to report in detail all of the behav-
iors found in the numerical simulations for this defect.
As expected, gap solitons with frequency w<w, are
trapped in a manner similar to those in Experiment 1.2.
When o < w_q, then all three nonlinear modes are ex-
cited by the gap soliton. More unexpectedly, in the re-
gion wy < o < w, , the gap soliton, while never captured,
is never reflected either. In this frequency range, for ev-
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ery initial velocity as low as v = 0.0006, the soliton is
transmitted after slowing down slightly when encounter-
ing the defect.

Experiment 2.2: (Wider Defects)

(2.2a). By widening the defect, we may place more eigen-
values closer to the edges of the bandgap, which might
then be used to trap gap solitons with even smaller 6.
Using a defect with parameters (wg, &, n)
= (-1, 1.6,2.5) (keeping . = 17 as in previous sub-
sections), which has five eigenvalues wo = —1, w.;
= +,/281/5, wig * \/409/5, we captured a soliton with &
= 0.45, although with the velocity significantly reduced
to v =~ 0.025. We found that the defect with £ = n = 2
described in Experiment 2.1 reflects this gap soliton, as
its central frequency is to the right of the defect-mode
curve in Fig. 10. The dynamics of the soliton captured by
the present defect is shown in Fig. 16. At ¢ ~ 400 the
trapped mode begins to lose intensity to radiation, as is
seen more clearly in Fig. 17; note the decay of the local L?
norm beginning around ¢ = 400.

Also shown in Fig. 17 are the numerical projection onto
the linear eigenfunctions belonging to w,s and w,;. At
capture time (¢ ~ 60), the solution is dominated by the
.o mode. At longer times, however, this trapped mode

Normalized L? norm
o o :
S £
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Fig. 14. Decay of the local L2 norm (normalized) for Experiment
2.1a.

Intensity

Position

Fig. 15. (Experiment 2.1b) Partial capture: an incident gap
soliton results in part of its energy captured in the defect and
part transmitted as a lower-energy gap soliton.
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Fig. 16. (Experiment 2.2a) Capture of a gap soliton with &
= 0.45 by a wide well.

is not persistent and the energy is transferred from w4 to
w41, with a lot of energy lost to radiation and very little
in the other three eigenmodes.

(2.2b). The effect of defect width can be further explored.
In the next experiment, we widen the defect further by
choosing parameters £ = 4/3 and n = 3 in Eq. (4.18), and
we choose the same gap-soliton parameters as in the
above paragraph. The defect is slightly wider than in
Experiment 2.2a, though it still supports five linear
bound states, with eigenvalues slightly smaller than in
the previous paragraph: o= —1, w.; * V89/3, and
Wag = +137/3. In this case, the trapping is signifi-
cantly less effective. A much smaller bound state is
trapped. As in the previous experiment, most of the en-
ergy is localized in the modes belonging to w,; and w4,
although, as seen in Fig. 17, the w,; mode begins growing
sooner.

C. Experiment 3: Defect Arrays

Figure 13 shows that gap solitons not trapped by a defect
may be severely slowed. This suggests that an array of
defects of the type discussed above can be used to succes-
sively slow and then trap a gap soliton. Using a pair of
defects, we have been able to trap a gap soliton whose ini-
tial velocity was 50% higher than the critical velocity
found in Experiment 2.1. We construct defect arrays
ko(Z) and V4(Z) by forming «(Z) and V(Z) of Subsection
6.B and then letting «y = x(Z — Z) + «(Z — Zy)— ks
and Vyo(Z) = V(Z - Z,) + V(Z — Z,;). Such gratings
with Z; = —3 and Z; = 3 are shown in Fig. 18. In Fig.
19 we show the position versus time for a gap soliton with
6= 0.9 and v = 0.15, which is slowed by the first well
and then captured by the second.

D. Experiment 4: Side Barriers

In the previous subsections, we captured light by trans-
ferring energy from a gap soliton to a nonlinear defect
mode. In this subsection, by contrast, we trap a moving
soliton between two obstacles. In Experiment 1.1, soli-
tons with frequency to the right of the ground-state fre-
quency were slowed but not trapped upon encountering
the defect. We modify the defect by adding a bump or
“potential barrier” away from the main defect; see Fig. 20.
This configuration of defects traps the gap soliton in a
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novel way. Instead of a bound state forming near the
minimum of «(Z), the gap soliton bounces back and forth
between the old “well” and the new “bump” that has been
added. Further, it captures a pulse with an incident
speed of v = 0.3, ~3 times the critical velocity for the
generalized dark-soliton grating described in Experiment
2.1. In addition, the rate of energy loss for gap solitons
captured by this defect is significantly reduced. Figure
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Fig. 17. Local L? norm of the solution (bold), the projection onto

the w4 eigenmode (solid), and the w,; mode (dashed) for (a) Ex-
periment 2.2a and (b) 2.2b.
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Fig. 18. (Experiment 3) «(Z) and V(Z) for an array of two de-
fects.
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Fig. 19. (Experiment 3) Position versus time for a gap soliton
incident on an array of defects. Defect positions are given by
dashed lines.
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Fig. 20. (Experiment 4) Modified defect described in Subsection
6.D.
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Fig. 21. (Experiment 4) Local L2 norm as a function of time for
a gap soliton with v = 0.2625 (solid) and v = 0.3 (dashed).

21 shows the rate of energy loss for gap solitons with &
= 0.9 and velocities v = 0.2625 and v = 0.3. It shows
that, although it can capture gap solitons moving this
fast, as the speed increases, the efficiency of the capture
decreases.

7. NONLINEAR DAMPING EFFECTS

As we have shown in the preceding section, the gap soli-
tons for which we have been able to find interesting cap-
ture behavior have all had large values of 6. (So large, in
fact, that perhaps silica fibers would not be able to sup-
port pulses of that intensity. See Table 2 in Appendix A
for the associated optical intensities.) One potential way
to make use of our theoretical solutions would be to use
fibers with larger nonlinear refractive index ny. We see
by Eq. (A3) that the intensity of a gap soliton, for fixed v
and 6, is inversely proportional to ny,. Chalcogenide fi-
bers, for which 4 is as much as 500 times larger than in
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silica fibers, are a promising material in which one could
potentially observe the phenomena discussed above at
lower intensities. Unfortunately, in chalcogenide fibers,
the imaginary part of n, is also significantly larger, cor-
responding to nonlinear damping arising from multipho-
ton absorption. By choosing a chalcogenide glass compo-
sition that minimizes both two-photon and three-photon
absorption, one can achieve an ny nearly 500 times that of
silica while suffering a multiphoton loss of a few percent
at intensities required for a nonlinear phase shift of .
In terms of the coupled-mode equations, a complex cu-
bic refractive index gives rise to a complex coefficient I'.
Due to the symmetries of the NLCME and the gap soliton,
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Fig. 22. In the presence of the nonlinear damping, a gap soliton
may be (a) damped before reaching the defect, (b) captured, or (c)
transmitted. In all cases shown, the soliton would have been
transmitted without the damping.
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the magnitude of I" is unimportant, as gap solitons have
intensity that scales as 1/  What will be important is
the ratio I';/T",.. In this case, we are more interested in
simply simulating the propagation of pulses that at
t = 0 correspond to gap solitons. The strength of the
damping is proportional to I,,,,, or sin?(#2). Therefore
as we decrease &, the effect of the nonlinear damping
should be decreased. However, decreasing & requires a
decrease in the gap-soliton velocity v for trapping; thus
pulses will have more time to decay as they propagate be-
fore reaching the defect. We ran one set of experiments
with T';/T", = 0.1, 0.01, and 0.001, with v = 0.2 and §
= 0.9, and with the generalized dark-soliton grating with
wy= —1,k =2, and n = 2. Without nonlinear damp-
ing, the defect will not capture these solitons. The soli-
ton was initialized 5 units to the left of the defect center.
With the damping ratio 0.1, the gap soliton is effectively
damped before it even reaches the defect. With ratio
0.01, the pulse loses just enough energy that much of it is
captured upon reaching the defect. With the ratio 0.001,
the gap soliton propagates through the defect untrapped.
This is shown in Fig. 22.

8. SUMMARY AND DISCUSSION

Gap solitons are localized nonlinear bound states that
propagate in periodic structures. Their frequencies lie
within the linear bandgap of those structures. We have
investigated by analytical and numerical methods the
possibility of capture of gap solitons by the introduction of
appropriately designed defects, spatially localized devia-
tions from exact periodicity.

We first displayed analytical formulas for interesting
multiparameter families of defects that support trapped
defect modes of the linear coupled-mode equations that
describe stationary solutions with small amplitude. We
then showed that these linear defect modes deform into
nonlinear defect modes of the nonlinear coupled-mode
equations. Bifurcation diagrams of total intensity (I)
versus frequency suggest the following principle govern-
ing gap-soliton—defect interactions:

For sufficiently low velocities, a gap soliton incident on
a defect will transfer its energy to a nonlinear defect mode
localized at the defect, provided there is one of the same
frequency (resonance) and lesser total intensity (energetic
accessibility).

This principle is supported by an extensive series of nu-
merical investigations. These investigations were not
performed arbitrarily near the linear (bifurcation) fre-
quencies (see Section 5). An investigation of the princi-
ple’s “sharpness” may require asymptotic analysis. An
understanding of what determines the critical velocity
also requires further investigation.

We have studied the interaction of gap solitons with de-
fects that support one or multiple linear (and therefore
nonlinear) defect modes. In Subsection 6.B we show how
secondary defect modes can be used to trap energy from
lower-amplitude gap solitons, which correspond more
closely to the regime accessed thus far in physical experi-
ments. However, in contrast to trapping by a defect
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mode with a single defect, when gap-soliton energy is
transferred to the modes of a multimode defect, the dy-
namics of the localized energy is quite complicated.
Analysis of an analogous problem for the nonlinear Schro-
dinger equation shows that the trapped portion of the en-
ergy will eventually concentrate in the nonlinear ground-
state defect mode.??

A stability theory of nonlinear defect modes would be of
interest. The corresponding question for nonlinear de-
fect ground states of the nonlinear Schrodinger equation
(NLS) was settled by Rose and Weinstein.?* Their proof
exploits the property that the nonlinear ground state of
the NLS is a constrained minimizer of the natural energy.
Although the nonlinear ground state of variable NLCME
can be realized as a critical point of an appropriate en-
ergy, it does not satisfy a corresponding energy-
minimization principle. In fact, the parameter regime of
oscillatory instabilities of gap solitons observed by
Barashenkov?® suggest that there may be transitions to
instability in nonlinear defect modes as well; a similar
problem is studied by Sukhorukov and Kivshar.®® This
question is currently under investigation.

We believe that a finite-dimensional model incorporat-
ing both soliton and defect-mode degrees of freedom could
be very useful in understanding the capture problem. In
these models the soliton is modeled by several parameters
(e.g., position, width, and phase) and the defect mode by
parameters representing its amplitude and phase. A sys-
tem of ordinary differential equations approximating the
dynamics of a soliton interacting with a defect can be ob-
tained from an effective Lagrangian, which is a function
of these collective variables. Broderick and de Sterke
have studied such a model, which does not take into ac-
count degrees of freedom available in the defect modes.'®
Their model displays some of the observed behaviors but,
as we have seen, the mechanism of resonant energy
transfer must be included to provide a full explanation.

Similar finite-dimensional models have been studied
for the sine-Gordon, ¢*, and nonlinear Schrodinger
equations.?”3° Comparison of models for the trapping of
sine-Gordon kinks with and without the defect-mode de-
grees of freedom demonstrates the necessity of allowing
the additional modes of oscillation.?3° We have applied
tools of dynamical systems theory to similar reduced mod-
els for soliton-like structures of the sine-Gordon and NLS
equations.'®17 These studies give insight into the nature
of the set of states incident on the defect resulting in
transmission without capture, transmission after tran-
sient capture, and capture for all time. Closer qualita-
tive agreement with the full dynamics is obtained by in-
clusion of a damping term, reflecting the coupling to
radiation modes.

Finally, we remark that for certain parameter ranges,
gap solitons may have “internal modes.”?® These are
spatially localized temporal oscillations that are excited
by small perturbations of the gap soliton. Complete ana-
Iytical description of capture would require their inclu-
sion. In our numerical investigation, however, they ap-
pear to play a lesser role in the capture process. Internal
modes of the nonlinear defect modes are likely related to
the “breathing oscillations” described at the end of Section
5.
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APPENDIX A: CALCULATION OF GAP-
SOLITON CHARACTERISTICS

In this appendix, we derive dimensional values of ., and
I in Eq. (2.11). We use these quantities to estimate the
physical parameter values corresponding to the simula-
tions performed in Section 6.

1. Dimensional Values of #., and T’
It is common to work with the cubic refractive index (Ref.
3, pp. 40 and 582), n, (also denoted né):

ny = 3x/deycni?,
quoted in units of m%)/W. This gives
4mepcnng

Ap

=

We list the parameters needed, as obtained from Egg-
leton et al.® and from standard sources:

Ap = 1053 nm,

n = 1.45,

An =3 X 1074,

ny = 2.3 X 10720 m%/W,

c = 2.98 x 10% m/s,
€ = 8.85 X 1072 CNm?.

Then the wave number in the medium is given by

n
kp = 27— = 87X 10°m™,

B
and %, [see Eq. (2.11)] and T by
R, = 900 m™1,

C2

[=106x10"" ——.
N*m

2. Converting from Nondimensional to Dimensional
Form

Inverting the nondimensionalization relations (2.13), the
dimensional length, time, and electric field scales can be
obtained from the following relationship:

Ko Ks\p Kok 1

Z2=— = , T= -, (A1)
Ko mAn 7An ¢
I'k.. I'An

£ = = — (A2)
fKOO 4KwEOC‘n7’L2

where we have also used Eq. (2.11).

3. Dimensional Experimental Parameters
In terms of the solution to the NLCME, the (scalar, di-
mensional) electric field is given by

E = e explikg(z — ct/n)]

+ e_exp[—ikg(z + ct/n)] + cc,
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where cc represents the complex conjugate. The mean
amplitude of the electric field is thus given by

|EI? = 2(le4|* + le_|*) = 2X(|E.[> + [E_[*),

neglecting phase and cross terms. The maximum inten-
sity is3

I= §eocﬁ max|E|? = €yciE -

Note that this is a scaling of the nondimensional quantity
I,..x defined in Eq. (3.2). Combining this with Egs. (3.2)
and (A2),

2AnV1 — v? é
I = —————sin’—. (A3)
ny(3 — v?) 2

Scaling Eq. (3.3) by Eq. (Al) and using that k.,
= Jo? + n?k? gives
dimensional FWHM
Ag 2V1 —v? )

= - cosh™1\/1 + cos®—.
7An  siné 2

The temporal width is just
dimensional FWHMpporal
AN B 2 V 1 - 02 o

= - cosh™ \/1 + cos®—.
mcAn v sind 2

The coupling function &(z) has units of inverse length;
therefore the dimensional equivalent of Eq. (4.22) scaled
by Eq. (A1) is

mAn ||
A, = 1- —.
RV Vo + n2k?

The defect width (4.23) scaled by Eq. (Al) is

Table 1. Experimental Parameters Describing the
Defects in Numerical Simulations

Defect FWHM

Experiment ) k n A, (m™Y (mm)
1 +*1 4 1 680 1.6
2.1 -1 2 2 680 3.1
2.2a -1 16 2.5 680 3.9
2.2b -1 133 3 680 4.7

Table 2. Experimental Parameters Describing the
Gap Solitons in Numerical Simulations

Experiment 8 I(GW X ecm 2) Gap Soliton FWHM (mm)

1.1 0.9 490 2.3
1.2 2 1800 1.3
1.3 /2 1300 1.5
2.1a 0.9 490 2.3
2.1b 0.6 230 3.4
2.2 0.45 130 4.4
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FWHM

)\B 2\(1)2 + k2n2

wAn k

\/2|w|\/w2 + n2k? + n?k? — 202

2nk

X tanh™!

With this information, we can construct the dimen-
sional parameters describing the numerical experiments
in Section 6. Table 1 describes the defects and Table 2
describes the gap solitons. For simplicity, all pulse mea-
surements are computed for v = 0, so the spatial width
must be used.

APPENDIX B: DEFECT GRATINGS WITH A
PRESCRIBED MODE

In this section, we define a simple procedure for generat-
ing grating profiles with a given bandgap and, eigenvalue
and an eigenmode of prescribed shape. We may specify o
and look for solutions of the form [see Eq. (4.4)]

E, . . U

E = exp(—itwT)expliosO(2)]f(Z) v |’ (B1)
where v. are constants, 9,0(Z) = V(Z), and f(Z) is a

real scalar function such that f(Z) ~ exp(—k|Z|) as |Z|
— . Then

JE .
§Y/

= exp(—iwT)(f' + iVF)exp[iO(Z)]v. .

Letting g = f'/f, this may be rewritten
JE .
YA

= (g = iV)E..

Similarly, then Eq. (4.1) becomes
(wxig)E. + kE- = 0.
By Eq. (B1),
rv o (o + i1g)exp(iO)
Kk exp(i0)

kexp(—10)
(w — ig)exp(—i0)
If Eq. (B1) defines a solution of Eq. (4.1), then

b0

det£ = w? + g2 — k2=

Therefore

k(Z) = No? + g%(Z). (B2)

Note also that if f(Z) ~ exp(—k|Z|), then |g| — *k as
Z — ¥ and

ke = lim «(Z) = Jo? + k2.

Z

The width of the gap is then equal to 2«.. .
If v is a null eigenvector, then

v_ o+ ig
— = —exp(2i0)

U4

By Eq. (B2), we have that

(B3)
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o+ ig

and therefore

U
- = exp(ia), a real.
Examination of the eventual solution shows that a« merely
reflects the invariance of the equations under a constant
phase shift. We therefore set « = 0 in the remainder of
the argument. Then, in order to satisfy Eq. (B3),

-0+ ig
20 = arg .
K
Since « is positive,
1 g
O = ——arctan—.
2 )
Then
wg'
V=
2(w? + g?)

We may use this method to construct defects that sup-
port defect modes of arbitrary shape with prescribed ex-
ponential decay. If we choose a function with different
exponential decay rates as Z — =+ «, then .. will take
two different values.

In the case w = 0, we find the same discontinuous lim-
iting behavior as in Eq. (4.15). Fortunately, this is
merely due to the inadequacy of the polar decomposition
implicit in the definition of O(Z) in Eq. (B1). For
o = 0, the entire calculation may be repeated with V
= 0, and a smooth solution generalizing Eq. (4.17) is gen-
erated:

K(Z) = *g(Z),
vV_ = Fiv,.
1. Example

The defect gratings of Subsection 4.C, which generalize
the dark soliton gratings, can be obtained as follows. Let

f = sech™(kZ).

Then
k(Z) = Jw? + n2k? tanh?(kZ);
1 nk tanh(kZ)
O(Z) = —arctan——;
2 )
wnk? sech?(kZ)
V(Z) = .
2) 2[w? + n2k%tanh?(kZ)]
And
E. i nk tanh(kZ)
(E ) = exp(—iwt)exp| *—arctan ——
- 2 ®

X sech™(kZ).

Setting n = 1, we recover the “dark-soliton defect” of Sub-
section 4.B. By varying n, while keeping the quantity
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w? + n2k? fixed, we generate a family of gratings of vari-
able widths with identical bandgaps.

Numerical computations indicate that for n > 1, the
system supports multiple eigenmodes obeying the follow-
ing rule. For n > 0, the defect supports a total of 2[n]
—1 eigenmodes, where [n] is the smallest integer greater
than or equal to n. The ground state has frequency
®wo = o and spatial decay rate nk, whereas the excited
states occur in pairs with spatial decay rates given by
(n — j)k and frequencies

we; = =o? + (2n) — jA)k (B4)

forall1 <j < n. Itshould be possible to derive this for-
mula exactly using methods of complex analysis devel-
oped to study bound states of the Schrodinger equation
with potential, as well as expressions for the associated
bound states.*°
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