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Abstract

Do redundant bureaucratic arrangements represent wasteful duplication or a hedge against
political uncertainty? Previous attempts at addressing this question have treated agency
actions as exogenous, thus avoiding strategic issues such as collective action problems or
competition. I develop a game-theoretic model of bureaucratic policy-making in which a
political principal chooses the number of agents to handle a given task. Importantly, agents
have policy preferences that may be opposed to the principal’s, and furthermore may choose
their policy or effort levels. Among the results are that redundancy can help a principal
achieve her policy goals when her preferences are not aligned with the agents’. And contrary
to the claims of supporters of streamlining bureaucracies, redundancy may even increase
efficiency under some conditions. But redundancy is unnecessary if even a single agent has
preferences relatively close to the principal’s, or if the agent’s jurisdiction can be terminated.



1. Introduction

Observers have long linked the effectiveness of government agencies to institutional de-

sign. Beginning with the seminal work of Landau (1969), redundant bureaucratic structures

have been a prominent and recurring part of this discussion. Proponents have argued that

redundancy improves the chances of some part of an organization succeeding in its task,

and thus reduces the likelihood of failure. Opponents have questioned the efficiency of such

arrangements, and have called for eliminating “wasteful duplication” and “overlap” in the

bureaucracy. Others have also pointed out that increasing the number of components can

lead to unpredictable interactions between them, ultimately hindering organizational effec-

tiveness. To date, however, no equilibrium theory of redundancy and its alternatives has

confronted these issues. As James Q. Wilson has summarized, “The problem, of course, is

to choose between good and bad redundancies, a matter on which scholars have made little

progress” (2000, p. 274).

In the field of reliability engineering, redundancy theory (e.g., Barlow and Proschan 1965)

establishes conditions under which functionally similar components can be added to improve

a system’s ex ante performance. For example, the United States Navy has long insisted

on twin-engined designs for its sea-based aircraft because of the greater risks associated

with flying over water. If these components have independently distributed probabilities

of performing a task successfully, then their combination will be more likely to achieve a

success together than either acting alone. Two components that are each independently

50% reliable will then be as effective as one that is 75% reliable. Of course, the tendency

toward infinite redundancy is tempered by decreasing marginal returns and the costs of

introducing additional components.

Bureaucratic redundancy theory extends this basic logic to political agencies, arguing

that principals choose (or acquiesce to) multiple agents in order to increase organizational

effectiveness. The American political system is replete with redundant arrangements, both

across agencies (e.g., Chisholm 1989) as well as within them (e.g., Sapolsky 1972).1 A few

examples illustrate their scope:

• Welfare policy has long been administered by a patchwork of overlapping programs

1This paper speaks to both possibilities, so I adopt the neutral language of principals and agents through-
out.
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(some created in part by federalism), many of which embody different “theories” for

addressing poverty.2

• Each branch of the military has its own “air force.” Each service has a somewhat

differentiated role; for example, only the Air Force has long-range bombers. However,

they also perform many common tasks, such as the support of ground troops in battle.

• In the Department of Justice, the Office of Professional Responsibility and the Office

of the Inspector General are jointly responsible for investigating internal malfeasance.

The former was established internally in 1975 as part of a series of post-Watergate

reforms, and the latter by Congress in 1989.

The arguments for redundancy are amenable to formalization, and more recent theories

have explicitly treated the political principal’s choice of agents as an optimization decision.

Bendor (1985) establishes that the theory holds even if agents have non-independent success

probabilities (though the benefits of redundancy are reduced if success probabilities are

positively correlated). Non-independence might obtain, for instance, if units or agents share

technical interdependencies. Heimann (1993, 1997) examines the implications of Type I and

Type II errors and finds that redundant systems can prevent Type II errors, but raise the

probability of Type I errors, while serial (non-redundant) systems have the opposite effect.3

An important assumption of these and other theories of redundancy is that the reliabil-

ity of each agent is either given exogenously or determined by technical interdependencies.

Perhaps due to the literature’s roots in engineering, there are no strategic interdependencies,

whereby individual agents might choose effort levels (hence their “reliability”) based on their

preferences and the actions of others.4 This assumption has been questioned on two fronts.

First, numerous historical studies of redundancy identify significant strategic behavior by

component agencies—in some cases anticipated by the system’s designers (e.g., Maass 1951,

Armacost 1969). Second, the primary intellectual rival to redundancy theory, known as

normal accident theory (Perrow 1984, Sagan 1993), suggests that a system’s reliability can

depend on complex interaction among its components. Often these interactions raise the

2See Bendor (1985) and Salamon (1978) for a discussion of redundancies in welfare policy in the 1960s.
3Lohmann and Hopenhayn (1998) also examine this issue in a somewhat different context.
4A substantial literature in economics also examines the impact of different structures on organizational

effectiveness. Many of these models similarly assume only technical (if any) interdependencies in agency
effectiveness. Examples include Sah and Stiglitz (1986) and Sobel (1992). For a partial exception, see
Kremer (1993).
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likelihood of failure, in which case the system is best controlled by centralizing authority,

rather than by increasing redundancy. While this theory is developed informally, its critique

of the redundancy theory view of agent reliability naturally draws attention to other sources

of interdependencies.

Given the formalization of redundancy theory and the implicit recognition of strategic

interdependence in other aspects of the literature, it is puzzling—and counter to the trend

of models of bureaucratic politics—that no strategic theory of redundancy has yet emerged.

This omission has serious consequences because agencies frequently have incentives for sub-

verting their principals’ wishes, both because of divergent policy preferences (especially in

presidential systems like the United States) and imperfect or incomplete information. Fur-

ther, it is not obvious how strategic actors would affect the performance of redundant sys-

tems. Two common intuitions are of particular interest here. First, redundancy may cause

collective action problems, where individual agents free ride off the efforts of others. Second,

as Kaufman (1976) argues, redundancy may be indirect. An agent with exclusive jurisdiction

over a task may face pressure from the possibility of another agent replacing it in the future.

Thus “latent” competition may over time serve many of the same goals as redundant agents.

This paper connects the classical redundancy arguments with these strategic intuitions

through a simple game-theoretic model. The critical feature of the model is that agents are

treated as strategic actors in their own right, thus requiring both principal and agent choices

to be derived endogenously. In light of the theoretical advances in the study of bureaucratic

politics, such an effort naturally entails certain compromises. In order to remain as close as

possible to the original arguments on organizational redundancy, the model is highly stylized,

and abstracts away from many institutional features. However, it is also tractable and can

be expanded in various ways to incorporate greater detail.

In the basic game, there is a single policy domain with two discrete outcomes, which may

be labeled “good” and “bad.” The principal always wishes to attain the former outcome,

while agents have possibly divergent preferences over the outcomes. The principal chooses

the number of agents, while each agent chooses an unobservable and costly effort level or

policy, which is operationalized as a probability of “succeeding.” As is standard in models

of redundancy, a good outcome results if at least one agent succeeds. The optimal level

of redundancy therefore depends on the agents’ incentives to exert high effort levels in the

presence of other agents. Several extensions to the basic model are also developed. First, a
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repeated version of the game examines conditions under which latent redundancy can achieve

the principal’s goals more efficiently. Additionally, two extensions examine the effects of

different policy technologies, one in which good outcomes require more than one agent to

succeed, and the other with policy externalities (i.e., a form of technical interdependence).

The results of the model provide a basis for understanding the organizational structures

that political principals would either design or accept. Some of the predictions are quite intu-

itive. Agents’ policy choices impose externalities on their redundant partners in equilibrium,

even when the policy technology is technically statistically independent (thus satisfying a

basic condition for classical redundancy). Typically these take the form of a collective action

problem: all agents exert less effort than they would if acting alone. However, in the case

where a good outcome requires multiple agents to succeed, positive externalities can occur.

More surprisingly, the effect of the negative externalities on the collective outcome (and

thus the principal’s choice of organizational structure) varies. A redundant system tends to

help the principal to achieve her goals when the agents’ policy preferences are far from her

own. But redundancy does not help her otherwise. When a “friendly” agent exists the col-

lective action problems are particularly acute, and additional agents can reduce the chances

of a good outcome. Moreover, in a repeated setting where players do not discount future

payoffs too heavily, latent redundancy works. The principal can induce even a relatively

unfriendly agent to choose her ideal policy, simply by terminating it if it does not perform

well. In this setting, agents essentially compete against themselves.

The model naturally contributes to a substantial body of work concerned not only with

redundancy, but with the institutional determinants of bureaucratic effectiveness more gen-

erally.5 It also adds a new argument to theories of bureaucratic delegation. Much of this

literature has emphasized the importance of preference convergence in delegation decisions,

although the results here demonstrate some conditions under which a principal will delegate

even to unfriendly agents.6 Finally, the model’s focus on collective action in a highly general

hierarchical relationship suggests applications to non-government organizations as well.

The results will also be useful for developing empirical tests of the relationship between

principal and agent preferences and organizational design. To date, an extensive literature

5There are numerous developments of this theme; for examples see Moe (1989), Wilson (2000), and
Carpenter (2001).

6For discussions on bureaucratic delegation, see Calvert, McCubbins, and Weingast (1985), Kiewiet and
McCubbins (1991), Epstein and O’Halloran (1994, 1999), Bawn (1995), and Gailmard (2002a).
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based on case studies has covered a range of issues related to redundancy and normal acci-

dents (e.g., Lerner 1986, Rochlin, LaPorte, and Roberts 1987, LaPorte and Consolini 1991).

By contrast, some of the hypotheses regarding jurisdictional assignments developed here will

be testable on a broader scale, in some cases using readily available data.

Before proceeding, I note two caveats which, given the foundation laid by this work, may

be viewed as opportunities for generalization. First, while the policy technologies used here

maintain maximum comparability with existing theories of redundancy, other formulations

are of course plausible. For example, in Brehm and Gates (1997), agents have the option of

“sabotage” in addition to working or shirking. The issue is a general one, as agent effort may

translate into outcomes in a variety of ways depending on the policy domain (e.g., Esteban

and Ray 2001, Hirshleifer 1983, Holmstrom 1982).

Second, while the model approaches redundancy from the perspective of a “reliability-

maximizing” principal, other rationales and explanations for redundancy exist. Perhaps most

significantly, entrepreneurial agents can move unilaterally into new policy areas. In this case,

the model suggests how a principal would react to such jurisdictional shifts, and in turn the

kinds of policy expansion that agents will undertake. Another possibility is that redundancy

arises from political compromise (e.g., Moe 1989). In this case, agencies with different

preferences or procedures may be used to buy the support of opposing interests. Next,

borrowing an analogy from private markets, redundancy may induce efficiency-improving

competition among agents (Niskanen 1971, Miller and Moe 1983, Donahue 1991, Osborne

and Gaebler 1992).7 Finally, a principal may use redundancy to solve adverse selection,

as opposed to moral hazard problems.8 Most of these explanations are not necessarily

incompatible with the approach taken here, but would entail non-trivial changes in the

underlying model.

The paper proceeds as follows. In the next section, I motivate the theory with an example

that contrasts strategic and non-strategic versions of redundancy. Section 3 lays out the

direct redundancy model, which is the basis of the games developed here. Section 4 derives

the main results for this model. Latent redundancy is explored in Section 5. Section 6

develops the extensions on collaborative environments and policy externalities. Section 7

7Indeed, in a later work, Landau (1991) himself invokes a market analogy for why redundant agents
should be more efficient.

8Examples might include principals confronting a Condorcet Jury problem (e.g., Austen-Smith and Banks
1996), or attempting to monitor corruption (e.g., Montinola 2002).
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proposes some empirical applications and extensions for future research and concludes.

2. Strategic and Non-Strategic Redundancy: An Example

To illustrate very simply why a strategic perspective on redundancy matters, consider

the following example. A principal can choose up to two agents to share jurisdiction over

a single task. The task might be the gathering of intelligence that potentially involves the

“turf” of both civilian and military agencies (e.g., Federal Bureau of Investigation, Central

Intelligence Agency, National Security Agency, military intelligence, State Department).

Each agent may individually succeed or fail. For simplicity, assume that the probability of

success, or reliability, is r ∈ (0, 1) (the example generalizes easily to heterogeneous reliability

rates). This probability is independent across agents, which may reflect the fact that agents

use different methodologies in their work.9 The overall outcome of the task is “good” for the

principal if either agent succeeds in gathering the crucial intelligence, and “bad” otherwise.

The principal receives one unit of utility for a good outcome, and zero for a bad one.

In a non-strategic environment, each agent’s reliability is unaffected by the presence of

other agents. Thus, the probability of a good outcome is simply r with one agent, and

r + (1−r)r > r with two. The redundant agent therefore raises the probability of a good

outcome, and the principal’s expected utility, by (1−r)r.
Now suppose that agents are strategic; that is, they receive payoffs from outcomes and

choose effort levels. Agents receive one unit of utility for a good outcome, and zero otherwise.

Each agent can now choose either to work or shirk. Its reliability, if it should work, is r;

otherwise, it is zero. Working imposes a cost c ∈ (0, r), while shirking costs nothing. Thus,

each agent shares the principal’s desire for a good outcome, and would exert effort if acting

alone. However, each also understands that its effort is wasted if the other agent succeeds.

The following payoff matrix summarizes the game.

Figure 1: A Simple Redundancy Game

9As will be clear in the subsequent analysis, the independence of agent effort can contribute greatly to
the success of redundant systems. This implies—contrary to the argument of some reformers—that agencies
should not always collaborate or share information in their efforts.
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Work Shirk

Work 2r−r2−c, 2r−r2−c r − c, r

Shirk r, r − c 0, 0

Notice that the outcome of the non-strategic model, (Work, Work), is a Nash equilibrium

if and only if 2r−r2− c ≥ r, or r ∈ [1
2
−
√

1−4c
2

, 1
2
+
√

1−4c
2

]. In other words, r must be moderate

and c low for both agents to work. When r is low, the marginal contribution of the second

agent is too low to justify the cost, while a high r leaves little room for improvement. In

both cases, agents face a collective action problem, and the Nash equilibrium consists of one

agent working and the other shirking.

The game extends easily to more agents. Generally, with n > 1 agents, all agents will

work in a Nash equilibrium only if 1− (1−r)n−c ≥ 1−(1−r)n−1. It is then straightforward

to demonstrate that for a given c, the maximum number of agents that will work in a pure

strategy equilibrium is given by the highest n satisfying c ≤ r(1−r)n−1. Beyond this threshold,

additional agents have no effect on the probability of a good outcome. This expression also

implies that as costs increase, the number of working agents must decrease.

This example shows that the classic redundancy model is not robust to the introduction

of strategic agents. Even with the simplest possible generalization to a game theoretic

formulation, the prediction of redundancy theory is a special case occurring only under a

certain set of parameter values. In this particular example, agents face the familiar collective

action problem. In the games developed in the following sections, other effects of strategic

interaction between principals and agents will also become evident.

3. Direct Redundancy: A Model

The direct redundancy game greatly generalizes the game-theoretic model of the pre-

ceding example. It addresses the basic question raised by redundancy theory: in a given

period, how many agents should a principal choose? The model also forms the basis of the

extensions developed in Sections 5 and 6.

Environment and Players. The game describes a single period of policy-making under

uncertainty between two kinds of players: a principal (P) and up to N > 0 agents, denoted

A1, . . . , AN . P may be construed as any actor with authority over the number of units
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to assign to a particular task. Such actors are found at different points throughout the

executive and legislative branches. For example, Congress, department heads, governors,

and the president are all empowered to some degree to create bureaucratic agencies or assign

their jurisdictions. Alternatively, P can represent an agency head deciding the number of

divisions to assign to a given job. I therefore use the general term ‘agent’ to refer to any

unit that is given jurisdiction over the task in question.

P chooses n, the number of agents, where 0 ≤ n ≤ N , but faces a moral hazard problem

because she cannot dictate their policy choices directly. Each agent Ai shares jurisdiction

over the task in question, and can independently set an unobservable effort level or policy,

φi ∈ [0, 1]. Denote the n-element vector of policies φ. The order in which agents are created

is fixed, with A1 first, A2 second, etc. Thus, P cannot give A2 jurisdiction over the policy

if n = 1. This may reflect the possibility that an “incumbent” agent already exists for the

given task.

All players are interested in an observable outcome x ∈ {0, 1} (where x = 1 corresponds

to the “good” outcome of the previous section). Outcomes are determined as follows. Each

Ai’s policy results in a success with probability φi, and a failure otherwise. If any agent

succeeds, then x = 1; otherwise, x = 0. Thus,

Pr{x = 1} = 1−
n∏

j=1

(1−φj). (1)

This policy technology is standard in theories of redundancy, but is relaxed in Section 6.1. It

is simple but highly general, requiring mainly that some agent’s effort be exerted to achieve

the good outcome (otherwise, the good outcome is the status quo and no agents would be

necessary). Thus, x may be considered a summary statistic for whether an agency’s policy

outcome was satisfactory to P; for example, whether air fatalities decrease after a change in

Federal Aviation Administration policy, or whether Food and Drug Administration-approved

drugs have few unpredicted side effects. Note however that there is only one type of failure in

this framework. There are also no policy externalities; that is, each agent’s own probability

of succeeding is independent of the other agents’ actions. This assumption is relaxed in

Section 6.2, but the subsequent analysis will show that agents can generate externalities

endogenously through their strategic behavior.

Payoffs. All preferences are common knowledge. P has linear preferences over policy

outcomes, receiving x, and therefore desires policies that maximize the likelihood that x = 1.
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P additionally pays a cost k ≥ 0 for each agent. This represents a fixed level of resources

(or “budget”) that must be committed before an agent can participate in policy-making.10

Thus, P’s expected utility is:

u(φ) = 1−
n∏

j=1

(1− φj)− nk.

Each Ai also has linear preferences over outcomes, receiving wix, where wi ∈ <. Addi-

tionally, setting policy incurs a quadratic cost ci(φi) = miφ
2
i , where mi > 0. Unless otherwise

noted, I assume throughout that wi

mi
≥ wj

mj
for all i < j, so that sequentially prior agencies

desire the highest effort or policy levels. As will be clear in the analysis below, this is exactly

the sequence that P would choose if it could. Ai’s expected utility is then:

vi(φ) = wi

1− n∏
j=1

(1− φj)

− ci(φi). (2)

Note that since the product term of (2) is linear in φi and ci(·) is convex, vi(·) is concave in

φi. The expression makes clear that each agent’s ideal policy is endogenous, except in the

trivial case (wi ≤ 0) where it has a dominant strategy of not exerting effort. In general, it

will balance marginal policy utility with marginal cost, and when n > 1, it may shirk and

let another agent undertake the costly effort.

Sequence. Game play proceeds as follows.

(1) Agent Selection. P chooses the number of agents n.

(2) Policy-Making. Each agent Ai simultaneously chooses an unobservable policy φi(n).

(3) Policy Outcome. Nature randomly determines outcome x according to (1).

4. Direct Redundancy: Results

A subgame-perfect Nash equilibrium of this game consists of an optimal number of agents,

n∗, and N n-vectors (n = 1, . . . , N) of policies, each denoted φ∗(n). When P is indifferent

between different values of n, it is assumed that the tie is broken in favor of the lowest

number of agents. Denote Ai’s optimal policy choice in the n-agent subgame φ∗i (n), and let

Φ∗(n) represent the equilibrium probability that x = 1 in that subgame.

10By imposing fixed agent costs that are not linked with the cost of policy, the model focuses on the
policy-making, and not the budgeting side of the principal-agent relationship.

10



4.1. An Example: Up to Two Agents

To build some intuition I begin by examining the reduced game where N = 2. In this

case I also relax the assumption that w1

m1
≥ w2

m2
, so that second agent can be less “friendly” to

P’s interests than the first. Thus, the case corresponds well to situations in which principals

face short-term constraints on creating or choosing agents.

Policy Choice. Solving backwards, when n = 1, A1 simply balances marginal policy

utility and marginal cost. Differentiating (2), its ideal policy is:

φ∗1(1) =


0 if w1 ≤ 0
w1

2m1
if w1 ∈ (0, 2m1)

1 if w1 ≥ 2m1.

As intuition suggests, equilibrium policy is increasing in A1’s utility for a good outcome

(w1), and decreasing in its marginal cost (m1). It will be useful to define r1 = φ∗1(1), and

ri for all other Ai in an analogous manner. This is the policy that each Ai would choose if

acting alone, and is thus an analog of the (non-strategic) reliability of an agent.

Now consider the subgame in which n = 2. It will be convenient to denote with a

subscript −i parameters belonging to the agent that is not Ai. Then since vi(·) is concave,

the following first-order condition is sufficient to characterize Ai’s best response:

wi(1−φ−i)− 2miφi = 0. (3)

Simplifying and taking feasibility constraints into account, we obtain Ai’s best response:

φ∗i (2) =

 0 if wi ≤ 0

min{wi(1−φ−i)
2mi

, 1} if wi > 0.
(4)

Note that at an interior solution, each agent’s best response is linear and decreasing in the

other’s policy. Corner solutions are possible under three circumstances. If wi ≤ 0, then

exerting no policy effort is a dominant strategy and φ∗i (2) = 0. If wi is sufficiently large and

φ−i < 1, then Ai will assure itself of x = 1 by choosing φ∗i (2) = 1. Finally, if φ−i = 1, then

Ai is unable to affect the outcome and chooses φ∗i (2) = 0. Otherwise, for moderate values

of wi and w−i, an interior solution exists. Combining expressions, the following comment

derives the equilibrium policies.

Comment 1. Policy with Redundant Agents. If N = 2, the equilibrium policies are:
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φ∗i (2) =



0 if wi ≤ 0, or wi ∈ (0, 2mi) and w−i ≥ 2m−i,
or i = 2 and w1 ≥ 2m1

wi(2m−i−w−i)
4m1m2−w1w2

if wi ∈ (0, 2mi) and w−i ∈ (0, 2m−i)
wi

2mi
if wi ∈ (0, 2mi) and w−i ≤ 0

1 if wi ≥ 2mi and w−i ≤ 2m−i, or i = 1 and w1 ≥ 2m1.

Proof. Proofs of all comments and propositions are in the Appendix.

While this equilibrium is not unique, it is very nearly so. When wi ≥ 2mi for both agents

(with the inequality strict for at least one), there are two equilibria: φ∗1(2) = 1 and φ∗2(2) = 0,

and φ∗1(2) = 0 and φ∗2(2) = 1. To maintain continuity with the n = 1 subgame, I simply

impose the former as the solution.11

Table 1: Redundant and Non-Redundant Systems

w1 = 1.1, m1 = 1, m2 = 2

n Case φ∗(n) Total Cost Φ∗(n)

1 (a)-(c) (0.55) 0.3025 0.55

2 (a) w2 = 3 (0.234, 0.574) 0.7148 0.674
(b) w2 = 2 (0.379, 0.310) 0.3365 0.572
(c) w2 = 1 (0.478, 0.130) 0.2628 0.546

As Table 1 illustrates, the comparative statics of these subgames behave in a sensible

manner. When policy choices are interior, Ai’s policy is decreasing in mi and increasing

in wi. Each agent’s equilibrium policy is also increasing in the other agent’s marginal costs

(m−i) and decreasing in its marginal utility for a good outcome (w−i). Finally, the addition of

A2 always weakly reduces A1’s policy choice. Thus, to some degree increasing the number of

agents introduces a collective action problem. But this reduction does not necessarily reduce

the probability that x = 1. The following comment characterizes the effect of increasing the

number of agents on Φ∗(n).

Comment 2. Redundancy and Effectiveness. Φ∗(2) < Φ∗(1) if and only if r1 ∈ (1
2
, 1) and

r2 ∈ (0, 4m1(w1−m1)
w2

1
).

To understand this result, note that the addition of A2 always weakly reduces A1’s

11In the “knife-edge” case where wi = 2mi for both agents, there is a range of equilibria, including the
two identified here. I impose the same solution in this case.
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incentive to produce policy. Because of increasing marginal costs, this reduction is most

acute when A1 would choose a “high” policy. Further, when w2 is sufficiently low A2’s

success probability will be too small to offset the decrease in A1’s effort. Thus, as case (c)

of Table 1 illustrates, the collective action problem has a particularly serious bite when the

agents’ policy preferences are far apart.

Comment 1 also allows us to evaluate the effect of redundancy on policy efficiency. Let

the measure of efficiency be Φ∗(n)∑
i
ci(φ∗i (n))

, or the increment in the probability of a good outcome

per unit cost. Then efficiency drops from 1.82 to approximately 0.94 in case (a) of Table

1. Here the high cost of A2’s effort reduces efficiency and indeed produces some “wasteful

duplication.” But when A2 chooses a relatively low policy level (as in case (c)), efficiency

actually increases. This occurs because low policies are more efficient (since marginal costs

are increasing), so “low” policies by both agents incur lower marginal costs than a “high”

policy by A1.12 The next result formalizes this intuition.

Comment 3. Inefficient Redundancy. If r1 ∈ (0, 1
2
) and r2 ∈ [ w1(2m1−w1)

4m2(m1−w1)
, 1), then two agents

are less efficient than one.

Thus inefficiency will tend to occur if A2 is “friendly” but uses a costly policy technology.13

Finally, it is worth noting from a welfare perspective that if wi > 0 for all Ai, each agent

benefits from the addition of a redundant partner. This is because each agent then prefers

an outcome of one to zero, and chooses a strictly positive policy in equilibrium. As a result,

even if Ai chose the same policy that it would have in isolation, it would do strictly better.

The Optimal Number of Agents. Given the policy responses, P simply chooses n to

maximize the Pr{x = 1}, net of the costs of adding new agents, k. P will thus prefer a

redundant system to a non-redundant one if k ≤ Φ∗(2) − Φ∗(1). Returning to case (a) of

Table 1, the marginal benefit of adding A2 is 0.124. Thus if k < 0.124, P chooses two agents,

and if k ∈ [0.124, 0.55), P chooses one. In case (b), the lower value of w2 decreases the

marginal value of the second agent, and thus redundant agents are chosen only if k < 0.022.

Clearly, a redundant system would not be chosen if k ≥ 0.5. Nor would it be chosen

12An alternative measure of policy efficiency is
∑

i φ∗i (n)/
∑

i ci(φ∗i (n)), or the cost per unit of policy
produced. Then in case (a) of Table 1, efficiency drops to only 1.13 with two agents. Because this statistic
does not take the effect of duplicated efforts into account, the drop in efficiency is less pronounced.

13Note that in the general model, where it is assumed that w1
m1

≥ w2
m2

, the condition of Comment 3 holds

only if m2 ≥ m1(2m1−w1)
2(m1−w1)

.
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if it would reduce Pr{x = 1}. Comment 2 is therefore a special case (where k = 0) of the

following result, which characterizes n∗.

Proposition 1. If N = 2,

n∗ =


0 if k ≥ max{φ∗1(1),

φ∗1(2)+(1−φ∗1(2))φ∗2(2)

2
} (i)

1 if k ∈ [φ∗1(2) + (1−φ∗1(2))φ∗2(2)− φ∗1(1), φ
∗
1(1)) (ii)

2 if k < min{φ∗1(2) + (1−φ∗1(2))φ∗2(2)− φ∗1(1),
φ∗1(2)+(1−φ∗1(2))φ∗2(2)

2
}. (iii)

Thus, n∗ depends on the relative effectiveness of the agents, and is decreasing in k.

Interestingly, there are two cases in which n∗ does not decrease from 2 to 1 to 0 as k

increases. First, interval (iii) is empty when φ∗1(2) + (1−φ∗1(2))φ∗2(2) < φ∗1(1); i.e., when two

agents do worse than one (see Comment 2). Second, interval (ii) may also be empty if A1 is

an “unfriendly” agent (i.e., r1 is low). In this event, P chooses two agents if w2 is sufficiently

high relative to k, and none otherwise.

An alternative way of stating Proposition 1 would be with respect to wi and mi. This

would be considerably more complicated because there are numerous corner conditions to

be taken into account. However, to get a sense of the comparative statics with respect

to these parameters, the following figure illustrates the relationship between w1 and n∗ for

w2 ∈ (0,m2).

[Figure 2 about here.]

In the figure, the solid lines represent the cost thresholds that make P indifferent between

two values of n. It is straightforward to verify in general that these cutlines intersect at some

ŵ1 > 0. These lines are gray where the cutpoint is irrelevant to P’s decision. For example,

for w1 < ŵ1, the two cutlines determining whether P prefers one agent to zero or two

are irrelevant, because one agent is P’s least-preferred option (this situation corresponds

to the case where interval (ii) in Proposition 1 is empty). The figure also indicates that

the equilibrium relationship between agent preferences and n∗ is not always monotonic. An

increase in w1 often makes one agent more desirable, and it is easily shown that for w1

sufficiently high, n∗ = 1. But for some moderate values of k, n∗ can increase from zero

to two and then decrease to one as w1 increases. Thus the following, somewhat rougher

monotonicity conditions hold: A1 will be part of a redundant system only if it is sufficiently

“unfriendly,” and it will not be part of a redundant system if it is sufficiently “friendly.” A

similar analysis holds for agent costs.
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4.2. The General Case

I now establish the principal results of the general game, where N is arbitrary (and

possibly infinite).

Policy Choice. Solving backwards, since vi(·) is concave, the following first-order condi-

tion characterizes Ai’s best response:

wi

∏
j 6=i

(1− φj)− 2miφi = 0.

And thus,

φ∗i (n) =

 0 if wi ≤ 0

min{
wi

∏
j 6=i

(1−φj)

2mi
, 1} if wi > 0.

(5)

This expression generalizes (4). As in the two-agent case, redundancy introduces a collective

action problem, thus causing all agents to choose (weakly) lower policies when n > 1 than

they would in isolation. It follows immediately that success probabilities in this game are

lower than in the non-game theoretic version, where all agents simply choose ri. This is

illustrated in Figure 3, which compares success probabilities between the game theoretic and

classical redundancy models under two configurations of {ri}. Additionally, φ∗i (n) is interior

unless wi ≤ 0 or wi is sufficiently large and φj < 1 for j 6= i. Finally, each agent’s optimal

policy response in any subgame is unique and pure: (5) generalizes straightforwardly to any

profile of mixed strategies, and φ∗i (n) is single-valued for any failure probability collectively

implied by the other agents’ strategies.

[Figure 3 about here.]

Closed forms for equilibrium policies are considerably more difficult to derive when n > 2,

since the system of equations defined by (5) is non-linear. However, the main results of the

model do not require such a characterization, and many of the comparative statics carry

over directly from the n = 2 subgame. The following comment establishes some of these.

Comment 4. Equilibrium Characteristics.

(i) (Uniqueness) The subgame-perfect Nash equilibrium is unique.

(ii) (A1’s policy) φ∗1(n) is decreasing in n and increasing in r1.
14

14This result depends in part on the assumption that the “friendliest” agent is introduced first. If this
assumption were dropped, the same result holds for that agent’s effort after its introduction.
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(iii) (System effectiveness and r1) Φ∗(n) is increasing in r1.
15

Part (i) assumes (as in the N = 2 case) that the agents coordinate on the equilibrium where

A1 chooses φ∗1(n) = 1 when ri ≥ 1 for more than one agent. Intuitively, it obtains because

each agent’s best response (5), while not linear, is sufficiently “flat.” Thus, much as n linearly

independent hyperplanes in n-space intersect at a point, the best response functions of all

agents meet at a unique policy vector. Part (ii) can be extended easily (if tediously) to show

that φ∗i (n) is increasing ri for all Ai.

Table 2 provides examples of equilibria for four multiple-agent subgames, corresponding

to ‘Model 1’ of Figure 3. Within and across equilibria, policies are increasing in ri (i.e.,

decreasing in costs and increasing in utility for a successful outcome). Additionally, the

effect of each additional agent tends to be decreasing (although as ‘Model 2’ of Figure 3

illustrates, this is not always the case for low n). Finally, redundancy can increase efficiency

from the agents’ perspective (though not the principal’s). Just as in Comment 3, this happens

because the addition of each new agent usually forces down the policies of incumbent agents.

Given similar cost functions (mi), the new vector of (lower) policies then incur lower marginal

costs. In Table 2, for example, total policy costs decrease as n increases, even while Φ∗(n)

rises for n ≥ 3.

Table 2: Many Agents

w1 = 1.5, w2 = 1.0, w3 = 1.0, w4 = 0.75; mi = 1 for all Ai

n φ∗(n) Total Cost Φ∗(n)

1 (0.75) 0.563 0.750
2 (0.60, 0.20) 0.400 0.680
3 (0.47, 0.21, 0.21) 0.307 0.668
4 (0.41, 0.20, 0.20, 0.14) 0.270 0.677

Table 2 and Figure 3 illustrate two counterintuitive phenomena that are central to the

main results of this section. First, Φ∗(n) is not necessarily monotonic in n. In the table and

‘Model 1’ of Figure 3, the addition of A2 and A3 actually reduces Φ∗(n), and Φ∗(n) < Φ∗(1)

for n ≤ 10. Second, while A1’s policy is always decreasing in n, other agents’ efforts are not

15Interestingly, this result does not necessarily hold for agents other than A1. Related to the discussion of
Proposition 2 below, Φ∗(n) is increasing in ri (i 6= 1) over any range for which φ∗1(n) < 0.5, and decreasing
in such ri over any range for which φ∗1(n) > 0.5.
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necessarily so. That is, in some cases agents other than A1 face less of a collective action

problem—and thus increase their effort—as n increases.

These phenomena are actually closely related through the agents’ equilibrium behavior.

To see why they occur, observe that (5) implies that for each Ai:

φ∗i (n)(1− φ∗i (n)) = ri(1− Φ∗(n)). (6)

Two implications follow directly from (6). First, since φ∗i (n)(1− φ∗i (n)) ≤ 1
4
, Φ∗(n) is

bounded from below by 1− 1
4r1

. Second, and more importantly, the equilibrium ratio between

φ∗i (n)(1−φ∗i (n)) and φ∗j(n)(1−φ∗j(n)) is constant for all n. While this expression does not

fully characterize equilibrium policies, it is a powerful necessary condition that pins down a

set of policy vectors that can occur in equilibrium. These are characterized by solving (6):

φ∗i (n) ∈

1−
√

1− 4ri(1−Φ∗(n))

2
,
1 +

√
1− 4ri(1−Φ∗(n))

2

 . (7)

The set of possible policies can be narrowed further using the symmetry of these roots

around 0.5. Since r1 ≥ ri for all i, A1 chooses the highest equilibrium policy. By (5), if

φ∗1(n) ≥ 0.5, then φ∗i (n) < 0.5 (i 6= 1). Thus, in equilibrium φ∗2(n), . . . , φ∗n(n) must correspond

to the “low” root in (7), and only A1 can choose a policy higher than 0.5.

Since φ∗1 is decreasing in n, these observations imply that Φ∗(n+1) > Φ∗(n) if and only if

φi(n+1) < φi(n) for all Ai. Further, if φ∗1(n+1) ≥ 0.5, then by (6) the n+1th agent caused

A2, . . . , An to increase their policy levels. This in turn implies that φ∗1(n+1)(1−φ∗1(n+1)) ≥
φ∗1(n)(1−φ∗1(n)), and hence Φ∗(n+1) < Φ∗(n). Likewise, if φ∗1(n) ≤ 0.5, then adding an agent

results in all agents reducing their policies, and again by (6), Φ∗(n+1) > Φ∗(n).

Combining these derivations with a few auxiliary results yields the following proposition,

which is a generalization of sorts of Comment 2. Φ∗(n) is decreasing in n until A1 chooses a

policy at or below 0.5, after which it is increasing. Consequently, the probability that x = 1

is maximized either at n = 1 or n = N .

Proposition 2. Non-Monotonicity of System Effectiveness. Φ∗(n) < Φ∗(n−1) for n < ñ and

Φ∗(n+1) ≥ Φ∗(n) otherwise, where ñ =

{
min{n|φ∗1(n) ≤ 0.5} if φ∗1(N) ≤ 0.5
N + 1 otherwise.

This result implies that ñ > 1 if the conditions of Comment 2 are satisfied, and that ñ = 1

only if Φ∗(2) > Φ∗(1).
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The primary import of Proposition 2 is that collective action problems are especially

harsh when one agent (necessarily A1) is “friendly,” in the sense that r1 > 0.5. To see why,

it is helpful to think in terms of the dynamics as the n+1-th agent is added to an n-agent

equilibrium. Since A1 chooses the highest policy, it stands to gain the most by reducing its

effort in response to a new agent. Agents A2-An compensate for this reduction by increasing

their effort. For n < ñ, these adjustments plus the contribution of An+1 do not offset the

reduction in A1’s effort. But beyond ñ, A1’s policy is relatively cheap at the margin, causing

it to shirk less. Consequently, the new agent’s contribution more than compensates for the

incumbent agents’ reduced efforts.

In many cases, ñ is easy to calculate. For example, ñ = 1 if and only if r1 ≤ 0.5 (and thus

φ∗1(n) ≤ 0.5 for all n). Otherwise, ñ > 1 (e.g., ñ = 3 in Table 2). Under these conditions,

the above derivations provide a way to characterize a simple lower bound on ñ. Recalling

that φ∗1(n) = r1
∏

j 6=1(1−φ∗j(n)), we see that φ∗1(n) ≤ 0.5 if
∏

j 6=1(1−φ∗j(n)) ≤ 1
2r1

. Using

expression (7), this condition is equivalent to:

n∏
j=2

1−
1−

√
1−4rj(1−Φ∗(n))

2

 ≤ 1

2r1
. (8)

Since Φ∗(n) ≥ 1− 1
4r1

and the left-hand side of (8) is decreasing in n, (8) implies:

ñ ≥ min

n
∣∣∣∣∣∣ r1

2n−2

n∏
j=2

(
1 +

√
1−rj/r1

)
≤ 1

 .
The Optimal Number of Agents. Generally, P’s optimal choice of the number of agents

solves the following problem:

n∗ = max
n
{Φ∗(n)− nk}.

Because Φ∗(n) may be non-monotonic, n∗ depends on ñ. In the simplest case, if ñ = 1,

then Φ∗(n) is increasing n. The relation between Φ∗(n) and n is roughly “concave” (especially

for large n), so P approximately balances marginal benefit with marginal cost. If ñ > 1,

then a non-redundant system becomes more attractive because the marginal benefit of the

first few agents after A1 is negative. Proposition 3 uses these facts to establish the main

result of the direct redundancy model, which relates n∗, ri, and k.

Proposition 3. Optimal Redundancy.

(i) n∗ is non-increasing in k.
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(ii) If r1 >
1
2
, and

∑N
i=2 ri < 2− 1

r1
or
∏N

i=2(1− ri) >
1
r1
− 1, then n∗ = 1.

(iii) If r1 ∈ (0, 1
2
] and r2 > 0, then n∗ > 1 for k sufficiently low.

Part (i) of the result generalizes Proposition 1 in a fairly obvious way: extra agents

are less appealing as their costs increase. But part (ii) shows that if A1 is “friendly” and

the other agents are collectively unfriendly, then n∗ = 1 regardless of k. This is a direct

consequence of a high value of ñ, as no number of new agents can compensate for the losses

imposed by agents prior to ñ. Finally, part (iii) provides some conditions under which low

costs do matter—i.e., when agents are unfriendly and ñ = 1.

These results contrast usefully with those of the non-game theoretic formulation of re-

dundancy. In the latter, new agents always raise the probability of a good outcome and

redundancy is strictly decreasing in k. But in the game studied here, this is only true when

there is no agent inclined to choose a high policy or effort level. Otherwise, redundant

agents may contribute little if anything to the probability of success. Thus, despite the

greater difficulty in deriving closed form solutions when n > 2, the primary intuition about

the desirability of redundant systems remains the same.

5. Latent Redundancy

In the previous section the principal had no leverage over agents other than the (lim-

ited) option to give them common jurisdiction over the task. However, in many cases her

leverage is likely to be considerably greater. Typically principals are in a position to assess

performance over time, and may also be able to terminate the jurisdictions of agencies or

wayward bureaucrats.16 The latent redundancy model shows how this feature may affect

bureaucratic effectiveness with a repeated game in which P faces a single, replaceable agent

in each period. The results are suggestive in nature, as a more complete analysis would give

P the ability to add or terminate multiple agents in each period.17

As a baseline for comparison, consider the following repeated variant of the direct re-

dundancy game. P chooses a set of irreplaceable agents to open the game. In each period,

P pays the cost k for each agent, the agents choose policy, and Nature reveals outcomes.

16One prominent example is the 1905 Transfer Act, analyzed by Carpenter (2001). The law transferred
jurisdiction of 46 million acres of forest reserves from the General Land Office to the U.S. Forest Service.

17For more dedicated analyses of agency termination, see Kaufman (1976), Carpenter (2000), Lewis (2002),
and Carpenter and Lewis (2002). For a theoretical and empirical analysis of political appointees see, e.g.,
Chang, Lewis, and McCarty (2001).
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Because P cannot replace agents, it is easy to see that—regardless of whether the game is

finitely or infinitely repeated—she would choose n∗, and in each period Ai would choose

φ∗i (n
∗). Thus the equilibrium for this repeated game is identical to that of the single-period

direct redundancy game.

5.1. The Repeated Game

The latent redundancy game is infinitely repeated, with future payoffs discounted by a

common factor δ ∈ (0, 1). Each period is identical to the n = 1 subgame of the direct

redundancy game, except in the following respect: at the beginning of each period, P may

terminate the incumbent agent and replace it with a new one of her choosing. So as not to

“rig” the results excessively in favor of superior agent performance, I assume that agents face

no costs from being terminated.18 As before, each agent costs k in each period. Once termi-

nated, an agent cannot return to the game. P may therefore potentially induce better policy

performance by making her future choice of agents contingent upon observed performance.19

To maintain comparability with the direct redundancy game, I assume that the set of

replacement agents in each period is time-invariant, with preferences identical to agents

{A1, . . . ,AN} in the direct redundancy game. This reflects the possibility that P has rela-

tively little control over the formation of agent preferences; for example, a newly promoted

division chief might have the same professional background as her predecessor.20

There are many Nash equilibria of this game. For this reason, I focus on a general

class of intuitive, sequentially rational equilibria. The class is defined by two rules. First,

there is a termination rule, defined by the set {Mi}, such that P tolerates Mi failures from

the incumbent agent with preferences identical to Ai before terminating it and choosing a

new one. Second, the replacement rule is a sequence {ρτ}∞τ=1 (ρτ ∈ {Ai} ∀τ) specifying a

deterministic order in which new agents are selected. These two simple rules thereby capture

a wide range in both the requirements for termination (including the ability to discriminate

across agent types), as well as the choice of replacements. If, out of equilibrium, P does not

terminate the agent or chooses the wrong agent, the agent simply chooses its one-shot best

18In an employment context, this is equivalent to assuming that a bureaucrat’s job prospects outside the
agency are as good as those within the agency.

19The game therefore resembles a simplified version of the Banks and Sundaram (1998) agent retention
model. In their model, principals face adverse selection as well as moral hazard problems, but agents may
“live” for only two periods.

20While this is perhaps the natural assumption, another reasonable possibility is that new agents’ prefer-
ences are randomly generated.
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policy (i.e., ri) in each period for as long as it is not replaced.

The existence of such equilibria is easy to demonstrate. As an example, consider the

termination rule {Mi = 0} ∀i and replacement rule {ρτ = A1} ∀τ . P will then terminate

an agent of type A1 each period. Since that agent has no control over its future, it simply

chooses its one-shot best response. Note that P never chooses A2 because its one-shot best

response is not as good as A1’s, although she is indifferent in equilibrium between terminating

an agent and continuing with it.

Of particular interest in this section is the equilibrium with optimal agent termination

and replacement strategies for P. Aside from being a natural focal point, this equilibrium

accords with the role that political principals play in institutional design. Since principals

are to some degree responsible for establishing “rules” for subordinates, it is reasonable to

conjecture that if any player could coordinate play on a particular equilibrium, it would be

P. The following comment characterizes this optimal equilibrium.

Comment 5. The optimal termination rule is {Mi = 1} ∀i, and {ρτ = A1} ∀τ .

The best equilibrium for P is thus the one in which type-A1 agents, whose preferences

most closely aligned with P, are always chosen. Moreover, that agent is subjected to a harsh

termination rule, where a single failure results in its replacement. The result is intuitive

because A1-type agents are the most willing to choose “high” policies, and harsh termination

rules maximize their incentives to reduce the risk of failure. Crucial to the result is P’s ability

to draw a fresh A1-type agent costlessly after each termination. Changing this assumption

would cause P to prefer more forgiving termination rules.

5.2. Equilibrium Policies

Given Comment 5, the characterization of optimal policies is straightforward. Let φj∗
i

represent Ai’s optimal policy choice given that it has j failures before termination.

Proposition 4. Policy Under Latent Redundancy. In all periods, equilibrium policy is:

φ1∗
1 =

{
0 if r1 ≤ 0

min{1−
√

1−2δr1

δ
, 1} otherwise.

Clearly, φ1∗
1 ≥ φ∗1(1), with the inequality strict when r1 < 1. Thus, the ability to

terminate agents raises policy and thereby limits the extent to which additional agents will
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be desired. This result goes much further, however. For δ sufficiently high, the threshold for

the agent to choose a policy of 1—in other words, to do exactly as P wants—is quite low.

In the direct redundancy game, φ∗1(1) = 1 for r1 ≥ 1, but in the latent redundancy game,

φ1∗
1 = 1 if r1 ≥ 1 − δ

2
. Alternatively, if r1 ≥ 1

2
, then for any δ ≥ 2(1−r1), P can attain her

ideal outcome with only a single agent.

6. Extensions

6.1. s× n Systems

In the previous sections, the assumed policy technology required only one success for

a good outcome to result. In many applications, however, more than a single success is

required: airliners may require more than one working engine to fly, and drug interdiction

requires the effective collaboration of multiple agencies. To use the example of Section 2,

one can imagine that because of resource or jurisdictional constraints, no agency can uncover

all of the required information unilaterally, but that a combination of two effective agencies

can. This type of system is easily incorporated into the framework developed in Section 4.

Let the minimum number of successes required to achieve x = 1 be s ≥ 1. Such systems

are often referred to as “s×n” or “s-by-n” systems. Clearly, the number of agents n (n ≤ N)

must be at least s for x = 1 to result. In the simplest case, where the reliability r is constant

across agents, the probability of a good outcome in a non-strategic environment is:

Pr{x = 1} =
n∑

i=s

(
n

i

)
ri(1− r)n−i.

As in the direct redundancy game (where s = 1), raising the number of agents strictly

increases the probability that x = 1.

In the strategic environment studied here, reliability rates will continue to vary across

agents, and the probability of each outcome will depend on agents’ policy choices in more

complex ways than previously. As a result, the probability of success is less straightforward

to calculate than in the previous sections. To begin, it will be convenient to define the

probability that exactly q agents other than Ai succeed as follows:

µq
−i(φ) =

∑
j1 6=i

∑
j2 6=i,j1

. . .
∑

jq 6=i,j1,...,jq−1

 jq∏
k=j1

φk

∏
l 6=i,j1,...,jq

(1− φl)

 . (9)
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Agent Ai’s objective function then generalizes from (2) as:

vi(φ) = wi

φiµ
s−1
−i (φ) +

n∑
j=s

µj
−i(φ)

− ci(φi).

Policy Choice. Clearly, µq
−i(φ) does not depend on φi, and as a result Ai can only affect

the outcome if its effort is pivotal, which occurs when exactly s−1 agents succeed. Ai’s best

response thus generalizes from (5) as follows:

φs∗
i (n) =

 0 if wi ≤ 0

min{wiµ
s−1
−i (φ)

2mi
, 1} if wi > 0.

(10)

The Optimal Number of Agents. While a closed-form solution for the optimal number

of agents, ns∗, is clearly more difficult to derive than in Section 4, the following partial

characterization is easily demonstrated.

Proposition 5. Necessary Redundancy. If ri < 1 for all Ai (i ≤ N), then ns∗ = 0 or ns∗ > s.

This result essentially reverses the central intuition of the direct redundancy model. Just

as agents create negative externalities (by the collective action problem) when s = 1, agents

can create positive externalities when s > 1. When n = s, all externalities are positive,

because any effort is wasted unless all other agents also contribute. Thus, best responses are

increasing (and linear) in other agents’ efforts. This is easily seen in equations (9) and (10),

as the last product in (9) is empty for n = s.

The proof uses these facts to show that if no agent would ever be willing to choose a policy

of 1 (i.e., ri < 1), then all agents must choose 0. At an equilibrium, P therefore chooses either

ns∗ = 0 or, if k is sufficiently low, some ns∗ strictly greater than the minimum technically

necessary. An easily proved corollary of this result is that if all agents are perfectly reliable

(ri = 1), then Pr{x = 1} = 1 when n = s, and thus ns∗ = s if k < 1
s
, and ns∗ = 0 otherwise.

Table 3 below gives an example of the interplay of positive and negative externalities

in some 2 × n systems. Since ri < 1 for all Ai, agents choose zero policies when n = 2.

When n increases to 3 and then to 4, agents individually choose higher policies because of

the positive externalities induced by the presence of new agents. When A5 is introduced,

however, the number of agents becomes large relative to s, and the probability that only

a single agent succeeds (µ1
−i(φ)) drops, while the probability that each agent’s effort will
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be unnecessary rises. As in the direct redundancy game, this creates negative externalities.

Thus, the individual efforts of A1-A4 are lowered, but the collective reliability of the system

still increases.

Table 3: 2× n Systems

w1 = 1.6, w2 = 1.4, w3 = 1.2, w4 = 1.0, w5 = 0.8; mi = 1 ∀Ai

n φs∗(n) Φs∗(n)

2 (0, 0) 0
3 (0.315, 0.286, 0.253) 0.197
4 (0.345, 0.308, 0.266, 0.222) 0.322
5 (0.340, 0.300, 0.257, 0.213, 0.169) 0.376

6.2. Policy Externalities

Up to this point it has been assumed that the policies chosen by agents did not impose

any technical interdependencies or externalities on the effectiveness of other agents’ actions.

Externalities were exclusively generated endogenously, by the agents’ strategic incentives.

As normal accident theory points out, however, technical externalities may be common in

more complex task environments. Here I explore some implications of these externalities for

redundant bureaucratic structures.

For simplicity, I return to the case examined in Section 4.1, where N = 2 and the

assumption that w1

m1
≥ w2

m2
is relaxed (i.e., r1 < r2 is allowed). Outcomes are determined

in the same way as in the direct redundancy model, but with the generalization that the

effectiveness of each agent may now depend on the effort of the other, as follows. The vector

of success probabilities is given by π = φ · Ψ, where Ψ is an n × n matrix with elements

ψji ∈ <. Ai’s probability of succeeding is thus πi (as opposed to φi), where:

πi =


1 if

∑
j φjψji ≥ 1

0 if
∑

j φjψji ≤ 0∑
j φjψji otherwise.

Accordingly, Pr{x = 1} = 1−∏n
j=1(1− πj). P’s expected utility is thus given by:

u(φ) = 1−
n∏

j=1

(1− πj)− nk,

and Ai’s expected utility by:

vi(φ) = wi

1− n∏
j=1

(1− πj)

− ci(φi).
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I refer to Ψ as the weighting matrix. This matrix operationalizes the externalities that

agents’ activities may impose on one another, thus causing success probabilities to be non-

independent. If Ψ is the identity matrix, I, then π = φ. Agents’ success probabilities are then

independent, and the model is identical to that of Section 4.1. But in contrast with equation

(3), a non-trivial weighting matrix may force an agent to consider the consequences of other

agents’ policy choices on its outcomes, and to consider the impact of its choice on other

agents’ outcomes. For example, if w2 > 0 and ψ21 > 0, then A2 has an incentive to increase

its policy choice compared to a situation in which ψ21 = 0. This happens because A2’s

effort will help A1 to succeed, thus increasing the marginal value of A2’s effort. Similarly, if

ψji < 0, then any φj > 0 reduces the probability that Ai succeeds.

Policy Choice. Solving backwards, if n = 1 then there are no externalities and policy is

as determined in Section 4.1. If n = 2, then by the concavity of vi(·), the following first-order

condition is sufficient to characterize Ai’s equilibrium policy at an interior solution:

wi[ψi1 + ψi2 − (ψ12ψ21+ψ11ψ22)φ−i − 2ψi1ψi2φi]− 2miφi = 0.

Simplifying, Ai’s best response is given by:

φ∗i (2) =
wi[ψi1 + ψi2 − (ψ12ψ21+ψ11ψ22)φ−i]

2(mi+wiψi1ψi2)
.

Even with externalities, each agent’s best response is linear and decreasing in the other’s

policy choice. Solving the system, Ai’s unique interior equilibrium policy is:

φ∗i (2) =
wi[2(m−i+w−iψ−i1ψ−i2)(ψi1+ψi2)− w−i(ψ12ψ21+ψ11ψ22)(ψ−i1+ψ−i2)]

4(m−i+w−iψ−i1ψ−i2)(mi+wiψi1ψi2)− wiw−i(ψ12ψ21+ψ11ψ22)2
.

Note that the conditions under which a corner solution occurs are no longer trivial. Even if

wi < 0, it is possible that φ∗i (2) > 0 because Ai may wish to impose a negative externality

on Aj’s (j 6= i) effort.

The effects of the weighting matrix on the comparative statics of the n = 2 subgame

are generally straightforward. If Ψ is symmetric and agents have identical preferences and

costs, then equilibrium policies are identical. Generally, for weighting matrices “close” to I,

the comparative statics resemble those of Section 4.1. As Ψ diverges from I, however, agent

incentives become increasingly distorted. Consider the example in Table 4, where all cost

and utility parameters are as in Table 1. Since ψ11 = 0.6 and ψ21 = 0.4, A2 has almost

as much control over A1’s output as A1 itself. Thus A2 chooses a much higher policy than
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in Table 1, while A1 chooses a lower policy. But since A2 faces higher costs, its inclusion

reduces the efficiency of equilibrium policies relative to the single agent case.

Table 4: Policy Externalities

w1 = 1.1, m1 = 1, m2 = 2; Ψ =

(
0.6 0
0.4 1

)

n Case φ∗ π Total Cost Φ∗(n)

1 (a)-(c) (0.55) (0.55) 0.3025 0.55

2 (a) w2 = 3 (0.125, 0.621) (0.323, 0.621) 0.7871 0.744
(b) w2 = 2 (0.178, 0.462) (0.291, 0.462) 0.4583 0.619
(c) w2 = 1 (0.244, 0.261) (0.251, 0.261) 0.1959 0.446

The Optimal Number of Agents. P’s decision is essentially similar to that in Section 4.1,

in that Proposition 1 holds. However, when Ψ 6= I, the marginal value of the second agent,

Φ∗(2)−Φ∗(1), is different. In case (a) of Table 4, P chooses to have two agents if k < 0.194,

as opposed to k < 0.124 in case (a) of Table 1. Adding A2 increases Φ∗(n) more in Table

4 because ψ21 > 0 and ψ22 = 1, thus raising the return to effort of an agent that already

desires a high policy. A1’s effort is correspondingly reduced, but not by enough to reduce

Φ∗(n) overall. A similar analysis holds for case (b) in both tables. By contrast, in case (c),

A1 is the high demander of policy, and its incentive to produce is inhibited by the low values

of ψ11 and ψ12. Consequently, P does even worse with two agents here than it did without

externalities.

7. Discussion

7.1. Empirical Implications

While the models of bureaucratic politics in this paper are quite simple, they predict

the assignment of agents to tasks as a function of some readily measurable variables. In

particular, two tests of the relationship between Congress and federal bureaucracies would

complement the many cases examined thus far in the literature. First, the direct redundancy

model predicts that redundant structures will be chosen more often as agency preferences

coincide less with Congress’.21 Measures of agency preferences can be constructed in two

21One caveat is that the model is more naturally suited to “valence” than “spatial” issue spaces, though
it is possible in some cases to consider ri as an agent’s spatial preference over [0, 1].
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ways. In policy areas where political appointees play an important role and preferences

have a “spatial” component, data on the preferences of presidents or enacting coalitions (for

agencies that are relatively “insulated,” such as independent commissions) may be used. In

other areas, survey data of career officials will be more appropriate.

Second, the latent redundancy model additionally predicts that redundant structures will

be more prevalent as the ability of Congress (or the President) to affect personnel decreases.

The substitutability of personnel within an agency could be measured by the extent to

which career or political appointees staff the organization’s leadership. Alternately, it could

be measured by the level of specialization or expertise required for its personnel, which may

be crudely estimated from the distribution of civil service ranks within the agency.

For both types of tests, the onset of civil service reform suggests some interesting possi-

bilities. In the U.S., the 1883 Pendleton Act initiated an extensive transition from political

to career appointees in executive agencies. The law shifted both bureaucrats’ preferences

and the ability of principals to replace them. Both the direct and latent redundancy models

make predictions about the re-allocation of tasks that should result.

These tests can also be performed at the intra-agency level. For example, agencies like

the FDA frequently consult a variable number of advisory boards before making decisions.

Managers in law enforcement agencies routinely confront choices over the number of divisions

that will be delegated a task. These and other questions about the design of reliable organi-

zations can be subjected to systematic empirical scrutiny with this model or its extensions

as a basis.

7.2. Conclusions

Theories in the wake of Landau’s contribution to bureaucratic design and performance

have steadily formalized and expanded upon the original model. The model presented here

makes two additional contributions. First, consistent with more recent theoretical work in

bureaucratic politics, it explicitly casts agents as strategic actors with preferences over policy

outcomes. The primary insight for organizational design is that strategic interdependencies

can play an important role, even in an environment with no technical interdependencies.

Second, it examines a set of common policy environments that differ from the standard

setting covered in Sections 3 and 4. Among these are s × n systems and settings where

agents face the risk of termination. The resulting models therefore capture a variety of

important features shaping the interaction of agents with political principals.
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The incentives posed by the strategic environment suggest some serious limits on the

amount of redundancy principals desire, when compared to its non-strategic counterpart.

Redundant structures tend to help most when the set of agents available for a task are rel-

atively “unfriendly,” or disinclined to choose policies that P would like. Here the collective

action problems are not serious enough to hurt aggregate policy production, which is in-

creasing in n. But if P has access to a friendly agent, then adding agents will tend not to

help performance. As Proposition 2 establishes, policy production will first decrease, and

then increase, as n rises. This effect greatly reduces the average value of new agents, and

moreover may make a single agent optimal in environments where n is constrained to be

small. Finally, if the principal can terminate agents for poor outcomes, she can achieve her

ideal outcome with only moderately friendly agents if the discount factor is sufficiently high.

Simply stated, principals can make agents compete against themselves with relative ease.

It is useful to reconsider the link between redundancy and normal accident theories in

light of these results. By developing a theory of strategic interdependencies among system

components, the models developed here begin to bridge the two. As the example of Section

2 first illustrated, the basic intuitions of both theories may be correct, depending on the

parameter values assumed. But despite the constant presence of interactive complexity—

arising from either strategic interaction or policy externalities—redundancy is not always

rendered undesirable. In fact, redundancy becomes necessary when the agents’ interaction

creates positive externalities, as in s× n systems.

While the models developed here were intended to capture the essential features of redun-

dancy in a parsimonious manner, they can be usefully extended in two directions. First, the

theory should be generalized to a broader range of policy problems by encompassing different

policy technologies. Two examples suggested by the literature are “three-state” outcomes

that incorporate Type I and Type II errors, and the problem of agent sabotage. Other

extensions might examine policy technologies used in the economic literature on collective

action.22

Second, the theory can potentially also speak to other aspects of bureaucratic politics.

One example is the issue of agent incentives raised by the latent redundancy model. In

many contexts, principals might assume a more active role in structuring these incentives.

22For example, Hirshleifer’s (1983) “best shot” technology, whereby the highest of the agents’ effort levels
determines the collective outcome.
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Within an agency, this might entail the design of employment contracts for bureaucrats. In

some contexts, principals may also encounter common agency problems (e.g., Dixit 1995,

Gailmard 2002b). Another example is the delegation of authority to agents, which is greatly

simplified by the present models. The decision to delegate may depend on the agents’ private

information, thus shifting the problem from moral hazard to adverse selection. Finally, the

occasional charges of wasteful redundancy suggest a range of questions about budgets and

efficiency. Instead of a fixed cost for each agent, the budget may be modeled as a choice

that limits each agent’s feasible policy set (e.g. Silver 1996, Ting 2001). In equilibrium, the

budget would be tied to the principal’s anticipation of the agent’s costs. The principal would

then bear the marginal costs of policy and also care explicitly about policy efficiency.

The models developed here therefore move the foundations of redundancy theory from

reliability engineering to game theory. In so doing, they link redundancy with modern

theories of bureaucratic politics and collective action, and furthermore establish a framework

for considering a variety of new issues in organizational design.
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APPENDIX

Proof of Comment 1. Since vi(·) is concave, either the first-order condition wi(1−φ−i)−
2miφi = 0 (3) uniquely characterizes the solution, or the optimal policy is 0 (1) if φi satisfying

(3) is less than (greater than) 0 (1). Note as a result that if wi ≤ 0, Ai’s dominant strategy

is to choose φ∗i (2) = 0. There are nine cases. (i) If w1 ≤ 0 and w2 ≤ 0, then φ∗1(2) = 0

and φ∗2(2) = 0. (ii) If w1 ≤ 0 and w2 ∈ (0, 2m1), then φ∗1(2) = 0 and A2’s best response is

interior: φ∗2(2) = w2

2m2
. (iii) If w1 ≤ 0 and w2 ≥ 2m2, then φ∗1(2) = 0 and A2’s best response

is on the corner: φ∗2(2) = 1. (iv) If w1 ∈ (0, 2m1) and w2 ≤ 0, then by symmetry with case

(ii), φ∗1(2) = w1

2m1
and φ∗2(2) = 0. (v) If w1 ∈ (0, 2m1) and w2 ∈ (0, 2m2), then substituting

A2’s best response into A1’s, we obtain φ∗1(2) = w1(2m2−w2)
4m1m2−w1w2

and φ∗2(2) = w2(2m1−w1)
4m1m2−w1w2

. (vi)

If w1 ∈ (0, 2m1) and w2 ≥ 2m2, then an interior solution is impossible: φ∗1(2) = 0 and

φ∗2(2) = 1. (vii) If w1 ≥ 2m1 and w2 ≤ 0, then by symmetry with case (iii), φ∗1(2) = 1 and

φ∗2(2) = 0. (viii) If w1 ≥ 2m1 and w2 ∈ (0, 2m2), then by symmetry with case (vi), φ∗1(2) = 1

and φ∗2(2) = 0. (ix) If w1 ≥ 2m1 and w2 ≥ 2m2, then two corner solutions are possible,

where φi = 0 and φ−i = 1. I choose the solution φ∗1(2) = 1 and φ∗2(2) = 0.

Proof of Comment 2. There are four trivial cases. First, if w1 ≤ 0, then φ∗1(1) = 0 and

Φ∗(2) ≥ Φ∗(1). Second, if w1 ≥ 2m1, then Φ∗(n) = 1 for any n. Third, if w1 ∈ (0, 2m1) and

w2 ≤ 0, Φ∗(n) = w1

2m1
for any n. Fourth, if w1 ∈ (0, 2m1) and w2 ≥ 2m2, then φ∗2(2) = 1 and

Φ∗(2) ≥ Φ∗(1).

I therefore focus on the fifth case, where w1 ∈ (0, 2m1) and w2 ∈ (0, 2m2). Here, Φ∗(1) =

φ∗1(1) = w1

2m1
and Φ∗(2) = 1−(1−φ∗1(2))(1−φ∗2(2)). By Comment 1 the equilibrium policy is

interior and thus Φ∗(2) < Φ∗(1) iff:

w1(2m2−w2)

4m1m2−w1w2

+
w2(2m1−w1)

4m1m2−w1w2

− w1w2(2m1−w1)(2m2−w2)

(4m1m2−w1w2)2
<

w1

2m1

.

This expression simplifies to: 4m1m2(2m1− 3w1)+w2
1(w2 +4m2− w1w2

2m1
) < 0. Clearly, a

necessary condition for this to hold is: ε = 4m2w
2
1−12m2m1w1+8m2m

2
1 < 0, which obtains

iff w1 ∈ (m1, 2m1). If in addition w2
1(w2− w1w2

2m1
) < −ε, then Φ∗(2) < Φ∗(1). Let ŵ2 =

−ε
w2

1(1− w1
2m1

)
= 8m1m2(w1−m1)

w2
1

, and note that ŵ2 > 0 for w1 ∈ (m1, 2m1). Thus a necessary and

sufficient condition for Φ∗(2) < Φ∗(1) is w1 ∈ (m1, 2m1) and w2 ∈ (0, 8m1m2(w1−m1)
w2

1
), or

equivalently, r1 ∈ (1
2
, 1) and r2 ∈ (0, 4m1(w1−m1)

w2
1

).
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Proof of Comment 3. The conditions of the comment imply that w1 ∈ (0,m1) and w2 ∈
[w1(2m1−w1)

2(m1−w1)
, 2m2). Thus, equilibrium policies are interior. Thus one agent is more efficient

than two if:
φ∗1(1)

c1(φ∗1(1))
>

φ∗1(2)+(1−φ∗1(2))φ∗2(2)

c1(φ∗1(2))+c2(φ∗2(2))
.

Substituting the appropriate expressions from Comment 1 and simplifying, this condition

can be re-stated as: 8m1m2(m1−m1
w2

w1
+w2−w1

2
) +w1w2(w1−2m1−2m2) < 0. Since mi > 0

and w1 < 2m1, a sufficient condition for this to hold is: m1−m1
w2

w1
+w2− w1

2
≤ 0. Since

m1 > w1 by assumption, this obtains if w2 ≥ w1(2m1−w1)
2(m1−w1)

.

Proof of Proposition 1. Denote by kij (2 ≥ i > j ≥ 0) the cutpoint such that P prefers n = i

to n = j iff k < kij. Thus, k21 is characterized by φ∗1(2)+(1−φ∗1(2))φ∗2(2)−2k > φ∗1(1)−k, which

implies k21 = φ∗1(2)+(1−φ∗1(2))φ∗2(2)−φ∗1(1). Likewise, k10 is characterized by φ∗1(1)−k > 0,

which implies k10 = φ∗1(1), and k20 is characterized by φ∗1(2)+(1−φ∗1(2))φ∗2(2)−2k > 0, which

implies k20 =
φ∗1(2)+(1−φ∗1(2))φ∗2(2)

2
. Note that kij ∈ [0, 1] for all i, j.

Of the six weak orderings of {kij}, only two are feasible: (i) k21 ≤ k20 ≤ k10, and (ii)

k10 ≤ k20 ≤ k21 (it is easily verified that the others imply a non-transitive ordering over n).

These imply three possible values for n∗. First, in both cases, n∗ = 0 if k ≥ max{k10, k20}.
Second, in case (i), n∗ = 1 if k ∈ [k21, k10). In case (ii), n = 1 cannot be optimal. Finally, in

both cases, n∗ = 2 if k < min{k21, k20}.

Proof of Comment 4. (i) The unique equilibrium for n ≤ 2 is characterized in Section 4.1.

Additionally, using the equilibrium selection rule assumed in the text, if ri = 1 for any Ai,

then the unique equilibrium is φ∗1(n) = 1 and φ∗j(n) = 0 for all j 6= 1. Further, all agents Aj

for which wj ≤ 0 have a dominant strategy of φ∗j(n) = 0. I therefore consider only the case

in which n ≥ 3 and wi ∈ (0, 2mi) for all Ai (i.e., interior solutions obtain for all agents). For

notational convenience, I drop references to n when discussing φ∗i (n) and Φ∗(n).

I first derive a necessary condition (NC) for an equilibrium. Manipulating (5), φ∗i (1−
φ∗i ) = ri(1−Φ∗). As in (7), let φ̄i(Φ) and φ

i
(Φ) denote the upper and lower roots of this

equation for arbitrary Φ ∈ [1− m1

2w1
, 1] (note that (5) implies Φ∗ ≥ 1− m1

2w1
). Clearly, φ̄i(·) is

increasing and φ
i
(·) is decreasing. So, given success probability Φ, Ai’s best response must

be either φ̄i(Φ) or φ
i
(Φ). Note that φ̄i(Φ) cannot be an equilibrium choice for A2, . . . , An,

since this would imply φ∗i > φ∗1, generating an obvious contradiction. Thus any Φ implies

the following policy choices: φ̄1(Φ) or φ
1
(Φ) for A1, and φ

i
(Φ) for A2, . . . , An. Now let

γn(Φ) = 1−∏n
i=2(1−φi

(Φ)) be the value of Pr{x = 1} implied by {φ
i
(Φ)}n

i=2. A1’s best
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response to γn(Φ) is φn∗
1 (Φ) = r1(1−γn(Φ)). Since γn(·) is decreasing, φn∗

1 (·) is increasing.

NC is then: a policy vector is an equilibrium only if φn∗
1 (Φ) ∈ {φ̄1(Φ), φ

1
(Φ)}.

Note that φ̄i(·) is increasing and φ
i
(·) is decreasing, implying γn(·) is decreasing and

φn∗
1 (·) is increasing. All are continuous over [1− 1

4r1
, 1].

I claim that γn(·) satisfies the following ‘single crossing’ (SC) property: if γn(Φ) < φ
1
(Φ),

then dγn

dΦ
>

dφ
1

dΦ
, implying that if γn(Φ̂) < φ

1
(Φ̂) for some Φ̂, then γn(Φ) < φ

1
(Φ) for all

Φ < Φ̂. To show this, suppose otherwise there exist Φ′ and Φ′′ such that Φ′ < Φ′′, γn(Φ′′) <

φ
1
(Φ′′), and γn(Φ′)−γn(Φ′′) > φ

1
(Φ′)−φ

1
(Φ′′). Let y =

φ
1
(Φ′)

φ
1
(Φ′′)

. It is easily verified that y > 1

and y >
φ

i
(Φ′)

φ
i
(Φ′′)

for i > 1; thus 1−∏n
i=2(1−yφi

(Φ′′)) > 1−∏n
i=2(1−φi

(Φ′)) = γn(Φ′) > γn(Φ′′).

Additionally it is straightforward (if tedious) to show that
1−
∏n

i=2
(1−yφ

i
(Φ′′))

γn(Φ′′)
< y. Therefore

γn(Φ′)
γn(Φ′′)

< y and γn(Φ′)−γn(Φ′′) < φ
1
(Φ′)−φ

1
(Φ′′): contradiction.

There are two cases. First, if γn(1− m1

2w1
) ≥ 1− m1

w1
, then φn∗

1 (1− m1

2w1
) ≤ 1

2
. Since

φ
1
(1− m1

2w1
) = 1

2
and φ

1
(1) = 0, there exists a unique Φ̃ such that φn∗

1 (Φ̃) = φ
1
(Φ̃). Now

consider φ̄1(·). By SC, γn(Φ) > φ
1
(Φ) for all Φ > 1− m1

2w1
. Since φ̄1(Φ) = 1−φ

1
(Φ) and

φn∗
1 (Φ) = r1(1−γn(Φ)), SC implies φn∗

1 (Φ) < φ̄1(Φ) for all Φ. Thus φn∗
1 (Φ) 6= φ̄1(Φ) for

all Φ. Second, if γn(1− m1

2w1
) < 1− m1

w1
, then φn∗

1 (1− m1

2w1
) > 1

2
. Clearly, φn∗

1 (Φ) 6= φ
1
(Φ)

for all Φ. Now consider φ̄1(·). Since φ̄1(1− m1

2w1
) = 1

2
, φn∗

1 (1− m1

2w1
) > φ̄1(1− m1

2w1
). Further,

φ̄1(1) = 1 > φn∗
1 (1) = r1. By SC (and again using the facts that φ̄1(Φ) = 1−φ

1
(Φ) and

φn∗
1 (Φ) = r1(1−γn(Φ))), there exists a unique Φ̃ such that φn∗

1 (Φ̃) = φ̄1(Φ̃).

Combining results, there exists a unique policy vector φ∗ ∈ {(φ̄1(Φ̃), φ
2
(Φ̃), . . . , φ

n
(Φ̃)),

(φ
1
(Φ̃), . . . , φ

n
(Φ̃))} inducing success probability Φ̃ that satisfies NC. Since each agent’s best

response to any agent strategies is single-valued and unique, no equilibrium in strictly mixed

strategies exists. Thus, φ∗ is the unique equilibrium strategy profile.

(ii) To show φ∗1(n) is decreasing in n, consider any n′′ and n′, where n′′ > n′. Clearly,

γn′′(Φ) > γn′(Φ), and thus φn′′∗
1 (Φ) < φn′∗

1 (Φ) for all Φ. Let φ̃1(Φ, r1) = {φ
1
(Φ), φ̄1(Φ)}

represent the correspondence of possible values of φ∗1(n) for each Φ, and let f(φ̃1) represent

its inverse with respect to Φ. Note that f(·) is a continuous function over [0, 1] and f(0) =

f(1) = 1. By (i) the unique equilibrium is characterized by φn∗
1 (Φ) ∈ φ̃1(Φ, r1). By the

facts that φn∗
1 (Φ) is increasing and φn∗

1 (1) ≤ r1, f satisfies f(φ̃1) ≤ Φ̃ for φ̃1 ≥ φ∗1, where

φn∗
1 (Φ̃) = φ̃1. Then φn′′∗

1 (Φ) < φn′∗
1 (Φ) implies there exists no φ̃1 ≥ φ∗1(n

′) such that φ̃1 =

φn′′∗
1 (Φ) ∈ φ̃1(Φ, r1). Therefore, φ∗1(n

′) > φ∗1(n
′′).

To show φ∗1(n) is increasing in r1, let φ∗
′′

1 and φ∗
′

1 denote A1’s equilibrium policies under
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r′′1 and r′1, respectively, where r′′1 > r′1. Also, let φn∗
1 (Φ, r1) denote A1’s best response to

γn(Φ) under r1. Clearly, φn∗
1 (Φ, r′′1) > φn∗

1 (Φ, r′1) for all Φ. Let z̃ denote the value of φ1 such

that φn∗
1 (Φ, r′′1) ∈ φ̃1(Φ, r

′
1). By a symmetric argument with the first part of (ii), z > φ∗

′
1 .

Now note that f is increasing in r1 over φ̃1 ∈ (0, 1). Since φn∗
1 (Φ, r′′1) is increasing in Φ, this

implies that there exists no φ̃1 ≤ z such that φ̃1 = φn∗
1 (Φ, r′′1) ∈ φ̃1(Φ, r

′′
1). Thus, φ∗

′′
1 > z,

implying φ∗
′′

1 > φ∗
′

1 .

(iii) The result holds trivially for n = 1; thus, assume n > 1. Suppose otherwise. Let Φ∗′′

and Φ∗′ denote the equilibrium success probabilities and φ∗
′′

i and φ∗
′

i Ai’s equilibrium policies

under r′′1 and r′1, respectively, where r′′1 > r′1. By (8) and the fact that φ∗i (n) = φ
i
(Φ∗) for

i > 1, Φ∗′′ < Φ∗′ implies φ∗
′′

i > φ∗
′

i for i > 1. But by part (ii), φ∗
′′

1 > φ∗
′

1 , so by (5) φ∗
′′

i < φ∗
′

i

for some i > 1: contradiction.

Proof of Proposition 2. (This proof uses the notation developed in the proof of Comment

3.) By the proof of Comment 3, in equilibrium φ̄1(Φ) = φn∗
1 (Φ) = r1(1−γn(Φ)) or φ

1
(Φ) =

φn∗
1 (Φ). There are two cases. First, suppose that φn′∗

1 (1− 1
4r1

) ≤ 1
2

for some n′ (equivalently,

γn′(1− 1
4r1

) ≥ 1− 1
2r1

). Then, by the proof of Comment 3(i), φ̄1(Φ) 6= φn∗
1 (Φ) for any Φ, and

hence is characterized by φ
1
(Φ) = φn∗

1 (Φ) (and so φ∗1(n
′) < 1

2
). Recall that φn∗

1 (·) is increasing

and φ
1
(·) decreasing in Φ. Also, since γn(Φ) is weakly increasing in n for all Φ, φn∗

1 (Φ) =

r1(1−γn(Φ)) is decreasing in n for all Φ. These facts imply φ
1
(Φ∗(n′)) ≥ φ

1
(Φ∗(n′+1)).

Then φ
1
(·) decreasing in Φ implies Φ∗(n′+1) ≥ Φ∗(n′). Thus Φ∗(n) is increasing in n for all

n ≥ n′.

Second, suppose φn′∗
1 (1− 1

4r1
) > 1

2
for some n′ (equivalently, γn′(1− 1

4r1
) < 1− 1

2r1
). If

γn′+1(1− 1
4r1

) < 1− 1
2r1

, then φn∗
1 (Φ) > 1

2
for all Φ and A1’s equilibrium policy must lie

along φ̄1(·) (i.e., φ∗1(n
′+1) > 1

2
). Recall that φ̄1(·) is increasing in Φ. Then by a symmetric

argument with the first case, Φ∗(n′+1) < Φ∗(n′). Thus Φ∗(n) is decreasing in n for n < n′+1

such that γn′+1(1− 1
4r1

) < 1− 1
2r1

. If γn′+1(1− 1
4r1

) ≥ 1− 1
2r1

, then from the first case Φ∗(n) is

increasing in n for all n ≥ n′+1. Note that either Φ∗(n′) > Φ∗(n′+1) or Φ∗(n′) ≤ Φ∗(n′+1)

may obtain, depending on the value of rn′+1.

Combining results, if there exists n′ such that γn′(1− 1
4r1

) < 1− 1
2r1

and γn′+1(1− 1
4r1

) ≥
1− 1

2r1
, then ñ = n′ +1. Since γn(·) is increasing in n, this condition is equivalent to

ñ = min{n | φ∗1(n) ≤ 1
2
}. If no such n′ exists, then ñ = N + 1.

Proof of Proposition 3. (i) If Φ∗(n′) − n′k′ > Φ∗(n′′) − n′′k′ for some k′ and n′′ > n′, then
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clearly Φ∗(n′)− n′k > Φ∗(n′′)− n′′k for any k > k′. Thus, n∗ is non-increasing in k.

(ii) Manipulating (6), Φ∗(n) ≤ Φ∗(1) for all n if φ∗1(n) > 1−r1 for all n. As the result

clearly obtains for r1 = 1 I consider only the interior case: by (5) φ∗1(n) > 1−r1 iff
∏N

i=2(1−
φ∗i (n)) > 1

r1
−1. An upper bound on φ∗i (n) is ri, so a sufficient condition is

∏N
i=2(1−ri) >

1
r1
−1.

Since 1−∑N
i=2 ri <

∏N
i=2(1− ri), this is also satisfied if

∑N
i=2 ri < 2− 1

r1
.

(iii) If r1 ≤ 1
2
, then clearly ñ = 1. By Proposition 2 Φ∗(2) ≥ Φ∗(1), with the inequality

strict if r2 > 0. Thus for any k < Φ∗(2)− Φ∗(1), n∗ > 1.

Proof of Comment 5. I first derive the optimal termination rule for P. First note that if

ri = 1 for some Ai, then Ai’s dominant strategy is a policy of 1. Any termination rule is

then optimal if the replacement rule is ρτ = Ai ∀τ . Second, if ri = 0 for some Ai, then Ai’s

dominant strategy is a policy of 0. In this case, a termination rule with Mi = 1 for all such

Ai is trivially optimal.

Now consider agents such that ri ∈ (0, 1). I show that Ai’s policy choice, φMi∗
i , is

decreasing in Mi. For any Mi > 1, the following recursion defines Ai’s value function upon

its choice of some arbitrary φi:

vMi
i (φi) = wiφi −miφ

2
i + δ[φiv

Mi
i (φi) + (1−φi)v

Mi−1
i (φMi−1∗

i )].

Thus, vMi
i (φi) =

wiφi−miφ
2
i+δ(1−φi)v

Mi−1
i (φ

Mi−1∗
i )

1−δφi
, and for Mi = 1, v1

i (φi) =
wiφi−miφ

2
i

1−δφi
. It is obvious

that v2
i (φ

2∗
i ) > v1

i (φ
1∗
i ). Manipulating vMi

i (φi), for any Mi > 2, vMi
i (φMi∗

i ) > vMi−1
i (φMi−1∗

i )

if ∃φ′i such that wiφ
′
i−miφ

′2
i > (1−δ)vMi−1

i (φMi−1∗
i ). Let φ′i = ri = φ∗i (1). Since ri < 1

(by assumption), termination occurs with probability one, and so vMi−1
i (φMi−1∗

i ) <
wiri−mir

2
i

1−δ
,

establishing the inequality. Thus by induction vMi
i (φMi∗

i ) is increasing in Mi.

The optimal policy is derived by differentiating vMi
i (φi), which yields:

dv
Mi
i

dφi
=

wi−2miφi−δv
Mi−1
i (φ

Mi−1∗
i )

1−δφi
+

δ
wiφi−miφ

2
i+δ(1−φi)v

Mi−1
i (φ

Mi−1∗
i )

(1−δφi)2
. To show that first-order conditions are sufficient, note

dv
Mi
i

dφi
< 0

if and only if: (1−δφi)[wi−2miφi−δvMi−1
i (φMi−1∗

i )]+ δ[wiφi−miφ
2
i+δ(1−φi)v

Mi−1
i (φMi−1∗

i )] < 0.

Rearranging terms, this condition is equivalent to:

ν(φi) = δmiφ
2
i − φi + wi − δ(1−δ)vMi−1

i (φMi−1∗
i ) < 0.

Now note that dν
dφi

= 2δmiφ−2mi, so dν
dφi

< 0 if and only if φi <
1
δ
, which holds for all φi ≤ 1.

Since ν(·) is strictly decreasing on [0, 1], vMi
i (·) is pseudoconcave and first-order conditions

are sufficient for characterizing a maximum. At an interior solution:

φMi∗
i =

1−
√

1−2δri+δ2(1−δ)vMi−1
i (φMi−1∗

i )/mi

δ
. (11)
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Otherwise, at a corner solution or if (11) has no real roots, φMi∗
i = 0 or 1. Since ri > 0 (by

assumption), Ai can achieve strictly positive utility by choosing some φi > 0, and therefore

0 cannot be optimal. Thus, if (11) does not characterize φMi∗
i , then φMi∗

i = 1.

Since vMi
i (φMi∗

i ) is increasing in Mi, it is clear from (11) and the corner case that φMi∗
i

is weakly decreasing in Mi. Thus a type-Ai agent chooses the highest policy when Mi = 1.

For any replacement rule, P’s optimal termination rule is therefore {Mi = 1} for all Ai.

I now derive the optimal replacement rule. Given any rule {ρτ}, P’s expected payoff in

each period is the expectation of some distribution over {φ1∗
i }. This payoff is maximized if

the policy chosen is maxi{φ1∗
i } with certainty. By inspection of (11), the replacement rule

{ρτ = A1} ∀τ must be optimal, since r1 ≥ rj for j 6= 1.

Finally, since not all termination and replacement rules are Nash, it will be necessary to

verify that {Mi = 1} ∀i and {ρτ = A1} ∀τ is a best response. Substituting into (11), since

φ1∗
1 = min{1, 1−

√
1−2δri

δ
} > r1 > rj for j 6= 1, P achieves the highest policy by following these

rules.

Proof of Proposition 4. If r1 ≤ 0, then ri ≤ 0 for all Ai, and 0 is a dominant strategy for all

agents. Otherwise, substituting into (11), φ1∗
1 = min{1−

√
1−2δr1

δ
, 1}.

Proof of Proposition 5. Suppose n = s and ri < 1 for all Ai (i ≤ N). Since µq
−i(0) = 0,

by (10) each Ai’s best response is φs∗
i (n) = 0. Thus φs∗(s) = 0 is an equilibrium of the

subgame. To show uniqueness of this equilibrium, suppose φs∗
j (n) > 0 for some Aj. By (10),

φs∗
i (n) =

wiµ
s−1
−i (φ)

2mi
∈ [0, 1) for each Ai. If φs∗

i (n) = 0 for any Ai, then µs−1
−i (φ) = 0 and thus

φs∗
j (n) = 0: contradiction. Otherwise, if φs∗

i (n) > 0 for all Ai, then since n = s, µs−1
−i (φ) < φk

for any k 6= i, and therefore by (10) φs∗
i (n) < mink 6=i{φk} for all Ai: contradiction.

Clearly, φs∗(n) = 0 for all n < s. Thus, P prefers 0 agents to j agents for 1 ≤ j ≤ s.

Thus, ns∗ = 0 or ns∗ > s.
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Figure 2: Number of Agencies as a Function of k and r1 (N = 2)
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