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What are the factors that shape the evolution of a firm’s product mix?  New products added by firms 

often share similarities with their existing products or those of nearby firms.  This paper provides a 

methodology for estimating the role of various measures of “distance” in firms’ product choice 

decisions.  We model additions of new products by firms using a dynamic model in which firms must pay 

a one-time startup cost for adding new products to their production line.  We allow this cost to be 

reduced if the firm already produces similar products, or shares some characteristics with other firms 

already producing the product.  We consider three measurable characteristics along which firms may be 

considered “close” to a particular product:  input similarity, physical distance to existing locations of 

production, and upstream-downstream connectedness.  The set of potential product combinations is 

prohibitively large for standard estimation methods.  Instead, we apply the method of moment 

inequalities developed by Pakes et al. (forthcoming) and Morales et al (2014).  Results are 

heterogeneous across sectors, though physical distance seems to be of greatest importance.  The third 

measure (upstream-downstream connectedness) seems to matter little after controlling for the other 

two.  Counterfactuals in which we negate the benefits from certain proximity channels show that even 

in sectors where input similarity is important, physical proximity has a greater impact on the number of 

profitable products available to a firm.   

  

                                                           
*
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1 Introduction 
How does a firm’s product mix evolve?  Consider the example of ITC Ltd., a large conglomerate with 

over $8 billion in revenue.  This company started in 1910, producing tobacco, and entered the packing 

and printing business in 1925 as a form of backward integration.  It began producing paperboard in 

1979.  In 1990 it began the exportation of agricultural commodities, which it describes as a leveraging of 

their agri-sourcing competency (ostensibly based on their existing ability to source wood and tobacco).  

They started producing notebooks in 2002, and later expanded to books, pens, pencils, and other 

stationary over the course of 2007-2009.  They entered the food business with ready-to-eat meals in 

2001, which their company website describes as “successfully blending multiple internal 

competencies.”1  They then progressed into confectionary and wheat flour (2002), biscuits (2003), and 

instant noodles (2010).   

The nature of what a country’s firms produce is not merely a subject of idle curiosity.  There is 

theoretical literature that suggests that a country’s products can matter for welfare.  For instance, there 

can be learning, or spillovers across products (Matsuyama [1992], Harrison and Rodriguez-Clare [2010]).  

On the empirical side, Bernard, Jensen, and Schott (2006) find that the capital intensity of an industry’s 

products can affect employment growth and the probability of plant death in the presence of 

international trade.  Furthermore, Hidalgo et al. (2007) find the pairwise export correlations predict the 

development of future comparative advantage, which implies that countries whose exports are 

correlated with many products are more likely to develop comparative advantage in a broader range of 

products.  These authors all suggest that both the type and diversity of the products produced by a 

country can have welfare effects for that country.  Thus, a better understanding of the sequence in 

which products are added by firms can in turn give us a better understanding of the development path 

of a country, in terms of both product scope and welfare.   

The question of what factors shape the evolution of a firm’s product mix also relates to the active recent 

literature on multi-product firms in an international context.  The existing literature offers two leading 

explanations for what might drive the sequence in which firms add products.  Bernard, Redding, and 

Schott (2010) models the adding and dropping of products as the result of stochastic shocks to demand 

and firm-product productivity.  Eckel and Neary (2010) employ a model in which firms have a core 

competency (lowest production cost) product, and firms add products in order of how similar they are 

to the core product.  But the former model fails to account for the high frequency at which certain pairs 

of products are produced together, and the latter model is agnostic about what characteristics cause a 

product to be “near” or “far” from a firm’s core competency.   

Our paper develops a methodology that allows us to estimate the costs that firms face in transitioning to 

new products, and calculate how those costs vary based on certain measures of “distance” between 

firms and products.  We consider three such measures within this paper:  1) Overlapping inputs, 2) 

Physical proximity of the factory to other locations where the product is produced, 3) 

upstream/downstream connectedness via input-output linkages.   

                                                           
1
 http://www.itcportal.com/about-itc/profile/history-and-evolution.aspx (retrieved 9/16/2014) 

http://www.itcportal.com/about-itc/profile/history-and-evolution.aspx
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Determining the topology of the product landscape is a non-trivial undertaking.  Modelling a decision as 

complex as product choice would be difficult in a discrete-choice setting.  The size of the choice set is 

very large, and the problem would be computationally infeasible even if firms’ information sets were 

known.  We circumvent these difficulties by using a novel econometric technique called moment 

inequalities, developed by Pakes, Porter, Ho, and Ishii (forthcoming) [henceforth, PPHI].  The method 

relies on a “revealed preferences” assumption.  Rather than trying to explicitly model firms’ choices, we 

observe their actions and assume they are at least weakly more profitable (on average) than their other 

possible choices. 2  This allows us to derive an inequality condition where on one side are the expected 

profits for engaging in the chosen action, and on the other are profits from a potential counterfactual 

choice.  Each of these profit terms is a function of parameters defined in a theoretical model, and these 

inequalities allow us to find upper and lower bounds on the parameters (i.e. the highest and lowest 

values of the parameters that are consistent with the inequalities derived from the firm choices).   

The theoretical and empirical framework for our analysis closely follows Morales, Sheu, and Zahler 

(2014) [henceforth, MSZ], a structural gravity model with a dynamic component to capture how firms’ 

costs of entry into a new market might depend on their prior entry choices.  MSZ studies firm entry into 

country markets, which are distanced from the firm in physical space.  We adapt their model to study 

firm entry into product markets, where each new product has a distance from the firm within a 

“characteristic space.”  This model is able to capture the dynamic component of firm choice, 

incorporating the connections that potential new markets have to firms’ existing abilities.  In the model, 

firms choose whether to add new products, and which products to add, out of a universe of possible 

products.  Each firm-product pair has a stream of projected revenue that it can offer the firm, but entry 

is deterred by startup costs the firm must incur to begin production of a particular product.  These 

startup costs depend on whether the firm is “close” to the new product, along the three dimensions 

enumerated earlier.   

The data we use come from India’s Annual Survey of Industries, a factory-level dataset that includes 

inputs, outputs, and physical location, among many other characteristics.  The data are an unbalanced 

panel with yearly observations, chosen because it allows us to observe adding of products by firms in an 

emerging markets setting.   

Our results are bounds on the costs of transitioning into new products.  We estimate these costs 

separately by sector, and results are heterogeneous across sectors.  In general, the physical proximity 

measure seemed to perform the best out of the three, across all sectors.  Counterfactual exercises in 

which we calculate the number of profitable products that would be available to firms if we nullified the 

effects from one of the distance measures support this.  Removing the cost benefits received from 

physical proximity has the greatest impact on the number of potentially profitable products firms’ have 

available.   

                                                           
2
 The full assumptions we make on firm behavior are made explicit in Section 4.3 of the paper.  For the time being, 

it’s worth noting that the assumptions we need are consistent with, but substantially weaker than, perfect 
rationality.   
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The paper will proceed as follows.  Section 2 discusses the dataset.  Section 3 offers some preliminary 

evidence from our data.  Section 4 describes the model.  Section 5 outlines the procedure by which the 

model is estimated.  Section 6 provides the results.  Section 7 performs some supplementary analyses, 

such as simulation of product entry by firms and counterfactuals.  Section 8 concludes.   

2 Data 
The primary dataset we use is the panel portion of the Annual Survey of Industries (ASI) from India.  This 

is an unbalanced panel spanning the years 1999-2008.  The data are a representative sample of all 

factories with 20 or more employees without power, and 10 or more employees if the factories have 

power.   

The standard panel dataset for the ASI includes (among other items), land, buildings, physical plant, 

workers (male, female, child, managerial, and contractors), wages, material inputs and their costs, fuel 

and electricity usage, and outputs and their associated revenues.   

The data also have an associated cross-sectional version, which lacks unique identifiers for factories.  We 

merged the cross-section with the panel in order to observe plant location at the district level, as well as 

the number of plants per firm.   

In selecting firms for inclusion in our study, we dropped all factories that3: 

1. Do not appear in at least two consecutive years, or 

2. Did not fill out one of the blocks of the survey required for our analysis (inputs, outputs, 

employment, expenses), or 

3. Provided only aggregate output data, or 

4. Classified all outputs as “miscellaneous.”   

Table 1 presents some summary statistics for the data.  As we can see, almost all factories in the data 

belong to single-factory firms.  Thus, in this paper, we will use the terms factory and firm synonymously.  

The large proportion of single-factory firms is a useful feature of our data, because it implies our 

estimates will be informative for understanding firm strategy, as opposed to being based on incomplete 

information about products being transferred from one factory to another within the same firm.  As a 

note, single-factory firms tend to be smaller than multi-factory firms, and within our data they represent 

a less than proportional share of output, but they nevertheless represent a non-trivial portion of the 

economic output counted by our dataset (84% of all revenues).   

We can also see that products were added in 37% of the firm-years in the data.  Having such a large 

number of observations in which products are added will be helpful for our estimation procedure, which 

relies on analyzing firm behavior, such as adding products.   

                                                           
3
 We also performed a robustness check in which we excluded all factories that were part of a collection of 

factories belonging to the same owner.  This did not have any qualitative impact on our results.   
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Other observations from the table are that the firms in the dataset use a rich set of inputs, which will be 

helpful in analyzing how their input mix affects product choice.  The average revenue per product line is 

included in the table to give readers a perspective on the magnitude of our coefficients when we 

provide our estimates later in the paper.   

 

 

 

Table 1 - Summary Statistics 

 
Mean 

(Std. Dev) 

Observations 

(firm-years) 

Number of products 
2.16 

(1.85) 
192345 

% that added products* 0.37 179972 

Number of products added** 
1.54 

(1.00) 
66464 

Revenue per product line*** 
443378.1 

(3605142) 
192345 

% Single-factory firms
 

0.94 209857 

% of revenue from single-factory firms 0.84 192586 

Number of inputs (indigenous) 
4.81 

(3.15) 
191085 

Number of inputs (imported) 
10.75 

(3.28) 
197166 

* Among single-factory firms it is 36% 

** Conditional on adding a product 

*** Expressed in 1982 rupees 

 

3 Preliminary Evidence 
Here we will present some reduced form evidence to show that the cluster correlations we are looking 

for exist within our dataset, and will try to convince the readers that the explanations offered by the 

standard models do not adequately explain these clusters.   

Table 2 displays the conditional probabilities that a firm whose primary product (defined as the product 

generating the most revenue for that firm) is in the row sector in period t will start producing a product 
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in the column sector in period t+1.4  The colors in the table merely highlight the relative magnitude of 

the matrix elements and are not meant to convey any additional information beyond what is already 

contained within the elements of the table.   

As can be seen from the table, firms have a tendency to add products to their basket from within their 

own sector.  However, there are also a sizeable number of firms that add products from other sectors.  It 

is worth noting that the zeros in the table are “rounded zeros.”  That is, those elements in the table are 

very small, but not identically zero.  We can deduce from this that path of a firm through the product 

space is potentially very complicated, and it would be difficult to feasibly model this decision and the 

choice set in a discrete-choice framework, thus necessitating the use of moment inequalities.   

Table 2 

  
Conditional probability of adding product in a sector 

 
Main sector in previous year 1 2 3 4 5 6 7 8 9 

1 Animal, vegetable, forestry 0.9 0.02 0.06 0 0 0.01 0.01 0 0 

2 Ores, minerals, gas electricity 0.01 0.81 0.06 0.01 0 0 0.06 0 0.05 

3 Chemicals 0.06 0.05 0.8 0.03 0.01 0.01 0.03 0 0.02 

4 Rubber, plastic, leather 0.01 0 0.04 0.69 0.02 0.08 0.1 0.03 0.02 

5 Wood, cork, paper 0.01 0 0.02 0.03 0.84 0.01 0.05 0 0.03 

6 Textiles 0.02 0 0.01 0.04 0.01 0.92 0.01 0 0 

7 Metals and machinery 0 0.02 0.02 0.04 0.01 0.01 0.83 0.05 0.03 

8 Railways, ships, other transport 0 0 0 0.07 0.01 0 0.48 0.42 0.02 

9 Other manuf. articles and services 0 0.07 0.02 0.04 0.03 0.02 0.19 0.01 0.62 

 

The pattern observed in Table 2 persists even if we move to a greater level of disaggregation and 

observe a single sector.  Firms continue to add products predominantly along the diagonal, indicating a 

tendency towards new products that are similar to ones they already produce.   

Table 3 shows a similar conditional probability matrix for three-digit product categories within sector 77 

(electrical machinery).  As we indicated, firms tend to add new products along the diagonal.  However, 

there are also substantial product additions in “close” categories.  For instance, those firms 

manufacturing domestic and office equipment (777) are likely to add electrical machinery (771).  Those 

firms making switchgear and control panels (773) add measuring and controlling instruments (775).   

Table 3 – Electrical and Electronic Machinery or Equipment 

  
Conditional probability of adding product in a sector 

 
Main sector in previous year 771 772 773 774 775 776 777 778 779 

                                                           
4
 Rows in the table do not add to 1 due to the presence of some firms adding multiple products in the same period.   
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771 Electrical Machinery 0.20 0.03 0.01 0.02 0.03 0.01 0.04 0.03 0.03 

772 Motors, generators, transformers 0.04 0.22 0.05 0.02 0.05 0.01 0.00 0.03 0.05 

773 Switchgear, control panels 0.02 0.06 0.27 0.05 0.09 0.00 0.00 0.02 0.07 

774 Lamps, filaments, electrodes 0.01 0.01 0.03 0.37 0.02 0.00 0.01 0.01 0.05 

775 Measuring/controlling instruments 0.02 0.06 0.08 0.02 0.24 0.01 0.00 0.01 0.07 

776 Batteries and cells 0.03 0.04 0.00 0.03 0.03 0.51 0.00 0.00 0.02 

777 Domestic and office equipment 0.10 0.02 0.02 0.04 0.00 0.00 0.17 0.04 0.04 

778 Electromagnetic equipment 0.03 0.03 0.04 0.04 0.02 0.00 0.00 0.25 0.06 

779 Electrical equipment, n.e.c. 0.02 0.05 0.07 0.08 0.07 0.00 0.02 0.02 0.12 

4 Theoretical Framework 
This section outlines the theoretical framework we use for our estimation.  In a study of the connections 

between products, one might imagine that product linkages can exist on both the supply and demand 

sides of the market.  For this exercise, we exclude the possibility of demand-side linkages, and focus only 

on supply-side features of products.5   

The model we use is a modification of the model found in MSZ, but adapted to model the entry of firms 

into product markets rather than into locational markets.  While the use of this type of model to study 

this type of problem may be unprecedented, the basic intuition underlying it applies to our situation as 

well as it applies to the problem of international trade.  In their model, exporters select destination 

markets, favoring larger markets, and disfavoring markets that are further away.  In our adaptation, the 

process is the same, except the destination markets are product lines rather than physical locations, and 

the “distance” between the firm and the destination is a startup cost for that product line, rather than 

the trade costs associated with physical distance.   

4.1 Demand 
Demand is modeled in the style of Dixit and Stiglitz (1977).  There is a representative consumer with CES 

utility over varieties 𝑖 in a given product category 𝑗.  The consumer has separable utilities over product 

categories, with the utility in any period 𝑡 from category 𝑗 given by: 

 

𝑄𝑗𝑡 = [∫ 𝑞
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗

𝑖∈𝐴𝑗𝑡

𝑑𝑖]

𝜂𝑗
𝜂𝑗−1

                 𝜂𝑗 > 1 (1) 

 

Where 𝐴𝑗𝑡 is the set of available varieties, 𝜂𝑗 is the elasticity of substitution for products of type 𝑗, and 

𝑞𝑖𝑗𝑡 is the consumption of variety 𝑖 in time 𝑡.   

The demand for varieties that emerge out of this utility function is: 
                                                           
5
 We admit this is a strong assumption.  However, it is made primarily due to data constraints, as opposed to prior 

beliefs by the authors regarding the drivers of firm product choice.  We are not currently aware of a dataset that 
allows us to observe demand side linkages and connect them to our current list of firms and products.  Existing 
data that we are aware of uses different product classifications than those found in the ASI, and we have not found 
a concordance to match the two.  It may be possible to relax this assumption in future versions of the paper.   
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𝑞𝑖𝑗𝑡 =

𝑝
𝑖𝑗𝑡

−𝜂𝑗

𝑃
𝑗𝑡

1−𝜂𝑗
𝐶𝑗𝑡 (2) 

 

Where 𝑃𝑗𝑡 is a price index given by: 

 

𝑃𝑗𝑡 = [∫ 𝑝
𝑖𝑗𝑡

1−𝜂𝑗
𝑑𝑖

𝑖∈𝐴𝑗𝑡

]

1
1−𝜂𝑗

 (3) 

 

In the above index, 𝑝𝑖𝑗𝑡  is the price of a given variety and 𝐶𝑗𝑡 is the total consumption of all products of 

type 𝑗.   

 

4.2 Supply 
Firms in the model must choose whether they will produce a variety in a given product category 𝑗.  Firms 

that choose to produce will face three types of costs: 

1. Marginal costs:  𝑚𝑐𝑓𝑗𝑡  

2. Fixed costs:  𝑓𝑐𝐽 

3. Product startup costs:  𝑠𝑐𝑓𝑗𝑡(𝑏𝑡−1) 

We will explain each of these elements in turn.   

 

4.2.1 Marginal Costs 

Similar to Goldberg, Khandelwal, Pavcnik, and Topalova (2010), we give firms a Cobb-Douglas 

production function: 

 

 𝑞𝑖𝑗𝑡 = (𝛽𝑓𝑡
𝑚𝑐)

−1
𝐿𝑓𝑗𝑡
𝛽𝐿
𝑚𝑐

𝐼𝐶𝑓𝑗𝑡
𝛽𝐼𝐶
𝑚𝑐

 (4) 

 

Where 𝐿𝑓𝑗𝑡 is the labor assigned by firm f to product j in period t, and 𝐼𝐶𝑓𝑗𝑡  is the basket of intermediate 

inputs used in product j, and 𝛽𝐿
𝑚𝑐 + 𝛽𝐼𝐶

𝑚𝑐 = 1.   

This yields a log-linear form for marginal costs, as follows: 

 ln(𝑚𝑐𝑓𝑗𝑡) = 𝛽𝑓𝑡
𝑚𝑐 + 𝛽𝐿

𝑚𝑐 ln(𝑃𝐿𝑗) + 𝛽𝐼𝐶
𝑚𝑐 ln(𝑃𝐼𝐶𝑓𝑗𝑡) + 𝜖𝑓𝑗𝑡

𝑚𝑐  (5) 

 

Where 𝑃𝐿𝑗 and 𝑃𝐼𝐶𝑓𝑗𝑡 are the price of labor and the price of the intermediate input basket respectively, 

and 𝜖𝑓𝑗𝑡
𝑚𝑐 is an error term.  Please see the appendix, section 1, for details on the calculation of each of 

these terms.   



9 
 

 

4.2.2 Fixed Costs 

Fixed costs reflect costs the firm incurs every year it produces product j, regardless of the quantity 

produced.  We set fixed costs to be static for every product, but allow them to vary across industries.6  

We denote the industry for product j as 𝐽, where by industry we mean the 1-digit product classification 

associated with product j.   

 𝑓𝑐𝑓𝑗𝑡 = 𝜇𝐽
𝑓𝑐
+ 𝜖𝑓𝑗𝑡

𝑓𝑐
 (6) 

 

4.2.3 Product Startup Costs 

These are analogous to the sunk costs in MSZ, and are paid by firms that are producing j in a given 

period, but did not produce it in the previous period.  They reflect the initial costs of setting up a new 

production line, and can be diminished if a product is “closer” to a firm along a certain distance 

measure.  For instance, if a new product shares inputs with one or more of the firm’s existing products, 

this diminishes or eliminates the search cost for the firm to find a supplier of these inputs, and 

potentially eliminates a learning cost associated with discerning how to use those inputs effectively.   

The startup costs in period 𝑡 are defined to be a function of the firm’s “basket” in the previous period, 

which we denote as 𝑏𝑡−1.  The basket is the collection of characteristics of the firm in any given period.  

It is, most notably, the whole range of products produced by the firm in that period, but can also include 

less tangible characteristics (such as proximity of the firm to production locations of other products).  By 

defining the startup costs as being a function of 𝑏𝑡−1 (as opposed to 𝑏𝑡), we are restricting the costs the 

firm has to pay to begin production of a new product to be determined by characteristics of the firm 

prior to making the decision to produce.   

The startup costs are modeled as follows: 

 𝑠𝑐𝑓𝑗𝑏𝑡−1𝑡 = 𝜇𝐽
𝑠𝑐 − 𝑒𝑗

𝑠𝑐(𝑏𝑡−1) + 𝜖𝑓𝑗𝑡
𝑠𝑐  

 
𝑒𝑗
𝑆𝐶(𝑏𝑡−1) = 𝜁1

𝑆𝐶𝜙𝑗
1(𝑏𝑡−1) + 𝜁2

𝑆𝐶𝜙𝑗
2(𝑏𝑡−1) + 𝜁3

𝑆𝐶𝜙𝑗
3(𝑏𝑡−1) 

(7) 

 

In the above equations, the 𝜙𝑗 are proximity measures, ranging from 0 to 1, where 1 indicates a 

destination product j is considered “close” to a firm along a certain measure of distance.  We have three 

such distance measures we are considering in this paper, which we will explain in turn.   

                                                           
6
 Previous versions of our estimation included more parameters, including labor, capital, or labor intensity.  

However, these were found not to have a significant effect.  In MSZ, they include many of the terms from the 
startup costs in the fixed cost equation as well.  However, they are able to do this because there exists static 
versions of the startup costs in their framework.  Specifically, they can look at the “distance” between Chile and 
another country (which is static), as opposed to the distance between a firm and another country (which is 
dynamic).  However, in our framework, all of the distance measures are inherently dynamic.  There are no static 
country-level versions to incorporate.  Thus, in order to stay true to the nature of their model, in which the 
dynamics only appear in the startup costs, we avoid including the distance terms in our fixed cost.   



10 
 

4.2.3.1 Distance Measure 1:  Similarity of Input Cost Shares 

This distance measure corresponds to the variable 𝜙𝑗
1(𝑏𝑡−1) in the equation for product startup costs.  

We use Kugler and Verhoogen’s (2012) modified Gollop and Monahan (1991) measure of horizontal 

differentiation.  We use it to capture whether a firm f, seeking to produce product j uses similar inputs 

to other firms already producing j.  The index ranges from 0 to 1, where 0 represents completely 

identical inputs (measured in terms of cost share), and 1 represents completely dissimilar inputs.  The 

index is calculated as follows, for any two firms f and f’: 

 

𝜎𝑓𝑓′ = (∑
|𝑤𝑓𝑚 − 𝑤𝑓′𝑚|

2
𝑚

)

1
2

 (8) 

 

Where 𝑤ℎ𝑚 is the cost share of input m into firm h.   

Having calculated 𝜎𝑓𝑓′  for every pair of firms, we define the distance from a firm to a product to be the 

minimum of the distances to the firms already producing the desired product.  After computing this 

distance index, we convert this distance to a proximity, 𝜙1, which in this case merely requires reversing 

the distance.  More precisely: 

 
𝜙𝑓𝑗
1 (𝑏𝑡−1) = |( min

𝑓′∈ℱ𝑗,𝑡−1
𝜎𝑓𝑓′) − 1| (9) 

 

Where ℱ𝑗,𝑡−1 is the set of all firms already producing j in t-1.7  If 𝐹𝑗,𝑡−1 is the empty set, then we say 𝜙1 is 

undefined.  The |. | is the absolute value operator.   

By including this measure in our estimation, we hope to capture some of the costs that firms must incur 

in order to add new inputs to their production lines.  These could include costs such as finding suppliers, 

learning about new inputs, purchasing machines to process these inputs, training employees to use the 

new inputs, etc.   

4.2.3.2 Distance Measure 2:  Physical Distance 

Our second distance measure gives the physical distance between a selected firm f and the nearest firm 

already producing its destination product j.  We do not have the exact location of firms in the data, but 

we do know a firm’s district, out of 619 districts in India that were indexed by the Ministry of Statistics 

and Programme Implementation (MOSPI).  See Appendix section 2 for a discussion of how districts were 

mapped to firms, as well as further details on the distance calculation.   

 

                                                           
7
 It is worth noting that although we only use 44,022 firms to find observations for the moments (see the Data 

section of the paper for a discussion of this), we use all available firms in the dataset (over 100,000) to compute 
the modified Gollop and Monahan distance measure.  This was to avoid the possibility that a firm producing j and 
having very similar inputs to a firm f would be excluded from the calculation because it did not satisfy the criteria 
needed in order to be used for the moment inequality estimation.   
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4.2.3.3 Distance Measure 3:  Upstream/Downstream Connectedness 

Our third type of distance measures how connected products are via upstream or downstream linkages, 

as determined by our input-output table.  This is distinct from Measure 1 (input similarity).  For two 

products, 𝑖 and 𝑗, Measure 1 tells us whether 𝑖 and 𝑗 share similar inputs, whereas Measure 3 tells us 

whether 𝑖 is used as an input in 𝑗 (or vice versa).  The formula we use to represent this is as follows: 

 

 𝜙𝑓𝑗
3 (𝑏𝑡−1) = max

𝑖∈𝑏𝑡−1
(max{𝑤𝑖𝑗 , 𝑤𝑗𝑖}) (10) 

 

where 𝑤𝑖𝑗 is the cost share of input 𝑖 into product 𝑗.   

Because this is a measure of distance, we want it to be symmetric.  Thus, we view the use of 𝑖 in 𝑗 and 

the use of 𝑗 in 𝑖 equivalently.  max{𝑤𝑖𝑗, 𝑤𝑗𝑖} gives us the defined proximity between two products, and 

after computing this for every product pair, the proximity of the firm to the given product 𝑗 is simply the 

distance of the closest product to 𝑗 found within the firm’s basket in the previous period, 𝑏𝑡−1.   

This measure of proximity varies between 0 and 1, with 𝜙3 = 0 if none of the firm’s products use 

product 𝑗 as an input, nor are used in the production of 𝑗.  On the other hand, 𝜙3 = 1 if the firm 

possesses at least one product whose only input is product 𝑗 (or alternatively, if any of the firm’s 

products are the only input in product 𝑗).   

 

4.3 Firms’ Optimal Behavior 
The above theoretical framework yields the following profit function for firms: 

 

 𝜋𝑓𝑡(𝑏𝑡|𝑏𝑡−1) = ∑ 𝜋𝑓𝑗𝑡(𝑏𝑡−1)

𝑗∈𝑏𝑡

 

 
𝜋𝑓𝑗𝑡(𝑏𝑡−1) = 𝜈𝑓𝑗𝑡 − 𝑓𝑐𝑓𝑗𝑡 − 𝕀{𝑗 ∉ 𝑏𝑡−1}𝑠𝑐𝑓𝑗𝑡(𝑏𝑡−1) 

 

(11) 

 

Intuitively, a firm’s total profit is equal to the sum of the profits from its individual product lines.  𝕀{. } is 

an indicator function, and 𝜈𝑓𝑗𝑡  is the gross value of producing j to firm f in period t, as calculated from 

the demand function.  The marginal costs are incorporated into the calculation of 𝜈𝑓𝑗𝑡, thus they do not 

appear separately in the profit function.  We will explain the estimation of 𝜈𝑓𝑗𝑡  in the section on the first 

stage estimation, to follow shortly.   

As in MSZ, firms in this model solve a two-stage problem to determine which product lines to enter.  The 

first stage is static, in which the firm looks at the universe of all products, and calculates the expected 
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gross profits from entering into each of those products8.  The second stage is dynamic, in which the firm 

chooses which products to produce, factoring in the fixed costs and startup costs.   

There are a number of assumptions that need to be made about firm behavior in order to estimate this 

model.  We borrow these assumptions from MSZ, and modify them only to fit the notation found in this 

paper.   

Assumption 1:  Let us denote by  𝑏1
𝑇 = {𝑏1, 𝑏2, … , 𝑏𝑇}  the observed sequence of baskets chosen by any 

given firm f between periods 1 and T.  Given a sequence of information sets for firm f at different time 

periods, {ℐ𝑓𝑡, ℐ𝑓𝑡+1, … }, a sequence of choice sets from which firm f picks its preferred basket, 

{ℬ𝑓𝑡 , ℬ𝑓𝑡+1, … }, and a particular conditional expectation function 𝔼[. ] capturing its subjective 

expectations, we assume: 

𝑏𝑡 = argmax
𝑜𝑡∈ℬ𝑓𝑡

𝔼[Π𝑓𝑡(𝑜𝑡|𝑏𝑡−1)|ℐ𝑓𝑡]  ∀𝑡 = 1, 2, … , 𝑇 

Where 

 Π𝑓𝑡(𝑜𝑡|𝑏𝑡−1) = 𝜋𝑓𝑡(𝑜𝑡|𝑏𝑡−1) + 𝛿𝜋𝑓𝑡+1(𝑜𝑡+1|𝑜𝑡) + 𝜔𝑓𝑜𝑡+1𝑡+2 

 
(12) 

The term 𝜔𝑓𝑜𝑡+1𝑡+2 is any arbitrary function that satisfies: 

 (𝜔𝑓𝑜𝑡+1𝑡+2 ⊥ 𝑜𝑡)|𝑜𝑡+1 

 
(13) 

And the basket 𝑜𝑡+1 is defined as the optimal basket that would be chosen at period 𝑡 + 1 if the basket 

𝑜𝑡 was chosen at period 𝑡: 

 𝑜𝑡+1 = argmax
ℴ𝑡+1∈ℬ𝑓𝑡+1

𝔼[Π𝑓𝑡+1(ℴ𝑡+1|𝑜𝑡)|ℐ𝑓𝑡+1] 

 
(14) 

Assumption 1 imposes that the basket actually chosen by the firm must be the one that maximizes its 

value function (Π𝑓𝑡) in expectation, where the expectations of the firm are based on ℐ𝑓𝑡, the information 

set of the firm in the period in which it is making the decision.  It also imposes that the firm takes into 

account the effect of its decisions on future profits at least one period ahead.  Note, this is still 

consistent with firms that are perfectly forward looking (for instance, if 𝜔𝑓𝑜𝑡+1𝑡+2 is the discounted 

stream of all future profits).   

Equation (13) imposes that the basket choice in period 𝑡 does not affect firm profits beyond period 𝑡 +

1, except through its effect on the basket choice the firm makes at 𝑡 + 1.  This is because the startup 

costs the firm must pay in period 𝑡 only depend on the basket in period 𝑡 − 1, and not in any prior 

periods.  Furthermore, the firm internalizes that its choice in period 𝑡 + 1 is going to be the result of an 

analogous optimization problem to the one it solved in period 𝑡 (see equation (14)).   

                                                           
8
 We define “gross” here to mean profits before subtracting fixed costs and startup costs.  Gross profits do take 

into account marginal costs.   
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Assumption 1 does not impose any constraints on the expectation functions of the firms, the firms’ 

information sets, nor on the choice sets9, all of which may differ by firm, and the latter two of which 

may differ by period.   

Assumption 1 implies the following: 

Corollary 1:10  If Assumption 1 holds, and 𝑏𝑡
′ ∈ ℬ𝑓𝑡, then: 

 

 𝔼[𝜋𝑓𝑡(𝑏𝑡|𝑏𝑡−1) + 𝛿𝜋𝑓𝑡+1(𝑜𝑡+1|𝑏𝑡)|ℐ𝑓𝑡] ≥ 𝔼[𝜋𝑓𝑡(𝑏𝑡
′|𝑏𝑡−1) + 𝛿𝜋𝑓𝑡+1(𝑜𝑡+1|𝑏𝑡

′)|ℐ𝑓𝑡] (15) 

 

Where 

𝑜𝑡+1 = argmax
ℴ𝑡+1∈ℬ𝑓𝑡+1

𝔼[Π𝑓𝑡+1(ℴ𝑡+1|𝑜𝑡)|ℐ𝑓𝑡+1] 

This corollary is used to derive observations for the moment inequalities, based on Assumption 1.  It 

states that the observed basket choice by the firm must be at least weakly more profitable (in 

expectation) than any other basket that was in the firm’s choice set.   

Assumption 1 and its associated corollary allow us to apply an analogue of Euler’s perturbation method 

with one-period deviations to the analysis of single-agent dynamic discrete choice problems, like the 

one we are analyzing.11  This lets us obtain our estimates without the need to compute the fixed point 

for the value function, which would be infeasible in a problem of this size.   

Each of the 𝜋 functions expressed in equation (15) is a function of the parameters we are seeking to 

estimate.  The estimation method then consists of solving a linear programming problem to find the 

values of those parameters that are consistent with a set of inequalities of a form analogous to equation 

(15).  As one might surmise, inequalities with fewer terms lead to less ambiguity about the acceptable 

values of the parameters.12  It is thus desirable to generate simpler inequalities when possible.  This end 

is aided by the use of one-period deviations.  Equation (13) allows us to ignore the terms of the profit 

function beyond period 𝑡 + 1 whenever we use a one-period deviation in period 𝑡 to generate an 

                                                           
9
 In finding observations for the estimation of the moment inequalities, we do assume a certain minimum size for 

the choice sets in order to generate our perturbations.  The types of one-period deviations we consider are: 1) 
Beginning production of a product one period earlier than was actually chosen; 2) Delaying production of a product 
for one period; 3) Choosing production of some alternate product in lieu of a product the firm actually chose; 4) 
Choosing production of a product in lieu of non-production; and 5) Choosing non-production of a product in lieu of 
production.  Thus, we require the choice set to include the firms’ actual choices, as well as a small space of 
perturbations around those choices.  This is nowhere near the size of the space of all possible firm choices, 
although our framework does not exclude the possibility that firms are using that space.   
10

 This corollary to Assumption 1 is equivalent to “Proposition 1” in MSZ, and is proved in the appendix of their 
paper.   
11

 See Pakes, Porter, Ho, and Ishii (2011) for further details.   
12

 As an example of this, consider the following two sets of inequalities: 

{
2 ≤ 𝑥 ≤ 4
1 ≤ 𝑦 ≤ 2

}      {
3 ≤ 𝑥 + 𝑦 ≤ 6
1 ≤ 𝑦 ≤ 2

} 

The first set generates a smaller range of acceptable values for 𝑥:  [2,4] vs [1,5].  Because 𝑥 appears with 𝑦 in the 
second set’s inequality, any ambiguity in the true value of 𝑦 propagates into 𝑥.   
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inequality.  Since (13) guarantees the profit beyond 𝑡 + 1 is the same in both the actual and 

counterfactual scenarios, the profit terms past 𝑡 + 1 simply cancel out, leading to inequalities of the sort 

found in equation (15).   

Our procedure also requires some assumptions about the firms’ choice sets and information sets.  The 

constraints that we impose on the choice sets are laid out in Assumption 2: 

Assumption 2:  Let us denote by ℬ𝑓𝑡  the choice set of 𝑓 at 𝑡, and by 𝑏𝑡 its optimal basket.  Then: 

(𝑏𝑡 , {𝑏𝑗𝑡; ∀𝑗}, {𝑏𝑗𝑗′𝑡; ∀𝑗, 𝑗
′}) ∈ ℬ𝑓𝑡  

where 𝑏𝑗𝑡 is the basket that results from modifying the value corresponding to 𝑗 in 𝑏𝑡, and 𝑏𝑗𝑗′𝑡  is the 

basket that results from exchanging elements 𝑗 and 𝑗′ in 𝑏𝑡 

This assumption requires the choice set of any given firm to include, at the very least, the actual 

observed choice of the firm (𝑏𝑡), and a small number of perturbations around it.  Requiring 𝑏𝑗𝑡 to be in 

the choice set means that a firm could have chosen to produce either one more, or one less product 

than it actually chose to produce.  Requiring 𝑏𝑗𝑗′𝑡  to be in the choice set means the firm could have 

produced some other product, instead of one of the products it actually chose to produce.   

Note that Assumption 2 is consistent with a firm’s choice set including the whole universe of possible 

product combinations, but it does not require the choice set to be so large.  Rather, it only imposes 

certain minimum requirements on the choice set.   

We further have Assumption 3, imposing the minimum necessary contents of the firms’ information 

sets: 

Assumption 3:  Let us denote by ℐ𝑓𝑡 the information set of 𝑓 at 𝑡.  Then, 

𝑍𝑓𝑡 ∈ ℐ𝑓𝑡 

where 𝑍𝑓𝑡 = {𝑍𝑓𝑗𝑡; ∀𝑗 ∈ ℬ𝑓𝑡}, and 𝑍𝑓𝑗𝑡  includes 𝑏𝑡−1, 𝜇𝐽
𝑓𝑐

, 𝜇𝐽
𝑠𝑐 , and all of the covariates determining 𝑟𝑓𝑗𝑡 

and 𝑒𝑗
𝑆𝐶.   

So at the time in which the firm must choose its basket for the current period, Assumption 3 requires 

the firm to know its basket in the previous period (𝑏𝑡−1), the determinants of the expected gross 

revenue it would receive (𝑟𝑓𝑗𝑡),
13 and the determinants of the fixed and startup costs (𝜇𝐽

𝑓𝑐
, 𝜇𝐽

𝑠𝑐 , 𝑒𝑗
𝑠𝑐) that 

it would face if it were to produce any given product under consideration (less any 𝜖 error terms 

included in the equations for those costs).   

                                                           
13

 We have not introduced this term yet, but we will be discussing it shortly, at the beginning of section 5.   
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5 Estimation 
Estimation proceeds in two stages, mirroring the two-stage optimization problem of the firm.  In the first 

stage, we compute the expected gross profits for each firm of entering each product market.  In the 

second stage, we employ moment inequalities using the firms’ observed choices to estimate the 

parameters of interest (𝜇 and 𝜁).  This two-stage estimation allows us to generate moment inequalities 

that are linear in the parameters of interest14, thus avoiding the added computational difficulty of 

estimating with non-linear moments.   

5.1 First Stage 
We use the first stage to find point estimates for the parameter vector 𝛽 found in equation (5).  The 

subsequent estimates of the 𝜇 and 𝜁 parameters in the model15 will depend on this 𝛽.  A difficulty arises 

because (5) is an equation for marginal costs, which are typically unobserved.  However, from the Dixit-

Stiglitz demand system in our model, we can calculate the gross revenue a firm could expect from 

producing j in period t: 

 
𝑟𝑓𝑗𝑡 = (

𝜂𝑗

𝜂𝑗 − 1

𝑚𝑐𝑓𝑗𝑡(𝛽)

𝑃𝑗𝑡
)

1−𝜂𝑗

𝐶𝑗𝑡 (16) 

 

This equation is log-linear, so we can take the log of (16), collect all the observable variables into a 

vector that we shall call 𝑧𝑓𝑗𝑡, and estimate the 𝛽’s with the following regression: 

 ln(𝑟𝑓𝑗𝑡) = 𝛽𝑧𝑓𝑗𝑡 + (1 − 𝜂𝑗)𝜖𝑓𝑗𝑡
𝑚𝑐  (17) 

 

Where 𝑧𝑓𝑗𝑡  includes all observable variables in equation (5), 𝜂𝑗 is taken as given, and 𝜖𝑓𝑗𝑡
𝑚𝑐 is assumed to 

be independent of all variables included in 𝑧𝑓𝑗𝑡.  We use a power function of the market size (total sales 

of product j) to proxy for the 𝑃
𝑗𝑡

𝜂𝑗−1𝐶𝑗𝑡 in equation (16), and include firm-year fixed effects.   

We then take the predicted values from this regression and convert them to levels—exp(�̂�𝑧𝑓𝑗𝑡)—to get 

preliminary predictions for the revenue.  However, as pointed out by Santos Silva and Tenreyro (2006), 

estimating log-linear models with OLS can be biased due to Jensen’s Inequality.  As an ad hoc way of 

addressing this potential bias, we take the observed revenues and regress them on the predictions, with 

no constant: 

 𝑟𝑓𝑗𝑡 = 𝛼 exp(�̂�𝑧𝑓𝑗𝑡) + 𝜖𝑓𝑗𝑡
𝑟  (18) 

 

The predicted �̂� from this regression is then used to generate our final predictions for the revenue, as 

follows: 

 
�̂�𝑓𝑗𝑡 = 𝜈𝑓𝑗𝑡(�̂�) =

1

𝜂𝑗
 �̂�𝑓𝑗𝑡 =

1

𝜂𝑗
 �̂� exp(�̂�𝑧𝑓𝑗𝑡) (19) 

 

                                                           
14

 As will be shown, the moments are linear in all parameters except 𝛽, in which they are log-linear.   
15

 See equations (6) and (7) for 𝜇 and 𝜁.   
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Because the elasticities of substitution 𝜂𝑗 are not identified in this framework, we use the values 

calculated by Broda, Greenfeld, and Weinstein (2006)16.  Denote the error in our estimate of �̂�𝑓𝑗𝑡  as 𝜖𝑓𝑗𝑡
𝑣 .   

As a robustness check for our predictions, we also performed the first stage regression in levels (as 

opposed to performing it in logs, and converting to levels).  This was done by running a nonlinear least 

squares regression based on the orthogonality condition 𝔼[𝑟𝑖𝑗𝑡 − exp(𝛽𝑧𝑓𝑗𝑡)] = 0.  This NLS regression 

would not be subject to the same Jensen’s Inequality bias as a standard log-linear OLS.  We then did a 

within-sample comparison of the predicted revenues from the NLS and found they performed 

substantially worse than the two-step OLS.  As a result, the values we report for the remainder of the 

paper will be those coinciding with the two-step OLS described in this section.   

 

5.2 Second Stage 
Using the predicted values of potential revenue from the first stage regression, �̂�𝑓𝑗𝑡, we estimate the 

second stage using the system of moment inequalities laid out in PPHI.  The estimation is founded upon 

a “revealed preferences” assumption.  That is, whatever profits a firm receives from its actions must be 

at least as large as the profits it could have earned from some counterfactual course of action in its 

original choice set.  (This notion is formalized in Corollary 1).   

This estimation method does not allow us to obtain point estimates on the variables of interest; 

however it does allow us to establish upper and lower bounds on those variables, by determining which 

values of the variables are consistent with the observed firm behavior, or in the absence of any such 

values, what values minimize the deviation from the moment inequalities.   

The estimation proceeds in several phases.  In the first phase, we select observations from the data that 

will help us identify particular coefficients in 𝜃, the set of variables to be estimated.  In the second 

phase, we aggregate those observations into moments, which take the form of a set of linear 

inequalities.  Estimation of the identified set then becomes equivalent to solving a linear programming 

problem using these moment inequalities as constraints.   

5.2.1 Selecting Observations for Moments 

As explained in section 4.3, we search for one-period deviations to derive inequalities based on the 

theoretical model described in the paper.  Each of these inequalities becomes one “observation.”  We 

then aggregate these observations into moments by averaging them, and it is these final aggregated 

moments that are used for the estimation of the parameter vector.   

                                                           
16

 We use the values they calculate for the country India.  Note that Broda, Greenfeld, and Weinstein provide their 
elasticities for 3-digit harmonized system codes, whereas our data are 5-digit ASICC codes.  We accounted for this 
by building a concordance from 3-digit ASICC codes to 3-digit Harmonized System codes.  In cases where there was 
an imperfect matching (such as when several different HS codes corresponding to one ASICC code) we averaged 
the associated elasticities.  There were a few cases in which certain elasticities were “substantially” different from 
other elasticities within their HS category (that is, differing by half an order of magnitude or more).  In these cases, 
we matched 5-digit ASICC codes to 3-digit HS codes, to ensure that these particular values were not misapplied to 
the wrong products within the data.   
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Equation (15) in Corollary 1 gives the expression for a single such observation.  We can rewrite this 

equation as 𝔼[𝜋𝑓𝑑𝑡|ℐ𝑓𝑡] ≥ 0, where the 𝑑 denotes a deviation at period 𝑡 from 𝑏𝑡 to 𝑏𝑡
′.  Using 

Assumption 3, we can express this conditional inequality as an unconditional moment inequality: 

 𝕄𝑘 = 𝔼[𝑔𝑘(𝑍𝑓𝑡)𝜋𝑓𝑑𝑡] ≥ 0 (20) 

 

where 𝑔𝑘(. ) is a positive-valued weighting function, and 𝑍𝑓𝑡  is the set of values we require to be in the 

firm’s information set in Assumption 3.  𝑘 is an index for the particular moment inequality we are 

considering, 𝑘 = 1,… , 𝐾.   

Selecting observations for the moments is therefore equivalent to choosing the weight functions 𝑔𝑘 to 

isolate one-period deviations that can be used to identify the parameters of interest.  These 𝑔𝑘 are 

allowed to depend on any information present in the firm’s information set in period 𝑡.   

The process of observation selection involves searching for patterns of firm behavior that would be 

informative for identifying one of the variables in our model.  All of the variables we are estimating in 

the second stage relate to costs the firm has to pay (or an abatement of those costs).  Thus, we will 

identify a variable by finding cases where the firm paid the costs associated with a variable, and then 

compare them to counterfactuals in the firm’s choice set in which it could have avoided payment of the 

cost (in all or in part).   

Consider the following example for the distance term, 𝜁1
𝑆𝐶, which appears in equation (7).  This term 

represents the abatement of startup costs the firm receives for sharing common inputs with its 

destination product.  The following table represents a hypothetical firm’s choice of whether to produce 

a particular product j in periods 1 and 2.  The “actual” row represents the observed production decision 

of the firm.  The “counterfactual” row represents a possible alternative decision that was in the firm’s 

choice set in period 2.  (Because we are doing one-period deviations, period 2 is the only period in which 

the counterfactual behavior deviates from the actual behavior of the firm).  A “1” in the table below 

signifies production of the given product, while a 0 signifies non-production.   

t =  1 2 3 

Actual 
j 0 1 0 

j' 0 0 0 

Counterfactual 
j 0 0 0 

j' 0 1 0 

 

In the table above, the actual, observed behavior of the firm is production of product j in period 2, and 

non-production of j’ in periods 1, 2, and 3.  We consider the counterfactual where, in period 2, the firm 

chooses to produce j’ instead of j.17  In this example, the firm produces neither j nor j’ in period 3.   

                                                           
17

 Note there are many other potential counterfactuals that could be considered in this setting, each of which 
would give rise to different inequalities.  We focus on this one merely to give an example of the method.   
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By Corollary 1, the expected profits the firm receives from its actual behavior must be at least weakly 

greater than the profits from the counterfactual.  This allows us to write the following inequality: 

 𝔼[𝜈𝑓𝑗2 − 𝜇0
𝑓𝑐
− 𝜖𝑗

𝑓𝑐
− 𝜇0

𝑠𝑐 + 𝜁1
𝑆𝐶𝜙𝑗𝑏1

1 + 𝜁2
𝑆𝐶𝜙𝑗𝑏1

2 + 𝜁3
𝑆𝐶𝜙𝑗𝑏1

3 − 𝜖𝑓𝑗2
𝑠𝑐 |ℐ𝑓2]

≥ 𝔼 [𝜈𝑓𝑗′2 − 𝜇0
𝑓𝑐
− 𝜖

𝑗′
𝑓𝑐
− 𝜇0

𝑠𝑐 + 𝜁1
𝑆𝐶𝜙𝑗′𝑏1

1 + 𝜁2
𝑆𝐶𝜙𝑗′𝑏1

2 + 𝜁3
𝑆𝐶𝜙𝑗′𝑏1

3 − 𝜖𝑓𝑗′2
𝑠𝑐 |ℐ𝑓2] 

(21) 

 

Which reduces to: 

 𝔼 [(𝜈𝑓𝑗2 − 𝜈𝑓𝑗′2) + 𝜁1
𝑆𝐶 (𝜙𝑗𝑏1

1 − 𝜙𝑗′𝑏1
1 ) + 𝜁2

𝑆𝐶 (𝜙𝑗𝑏1
2 − 𝜙𝑗′𝑏1

2 ) + 𝜁3
𝑆𝐶 (𝜙𝑗𝑏1

3 − 𝜙𝑗′𝑏1
3 )

− (𝜖𝑗
𝑓𝑐
− 𝜖

𝑗′
𝑓𝑐
) − (𝜖𝑓𝑗2

𝑠𝑐 − 𝜖𝑓𝑗′2
𝑠𝑐 )| ℐ𝑓2] ≥ 0 

(22) 

 

Thus, the 𝜋𝑓𝑑𝑡 found in equation (20) is merely the left-hand side of equation (22).  The above equation 

shows what a typical observation would look like for this particular pattern of firm behavior.  If we 

needed to form the lower bound of 𝜁1
𝑆𝐶, we would select those observations for which (𝜙𝑗𝑏1

1 − 𝜙𝑗′𝑏1
1 ) ≥

0.  That is, those observations for which the proximity to the actual product chosen (along dimension 1) 

is greater than the proximity to the counterfactual product.  To see why this is, consider the simplified 

scenario in which all the differenced terms in equation (22) are zero, except for (𝜙𝑗𝑏1
1 − 𝜙𝑗′𝑏1

1 )  and 

(𝜈𝑓𝑗2 − 𝜈𝑓𝑗′2).  Also, ignore the conditional expectation operator.  We will discuss it momentarily.  Then, 

equation (22) becomes: 

 (𝜈𝑓𝑗2 − 𝜈𝑓𝑗′2) + 𝜁1
𝑆𝐶 (𝜙𝑗𝑏1

1 − 𝜙𝑗′𝑏1
1 ) ≥ 0 (23) 

 

Looking at it this way, it becomes clear why having (𝜙𝑗𝑏1
1 − 𝜙𝑗′𝑏1

1 ) ≥ 0 is desirable for establishing a 

lower bound for 𝜁1
𝑆𝐶, since it allows us to write (23) as: 

 
𝜁1
𝑆𝐶 ≥

(𝜈𝑓𝑗′2 − 𝜈𝑓𝑗2)

(𝜙𝑗𝑏1
1 − 𝜙𝑗′𝑏1

1 )
 (24) 

which is clearly a lower bound on 𝜁1
𝑆𝐶.  However, if it had been that (𝜙𝑗𝑏1

1 − 𝜙𝑗′𝑏1
1 ) ≤ 0, we would have 

had to reverse the direction of the inequality when dividing by that term, and equation (24) would have 

represented an upper bound instead.   

Of course, when we actually write the moments, we write them not in terms of ex-post realized values 

of the gross revenue terms, but rather in terms of the ex-ante expected values of those terms, 

conditional on the information the firm had available in the period in which it was making its decision.  

This is because our assumptions do not require the firms’ decisions to be ex-post optimal, but only ex-

ante optimal.  Thus, the 𝜈𝑓𝑗𝑡  terms in equations (23) and (24) represented expected gross profits.   

We were able to express the lower bound for 𝜁1
𝑆𝐶 in a very simple form by assuming that many of the 

other terms from equation (22) simply equated to zero.  In practice, however, that will almost never be 

the case.  What this means is that the bounds for 𝜁1
𝑆𝐶 will depend on the bounds for many of the other 
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variables in the model, and vice versa.  This is not necessarily a crippling obstacle for our estimation, 

since in the moment inequalities method, all of the bounds are simultaneously determined.  However, 

what this does mean for our estimation is that wider bounds for one variable will translate into wider 

bounds for the other variables that depend on it.   

The pattern of firm behavior we used as a demonstration above is useful for finding a bound on 𝜁1
𝑆𝐶, but 

is less informative about other terms within the firms’ profit functions.  For instance, both 𝜇0
𝑆𝐶  and 𝜇0

𝐹𝐶  

cancel out in equation (21).  This is useful for estimating 𝜁1
𝑆𝐶, since it allows us to attain simpler bounds 

on that coefficient and thus estimate it with less ambiguity.  However, this means that particular pattern 

of behavior is useless for estimating 𝜇0
𝑆𝐶  and 𝜇0

𝐹𝐶 .  We instead use different patterns for isolating these 

other variables.   

Choosing such patterns for use in the moment inequalities framework is a bit of an art form, the goal 

being to generate observations in such a way as to get unneeded terms to cancel out in order to best 

isolate the coefficient of interest.  Due to the similarity of our model to MSZ, many of the patterns we 

use mirror the ones found in their paper.   

Table 4 shows explicitly which patterns were used to bound each coefficient.  In selection of our 

patterns, we always conditioned on two periods:  the period for which we are considering the 

counterfactual deviation, and one period prior.  Those periods are indexed in the table by t=0 and t=-1 

respectively.  A “1” in the table represents production of the given product, while a “0” represents non-

production.  As explained earlier in the paper, firms are excluded if they are unobserved in any of the 

periods on which we are conditioning, or in the period following the counterfactual deviation.18   

Table 4 

Coefficient Bound Product Actual Counterfactual Description of Counterfactual 

   
t = -1 t = 0 t = -1 t = 0 

 

𝜇0
𝑓𝑐

 
lower j 1 0 1 1 Halt production of j 

upper j 1 1 1 0 Produce j for one additional period 

𝜇0
𝑠𝑐  

lower j 0 0 0 1 Produce j 

upper j 0 1 0 0 Do not produce j 

𝜁𝑠𝑐 (all) 

lower 
j 0 1 0 0 

Produce j' instead of j 
j' 0 0 0 1 

upper 
j 0 1 0 0 

Same as lower bound 
j' 0 0 0 1 

 

As the reader might have guessed from the earlier discussion, although the patterns used for estimating 

the upper and lower bounds of the 𝜁𝑆𝐶 terms are identical, we can identify which bound we are 

                                                           
18

 We also perform a version of the estimation on large firms, since they are sampled with probability 1 in the ASI, 
thus eliminating ambiguity that may arise from firms entering and exiting the sample.  The results are found in the 
appendix.   
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estimating by further conditioning on the sign of (𝜙𝑗 − 𝜙𝑗′) along the given proximity dimension under 

consideration.   

There is one further complication to consider.  As we have already stated, we can only condition our 

selection of observations on data in the firm’s information set during the period in which the 

counterfactual deviation is occurring.  This means we can condition on any number of periods into the 

past, but not on any periods that occur after the deviation, since those were not observable to the firm 

at the time.  This means there are actually four patterns of firm behavior that we must consider when 

estimating the bounds on the 𝜁’s19: 

t =  1 2 3 
 

1 2 3 
 

1 2 3 
 

1 2 3 

Actual 
j 0 1 0 

 
0 1 1 

 
0 1 0 

 
0 1 1 

j' 0 0 0 
 

0 0 0 
 

0 0 1 
 

0 0 1 

Counterfactual 
j 0 0 0 

 
0 0 1 

 
0 0 0 

 
0 0 1 

j' 0 1 0 
 

0 1 0 
 

0 1 1 
 

0 1 1 

 

Each of the observations for those patterns would give rise to a separate type of inequality.  For 

instance, in the second pattern above, the firm would have to pay the static portion of the startup cost, 

𝜇0
𝑆𝐶  twice in the counterfactual case, once for product j’ in period 2, and then again for product j in 

period 3, whereas in the actual case, the firm only has to pay it once.  This means that in addition to the 

other variables above, 𝜇0
𝑆𝐶  will also appear in the bounds for the 𝜁’s, since it cannot be differenced out 

in the second and third firm behavior possibilities above.20   

Note that these potential effects on firm profits in period 3 are not meant to imply that we use two-

period deviations in our estimation.  In each of the examples given above, the only difference in firm 

behavior between the actual and counterfactual cases occurs in period 2.  Rather, we are saying that 

because firm profits are at least partially dependent on the state of the firm in previous periods, actions 

taken in period 2 can cause profits in period 3 to be different in the actual vs counterfactual cases, even 

if the period 3 actions of the firm are identical in both of those scenarios.   

 

5.2.2 Aggregating Observations into Moments 

After selecting observations in the manner described in the previous section, it remains to aggregate 

those observations into moments to be used in the estimation.21  The theoretical moment inequalities 

                                                           
19

 We are fleshing out this explanation for the bounding of the 𝜁’s, but the principle we are describing (i.e. that we 
cannot condition on future periods) applies to the selection of observations for each of our coefficients.   
20

 We do impose one restriction on the future in selecting our observations, and that is that the firm must actually 
be observed in all three periods of the search pattern.  Because we need to know the firm behavior following the 
counterfactual period in order to fully compute the desired bound, if the firm does not appear in the dataset in the 
third period of our pattern, we drop that observation for being incomplete.   
21

 A reader might wonder why we do this at all.  If we have two observations, one saying 𝑥 > 4 and another saying 
𝑥 > 10, why not just say 𝑥 > 10 and be done with it?  Econometrically, such a procedure would have undesirable 
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are of the form given in equation (20).  Thus, the sample moment inequalities are obtained by averaging 

all of the observations associated with a particular moment inequality, as follows: 

 

𝕞𝑘(𝜃) =
1

𝐷𝑘
∑∑∑𝑔𝑘(𝑍𝑓𝑡)�̂�𝑓𝑑𝑡(θ, β̂)

𝐷𝑖𝑡

𝑑=1

𝑇

𝑡=1

𝐹

𝑓=1

 (25) 

 

Thus, for each moment inequality, (indexed by 𝑘), we are summing over all firms (F), all periods (T), and 

all possible deviations consistent with the assumptions in our paper (𝐷𝑖𝑡).  �̂�𝑓𝑑𝑡(θ, β̂) is the predicted 

difference in profits between the actual and counterfactual firm actions, which depends on predicted 

values from the first stage regression (a function of �̂�) and the parameter vector being estimated in the 

second stage, 𝜃. 22  𝐷𝑘 is the total number of observations used to compute the sample moment 𝕞𝑘.  

Note that since the weighting function 𝑔𝑘(𝑍𝑓𝑡) can be zero for some values of 𝑍𝑓𝑡, 𝕞𝑘 is computed with 

only a subset of the possible deviations.   

 

5.2.3 Estimating the Bounds 

After aggregating the observations, the estimation procedure involves solving a simple linear 

programming problem with the sample moment inequalities as constraints, as well as some “common 

sense” restrictions we place on our estimation.  These additional restrictions are 1) Since each of the 

parameters we estimate is a cost, we require the acceptable values to be weakly positive, and 2) the 

value of the abatement of the startup cost due to proximity cannot exceed the startup cost itself (i.e. 

𝜁1
𝑠𝑐 + 𝜁2

𝑠𝑐 + 𝜁3
𝑠𝑐 ≤ 𝜇0

𝑠𝑐).   

More formally, let Θ be the parameter space for 𝜃, and let Θ𝕞 be the set of all values of 𝜃 that satisfy 

the moment inequalities (as well as our additional restrictions, listed above).  Thus, Θ𝕞 = {𝜃 ∈

Θ:𝕞(𝜃) ≥ 0}, where 𝕞(𝜃) represents the set of all K of the moment inequalities 𝕞𝑘(𝜃).   

Then, the maximum value along the first dimension of 𝜃 is given by: 

 
𝜃1 = {𝜃 ∈ Θ𝕞: 𝜃1 = arg max

�̃�∈Θ𝕞

�̃�1} (26) 

The definitions for the minimum and maximum values along other dimensions of the parameter vector 

are analogous.   

 

5.2.4 Properties of the Error Terms 

One of the advantages of the PPHI moment inequalities framework is that it does not require us to 

assume a specific functional form for the error terms.  There are, however, some restrictions that must 

                                                                                                                                                                                           
properties (such as being vulnerable to measurement error), and might be compared to a linear regression 
performed on a single observation.   
22

 Note that although we do not index it, 𝜃 = (𝜇0
𝑓𝑐
, 𝜇0
𝑠𝑐 , 𝜁1

𝑠𝑐 , 𝜁2
𝑠𝑐 , 𝜁3

𝑠𝑐) is allowed to vary across sectors (that is, 

across 1-digit ASICC categories). 
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be applied to ensure that our estimated set contains the true value of 𝜃.  These restrictions are 

encompassed by the following assumption: 

Assumption 4:23  The error terms are such that 

 𝔼[𝑔𝑘(𝑍𝑓𝑡)(𝜖𝑓𝑑𝑡
𝑣 + 𝜖𝑓𝑑𝑡

𝑓𝑐
+ 𝜖𝑓𝑑𝑡

𝑠𝑐 )] ≤ 0 (27) 

 

Recall that 𝜖𝑓𝑗𝑡
𝑣  is the approximation error of our gross profit prediction, �̂�𝑓𝑗𝑡  from the first stage 

regression, and 𝜖𝑓𝑗𝑡
𝑓𝑐

 and 𝜖𝑓𝑗𝑡
𝑠𝑐  are the error terms from the fixed and sunk costs, equations (6) and (7), 

respectively.  The 𝑑 subscript (as opposed to 𝑗) on these error terms found in equation (27) merely 

shows that Assumption 4 imposes restrictions on the differences in the 𝜖’s between the actual and 

counterfactual cases, and not on the 𝜖𝑓𝑗𝑡’s themselves.   

However, following MSZ, we can impose conditions on the 𝜖𝑓𝑗𝑡’s that are sufficient for the satisfaction 

of Assumption 4:  1) The first stage estimation procedure yields a consistent prediction for the expected 

gross revenues, and 2) 𝔼[𝜖𝑓𝑗𝑡
𝑓𝑐
,  𝜖𝑓𝑗𝑡

𝑠𝑐 |ℐ𝑓𝑡] = 0.  The latter restriction imposes that the firm does not have 

information on the fixed or sunk costs that is unknown to the econometrician.   

 

5.2.5 Confidence Intervals 

Confidence intervals for our parameter estimates follow the procedure outlined in PPHI, with the 

adjustment made in Holmes (2011) to account for correlation between observations arising from the 

same firm.  We refer the reader to the cited papers for details on how these are computed.   

6 Results 
The main results are presented here, in Table 5.  Using the moment inequalities method in PPHI, we do 

not get point estimates for any of our coefficients.  Rather, we get upper and lower bounds on the 

potential values that those coefficients can take.  As an example, of how to interpret this, observe that 

the static portion of fixed costs, 𝜇0
𝑓𝑐

, takes a maximum value of $29,910 per product in industry 1 

(Animals, vegetables, and forestry), and a minimum value of $31,120 per product in industry 8 (railways, 

ships, and other transportation equipment), indicating that fixed costs are much greater in industry 8, as 

one might expect.   

The values on the 𝜁 coefficients are telling for the importance of the different distance measures in each 

industry.  To interpret the 𝜁’s, remember that the proximity measures were all projected onto a 0 to 1 

space, with a proximity of 0 representing products that are as far away as possible from the given firm 

along the chosen distance measure, and a proximity of 1 representing products that are “immediately 

adjacent” to the firm along the given dimension of distance.  Therefore, products with a proximity of 1 

                                                           
23

 Note that Assumption 4 is analogous to Assumption 3 in PPHI.  The additional requirement in PPHI’s assumption 

is trivially satisfied in our model by the fact that weight function for firm f, 𝑔𝑘(𝑍𝑓𝑡) does not depend on the choices 

of firms other than f.   
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to a firm along the first distance measure (input similarity) will receive the full benefit of the startup cost 

abatement for that measure.  Products with a proximity of 0 will not receive any such abatement 

(though it is possible that such products are close to the firm along another measure, receiving startup 

cost abatement from that alternate source).   

 

Table 5 – Baseline Estimation 

 

Lower Upper 
 

Lower Upper 
 

Lower Upper 
 

Lower Upper 

Industry: 
Animal, Vegetable, 

Forestry 
 

Ores, minerals, 
gas, electricity 

 
Chemicals 

 

Rubber, plastic, 
leather 

𝜇0
𝑓𝑐

 4.04 29.91 
 

27.82 171.17 
 

22.93 170.60 
 

8.37 35.94 

𝜇0
𝑠𝑐  5.70 109.21 

 
26.41 598.02 

 
56.45 670.82 

 
28.35 164.29 

𝜁1
𝑠𝑐 0.00 66.52 

 
0.00 318.94 

 
0.00 273.82 

 
0.00 62.26 

𝜁2
𝑠𝑐 0.00 109.21 

 
0.00 598.02 

 
0.00 670.82 

 
0.00 164.29 

𝜁3
𝑠𝑐 0.00 36.18 

 
0.00 190.08 

 
0.00 203.24 

 
0.00 43.75 

 
           

Industry: 
Wood, cork, paper 

 
Textiles 

 
Metals, 

Machinery  
Railways, ships, 

transport 

𝜇0
𝑓𝑐

 4.88 25.14 
 

6.68 41.58 
 

12.15 58.38 
 

31.12 154.14 

𝜇0
𝑠𝑐  9.49 99.01 

 
6.46 191.79 

 
36.51 260.71 

 
104.23 700.00 

𝜁1
𝑠𝑐 0.00 50.41 

 
0.00 77.76 

 
0.00 87.36 

 
0.00 234.34 

𝜁2
𝑠𝑐 0.00 99.01 

 
0.00 191.79 

 
0.00 260.71 

 
0.00 700.00 

𝜁3
𝑠𝑐 0.00 30.41 

 
0.00 49.02 

 
0.00 64.79 

 
0.00 170.27 

Notes:  Values expressed in thousands of 1982 dollars.  An exchange rate of 9 rupees per dollar was used for the conversion from 

rupees.   

For example, consider animals, vegetables and forestry.  The coefficient on 𝜁1
𝑠𝑐 has a maximum possible 

value of $66,520.  This means that if a potential destination product j had an inputs-similarity proximity 

of 1 to a firm in that industry (meaning, the cost share of the inputs for j exactly mirrored the existing 

cost shares of the firm in the period prior to introducing j), that firm would receive a maximum of 

$66,520 reduction in the startup costs associated with beginning production of that product.  If none of 

the firms products shared any inputs with product j (and j was similarly far from the firm along the other 

two dimensions of distance), then the firm would have to pay the full startup cost to begin production of 

j, which our estimates show to be between $5700 and $109,210.   

Adding a product with a proximity of 0 to your firm would provide no abatement of the startup costs 

along the given distance measure.  In our model, for proximities between 0 and 1, the benefit decreases 

linearly.  So in animals, vegetables, and forestry, the maximum benefit of adding a product with a 

proximity of 0.5 along distance measure 1 would be $66,520/2 = $33,260.   

It may appear from looking at the zeros in the table that it is possible that the distance measures do not 

matter at all.  It should be noted, however, that the estimated set is not the Cartesian product of the 

upper and lower bounds presented in the table.  Thus, just because the 𝜁 parameters all have 0 as their 
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lower bound in the table, it does not follow that (𝜁1
𝑠𝑐 , 𝜁2

𝑠𝑐 , 𝜁3
𝑠𝑐) = (0,0,0) is a point within the estimated 

set.  Each one of the distance parameters might individually be zero, given certain choices for the other 

coefficients, but that does not imply they are jointly zero.   

This is not easy to intuit just from looking at the table.  The estimated set is a five-dimensional manifold, 

whose true shape is computationally difficult to determine, and even more difficult to represent in a 

two-dimensional picture.  However, we can show a cross-section of the set, to illustrate to the reader 

that the bounds are not jointly zero.  One such cross-section is presented in Figure 1.   

Figure 1 examines a cross-section of the estimated set for the Animals, Vegetables, and Forestry sector.  

We chose the median values of 𝜇0
𝑠𝑐  and 𝜇0

𝑓𝑐
, and 𝜁3

𝑠𝑐 = 0 to determine the location of the cross-section.  

We can observe from the picture that 𝜁2
𝑠𝑐 is bounded away 0 for all values of 𝜁1

𝑠𝑐, and 𝜁1
𝑠𝑐 is only 0 for 

particularly large values of 𝜁2
𝑠𝑐.   

The readers are referred to the appendix if they wish to see the linear inequalities that define the entire 

estimated set.  Using these inequalities, it is possible to create cross-sections such as these for any 

choice of the other parameters in the estimation.   

Figure 1 – Cross-Section of the Estimated Set for 

Animals, Vegetables, and Forestry 

 

Notes:  Values along the axes are thousands of 1982 dollars.  Values of 

𝜇0
𝑓𝑐
= $16,975, 𝜇0

𝑠𝑐 = $57,455, and 𝜁3
𝑠𝑐 = 0 were used to determine the 

position of the cross-section in the dimensions not shown in the picture.   

 

By examining the 𝜁’s, we can receive some indication of which distance measures matter in which 

industries.  In every industry, the ranking of relative importance for the three distance measures seems 
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to be the same.  Merely looking at the maximum values, physical distance (𝜁2) seems to be the greatest 

contributor to product additions, followed by input similarity (𝜁1).  The upstream/downstream 

connectedness measure (𝜁3) seems to fair the worst out of the three, consistently.   

This is not to say that inputs and vertical connections are meaningless for product additions.  Rather, 

that even at their maximum possible effectiveness, they tend to explain less of the variations in product 

additions than the physical distance component.  On the other hand, there is a point in the estimated 

set for every industry in which the entire startup cost for new products in that industry can be abated by 

immediate physical proximity to the location of production.   

Unfortunately, due to data limitations, it is not possible at this time for us to know precisely which 

portion of the production process is being helped by physical proximity.  Many potential explanations 

come to mind, among them, knowledge sharing, access to natural resources, or local labor markets 

where workers have specialized skills.  Distinguishing between these competing explanations is beyond 

the scope of the present paper, but we feel our results are a useful first pass, to indicate which areas of 

firm-product relatedness would be fruitful to investigate in the future.   

Ninety-five percent single-sided confidence intervals for the baseline estimation and the restricted 

found in Table 6.  While the estimated set specified by the confidence interval is obviously wider than 

that found in the estimation, the results are not dramatically different (with the exception of the 

chemical industry), ostensibly due to the large number of observations included in the estimation.   

Table 6 – Confidence Intervals for Baseline Estimation 

 

Lower Upper 
 

Lower Upper 
 

Lower Upper 
 

Lower Upper 

Industry: 
Animal, Vegetable, 

Forestry 
 

Ores, minerals, 
gas, electricity 

 
Chemicals 

 

Rubber, plastic, 
leather 

𝜇0
𝑓𝑐

 4.04 35.53 
 

27.82 207.50 
 

22.93 221.16 
 

8.37 42.00 

𝜇0
𝑠𝑐  5.70 120.79 

 
26.41 679.02 

 
56.45 1,983.00 

 
28.35 176.84 

𝜁1
𝑠𝑐 0.00 70.22 

 
0.00 372.46 

 
0.00 2,133.67 

 
0.00 88.27 

𝜁2
𝑠𝑐 0.00 146.51 

 
0.00 841.23 

 
0.00 1,887.56 

 
0.00 196.97 

𝜁3
𝑠𝑐 0.00 48.44 

 
0.00 274.88 

 
0.00 552.33 

 
0.00 65.88 

 
           

Industry: 
Wood, cork, paper 

 
Textiles 

 
Metals, 

Machinery  
Railways, ships, 

transport 

𝜇0
𝑓𝑐

 4.88 32.49 
 

6.68 49.68 
 

12.15 68.60 
 

31.12 184.60 

𝜇0
𝑠𝑐  9.49 123.59 

 
6.46 213.73 

 
36.51 281.51 

 
104.23 872.74 

𝜁1
𝑠𝑐 0.00 64.93 

 
0.00 88.40 

 
0.00 127.21 

 
0.00 592.46 

𝜁2
𝑠𝑐 0.00 149.72 

 
0.00 244.77 

 
0.00 311.22 

 
0.00 885.64 

𝜁3
𝑠𝑐 0.00 48.52 

 
0.00 57.82 

 
0.00 87.50 

 
0.00 852.07 

Notes:  Values expressed in thousands of 1982 dollars.  An exchange rate of 9 rupees per dollar was used for the conversion from 

rupees.  The left parameter in every column represents the single-sided 95% confidence interval on the lower bound, and the right 

parameter is the single-sided 95% confidence interval on the upper bound.  Values account for correlation across observations, and 

were computed using 500 subsamples.   
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7 Supplementary Analyses 
To help us understand how the different channels affect firm behavior, we performed some calculations 

of potential firm product transitions using the model, and data from the estimation.  Firms within this 

calculation determine profits in the way we have described in the theoretical model, with two notable 

exceptions:  the degree to which firms are forward looking, and the calculation of the error terms.   

In the model, we were not required to specify the degree to which firms are forward looking, because 

the moment inequality framework is consistent with a broad array of firm expectations and behaviors 

(see section 4.3).  However, for the purposes of performing these calculations, this unbounded set of 

behaviors needs to be made finite and concrete.  Our assumptions require that firms take into account 

the effects of their current choice on static profit at least one period ahead.  We therefore take this 

minimum required capacity for looking forward as the baseline for our calculation.   

Secondly, within the PPHI moment inequalities framework, there are also relatively relaxed assumptions 

on the error terms (see section 5.2.4).  However, for the purposes of our simulation, we draw the error 

terms from normal distributions with mean 0, which is consistent with the assumptions of the model.  

For the error terms associated with firm-product profits (𝜖𝑓𝑗𝑡
𝑣 , see section 5.1), the standard deviation 

for the distribution is taken to be the actual standard deviation of a given firm’s profits within its 

industry and year.  For the other error terms (𝜖𝑓𝑗𝑡
𝑓𝑐

 and 𝜖𝑓𝑗𝑡
𝑠𝑐 , mentioned in 4.2.2 and 4.2.3, respectively), 

the standard deviation is taken to be 
1

4
 of the parameter estimate for the associated cost being used in 

the simulation.   

The expected gross profits for each firm in the calculation are exactly the gross profit estimates we 

computed during our first-stage regression for the estimation.  However, in order to mitigate the effects 

of some large outliers in the data, we dropped the top ten percent of the predicted profits.  Firm 

locations are also identical to the actual locations found within the data.   

We set the base year for the calculation to be 2000, and examined which products would be considered 

profitable by firms.  For the second stage costs, we used the median values of the estimates from our 

baseline specification (those reported in Table 5).  We excluded the upstream/downstream distance 

measure from the calculation due to its poor performance in the estimation.   

This calculation, in addition to showing us the strength or weakness of our estimates also allows us to 

run counterfactuals, such as examining the results if we shut off or enhance one or both of the potential 

distance channels, or seeing the effect of the density of the firm-product connections on the number of 

profitable products.   

7.1 Number of Profitable Products 
For our first exercise, we examine the impact of negating the effect of each distance measure.  Due to 

the amount of data produced by a calculation of this manner, we will only report one column of the 

output, in order to give the reader the basic intuition of how to interpret our results.  Other rows within 

the output matrices follow the same general pattern.   
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The results of this exercise are reported in Table 7.  Numbers in the table represent a count of the total 

products that have positive expected profits for firms whose main product is in ASICC category 21 (Salts, 

Sulpher, Lime, Cement).  Stated another way, it is the sum of all the profitable firm-product relationships 

for firms in category 21.  For example, imagine there are only two firms in category 21, A and B.  Firm A 

has 3 potentially profitable products in Ores, and Firm B has 6 potentially profitable products in Ores.  In 

that case, the entry in the table for Ores would be 3+6 = 9.  Thus, the table represents the number of 

possible expansion paths available to firms within that industry.   

The first column of the table represents the result of these calculations for the baseline results.  The 

second and third columns consider the counterfactual cases in which 𝜁1
𝑠𝑐 = 0 and 𝜁2

𝑠𝑐 = 0, respectively.  

Setting 𝜁1
𝑠𝑐 = 0 effectively removes any benefit the firm might receive from sharing inputs with 

potential products.  Similarly, 𝜁2
𝑠𝑐 = 0 removes any benefits it would receive from having production of 

a potential product located nearby.   

Table 7 – Profitable Products Available to Firms in Salts, Sulpher, Lime, and Cement 

 
Baseline 𝜁1 = 0 𝜁2 = 0 

Salts, sulpher, lime, cement 1750 1744 1146 

Ores 110 110 70 

Mineral fuels 391 391 264 

Gas (fuel) 108 108 80 

Electrical energy 154 154 107 

 

Of note from the table is that negating the effect of the shared inputs does not substantially affect the 

number of profitable products at all, whereas negating the effects of local production affects it 

significantly.   

Readers might be tempted to believe that this is an indictment against the shared inputs measure of 

similarity.  However, it is necessary to interpret results within the context of the population distributions 

for the distances.  In particular, observe the distribution for the input similarity measure.  Most products 

are stacked up at 1.  Products with a measure of 1 for this distance share no inputs with the firms’ 

existing products, and thus receive no benefit from the cost abatement provided by 𝜁1
𝑠𝑐.  Thus, setting 

𝜁1
𝑠𝑐 = 0 does not affect the profitability for many products at all.   

Alternatively, the distribution for the physical distances shows many products being produced in close 

proximity to the firm.  These products will receive a substantial reduction in their startup costs from the 

physical proximity channel.  Therefore, setting 𝜁2
𝑠𝑐 = 0 makes a big difference for a large number of 

products.   

Therefore, the lesson to be learned from this exercise is that when interpreting the estimates, it is not 

enough to look only at the magnitude of the coefficients, but to consider also how those cost measures 

are interacting with the set of products in the firms’ potential choice sets, and along which dimensions 

those products are “distanced” from the firm.   
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7.2 Firms’ Product Choices 
The previous exercise looked at all the profitable products available to the firm.  In this exercise, we try 

to predict which products firms will move into, by allowing them to choose one product to add each 

period.  For this simulation, we use the data for 2001-2002, since the earlier years of the sample were a 

little more sparse.   

We’ll motivate this exercise by showing the actual matrix of firm-product additions.  The entries in the 

matrix show the number of firms that added a product in the column sector, conditional on having their 

main product in the row sector in the previous year.   

Table 8 – Actual Product Additions (Base Metals and Machinery) 

  

Count of firms adding products  
in given sector 

 
Main sector in previous year 71 72 73 74 75 76 77 78 79 

71 Iron, steel, & articles 283 11 35 47 28 19 13 5 9 

72 Copper, nickel, zinc, & articles 2 21 7 6 0 1 1 0 0 

73 Aluminum, tin, etc., & articles 14 4 47 13 3 3 8 0 1 

74 Misc. manuf. Articles 58 10 14 35 39 23 17 5 7 

75 General purpose mach. (non-elec) 57 3 7 26 155 69 56 7 9 

76 Industry-specific mach. (non-elec) 34 2 4 16 67 158 31 6 15 

77 Electrical machinery 43 17 30 26 63 35 259 51 16 

78 Electronics equipment 6 2 2 3 7 5 34 82 1 

79 Special purpose machines 12 5 3 6 13 12 15 2 21 
 

Next, we will show the results from our simulation.   

Table 9 – Simulated Product Additions (Base Metals and Machinery) 

  

Count of firms adding products 
in given sector 

 
Main sector in previous year 71 72 73 74 75 76 77 78 79 

71 Iron, steel, & articles 87 1 14 61 237 156 274 36 26 

72 Copper, nickel, zinc, & articles 9 0 3 4 19 12 23 4 2 

73 Aluminum, tin, etc., & articles 18 0 3 19 39 24 61 3 7 

74 Misc. manuf. Articles 34 1 7 16 73 65 125 17 14 

75 General purpose mach. (non-elec) 51 0 5 39 143 83 163 19 18 

76 Industry-specific mach. (non-elec) 37 1 17 25 89 73 117 19 7 

77 Electrical machinery 82 4 11 44 199 124 279 38 19 

78 Electronics equipment 19 0 4 16 42 34 67 7 5 

79 Special purpose machines 8 0 1 6 22 18 34 1 6 
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Observing the tables, it is worth noting that although the simulation does not make perfect predictions, 

it performs better than one might expect for a model of its simplicity.  It certainly appears to perform 

better than a fully random model, or an overly simplistic model in which firms only produce what they 

produced in the previous period (which would generate a matrix of zeros).   

In some categories, the predictions of the simulation are actually very close to what we observe in the 

data.  It predicts 279 electrical machinery firms will add products in their own sector, compared with 

259 in the data.  Its prediction of 143 general purpose machinery firms adding products within their 

sector is also close to the observed 155.  Many other categories also closely match the data.  In broad 

terms, it captures that there are few products being added in sectors 72, 73, and 74, and few products 

being by firms specializing in those sectors.   

However, the simulation also highlights some weaknesses of the model.  The most notable difference 

from the data seems to be the model’s over-prediction of the number of products being added in the 

machinery sectors (75, 76, and 77), except in a few cases.  This disparity seems most pronounced when 

examining firms in sector 71 (Iron, steel, and articles thereof).   

That said, given the simplicity of the model, and the small number of parameters we estimated, one 

would not expect the model to perform perfectly.  We used a very simple regression to determine 

potential revenues, coupled with a cost structure with only four parameters (recall we excluded the 

vertical connectedness measure, 𝜁3
𝑠𝑐, from the simulation).  Furthermore, we applied a sweeping 

estimation technique generally to all firms in all industries.   

With a process as complex and varied as the evolution of product scope, we cannot hope to fully 

capture all of the nuances of firms’ decisions with one procedure.  There are certainly many other 

factors that could be affecting their choices, and it seems natural to believe that our model would not 

be a good fit for every sector in every industry.  Nevertheless, for some sectors, the model seems to 

perform fairly well, producing predictions that are qualitatively and quantitatively similar to what we 

observe in the data.   

 

7.3 Network Density Regression 
As we mentioned in the introduction, one of the key results found by Hidalgo et al. (2007) was that the 

network of connections linking products together in terms of their relatedness is not evenly distributed.  

Rather, it dense (meaning, with many close connections) in some areas, and very sparse in others.  

Therefore, countries (or in our context, firms) positioned in the dense part of the network are in a 

position to take advantage of many more cost abatement opportunities than those in the sparse part of 

the network.   

In the work by Hidalgo et al. (2007), they presented a visual representation of the areas of these areas of 

density by providing a picture of their network linking products together.  Our network is substantially 

more complicated to represent, because the connections we analyze are between firms and products, 
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not between the products themselves.  Therefore, we proxy for this density by measuring exactly how 

much abatement each firm receives from its position within the network for its sector.   

Specifically, we compute for each firm and year, the normalized distance of the firm to each product 

within its sector along each of the dimensions in our study, and multiply this by the median of the 𝜁𝑠𝑐 

abatement parameter associated with that distance.  Summing these figures together for all products 

gives the total number of dollars of potential startup cost abatement that the firm receives for that year.  

We call this number the “Network Density.” 

We then regress the number of profitable products the firm has each year on: the network density just 

described, the firm-year fixed effect from the first stage regression (representing the firm’s idiosyncratic 

productivity shock for that year), and the size of the firm’s product basket in the given year.  The results 

are given in Table 10.   

Table 10 – Network Density Regression 

Regressor 
Number of Profitable 

Products 

Network Density 0.0052*** 

 
(0.00005) 

  
Firm-Year Productivity 23.14*** 

 
(0.091) 

  
Basket Size 2.264*** 

 
(0.134) 

  
Constant 50.87*** 

 
(0.345) 

  
Observations 136608 

R2 0.405 
Notes:  Heteroskedasticity-robust standard errors reported in 

parentheses.  “Network Density” is measured in terms of ₹100,000s of 

startup-cost abatement within the firm’s own sector only.   

*** Significant at the 1% level 

Even controlling for the number of current products and the firm productivity, the network density is 

still highly significant (the t-statistic for that coefficient is 107).  The seemingly small value of the 

coefficient should be interpreted in the light of the very large values of the network density measure.24   

It should come as no surprise that the amount of cost abatement a firm receives is positively correlated 

with the number of potentially profitable products it has available.  Rather, the purpose of this exercise 

was merely to highlight, in rather unsophisticated way, that different firms receive different benefits 

                                                           
24

 The average firm received ₹585,000,000 of abatement, and even the least-benefited firm had over ₹2,400,000.   
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from their connections due to the density or sparsity of the network around them.  This is to reiterate 

and expand upon the lesson of section 7.1, that the value and meaning of the coefficients found in this 

paper must be viewed within the context of the network of firm-product connections they interact with.   

8 Conclusion 
We approached the question of how firm’s product mixes evolve with the hypothesis that connections 

between firms and potential products were driving their decisions about which products to produce.  

We proposed several potential channels by which these connections might manifest, and tested their 

relative significance by observing the actual behavior of firms as they added new products and 

measuring the degree to which those products were connected to the firm along each of these 

dimensions.  The model was estimated using moment inequalities, a novel econometric technique that 

allowed us to approach a large-scale choice problem of this nature in a computationally feasible 

manner.   

The results speak strongly in favor of our hypothesis—that product connections matter, and are part of 

the driving force behind the observed co-production correlations between products.  The success of the 

estimation also shows that history matters for firms’ product choice, since each of the distance 

measures looked at connections between firms and products in the year prior to actual production.  

Finally, we were able to gain some insight into the nature of which connections matter most in which 

sectors—physical distance seems to matter the most, followed by input similarity.  Vertical 

connectedness ranks as the least important measure of relatedness, in every industry.   

There were, however, several drawbacks to our estimation.  The first is that our estimates, based 

primarily on firms adding products within their own industries, are not easily generalizable to firms 

moving across industries.  The second is that, due to data limitations and the constraints of our 

estimation method, we were unable to account for a lot of richness that is obviously a factor in firms’ 

production decisions (such as the presence of specialized capital, credit constraints, or demand 

complementarities).  Our model and estimation method also do not account for potential effects from 

cannibalism or credit constraints, which could be relevant in a developing country setting.   

Nevertheless, the results we found should be an important first step in unraveling a very rich problem, 

and should prove useful to those seeking to understand how firms (and potentially by extension, 

countries) expand their product scope and migrate from one industry to another during their process of 

development.  Our paper also makes a methodological contribution, demonstrating how a traditional 

trade model coupled with a relatively new econometric technique can be used to analyze a problem of 

potential interest to both economists and policymakers.   
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Appendix 

The appendix will include details on how we performed some of the calculations in the paper, as well as 

providing the results from alternative ways of estimating the model.  Section A.1 will review how certain 

terms in the first stage regression were calculated, as well as providing the regression results.  Section 

A.2 discusses our method for calculating the physical distance between firms and products.  Section A.3 

presents the results for some alternative specifications.  Section A.4 presents the moments used in the 

preferred specification.  Section A.5 gives the results from the Kolmogorov-Smirnov tests comparing the 

firm-choice and population distributions for firm-product distances discussed in section 6 of the paper.   

 

A.1.  Marginal Cost Regression 

A.1.1.  𝑷𝑳𝒋 

𝑃𝐿𝑗 is the price of a unit of labor in production of product j.  Computation of this variable requires 

computing the labor costs for each firm, and using that to impute the labor costs of each product.   

We began by calculating the labor inputs (in rupees) for every firm-year.  Because we are interested in 

workers actually involved in the production process, we only included workers in the following 

categories in Block E of the ASI data: 

1. Male workers employed directly 

2. Female workers employed directly 

3. Child workers employed directly 

4. Workers employed through contractors 

5. Supervisory and Managerial Staff 

6. Other employees 

These categories excludes unpaid family members/proprietor/coop. members.  The total wage bill was 

calculated as the sum of the wages/salaries paid to employees in the included categories, excluding 

bonuses, contributions to Provident and other funds, and workman and staff welfare expenses.   

To calculate the labor cost for a product, we need to make an assumption regarding how labor costs are 

assigned to given products within multi-product firms.  We assumed that firms allocate labor expenses 

to products proportional to that product’s share of the firm’s total revenue from all products.  So the 

labor costs allocated by firm f to product j in period t are: 

 
𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡𝑠𝑓𝑗𝑡 = 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡𝑠𝑓𝑡 ∗

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑓𝑗𝑡
∑ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑓𝑗𝑡𝑗

 (28) 

 

We need to define what we will call a “unit” of labor for the purposes of our production function, so we 

can calculate the cost of such a unit.  We use man-days as our unit of choice, and we use an analogous 
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relationship to the one given in equation (28) to assign man-days to products within multi-product firms 

(that is, we assume man-days are proportional to revenue).   

We then computed values for the price of labor (defined as labor costs divided by man-days) of each 

product on the firm-year level.  The median of these firm-year specific labor intensities was then taken 

as the ultimate value for the product-level labor intensity: 

 𝑃𝐿𝑗 = median
𝑓𝑡

{𝑃𝐿𝑓𝑗𝑡} (1)  

 

A.1.2.  𝑷𝑰𝑪𝒇𝒋𝒕 (Intermediate Input Costs) 

The calculation of the intermediate input costs for each firm-product-year combination requires several 

steps, which we will go through in turn.  We first need to compute an input-output table for products at 

the 5-digit ASICC level25, we then use this table to assign inputs to outputs at the firm level.  Finally, 

having the quantity of the given inputs assigned to each output, we find the cost of these inputs by 

multiplying the unit value of the input provided in the data.   

 

A.1.2.1.  Input-Output Table 

There is a vast literature on the computation of input-output tables.  As described in Bohlin and Widell 

(2006), an assumption needs to be made about technology in order for an input-output table to be 

identified.  The two most common assumptions in the literature are the Product-Technology 

Assumption (PTA) and the Industry-Technology Assumption (ITA).  The PTA assumes that production of a 

particular product requires the same inputs, regardless of which industry it is made in.  The ITA assumes 

that, within an industry, the same input mix is used for every product produced by the industry.   

Almon (2000) provides a discussion about the merits and weaknesses of both of these assumptions, as 

well as a demonstration of the types of input-output tables that would be produced as a result of each 

of them.  As one might expect, the ITA fares very poorly, and Almon describes the tables produced by 

such an assumption to be “massive nonsense.”   

We use the PTA for our input-output table, and generate it using the linear constraints in the technique 

developed in Bohlin and Widell (2006).  This method was chosen because it allows the use of the PTA 

while avoiding the problem of negative flows (i.e. negative inputs being used in some outputs), as well 

as allowing generalization to the use of rectangular “Make” and “Use” tables26.   

                                                           
25

 This is a greater level of disaggregation than is available from the Indian government.   
26

 The Make table is the mapping from producers to outputs.  In our case, it is an 𝐹 × 𝐽 matrix, where F is the total 
number of firms, and J is the total number of products.  The element 𝑀𝑓𝑗  in the matrix gives the quantity of 

product j that was made by firm f in the given year (we have one Make table for each year).  The Use table is 
analogous, but for inputs rather than outputs.   
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We make use of the constraints in their minimization problem to harvest the usage coefficients that can 

be exactly identified from the data.  So computing the input-output table comes down to solving the 

following set of linear constraints: 

 

𝑈𝑢𝑓 = ∑ 𝛼𝑢𝑚𝑓𝑀𝑚𝑓
𝑚∈ℳ

 

 

𝛼𝑢𝑚𝑓 ≥ 0 

 

𝛼𝑢𝑚 = mean
𝑓
(𝛼𝑢𝑚𝑓) 

(2)  

 

In the above equations, 𝑈𝑢𝑓 is the quantity of input u that is used by firm f.  𝑀𝑚𝑓 is the quantity of 

output m that is made by firm f.  𝛼𝑢𝑚𝑓 is the usage coefficient, which is the number of units of the input 

good u needed to make one unit of the output good m.  𝛼𝑢𝑚𝑓 is firm-specific.  The average of those 

coefficients is 𝛼𝑢𝑚, which becomes an element of the input-output table.  The set ℳ is all of the 

products that the firm actually makes (in other words, we only apply the constraints for 𝑀𝑚𝑓 > 0).   

Intuitively, the outputs of a firm 𝑀𝑚𝑓, times the quantity of input u that is needed to produce that 

output 𝛼𝑢𝑚𝑓, must equal the total amount of u that is used by the firm.   

In the above equation, both 𝑈𝑢𝑓 and 𝑀𝑚𝑓 are known from the data, and we must determine 𝛼𝑢𝑚𝑓.  We 

do this only for those 𝛼𝑢𝑚𝑓’s that are exactly identified from the constraints above.  This happens in two 

cases.   

In the first case, ℳ is a singleton, so the firm only makes one product.  Thus, 𝛼𝑢𝑚𝑓 is defined for every u 

for that firm and product (with 𝛼𝑢𝑚𝑓 = 0 for those products the firm does not use).   

In the second case, 𝑈𝑢𝑓 = 0 for some u and f.  In that case, even if ℳ is not a singleton, we can 

determine that 𝛼𝑢𝑚𝑓 = 0 for that (u,f) because 𝛼𝑢𝑚𝑓 ≥ 0 and 𝑀𝑚𝑓 > 0.   

Intuitively, this method is roughly equivalent to using single-product firms to identify the elements of 

our input-output table, although the current methodology allows us to identify more elements of the 

table than merely using single-product firms.27   

                                                           
27

 The above methodology allowed us to create a complete input profile for 3919 of our 5367 products, and a 
partial input profile for an additional 1099 of those products, leaving only 349 products for which no input data 
could be determined.  Since many of our 5367 products only appear as inputs in the data (never outputs), this 
means we were able to calculate input data for almost all outputs in the dataset.  With respect to the accuracy of 
this methodology, it is worth noting two points:  1) When computing the Gollop and Monahan (1991) distance 
measure between products, the distances looked qualitatively indistinguishable whether they were calculated 
using the input-output table above, or whether they were computed using firm input mixes (as in Kugler and 
Verhoogen [2012]), which incorporate multi-product firms and bypass the use of the input-output table (the 
formula for which is described in the “Theoretical Framework” section of the paper); and 2)  The first-stage 
regression, which used intermediate inputs from the input-output table to predict marginal costs showed the 
coefficient on those inputs to be large and highly significant.  Both of these facts lead us to conclude that this 
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An input-output table was calculated using the above method for every year in the data.  The final input-

output table was then the median of the yearly tables.   

 

A.1.2.2.  Assigning Inputs to Outputs at the firm level 

Our estimation is performed on single- as well as multi-product firms, so we need a method to map a 

firm’s inputs to its outputs in order to determine the input costs for a particular output.   

Previous authors, such as Foster, Haltiwanger, and Syverson (2008) and DeLoecker (2011) address the 

problem of assigning inputs to outputs in multiproduct firms by assigning them in proportion to the 

number of products produced.  We perform a similar operation, but unlike the aforementioned authors, 

we have the advantage of an input-output table which we can use to inform our assignment of inputs.  

We therefore modify their approach and weight the assignment of inputs according to the values found 

in the input-output table.   

To do this, we assume there is a scaling factor 𝛾, that relates firm-specific 𝛼’s to the general economy-

wide 𝛼’s found in the input-output table, and that this scaling factor is constant for every product the 

firm uses.  Consider the following illustration: 

 

 

 

 

 

The 𝛼 table is the economy-wide input-output table, in which we have only filled in two of the elements 

for this example, because we are only considering how to assign the input U1 to the firm’s outputs.  The 

Use table shows the quantity of each input used by our example firm, and the Make table shows the 

quantities of its outputs.   

An average firm would need the following quantities of U1 to make the products of this example firm: 

 5⏟
𝑀1

× 0.5⏟
𝛼11

 = 2.5 = amount of 𝑈1 needed to make 5 units of 𝑀1 

 

 10⏟
𝑀2

× 1⏟
𝛼12

 = 10 = amount of 𝑈1 needed to make 10 units of 𝑀2 

                                                                                                                                                                                           
method, while not perfectly accurate, as at least a very good approximation to the “true” input-output matrix for 
these products.   
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This firm would therefore need 12.5 units of U1 to make its existing set of outputs, but it only uses 10.  

We therefore apply our scaling factor: 

𝛾 (𝑀1𝛼11 +𝑀2𝛼12)⏟          
12.5

= 𝑈1⏟
10

 

In this example, 𝛾 = 0.8, so for the purposes of calculating the input costs for this firm, we would 

assume 2 units of U1 were used for M1, and 8 units of U1 were used for M2.  When applying this method 

to the dataset, 𝛾 is allowed to vary by firm and use-product.   

We use the above method to define a price for the total aggregated input basket used in production of 

each product at the firm-year level.  Since most products in the data do not have units given in terms of 

quantity of items sold, we define a unit of output as being one rupee.  We therefore divide the 

aggregated input costs for each product by the ex-factory value of output to determine the unit price for 

the input basket.   

 

A.1.3  Regression Results 

 

ln (𝑟𝑓𝑗𝑡) 

𝛽𝐿
𝑚𝑐 -0.779*** 

 
(0.039) 

  𝛽𝐼𝐶
𝑚𝑐 -0.130*** 

 (.003) 

  

𝑓𝑖𝑟𝑚 × 𝑦𝑒𝑎𝑟 𝐹𝐸 Yes 

N 296677 

𝑅2 0.75 
*** denotes 1% significance.  

Robust standard errors are in 

parentheses.   
 

Above are the results from the regression in equation (17), the first stage in our estimation procedure.   

 

A.2.  Physical Distance Calculation 

A.2.1.  Mapping firms to districts 

There are two difficulties to be overcome in determining the location of the firms at the district level.  

The first is that the ASI panel data, which contains unique identifiers for firms, only gives firm location 

down to the state level, which is far less precise.  Districts are available in the cross-section data, but 

there is no direct mapping from the cross-section to the panel.  The second difficulty is that MOSPI 
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changed their state and district codes in 2001.  This required us to make two mappings:  The first from 

the panel data to the cross-section, the second from pre-2001 district codes to post-2001 district codes.   

To create the first mapping, from panel data to cross-section, we followed the technique used in 

Harrison et al. (2013), and matched the closing net value of fixed assets found in the panel and the 

cross-section, dropping any values of 0 or 1, and any duplicates, which could potentially lead to 

ambiguous matches.   

To create the second mapping, we made the assumption that firms (factories in the data), do not change 

their location from year to year.  Thus, by observing the location codes of individual firms prior to and 

post-2001, we were able to create a concordance linking the two sets of codes.   

 

A.2.2.  Calculating the Distance 

For each of the districts, longitude and latitude coordinates were obtained from Wikipedia’s GeoHack 

tool.  In the instances when coordinates were not available for a district, or when the available 

coordinates were obviously false, the coordinates for the district capital were used instead.   

The coordinates were linked to the post-2001 district codes, because we did not have a list linking pre-

2001 codes to district names.  There were a few instances in which several pre-2001 codes were merged 

into one post-2001 code.  In such cases, all of the pre-2001 codes were assigned the same coordinates.   

Distances between the districts were calculated using the haversine formula for great circle distance, 

with the radius of the earth set to be 6372.8 km.  Distances between firms were then defined to be the 

distance between the firms’ associated districts, measured in kilometers, with a distance of 0 if the firms 

were located in the same district.   

The distance between a firm and a product is then defined as the distance to the closest firm producing 

that product: 

 𝐷𝑓𝑗𝑏𝑡−1 = min
𝑓′∈ℱ𝑗,𝑡−1

𝑑𝑓𝑓′ (3)  

 

Where 𝑑𝑓𝑓′  is the physical distance between firms 𝑓 and 𝑓′, 𝐷𝑓𝑗𝑏𝑡−1
2  is the physical distance between 

firm f and product j at period t-1, and ℱ𝑗,𝑡−1 is the set of all firms producing j at t-1.   

We then construct our measure of proximity by dividing by the maximum distance between any two 

points in India (to get the measure between 0 and 1), and flipping it, so that nearby products have a 

proximity measure of 1 instead of 0.   

 𝜙𝑓𝑗𝑏𝑡−1
2 = |

𝐷𝑓𝑗𝑏𝑡−1
max
𝑓,𝑓′

𝑑𝑓𝑓′
− 1| (4)  

Where |. | is the absolute value operator.    



41 
 

A.3.  Alternative Specifications 

A.3.1 Large Firms Only 

Table A.3.1.1:  Estimates 

 

Lower Upper 
 

Lower Upper 
 

Lower Upper 
 

Lower Upper 

Industry: 
Animal, Vegetable, 

Forestry 
 

Ores, minerals, gas, 
electricity 

 
Chemicals 

 

Rubber, plastic, 
leather 

𝜇0
𝑓𝑐

 5.47 49.62 
 

86.24 548.88 
 

37.29 309.56 
 

13.18 68.88 

𝜇0
𝑠𝑐  7.12 173.50 

 
74.73 1,857.67 

 
74.05 1,200.11 

 
40.81 304.72 

𝜁1
𝑠𝑐 0.00 111.06 

 
0.00 862.52 

 
0.00 489.51 

 
0.00 115.00 

𝜁2
𝑠𝑐 0.00 173.50 

 
0.00 1,857.67 

 
0.00 1,200.11 

 
0.00 304.72 

𝜁3
𝑠𝑐 0.00 62.86 

 
0.00 602.68 

 
0.00 362.92 

 
0.00 79.11 

 
           

Industry: 
Wood, cork, paper 

 
Textiles 

 
Metals, Machinery 

 
Railways, ships, 

transport 

𝜇0
𝑓𝑐

 13.60 85.32 
 

8.99 58.60 
 

21.55 118.90 
 

55.45 307.21 

𝜇0
𝑠𝑐  25.96 323.99 

 
8.33 267.61 

 
61.39 525.62 

 
184.97 1,324.89 

𝜁1
𝑠𝑐 0.00 167.76 

 
0.00 112.29 

 
0.00 176.23 

 
0.00 452.14 

𝜁2
𝑠𝑐 0.00 323.99 

 
0.00 267.61 

 
0.00 525.62 

 
0.00 1,324.89 

𝜁3
𝑠𝑐 0.00 104.35 

 
0.00 71.34 

 
0.00 133.60 

 
0.00 328.64 

Notes:  Values expressed in thousands of 1982 dollars.  An exchange rate of 9 rupees per dollar was used for the conversion from 

rupees.   

These are the results of our estimation performed only on the set of firms with 200 or more employees.  

According to the sampling procedure for the ASI, these firms are sampled with probability 1 in every 

year of the data.   

Many of the broad trends identified in the baseline estimation persist.  The physical distance parameter 

(𝜁2
𝑠𝑐) continues to have the largest upper bounds, followed by input similarity (𝜁1

𝑠𝑐), then vertical 

connectedness (𝜁3
𝑠𝑐).  However, in this version of the estimation, both the lower bounds on the costs 

(𝜇0
𝑓𝑐

 and 𝜇0
𝑠𝑐)and the upper bounds on all parameters are substantially higher than in the baseline.  This 

might be attributed to the larger scale operations happening at these firms, resulting in higher costs (but 

also potentially higher profits).   
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Table A.3.1.2:  Confidence Intervals 

 

Lower Upper 
 

Lower Upper 
 

Lower Upper 
 

Lower Upper 

Industry: 
Animal, Vegetable, 

Forestry 
 

Ores, minerals, 
gas, electricity 

 
Chemicals 

 

Rubber, plastic, 
leather 

𝜇0
𝑓𝑐

 5.47 62.72 
 

86.24 673.19 
 

37.29 417.22 
 

13.18 81.70 

𝜇0
𝑠𝑐  7.12 209.57 

 
74.73 2,054.56 

 
74.05 5,228.11 

 
40.81 329.44 

𝜁1
𝑠𝑐 0.00 120.63 

 
0.00 1,034.43 

 
0.00 5,867.89 

 
0.00 165.61 

𝜁2
𝑠𝑐 0.00 262.14 

 
-0.03 2,602.22 

 
0.00 4,802.56 

 
0.00 373.71 

𝜁3
𝑠𝑐 0.00 87.86 

 
0.00 1,019.66 

 
0.00 1,884.56 

 
0.00 119.79 

 
           

Industry: 
Wood, cork, paper 

 
Textiles 

 
Metals, Machinery 

 
Railways, ships, 

transport 

𝜇0
𝑓𝑐

 13.60 117.18 
 

8.99 70.99 
 

21.55 142.27 
 

55.45 372.90 

𝜇0
𝑠𝑐  25.96 471.04 

 
8.33 303.40 

 
61.39 591.89 

 
184.97 1,797.89 

𝜁1
𝑠𝑐 0.00 296.18 

 
0.00 130.11 

 
0.00 303.02 

 
0.00 1,414.11 

𝜁2
𝑠𝑐 0.00 560.47 

 
0.00 349.90 

 
0.00 650.08 

 
0.00 1,770.89 

𝜁3
𝑠𝑐 0.00 192.61 

 
0.00 82.98 

 
0.00 179.22 

 
0.00 1,495.00 

Notes:  Values expressed in thousands of 1982 dollars.  An exchange rate of 9 rupees per dollar was used for the conversion from 

rupees.  The left parameter in every column represents the single-sided 95% confidence interval on the lower bound, and the right 

parameter is the single-sided 95% confidence interval on the upper bound.  Values account for correlation across observations, and 

were computed using 500 subsamples.   

The above table represents the confidence intervals for the specification including only firms with 200 or 

more employees.  While for some sectors they are similar to the estimates themselves, in others 

(chemicals, ores, and transportation, for instance) they are much wider.  This is likely attributed to fewer 

observations available in those sectors.   
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A.4.1  Moments for Baseline specification 

Table A.4.1 

Industry 1 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.65 0.12 0.00 0.04 403,710 25,472 

lower 
-1.00 0.21 -0.05 -0.01 -0.02 -28,299 8,363 

𝜇0
𝑠𝑐  

upper 
1.00 0.66 -0.39 -0.60 -0.05 65,075 8,069 

lower 
-1.00 -1.00 0.99 0.21 0.00 -20,657 40,598,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.28 -0.44 0.14 -0.05 -25,975 3,872,500 

lower 
0.00 -0.17 0.20 0.20 -0.04 266,660 732,260 

𝜁2
𝑠𝑐 

upper 
0.00 -0.28 -0.42 0.09 -0.04 -20,092 3,369,100 

lower 
0.00 -0.23 -0.12 0.34 -0.10 354,010 4,012,400 

𝜁3
𝑠𝑐 

upper 
0.00 -0.29 -0.31 0.19 -0.29 -30,693 700,130 

lower 
0.00 -0.33 -0.10 0.29 0.21 322,360 123,730 

 

Industry 2 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.58 0.13 0.00 0.09 1,648,400 4,058 

lower 
-1.00 0.19 -0.06 -0.01 -0.01 -218,380 2,017 

𝜇0
𝑠𝑐  

upper 
1.00 0.66 -0.31 -0.59 -0.02 396,180 2,118 

lower 
-1.00 -1.00 0.99 0.24 0.00 -47,464 12,068,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.28 -0.22 0.17 -0.04 -117,620 499,900 

lower 
0.00 -0.18 0.20 0.21 -0.03 5,214,300 380,730 

𝜁2
𝑠𝑐 

upper 
0.00 -0.27 -0.16 0.09 -0.03 -95,104 467,680 

lower 
0.00 -0.23 -0.05 0.37 -0.06 4,964,800 1,054,600 

𝜁3
𝑠𝑐 

upper 
0.00 -0.27 -0.13 0.24 -0.40 -95,989 62,616 

lower 
0.00 -0.32 -0.12 0.23 0.13 2,181,400 23,879 
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Industry 3 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.59 0.38 0.00 0.05 1,336,600 9,150 

lower 
-1.00 0.19 -0.14 -0.01 -0.01 -162,720 3,706 

𝜇0
𝑠𝑐  

upper 
1.00 0.73 -0.12 -0.64 -0.02 677,930 4,138 

lower 
-1.00 -1.00 0.99 0.18 0.00 -80,319 17,261,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.27 0.09 0.21 -0.04 -154,710 1,417,700 

lower 
0.00 -0.17 0.20 0.23 -0.02 960,350 998,920 

𝜁2
𝑠𝑐 

upper 
0.00 -0.25 0.11 0.11 -0.04 -128,230 1,138,300 

lower 
0.00 -0.21 0.11 0.34 -0.04 1,706,500 3,653,900 

𝜁3
𝑠𝑐 

upper 
0.00 -0.28 0.11 0.21 -0.16 -164,500 400,830 

lower 
0.00 -0.21 0.13 0.20 0.12 1,144,000 107,310 

 

Industry 4 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.54 0.33 0.00 0.04 594,480 4,491 

lower 
-1.00 0.16 -0.10 -0.01 -0.01 -60,811 3,177 

𝜇0
𝑠𝑐  

upper 
1.00 0.73 -0.18 -0.65 -0.02 246,970 3,291 

lower 
-1.00 -1.00 0.99 0.16 0.00 -48,614 11,735,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.25 -0.03 0.18 -0.02 -70,731 1,059,100 

lower 
0.00 -0.16 0.22 0.19 -0.01 324,880 648,950 

𝜁2
𝑠𝑐 

upper 
0.00 -0.23 0.00 0.09 -0.02 -57,363 869,600 

lower 
0.00 -0.20 0.05 0.32 -0.02 467,740 2,042,400 

𝜁3
𝑠𝑐 

upper 
0.00 -0.28 -0.04 0.20 -0.16 -59,121 170,360 

lower 
0.00 -0.23 0.12 0.22 0.16 409,280 43,694 
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Industry 5 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.61 0.25 0.00 0.02 283,990 4,860 

lower 
-1.00 0.18 -0.09 -0.01 -0.01 -36,280 2,204 

𝜇0
𝑠𝑐  

upper 
1.00 0.68 -0.28 -0.60 -0.03 79,402 2,452 

lower 
-1.00 -1.00 0.99 0.19 0.00 -29,549 11,500,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.31 -0.13 0.23 -0.04 -37,488 979,580 

lower 
0.00 -0.16 0.20 0.21 -0.03 313,400 323,980 

𝜁2
𝑠𝑐 

upper 
0.00 -0.31 -0.09 0.15 -0.04 -29,973 757,730 

lower 
0.00 -0.21 -0.09 0.33 -0.03 288,130 1,457,400 

𝜁3
𝑠𝑐 

upper 
0.00 -0.30 -0.12 0.23 -0.21 -27,443 198,710 

lower 
0.00 -0.28 0.02 0.24 0.23 431,800 32,707 

 

Industry 6 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.52 0.18 0.00 0.06 429,470 10,946 

lower 
-1.00 0.15 -0.06 0.00 -0.03 -54,524 8,661 

𝜇0
𝑠𝑐  

upper 
1.00 0.73 -0.34 -0.69 -0.11 86,646 6,916 

lower 
-1.00 -1.00 0.99 0.17 0.00 -23,197 29,306,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.26 -0.23 0.16 -0.16 -28,815 1,830,200 

lower 
0.00 -0.15 0.20 0.18 -0.03 421,220 796,440 

𝜁2
𝑠𝑐 

upper 
0.00 -0.26 -0.19 0.11 -0.15 -24,490 1,642,900 

lower 
0.00 -0.18 -0.08 0.29 -0.05 444,300 2,856,100 

𝜁3
𝑠𝑐 

upper 
0.00 -0.32 -0.30 0.21 -0.56 -14,972 509,780 

lower 
0.00 -0.24 -0.07 0.19 0.19 432,050 143,780 
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Industry 7 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.54 0.35 0.00 0.04 911,670 19,401 

lower 
-1.00 0.15 -0.11 -0.01 -0.01 -91,434 15,278 

𝜇0
𝑠𝑐  

upper 
1.00 0.75 -0.15 -0.68 -0.02 334,670 15,969 

lower 
-1.00 -1.00 0.98 0.17 0.00 -54,246 48,288,000 

𝜁1
𝑠𝑐 

upper 
0.00 -0.24 0.02 0.15 -0.02 -85,650 4,957,200 

lower 
0.00 -0.16 0.23 0.18 -0.01 649,930 3,291,400 

𝜁2
𝑠𝑐 

upper 
0.00 -0.23 0.04 0.08 -0.02 -74,199 4,245,200 

lower 
0.00 -0.18 0.08 0.31 -0.02 674,990 9,073,800 

𝜁3
𝑠𝑐 

upper 
0.00 -0.22 -0.04 0.13 -0.14 -87,244 938,590 

lower 
0.00 -0.22 0.10 0.21 0.15 740,030 439,510 

 

Industry 8 

 Bound Δ𝜇0
𝑓𝑐

 Δ𝜇0
𝑠𝑐 Δ𝜁1

𝑠𝑐 Δ𝜁2
𝑠𝑐 Δ𝜁3

𝑠𝑐 Δ𝜈 Obs. 

𝜇0
𝑓𝑐

 

upper 
1.00 -0.55 0.36 0.00 0.01 3,619,500 2,334 

lower 
-1.00 0.15 -0.11 -0.01 0.00 -223,200 1,536 

𝜇0
𝑠𝑐  

upper 
1.00 0.77 -0.15 -0.69 0.00 920,590 1,746 

lower 
-1.00 -1.00 0.98 0.17 0.00 -151,860 5,819,300 

𝜁1
𝑠𝑐 

upper 
0.00 -0.26 0.04 0.18 -0.01 -248,480 452,100 

lower 
0.00 -0.15 0.23 0.20 0.00 1,583,900 403,300 

𝜁2
𝑠𝑐 

upper 
0.00 -0.26 0.08 0.11 0.00 -229,150 403,350 

lower 
0.00 -0.18 0.10 0.33 0.00 3,942,400 1,025,100 

𝜁3
𝑠𝑐 

upper 
0.00 -0.37 0.13 0.26 -0.05 -155,790 60,322 

lower 
0.00 -0.22 0.09 0.22 0.07 2,137,500 67,471 

Notes:  Differences in profits are expressed in 1982 rupees.  Besides the restrictions imposed above, we also impose the restrictions 

that the sum of the startup-cost-abatement parameters (𝜁) cannot be larger than the total startup cost 𝜇0
𝑠𝑐, and that no costs in the 

estimation can be negative.   


