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ABSTRACT

The spatial distribution of return intervals for U.S. hail size is explored

within the framework of extreme value theory using observations from the

period 1979-2013. The center of the continent has experienced hail in ex-

cess of 5 inches in the past 30 years, whereas hail in excess of 1 inch is

more common in other regions, including the West Coast. Observed hail

sizes show heavy quantization toward fixed diameter reference objects and

are influenced by spatial and temporal biases similar to those noted for hail

occurrence. Recorded hail diameters have been growing in recent decades due

to improved reporting. These data limitations motivate exploration of extreme

value distributions to represent the return periods for various hail diameters.

The parameters of a Gumbel distribution are fit to dithered observed annual

maxima on a national 1◦ x 1◦ grid at locations with sufficient records. Grid-

ded and kernel smoothed return sizes and quantiles up to the 200-year return

period are determined for the fitted Gumbel distribution. These are used to il-

lustrate return levels for hail greater than a given size for at least one location

within each 1◦ x 1◦ grid box for the U.S.
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1. Introduction43

Large hail (≥ 25 mm or 1 in.) can produce significant damage to property and agriculture.44

However, little is known about the hazard posed by or incidence of the largest hail diameters.45

Large hail is the greatest contributor to insured losses from thunderstorms in both the U.S. and46

globally (Gunturi and Tippett 2017), producing cumulative and single event losses that often total47

in excess of USD $1 billion (Changnon 2008; Sander et al. 2013; Munich RE 2015). Cumulative48

losses typically arise as the result of a single or several days of damaging hail events of smaller49

magnitude (e.g., St Louis, Missouri 2012, USD $1.6 billion total) or impacts on a number of rural50

centers, in addition to agricultural losses. Large catastrophic single-event losses typically occur51

when a larger urban center is impacted with hail at or exceeding golf ball diameter (45mm or52

1.75in), when damage to structures, windows and vehicles become more frequent (Brown et al.53

2015). Recent examples of such catastrophic hail storms include a USD $4 billion hail event in54

Phoenix, Arizona (100 mm or 4 in. maximum diameter hailstones), a USD $900 million loss55

hail event impacting Dallas-Fort Worth in 2012 (2.75-3.5 in. stones; Brown et al. (2015)), and56

two hail storms in Texas during the spring of 2016 (including one in San Antonio that produced57

a combined USD $4.7 billion loss due to hail (Swiss RE 2017). To understand the hazard and58

damage potential posed by large hail events, there are several important quantities that need to59

be explored. The likelihood of hail occurrence at a given location provides some guidance in60

determining this hazard (e.g., Allen and Tippett 2015; Allen et al. 2015). However, it is not only61

the likelihood of occurrence but also the size, velocity of impact, and spatial extent of these stones62

that determines the scale and nature of damage (Changnon Jr 1966; Morgan Jr and Towery 1975;63

Changnon Jr 1977; Nelson and Young 1979; Cox and Armstrong 1981; Cheng et al. 1985; Sánchez64

et al. 1996; Heymsfield et al. 2014; Brown et al. 2015). These elements present an important part65
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of the potential for economic losses to agriculture and property. The significance of large hail to66

the country motivates an analysis of just how large hailstones can get over the U.S., leveraging67

both climatology and extrapolation of the likelihood of large hail.68

To explore the spatial risk, occurrence, and magnitude of hail, previous work in the U.S. has69

leveraged a mixture of insurance data, National Weather Service spotter observations, field cam-70

paigns and weather station data (e.g., Changnon Jr 1977; Cox and Armstrong 1981). Most chal-71

lenging to many of these studies was the limited spatial distribution of observed hail, which gen-72

erally provided insufficient resolution to determine hail swathes and corresponding loss character-73

istics (Morgan Jr and Towery 1975; Nelson and Young 1979). Obtaining a picture of the hazard74

over larger parts of the continental U.S. is challenging, as insurance data are often non-specific75

in their spatial extent or combined with other hazards (Changnon 1999; Brown et al. 2015), and76

spotter observations and field campaigns are relatively few and far between (Strong and Lozowski77

1977; Ortega et al. 2009; Blair and Leighton 2012; Heymsfield et al. 2014; Blair et al. 2017). In78

contrast, the abundance of hail reports for the U.S. in Storm Data (Schaefer and Edwards 1999)79

have led to a number of climatologies exploring hail occurrence and the hazard posed (Kelly et al.80

1985; Changnon 1999; Changnon and Changnon 2000; Schaefer et al. 2004; Doswell et al. 2005;81

Changnon 2008; Allen et al. 2015; Allen and Tippett 2015). Despite these efforts contributing82

greatly to our understanding of spatial hail occurrence, the temporal and spatial limitations of hail83

size observations have made the hazard posed to property by large hail unclear (Doswell et al.84

2005; Allen and Tippett 2015). Illustrative examples of these problems include the tendency for85

clustering and duplication of hail reports towards more heavily populated areas, concentration of86

the early reports in the record in the Great Plains, and a sensitivity to quantization as hail size ap-87

proaches the arbitrary criteria used to define severe thunderstorms (Schaefer et al. 2004; Doswell88

et al. 2005; Allen and Tippett 2015).89
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There are also several challenges introduced by specifically considering hail size, rather than90

occurrence. Arbitrary methods of hail size measurement and a text-based observation sys-91

tem that trusts observers to make estimations increases the difficulty of subsequent analysis of92

size/occurrence distributions (Allen and Tippett 2015). Hail size observations are heavily quan-93

tized by the use of reference objects when recording their occurrence, rather than direct measure-94

ments (Doswell et al. 2005; Blair and Leighton 2012; Blair et al. 2017). This methodology leads95

to both the over- and under-reporting of maximum size as hail is skewed toward reference objects,96

further emphasizing issues with hail size observations (Heymsfield et al. 2014). It is also ques-97

tionable whether largest point observation of hail size correctly reflects the largest hail that occurs98

in a storm (Bardsley 1990; Blair and Leighton 2012; Blair et al. 2017). This is exacerbated by the99

rarity of large hail (Fraile et al. 1992), as well as storms being likely to produce fewer large stones,100

or large volumes of hail, but not both (Cheng et al. 1985). A non-observational complication is101

posed by the relative importance of the size of hail to different economic sectors. To agriculture,102

a hail stone of 12.5mm (0.5 in.) or larger could be extremely damaging (Changnon Jr 1977; Mc-103

Master 1999; Doswell 2001). In contrast, for structures or vehicles, hailstones of 45mm (1.75 in.)104

or greater are typically necessary to cause large amounts of damage (Cox and Armstrong 1981;105

Heymsfield et al. 2014; Brown et al. 2015; Allen and Tippett 2015). Thus estimating the hazard106

posed by larger hail can pose challenges, and can depend heavily on the targeted group exposed to107

the hazard.108

In this paper, we focus on the likelihood of hail in excess of the U.S. severe thunderstorm crite-109

rion (25 mm or 1 in.). In particular, we explore the characteristics of the larger diameter hail that110

produces the greatest degree of damage to infrastructure and property, and look to statistically es-111

timate the probability of occurrence. We do this by applying extreme value theory methods to hail112

size observations. Extreme Value Theory (Fisher and Tippett 1928; Gumbel 1958; Frechet 1927)113
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has changed the way engineers and scientists quantify the hazard associated with rare but extreme114

events. In particular, the Generalized Extreme Value (GEV) distribution (Jenkinson 1955) has seen115

widespread application in fields such as hydrology (e.g., rainfall extremes, streamflow), extreme116

wind speeds, finance and, more generally, in earth and atmospheric science (for more complete117

reviews, see Palutikof et al. 1999; Coles 2001). However, this approach has only been applied118

rarely to hail due to limitations in data availability and insufficient record length to provide an es-119

timate of return size (Cox and Armstrong 1981; Smith and Waldvogel 1989; Bardsley 1990; Fraile120

et al. 2003). This study leverages the growing temporal extent and quality of the hail observations121

dataset to explore the likelihood of seeing given hail sizes using the Gumbel distribution.122

The paper is structured as follows; Section 2 describes the hail observations dataset and the123

selection of an appropriate distribution to model extreme hail sizes. Section 3 outlines the char-124

acteristics of U.S. hail size data and approaches to negate the limitations of the data. Section 4125

describes the fitted extreme value model developed from these data, while Section 5 discusses126

the estimated return intervals for hail of various sizes and the stability of the fitting approach. In127

Section 6, we interpret these results in the context of providing an analysis of the hazard posed by128

hail over the U.S.129

2. Datasets and Approach130

a. U.S. Hail Observations131

U.S. hail reports were taken from the National Centers for Environmental Information archive132

(Schaefer and Edwards 1999) for the period 1979 to 2013. While these data are available for a133

longer period (1955-2015), changes in reporting of events influence the dataset in a more pro-134

nounced way between 1955 and 1979, and there are several years with no reported hail for many135
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locations (Allen and Tippett 2015). Hail reports were gridded to a 1◦ x 1◦ grid to smooth the136

otherwise noisy observational dataset, which has larger point-to-point variations over the domain137

considered, but it is possible that in some locations choosing higher resolutions might be appro-138

priate. These reports were gridded for 3-hour periods (0Z-3Z, 3Z-6Z, etc.), with assignment of the139

largest hail reported for that grid point in each 3-hourly period. This aggregation choice prevents140

repetitive inclusion from a single thunderstorm, limits biases that would occur due to a higher141

reporting frequency over cities, and reduces the limitations associated with the small spatial distri-142

bution of large hail and sporadic report data. Despite the dataset being likely the longest and most143

complete national hail record (Allen and Tippett 2015), there are significant non-meteorological144

inhomogeneties as described above, and thus gridded or point results should be carefully inter-145

preted.146

b. Modeling Extremes - Generalized Extreme Value (GEV) Distribution147

The GEV distribution (Jenkinson 1955) is a continuous probability distribution which combines148

the Gumbel, Frechet and Weibull families, also known as type I, II and III extreme value distribu-149

tions. The relationship is usually presented in the form:150

F(x) = exp
{
−
[

1+ k
(

x−µ

σ

)]−1/k}
(1)

where, in this application, F(x) represents the probability of occurrence of a given hail size, and151

where k, σ and µ are known as the shape, scale and location parameters, respectively. For k = 0,152

equation (1) reduces to the Gumbel (EV1) distribution, whereas for positive and negative k, the153

distribution is respectively Frechet (EV2) and Weibull (EV3).154

The three EV limiting behaviors depend on the type of the distribution from which the maxima155

(or minima) are extracted. Since these parent distributions are often unknown, the GEV flexibility156
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is particularly appealing, allowing all three parameters (including the shape parameter, k) to vary.157

This flexibility has some drawbacks as well, with limited data making the estimation of the param-158

eters (in particular k) difficult (i.e., Hosking et al. 1985; Martins and Stedinger 2000). Common159

applications of the Weibull distribution include intense tornadoes and wind speed analyses (e.g.,160

Pavia and O’Brien 1986; Dotzek et al. 2003). Typical Frechet applications have included, among161

many, rainfall maxima and streamflow data (Coles 2001).162

Where there is insufficient information about the extreme tail of a dataset, a popular first order163

solution is to set k = 0, and consider the simplest Gumbel (Type I) distribution (Hosking et al.164

1985). Thus, Eqn. 1 in the Type 1 case simplifies to:165

F(x) = exp{exp[(x−µ)/σ ]} (2)

The location (µ) parameter summarizes the location or shift of the body of extremes (in this166

case the mean annual maximum hail size), while the scale (σ ) parameter describes its statistical167

dispersion (interannual variability of the annual maximum hail size).168

Typical estimation procedures are Maximum Likelihood (MLE), L-moments (also known as169

Probability Weighted Moments, PWM) and more recent hybridized methods such as Generalized170

Maximum Likelihood (GMLE), and Generalized PWM (GPWM), with the latter three performing171

better with small samples (Hosking et al. 1985; Martins and Stedinger 2000; Coles 2001).172

For the purposes of this investigation, we considered a Gumbel (Type I) distribution with the173

MLE and L-moments estimation methods. This decision was made based on testing the value174

of the shape parameter over the continent, which revealed only small variations from zero and175

non-significant likelihood-ratio tests for all but seven grid points over the continental U.S. (not176

shown), suggesting that, when combined with the difficulty in fitting three-parameter models,177

the Gumbel approach was preferable given the characteristics of the data. Both MLE and L-178
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Moments approaches have been applied to limited areas for hail in the past (Cox and Armstrong179

1981; Smith and Waldvogel 1989; Bardsley 1990; Fraile et al. 2003). We focus here on using180

gridded annual maxima, which show a more limited spurious temporal trend in the frequency of181

observations compared to higher frequency data (Allen and Tippett 2015). An implicit assumption182

of the Gumbel estimation technique is that the data do not exhibit a trend. Otherwise, there is183

a need for the trend to be accounted for separately, and thus this aspect of the data record was184

explored. Where data are missing, or less than 30 years of observations are available, the model185

is not fitted, as this was identified to lead to overly wide confidence intervals, particularly for long186

return periods.187

3. Results188

a. U.S. Hail Size Observations189

Assessing the characteristics of the hail size record in the past 35 years (1979-2013), the majority190

of the U.S. east of the Rockies has experienced at least one hail event where the maximum observed191

hail produced was between 75 and 100mm (3-4 in.), and many places had hail of 112-125mm (4.5-192

5 in.) diameter (Fig. 1a). Within this area, isolated hail events between 150 and 200mm (6-8 in.)193

are scattered from southern Texas into South Dakota. The largest differences between the 1979-194

2013 period and the full hail record (Fig. 1b) are in areas where severe thunderstorms producing195

large hail are less frequent (Allen et al. 2015; Allen and Tippett 2015), over the northern Plains196

and the Southeast (Fig. 1a). This extension of the record by 24 years also yields a considerable197

increase to gridded maxima above 125 mm (5 in.), and numerous sites with at least 175 mm (7 in.)198

hail, suggesting that much of the Great Plains, Midwest, and Northeast are susceptible to extremely199

large hail events. Instances of large hail are less common into the Southeast and in general further200
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east where thermodynamic energy (e.g., CAPE) is reduced, owing to decreased lapse rates from201

repeated diurnal mixing (Allen et al. 2015). In addition, over the Southeast the veracity of large202

hail size reports has been questioned (Cintineo et al. 2012; Allen and Tippett 2015).203

The overall number of observed hail reports has increased remarkably over the past 58 years204

(Allen and Tippett 2015). Maximum hail size displays less of a trend than the number of reports,205

however, as many large hail events occurred between 1955-1979 (Fig. 1b). However in the past206

decade, the largest ten hailstones on record for the entire continental U.S. have changed on several207

occasions (Blair and Leighton 2012; Blair et al. 2017), suggesting that local maximum possible208

hail sizes may change as the record extends. This variability is perhaps a result of the increased209

number of active observers in past decades. Also unsurprising is the incompleteness of the record,210

as at any one location, large hail size events occur on a rare subset of hail days, which are again a211

small subset of days in any given year. Thus without a sufficiently long record, there is potential for212

significant instability in estimations of maximum size of the hazard. The impact of this uncertainty213

can be considered by comparing the overall maximum hail size on a 1◦ x 1◦ grid for the period214

1955-2013 to values for 1979-2013 (Figure 1a,b). The largest diameter hail reported for the U.S.215

occurred in Vivian, South Dakota, and was 200 mm (8 in.). This however may not reflect the upper216

bound for hail size, as it is plausible that individual stones in a storm may have exceeded this value217

(Blair and Leighton 2012; Blair et al. 2017). There is likely an upper limit to the maximum218

hail size suspended by any updraft depending on the updraft speed. This upper limit in turn is219

controlled by environmental parameters such as the maximum value of CAPE and the strength of220

vertical wind shear in a storms formative environment, but this value might not be captured by221

available observations (Ziegler et al. 1983; Nelson 1983, 1987). Other potential limiting factors to222

maximum hail size include the availability of supercooled liquid water, the ambient temperature,223

as well as other microphysical effects.224
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To evaluate the year-to-year consistency in observations of large hail sizes, the mean annual225

maximum was explored, which is partly dependent on the observational record of years with an226

annual maxima (Fig. 1c). As the record is sparse spatially and temporally for the period 1955-1978227

(Allen and Tippett 2015), we focus on the period 1979-2013. For much of Oklahoma, Kansas,228

Colorado, Nebraska and the nearby states, the mean annual maximum hail size is 50 mm (2 in.)229

diameter or larger, with 70-75 mm (2.75 to 3 in.) being more common in both Oklahoma and230

Texas. The annual mean hail size for much of the eastern U.S. is between 25 and 50 mm (1-2 in.),231

suggesting that for longer return periods, considerably damaging hail is certainly possible, and can232

be expected to be likely. The number of years with at least one non-zero hail observation is also233

examined on a grid point basis, illustrating that for most of the Plains, Midwest and Southeast,234

more than 30 of the last 35 years meet this criterion (Fig. 1d). West of the Rocky Mountains235

however, most locations have fewer than 20 annual maxima, and thus are not fitted.236

Seasonally, maximum hail size shifts northward in the summer months (Fig. 2a), consistent with237

the occurrence climatology and the seasonal cycle of CAPE (Allen et al. 2015). However, despite238

this shift, the incidence of the largest hail sizes is not uncommon through the entire central U.S.239

during the summer, reflecting climatologically rare events with extreme CAPE and some degree of240

vertical wind shear (Fig. 2b,c,d). These events introduce localized peaks in the maximum hail size,241

but the relative fraction leads to a smaller mean maximum in the summer, reflecting the fact that242

environmental conditions favorable to larger hail are more infrequent during the summer months243

(Brooks 2013).244

An important consideration of the overall hail record highlighted by Allen and Tippett (2015) is245

its consistency through time. To evaluate this, the maximum size and mean annual maximum size246

are broken into two segments 1979-1996 and 1997-2013 (Fig. 3a). The magnitude of differences247

for the maximums suggests that changes are not large or systematic, particularly in the central248
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U.S. Performing a similar comparison to Fig. 3(a) for 1955-1978 as compared to 1979-2013249

provides an overall similar pattern, with isolated larger maxima reflecting rarely occurring events250

being captured by the longer record (not shown). This similarity suggests that the maximum hail251

size has a greater sensitivity to record length than the changes in reported size between the two252

segments, which is in contrast to the finding that many of the largest observed hailstones have253

occurred in the most recent decade (Blair and Leighton 2012; Blair et al. 2017). The inconsistency254

between these two characteristics can be resolved as any of the individual stones noted by Blair255

and Leighton (2012) would influence only a small number of the grid boxes used in the current256

study. In the southeast U.S., there is a slightly greater change in maximum observed hail size257

over a large area, which can be explained by a regional trend in environment, or potentially a bias258

in the reported maximum size arising from recent increases in reports in these regions (Schaefer259

et al. 2004; Allen and Tippett 2015). Considering the mean annual maximum (Fig. 3b), there260

is a noticeable contribution from the increasing number of reports of hail of 25mm to 50mm (1-261

2 in.) diameter. There is also suggestion of increases in mean annual maximum hail size over262

the Southeast and High Plains reflecting a greater diligence in collecting hail reports to verifying263

warnings, though these increases are generally small, at 12.5-25 mm (0.5-1 in.). Analyzing this264

change using a Wilcoxon signed rank test for the difference between the medians (Wilks 2006), a265

substantial number of points, especially in the Southeast show a significant change at the p-value of266

≤0.05. This reflects the large increase in the number of observations in this region (where zeroes267

occur in the first period) in the most recent two decades rather than a trend in size (Allen and268

Tippett 2015), suggesting the data are stationary and thus the trend does not need to be included in269

the fitting procedure. The results from this analysis of hail size characteristics suggest that while270

there are considerable pitfalls with the record over the continental U.S., there are also sufficient271

data to warrant development of a hail size model.272
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b. Model Fitting273

Examining the empirical cumulative distribution function (CDF; Fig. 4a), the distribution of hail274

size is heavily quantized as a result of reference objects, most notably in the 19 to 25 mm (0.75275

to 1.00 in.) range, reflecting the minimum thresholds for severe hail reports (19 mm or 0.75 in.276

1979-2010, 25 mm or 1.00 in. 2010-2013) and for golfball sized hail (45 mm or 1.75 in.) and to277

other extents for other reference objects (e.g., baseball, 70 mm or 2.75 in.). These characteristics278

suggest that care needs to be taken in subsequent model fitting. As the desired model is a Gumbel279

distribution of the annual maximum hail size over each 1 degree cell, several approaches are280

needed to reduce the sensitivity to quantization of the data and limited sample size. To address281

the quantization, the data were dithered, where-by a small random uniform amount is added to,282

or subtracted from, the observed value before the whole set of observations is used to determine283

the sample annual maxima (Fig. 4b). To avoid overly large biases at small hail diameters, a284

linear fitted random uniform correction was developed, which uses a dithering process of the285

form: ynew = yold + ydithered , where a random value is sampled between ydithered =±(0.247yold +286

0.0279), capped at ±0.5 in. following testing of a range of values and fitting lines of regression to287

ensure minimal influence on the overall size distribution. This results in a hail size error range at288

19 mm (0.75 in.) of ±6.3 mm (0.25 in.), and at 45 mm (1.75 in.) or greater bounded at ±13 mm289

(0.5 in.). This dithering equivalent to a fuzzy-error in hail size for parameter estimation serves two290

purposes: to reduce the natural quantization of the data, and to offset issues with size estimation291

errors that bias the hail record, such as parallax in measurements and low hail size bias (Allen292

and Tippett 2015; Blair et al. 2017). This random variation results in a preserved distribution, but293

overall smoother empirical CDF (Fig. 4a) and better representation of the fitted distribution on a294

quantile-quantile plot. The second step of quality control is only to fit data grid points with 30 or295
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more observations, to ensure that a sufficient sample exists to accurately and reliably determine296

the Gumbel location and scale parameters while minimizing the parameter errors and increasing297

fit confidence.298

Performing this fitting of the Gumbel distribution using the MLE procedure, we obtain a grid-299

ded set of location and scale parameters over the continental U.S. (Fig. 5a,b). Generally higher300

values for scale are found across the Great Plains states, particularly over Texas, Oklahoma and301

Kansas, reflecting more regular return rates of larger hail sizes. To a lesser extent this is also302

found over the Southeast U.S. The differences between neighboring grid points are considerable303

over the domain with parameter estimation errors of 15-20% (Fig. 5c), reflecting the difficulty in304

estimating the scale parameter with limited observation sets, and its sensitivity to outliers. This305

variability between the nearby grid points is particularly noticeable for locations with significant306

urban population (e.g., Dallas-Fort Worth, Amarillo, Lubbock, Wichita, Oklahoma City) that in-307

creases the likelihood of large hail size reports. In contrast to the relatively limited area with308

high scale parameters, the location parameter is higher over a larger area, including the Plains309

and through the Midwest and Southeast, with the highest values from central Texas to the Dako-310

tas. The standard error in the location parameter estimates is between 2.5 and 5% over much of311

the domain except in locations which receive fewer hail reports, suggesting a greater confidence312

on expected maximum sizes from the sample available (Fig. 5d). A test of a random set of 30313

dithered fits shows minimal to negligible contributions to the standard error in using the dither-314

ing procedure (not shown). As another test of performance, the mean of the Gumbel distribution315

(Gumbelmean = 0.5772scale+ location) is compared to the mean of the annual maxima to which316

it was fitted (Fig. 6). This revealed that the Gumbel mean values were close to the expected result,317

but somewhat higher than the observations, potentially reflecting the limitations of the record, or318

a tendency of the Gumbel fitted model to overestimate the hail size.319
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Other fitting approaches can also be used to determine the point Gumbel distribution that may320

be able to leverage greater confidence from the limited observations (e.g., Probability Weighted321

Moments or L-moments). To evaluate whether this difference in fitting procedure influences the322

result compared to the MLE approach, identical data were fitted using L-Moments, which suggests323

that there is little to be gained by using the second procedure given the existing limitations of the324

data (Fig. 5e,f). This lack of distinction between the two methods is consistent with the prior325

analysis of hail-pad return levels by Fraile et al. (2003), and thus here we focus on results from the326

MLE approach.327

c. Return Levels and Stability Analysis328

To assess the suitability of the models to produce realistic return periods, several evaluations of329

performance were needed. First, the return levels and the confidence intervals for four regional330

locations which are co-located with highly populated observational records were analyzed (Fig.331

7). Individual grid data show a larger spread in the potential regional fits for the surrounding grid332

boxes, reflecting variations in the sample size and relatively infrequent returns of larger hail sizes333

with decreasing confidence at longer return intervals. The grid box encompassing Oklahoma City,334

Oklahoma is chosen as the long-term station representing the Great Plains (Figs. 7a). Observed335

annual maxima in the area range between 25 and 127 mm (1 and 5 in.), with heavy quantization336

toward both golfball (45 mm or 1.75 in.) and baseball diameters (70 mm or 2.75 in.) over the337

full 35 year record. Exploring the return levels yields a 127 mm (5 in.) stone at a 40-year return338

interval, with the remainder of observations pointing to a stably fitted model. The bounds of the339

surrounding points indicate that, at the 2-year interval, 51mm (2 in.) hail is expected, while at340

the 10-year return period, hail is expected to be within 64-114mm (2.5-4.5 in.) with relatively341

strong confidence based on the relatively narrow confidence interval of fit results. As would be342
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expected given the paucity of the largest of hail observations, the greatest range in both regions343

and confidence intervals is seen outside of the 50-year return levels, with the regional spread as344

large as between 101 and 178mm (4 and 7 in.) at the 200-year interval. To explore performance345

over the Northern Plains, the point nearest Pierre, South Dakota was examined (Fig. 7b). This346

point includes, in the observed record, the largest verified hail size observation in the U.S. of 203347

mm (8 in.), and thus can be used to explore whether a single outlying observation heavily skews348

the distribution. As for Oklahoma, there is heavy quantization in the golfball category, with the349

three largest stones found to be 114, 114 and 200mm (4.5, 4.5 and 8 in.) in diameter. Bounds350

from the surrounding grid points are tighter than for the Oklahoma case, with a range at the 200-351

year return level of 89-197mm (3.5-7.75 in.), which encompasses the record size observed near352

Vivian, South Dakota. As a third evaluation point to explore performance over the Southeast353

U.S., we consider the return levels around Atlanta, Georgia. There is extreme quantization at the354

golfball level, with the largest observed size of 82.5mm (3.25 in.). The concentration at smaller355

hail sizes over a wider area is reflected by the narrower range at longer return levels over the356

surrounding region and tighter corresponding confidence intervals, with a maximum 200-year357

return level between 76 and 152 mm (3 and 6 in.). Golfball (45 mm or 1.75 in.) hail has a 2-358

year return period at Atlanta, with values of up to 76 mm (3 in.) expected at intervals as short359

as 20 years. Finally, the model is evaluated over the mid-Atlantic and Northeast regions, using360

the grid closest to Philadelphia, Pennsylvania. Hail sizes in this region are again comparatively361

smaller, with most hail observed close to the minimal severe thresholds, and the largest sizes362

on record between golfball and baseball (45-70 mm or 1.75-2.75 in.). The wider spread in this363

region reflects the variations induced by a larger number of reports above 1 in. (25 mm), with364

the remaining sample at the minimum severe level, which leads to point-to-point variations in the365

estimation due to a non-continuous observational distribution despite dithering. Nonetheless, 76366
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mm (3 in.) hail is certainly possible in Philadelphia and surrounds, with this size stone occurring367

between the 10- and 200-year return levels, suggesting at least some degree of regularity. The368

spatial variability of return sizes at given probabilities should not be interpreted on a point basis in369

the unsmoothed form, as point-to-point sample variation can lead to larger variations in estimated370

return level, especially at the longest returns. A 100-year return period implies that there is a 0.01371

probability at any point of a given maximum hail size within a 1◦ x 1◦ grid box, however at higher372

resolution and consequently smaller grid area (which is not examined in this study), the 100-year373

value could be equal to this or smaller. While there is a considerable spread in the confidence374

intervals, there is a strong degree of consistency of hail at least in excess of 51 mm (2 in.) at the375

10-year return level for all locations, reflecting a hazard to property and vehicles.376

Generalizing this analysis to the entire fitted domain, we evaluate the fitted point distribution377

to determine the hail size (in inches) at the respective return periods (Fig. 8). This reveals that378

for most locations east of the Rockies, that hail sizes at the 2-year return level are over 25 mm (1379

in.), and a large majority of grid points in the Great Plains exceed 50 mm (2 in., Fig. 8b), with380

values reaching as high as 76-101mm (3-4 in.) at the 5-year interval. Increasing the return interval381

to the 10-year level, sizes generally range between 76 and 127mm (3 and 5 in.), with the higher382

values mostly confined to grid points in the Great Plains. Given the length of the record (35 years),383

the 20 and 50-year return values most closely resemble the maximum hail size observations, with384

higher values for many points. This is as would be expected for a fitted distribution, as there is385

considerable point uncertainty in event occurrence, especially when combined with the existence386

of a number of rarer large observations (Fig. 8a,d,e). The values at these levels range between 75387

and 152 mm (3-6 in.), suggesting that the model is representative of the data to which it is fitted and388

includes extensions into the Southeast and Midwest. At longer return periods (100-year return),389

hail sizes of 150mm (6 in.) are identified for most of the fitted hail domain outside of the northeast390
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U.S., with the highest values particularly concentrated through the Great Plains and toward the391

Canadian border. Extending this to an extremely long return period with low-confidence, at the392

200-year level (Fig. 8), large portions of the Great Plains including Oklahoma, Kansas, and Texas393

would suggest return diameters of 152-203mm (6-8 in.) or more, which are consistent with the394

largest values in the existing hail record. Analyzing throughout the return periods, there is low395

probability but high magnitude potential over the northern Great Plains and Midwest, reflecting396

rarer excursions of environmental parameters favorable to the development of storms producing397

this diameter hail. Over much of the domain east of the Rockies, including through the Southeast,398

east of the Applachian Mountains, and the eastern population centers, 200-year return levels are399

well in excess of 101mm (4 in.), suggesting the potential for catastrophic hail storms in areas400

which comparatively rarely experience these events. As with all extreme value estimates of return401

levels, the largest potential errors exist in the outer tails, especially when sample size is limited.402

Nonetheless, the fact that 101mm (4 in.) or greater measurements are not unusual anywhere within403

the domain (consistent with the estimated 20-50 year or greater return period), suggests that longer404

return levels are not unreasonable, but must be viewed with greater uncertainty.405

The gridbox-to-gridbox variations suggest a more pronounced influence of spatial observational406

quality on the return period estimates rather than reflecting robust differences in hail size at varying407

return levels. To offset this, we apply a 2-D Gaussian Kernel smoother to the return period data408

with a σ=1.00 (1 degree smoother) kernel bandwidth to produce a more spatially consistent hazard409

profile (Fig. 9). The smoothed spatial return map for the maximum hail size for 1979-2013410

suggests peak values of approximately 127-152mm (5-6 in.), with the highest likelihood for these411

hail sizes over the central to northern Great Plains and extending into both the upper Midwest and412

Southeast. Values as high as 100mm (4 in.) extend through New Mexico into Arizona and to the413

Canadian border and into Montana. At the 2-year return level, much of the Great Plains exhibit414
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values up to 50mm (2 in.), with a steep gradient towards the east of the Rockies and fairly uniform415

coverage that extends from Montana to Southern Maine, south to central Florida and stretching416

west into the desert southwest (Fig. 9b). At the 10-year level, much of the region east of the417

CONUS has return hail sizes of 51-76 mm (2-3 in.), and 101 mm (4 in.) over the central Great418

Plains. This extension of significant hail (50 mm or 2 in.) is found into southern New York,419

Pennsylvania and New Jersey. Return values increase substantially over the Great Plains at the420

20- and 50- year return levels, with a slower increase over much of the remainder of the eastern421

CONUS, with the smoothed 50-year return level qualitatively similar to the maximum observed422

hail size, and the largest difference being the reduction in northern extent (reflecting the tendency423

of the smoothing kernel to flatten absolute point maxima). There is also some smearing by the424

smoothing procedure of four grid boxes in Arizona with sufficient very large hail measurements425

to justify fitting the model, where hail up to 101mm (4 in.) has been observed in the recent past.426

Even following the smoothing procedure, hail sizes over 100-125mm (4-5 in.) are likely over427

much of the eastern CONUS at return levels of over 100 years, with 150mm (6 in.) appearing a428

likely value for the more convectively prone regions of the Great Plains, Midwest and Southeast,429

rising to 175-200mm (7-8 in.) in the central Great Plains (Fig. 9g,h).430

Testing the modeled hail sizes further, the return periods for hail of 25mm (1 in.) in diameter431

are evaluated by comparing them with the annual occurrence rate of a proxy for hail derived from432

environmental parameters (Allen et al. 2015). This proxy produces a spatially unbiased hail clima-433

tology using a combination of monthly environmental parameters favorable to hail development434

(CAPE, 0-3km Storm Relative Helicity, convective precipitation, mean 0-90mb above ground level435

specific humidity) in a Poisson regression to simulate the monthly frequency of hail ≥25 mm (1436

in.). The point comparison suggests that this hail size has a return period of one year over most of437

the U.S., particularly over the Great Plains, Midwest and Southeast (Figure 10a). For comparison,438
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the Gumbel distribution used here cannot provide a return period of less than 1 year as it is defined439

by (1/p), and thus the environmentally derived rate should be considered equivalent for all values440

between 0.10 and 1.00 (i.e. where one or more ≥25mm (1 in.) hail storms occur per year). This441

comparison reveals that the two maps are spatially consistent. The inverse probability derived442

from the environmental proxy suggests a less than one event per year return rate over much of the443

Great Plains and remainder of the eastern CONUS (Figure 10b), which would imply the Gumbel444

model underestimates the return rate of the hail hazard for ≥25mm (1 in.) hail and smaller sizes.445

Following this positive test, the evaluation threshold is raised for temporal return period through446

the respective sizes of interest (38, 45, 51, 76 mm or 1.5, 1.75, 2, 3 in.). Even for hail sizes as447

large as 75mm (3 in., Fig. 11), the minimum return period is between 2 and 5 years for much of448

the Great Plains, while hail stone diameters of up to 50mm (2 in.) have return periods of 1-3 years449

over the Great Plains, Southeast and Midwest. These hail sizes appear to be more infrequent along450

the Appalachian Mountains and into the Northeast, particularly for hail sizes in excess of 50mm451

(2 in.). For the lower thresholds, much of the domain experiences hail of up to golf ball diameter452

(45mm or 1.75 in.) at a likelihood of an event every 1-2 years throughout the Great Plains. These453

results suggest that hailstones capable of producing considerable damage to structures, vehicles454

and property (≥45mm or 1.75 in., Brown et al. (2015)) are relatively commonplace on a yearly455

basis for the Great Plains and Southeast, reflecting a likely hazard irrespective of the available456

observations. While this does not necessarily imply certainty at any location such as a sub-grid457

scale city given grid boxes of ∼ 100x100 km, it does suggest that these large hail events have a458

higher rate of occurrence than may have been anticipated based on existing observationally derived459

climatologies.460

To evaluate these fitted distributions for performance in representing quantiles, next continen-461

tal scatter diagrams of observed (percentiles from all hail observations) and modeled (percentiles462
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derived from annual maxima) hail size were explored (Figure 12). As the observational data are463

limited in quantity, we restrict this to the 80th, 90th, 95th, and 98th percentiles at each grid point464

(5,10, 20, 50 year return levels) for the undithered and dithered observations to both the point and465

smoothed model return periods. Against both the quantized and dithered observed quantiles, the466

point model performed well at the 80th, 90th and 95th percentiles with high degrees of correlation467

(Figure 12). At the 98th percentile, the model also appeared to perform relatively well, however,468

this is harder to assess as the observations are less representative due to the limited sample, which469

can explain the slight upward bias in the modeled quantiles. Comparison to the dithered data470

results in a considerably higher degree of fit, suggesting that it provides a more representative471

depiction of hail size quantiles over the domain. This supports the conclusion that performance472

across the U.S. is very good out to the 20-year return level, and perhaps slightly overestimating473

the return size at the 50-year return period if the 35 years of observations are representative of the474

true distribution. Considering instead the smooth return levels sampled on a point basis, there is a475

greater degree of spread in the compared points where hail size quantiles are both under and over-476

estimated relative to observed quantiles owing to the smoothing of the sample (Figure 12c,f,i,l).477

Nonetheless, the degree of correlation is significantly high between the observed and smoothed478

data, with relatively small point variations particularly at the 80th, 90th, and 95th percentiles.479

Finally the frequency with which observed hail sizes do not exceed the model percentiles (e.g.480

ideally 95% of observed hail sizes are below the modeled 95th percentile) are summarized as481

percentiles of non-exceedance. Each grid point was compared to the fitted model through the482

range of quantiles over the continental U.S. and regionally to establish any localized biases at a483

given return level. Over the entire domain (Figure 13a), the grid box model shows a relatively484

good fit through the middle quantiles (80th-99th) with upward divergence at the 50th and 99th485

percentiles, the lowest and highest values shown. This suggested that the grid box model may be486
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overestimating the size of hail for a given return period, which is consistent with the comparison of487

the Gumbel mean and the mean annual maximum values. The result is somewhat unexpected given488

that this part of the distribution has the most available data for evaluation (though data limitations489

influence a number of the fitted grid points), but may also reflect the influence of a lower bound490

on hail size incurred by the severe thresholds that preclude recording of smaller diameters (Allen491

and Tippett 2015). Another potential explanation is that the tendency of the Gumbel distribution to492

weigh toward the center of the data leads to the fitted curve being skewed at the extreme tail and the493

lower return frequencies. The values at the higher quantiles also display this divergence related to494

the limitations in the maximal observed sizes of the distribution. On a regional basis (Figure 13b),495

the model appears to perform well over each of the respective NOAA climate regions (Allen et al.496

2015), with similar positive biases over regions with fewer observations over the record length497

compared to the central Great Plains (e.g., the Northeast).498

4. Discussion499

A climatology of large hail occurrence and maximum size potential has been derived from Storm500

Data using observations from 1979-2013, providing insight to hazard modeling for large hail. The501

spatial hazard maps of hail size return intervals generated using this approach illustrate that a502

simple EVD can produce a first of its kind spatial model for observed hail size return intervals503

for the central and eastern CONUS. However, it has also been demonstrated that it is necessary to504

carefully explore the limitations of the observed hail record and statistical techniques to accurately505

ascertain the hazard, or the reasons for point to point variability in the results obtained using this506

comparatively crude approach. Nonetheless, the performance of the EVD model based on the507

evaluation conducted here would indicate that it provides a useful analysis of the hazard posed508

by large hail in the U.S., and higher than expected potential for large portions of the country509
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compared to observational climatology, with the east of the country exposed to hail up to 75mm510

(3 in.) diameters on a 20- to 50-year interval, and over the Great Plains on a 10- year recurrence511

period, and exposed to damaging hail (45 mm/1.75 in. or greater) every one to two years.512

Perhaps the most stark limitation of this technique and assessment of U.S. hail size data is the513

significant quantization present in the size of hail reports resulting from a limited diversity of514

reference objects available for observers and the very basis of the reporting system (Blair and515

Leighton 2012; Allen and Tippett 2015; Blair et al. 2017). This challenge can be mitigated by516

dithering to some extent, but this data processing step introduces additional potential errors (albeit517

small) in the estimation of fitted distribution parameters. On the other hand, the step allows for518

a fairer evaluation of the modeled quantiles compared to the quantized observations, and likely519

reflects the errors that are naturally introduced by observers (Blair and Leighton 2012; Blair et al.520

2017). Theoretically and physically, there must be an upper bound to the largest possible hail size521

at any one location (Knight and Knight 2001), as updraft speed cannot increase without bound for522

realistic environments. However, for most locations the sample is incomplete or not reflective of523

the narrow swathes of the largest stones for each storm (Blair et al. 2017), and thus may be under-524

representative. Additionally the spatial distribution of observations reflects the characteristics of525

population, not only the actual distribution of hail size observations. This results in errors in the526

fitted scale and location parameters, particularly where fewer observations or longer return sizes527

are found. While this error can be mitigated by smoothing procedures or possibly sampling over528

a wider region to fill out the distribution, there is the potential that this step over or understates529

the hail size potential. This suggests a need to divorce the observations from the hail size model,530

perhaps by using environmental distributions (e.g., Brooks et al. 2003; Gilleland et al. 2013),531

particularly where data are limited or do not exist.532
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The limitations of the observational data also lead to issues in the parameter estimation, as533

there are insufficient samples in many locations to explore the characteristic of the tail of the534

distribution. It is likely that if additional data were available to constrain parameter estimations,535

a more general GEV model might be possible, which may include a tailing behavior toward the536

Weibull distribution like many processes of increasing rarity (Fraile et al. 1992; Dotzek et al.537

2009). The point Gumbel model is one possible solution with currently available data. It is538

also plausible that this result may be sensitive to the spatial resolution of the grid chosen, which539

merits future investigation. A further complication is that it is not clear how these grid box results540

translate to the true probability of experiencing hail at the sub-grid scale. However the nature of541

the Gumbel as a collector distribution and lack of tailing characteristics in the extremes to provide542

an upper bound can mean over- or underestimation of hail sizes depending on the available fit543

using the existing data. This suggests that as future data becomes available, it may be possible544

to improve on the modeled result here and possibly that the point distribution will converge to545

a Weibull distribution, or be better modeled using a Generalized Pareto Distribution. However,546

at the current juncture neither of these approaches produced stable results due to large grid box-547

to-grid box variations in the estimated shape parameters. Known long return period observations548

(35 years) appear to be consistent with the modeled distribution, suggesting that the outer tail549

is being reasonably well captured by the Gumbel model. Despite the limitations of the Gumbel550

approach, for the 2-100 year return periods, the regional and national performance metrics provide551

confidence that this model for U.S. hail size performs well in assessing the threat posed to the U.S.552

by large hail events.553
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parameter using L-Moments fitting. . . . . . . . . . . . . . . . . 38688

Fig. 6. Comparison of the mean annual maximum hail size at each grid box used for the model689

fitting and the mean of the derived Gumbel distribution at each point, determined by690

(Gumbelmean = 0.5772scale+ location) . . . . . . . . . . . . . . . 39691

Fig. 7. Evaluation of the maximum expected size of hail at grid points and the nearby region for692

givens return periods in years as illustrated on a Gumbel plot. Dots represent the raw ob-693

servations of the point (grey) samples and dithered observations (black). Continuous lines694

indicate the return curve for the point fitted model on the dithered data (blue), and the range695

of model fits for the surrounding ±3 grid boxes (48 grid boxes total, in red). Confidence in-696

tervals for the point (blue), and the surrounding grid (red) are indicated by the dashed lines.697

Nearest gridpoints are shown to a) Oklahoma City, Oklahoma, b) Pierre, South Dakota, c)698

Atlanta, Georgia, and d) Philadelphia, Pennsylvania. . . . . . . . . . . . . 40699

Fig. 8. Fitted point dithered Gumbel estimated return hail sizes for the respective quantiles. a)700

Maximum observed hail size for each grid point 1979-2013. b-h) Modeled return hail sizes701

at the 2,5,10,20,50,100 and 200 year intervals, for points with at least 30 annual maxima on702

the 1◦ x 1◦ grid. . . . . . . . . . . . . . . . . . . . . . . 41703

Fig. 9. As for Figure 6, except hail return sizes as determined derived from Gaussian kernel-704

smoothing of the raw Gumbel return values using a kernel with a 1.00 sigma (1 degree)705

bandwidth. . . . . . . . . . . . . . . . . . . . . . . . 42706

Fig. 10. Comparison of return period over the climatology 1979-2013 from the a) 1◦ x 1◦ gridbox707

model for 25 mm (1 in.) hail with b) Inverse probability calculated using one on the mean708

annual hail occurrence above 25 mm (1 in.) determined using the hail index derived from709

North American Regional Reanalysis monthly environmental data (Allen et al. 2015). Note710

that by construction the minimum value of a Gumbel return period here is 1 year (1/p),711
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Fig. 11. Fitted Gumbel Return Periods on the 1◦ x 1◦ grid for the chosen size thresholds (1.5,1.75,2714

and 3 in. respectively). Note that there is a different scale for return period values for panels715
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Fig. 12. Comparison of point modeled hail size at the 80th, 90th 95th and 98th percentiles and ob-717

served hail size for undithered observations (a,d,g,j), dithered observations (b,e,h,k) and718

dithered with the smoothed modeled hail size (c,f,i,l), for locations with at least 30 annual719

maxima observations. Significant Pearson correlations are shown for each comparison. . . . 45720

Fig. 13. Percentile of non-exceedence plot for point and areal Gumbel modeled tiles compared to the721

number of tiles not exceeding the observed values at that grid point. Comparison is made at722
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FIG. 1. Maximum observed U.S. hail size from the NCEI dataset for the periods a) 1979-2013 and b) 1955-

2013. c) Mean annual maximum hail size 1979-2013. d) Number of annual maxima in each grid box over the

period 1979-2013.
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FIG. 2. Seasonality of maximum hail size from 1979-2013 in terms of the a) Peak month of hail size (month

with the largest hail size) based on the gridbox mean of non-zero months for the period 1979-2013, b) March,

April, May (MAM) maximum hail size, c) June, July, August (JJA) maximum hail size, and d) September,

October November (SON) maximum hail size.
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FIG. 3. Changes between the period 1979-1995 and 1996-2013 in terms of a) The largest recorded annual

maximum hail size and b) Mean annual maximum hail size over the U.S. Stippling shows where a Wilcoxon

signed-rank test of medians has a p-value of less than 0.05, and reflects a rejection of the hypothesis of no change

in median between the periods.
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FIG. 4. a) Illustration of the impact of capped linear dithering on hail size and b) the resulting empirical CDF

of U.S. hail size observations following the dithering procedure.

736

737

37



20°N

25°N

30°N

35°N

40°N

45°N

50°N

110°W 100°W 90°W 80°W

a) Scale Gumbel MLE

0 0.25 0.50 0.75 1.00
Scale Parameter

110°W 100°W 90°W 80°W

b) Location Gumbel MLE

0.00 0.50 1.00 1.50 2.0 2.5
Location Parameter

20°N

25°N

30°N

35°N

40°N

45°N

50°N

110°W 100°W 90°W 80°W

c) Scale Gumbel MLE Std Error

0 5 10 15 20 25 30
Scale Error (%)

110°W 100°W 90°W 80°W

d) Location Gumbel MLE Std Error

0 2.5 5.0 7.5 10.0
Location Error (%)

20°N

25°N

30°N

35°N

40°N

45°N

50°N

110°W 100°W 90°W 80°W

e) Scale Gumbel L-Moments Fitting

0 0.25 0.50 0.75 1.00
Scale Parameter

110°W 100°W 90°W 80°W

f) Location Gumbel L-Moments Fitting

0.00 0.50 1.00 1.50 2.0 2.5
Location Parameter

FIG. 5. Gumbel distribution parameter estimates and their standard errors for the point fit of dithered annual

maxima observations with more than 30 years for the period 1979-2013. a) Scale parameter using MLE fitting,

b) Location parameter using MLE fitting, c) Percentage standard error in scale parameter estimates from MLE,

d) Percentage standard error in location parameter estimates from MLE, e) Scale parameter using L-Moments

fitting, f) Location parameter using L-Moments fitting.
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FIG. 6. Comparison of the mean annual maximum hail size at each grid box used for the model fitting and the

mean of the derived Gumbel distribution at each point, determined by (Gumbelmean = 0.5772scale+ location)
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c) Atlanta, GA (ATL:16,30) Gumbel Plot
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FIG. 7. Evaluation of the maximum expected size of hail at grid points and the nearby region for givens

return periods in years as illustrated on a Gumbel plot. Dots represent the raw observations of the point (grey)

samples and dithered observations (black). Continuous lines indicate the return curve for the point fitted model

on the dithered data (blue), and the range of model fits for the surrounding±3 grid boxes (48 grid boxes total, in

red). Confidence intervals for the point (blue), and the surrounding grid (red) are indicated by the dashed lines.

Nearest gridpoints are shown to a) Oklahoma City, Oklahoma, b) Pierre, South Dakota, c) Atlanta, Georgia, and

d) Philadelphia, Pennsylvania.
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FIG. 8. Fitted point dithered Gumbel estimated return hail sizes for the respective quantiles. a) Maximum

observed hail size for each grid point 1979-2013. b-h) Modeled return hail sizes at the 2,5,10,20,50,100 and 200

year intervals, for points with at least 30 annual maxima on the 1◦ x 1◦ grid.
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FIG. 9. As for Figure 6, except hail return sizes as determined derived from Gaussian kernel-smoothing of the

raw Gumbel return values using a kernel with a 1.00 sigma (1 degree) bandwidth.
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FIG. 10. Comparison of return period over the climatology 1979-2013 from the a) 1◦ x 1◦ gridbox model for

25 mm (1 in.) hail with b) Inverse probability calculated using one on the mean annual hail occurrence above

25 mm (1 in.) determined using the hail index derived from North American Regional Reanalysis monthly

environmental data (Allen et al. 2015). Note that by construction the minimum value of a Gumbel return period

here is 1 year (1/p), whereas the occurrence model is capable of producing intervals of less than 1 year and thus

the color scales for the two panels differ.
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FIG. 11. Fitted Gumbel Return Periods on the 1◦ x 1◦ grid for the chosen size thresholds (1.5,1.75,2 and 3 in.

respectively). Note that there is a different scale for return period values for panels a),b),c) as compared to panel

d) to reflect a longer range of returns for the larger hail sizes.
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FIG. 12. Comparison of point modeled hail size at the 80th, 90th 95th and 98th percentiles and observed hail

size for undithered observations (a,d,g,j), dithered observations (b,e,h,k) and dithered with the smoothed mod-

eled hail size (c,f,i,l), for locations with at least 30 annual maxima observations. Significant Pearson correlations

are shown for each comparison.
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FIG. 13. Percentile of non-exceedence plot for point and areal Gumbel modeled tiles compared to the number

of tiles not exceeding the observed values at that grid point. Comparison is made at each of the respective

quantiles, with the box and whiskers in a), while b) makes the same comparison over limited NOAA climate

regions as defined in Allen et al. (2015b).
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