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Abstract

Models with adaptive agents have become increasingly popular in computa-
tional sociology (e.g. Macy 1991, Macy and Flache 2002). In this paper we
show that at least two important kinds of such models lack empirical content.
In the first type players adjust via reinforcement learning: they adjust their
propensities to undertake actions based on the kind of feedback they receive.
In the second type players satisfice—i.e., retain the same action if the payoff
is satisfactory—and search when payoffs are unsatisfactory. In both types of
models feed-back is coded as satisfactory if it exceeds some aspiration level,
where aspirations may themselves adjust to reflect prior payoffs. We show
that outcomes in either type of model are highly sensitive to initial param-
eters; that is, any outcome of the stage game can be supported as a stable
outcome. Intuitively, this occurs because players may be endowed with ini-
tial aspirations that make any outcome satisfactory, and thus the actions
producing that outcome can be reinforced by all players. These results hold
even when players’ aspirations are endogenous. We also present two solutions
to this problem. First, we show that stochastic versions of the model ensure
ergodicity: i.e., the players’ action-propensities and aspirations converge to
a unique limiting distribution that is independent of their initial values. Sec-
ond, we show that if players engage in social comparisons—specifically, an
agent’s aspiration depends on the payoffs of his peers, in addition to his
own—then far fewer outcomes can be sustained in equilibrium.



1 Introduction

Computational modeling and theories of adaptive behavior have been
closely linked for many years, as a recent review (Macy and Wilner 2002) has
made clear. In organization theory, for example, the connection goes back al-
most 40 years (Cyert and March 1963). More recently, agent-based models—
now probably the most common approach in computational sociology—typically
assume boundedly rational actors who adjust their behavior via simple rules
of thumb.

Because computational models in sociology rely so heavily on theories
of adaptation, understanding the latter’s methodological properties is a vital
part of any serious study of the former. And one key methodological property
of a class of theories is its empirical content. Some theories say “almost
anything” can happen; some predict a much narrower range of outcomes.
The latter naturally make stronger predictions than the former, and one
needn’t be a strict Popperian to value the difference.

It is now fairly well-known that the problem of nearly vacuous predic-
tions plagues standard game theoretic models of repeated interactions. This
problem is identified by the so-called “folk theorems,” which state roughly
that any outcome in a repeated game in which each person gets her maximin
payoff is a (subgame-perfect) Nash equilibrium, if the future is sufficiently
important (Fudenberg and Maskin 1986).1 For example, in the Prisoner’s
Dilemma this includes any outcome that gives each player at least his or
her mutual defection payoff. So, the canonical game-theoretic analysis of the
repeated PD has little empirical content.

This problem of a lack of empirical content—known by game theorists for
over 40 years but increasingly recognized by nonspecialists as well—has been
rightfully considered such a serious issue for game theory that some of the
best minds in the field have devoted a lot of time and effort to solving it (e.g.,
Harsanyi and Selten 1988). Although no one proposed solution commands
universal acceptance, game theorists do continue to agree that it is a problem
of the first order.2

1Because the maximin payoff is the one that a player can guarantee herself,
regardless of other player’s actions, it is sometimes aptly called a player’s
“security level.”

2This view is so widespread that game theorists today typically regard a
model that asserts only that a particular outcome in a repeated game is an
equilibrium as uninteresting or even trivial. This evaluation has relevance
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However, it is less widely understood that similar problems plague many
theories of adaptively rational behavior. Indeed, such models are frequently
motivated by the lack of predictive power in classical game theory (e.g. Macy
and Flache 2002). In this paper we establish the validity of this claim for
two types of theories that have long been important in the overall research
program of bounded rationality: theories of trial-and-error learning (e.g.,
Bush and Mosteller 1955) and theories of satisficing-and-search (e.g., Simon
1955).3 It turns out that the two kinds of theories have a strong and signifi-
cant overlap, and very similar results can be established for them.

2 The Predictive Content of Models of Adaptation:
Several “Folk Theorems”

We first establish the result for the case of exogenously fixed aspirations,
in the context of theories of learning (Theorem 1) and of theories of satisficing
(Theorem 2). These results cover a very large set of games: in particular,
(unlike the classical game theoretic folk theorems) they allow payoffs to be
stochastic and nonstationary. Then we will show that the problem reappears,
for games with deterministic and stationary payoffs, even in the context of
endogenous aspirations. (Theorem 3 covers learning models; Theorem 4,
satisficing models.)4

Let t denote discrete time periods and i denote actors (i = 1, . . . , n). A
player i’s generic action is denoted αi. Let Ω denote an outcome function
such that o = Ω(α1, . . . , αn) denotes some generic outcome. We write α(o)
to denote any action profile that generates o and αi(o) to denote i’s action
within that profile. That is, Ω(α1, . . . , αi, . . . , αn) = o for some profile α(o).

Let Πi,t denote the set of i’s feasible payoffs in t, and let πi,t(o) denote
i’s realized payoff in period t, given outcome o. The generality of the nota-
tion reflects two substantively important properties. First, in a given period

for the current discussion, as we shall see shortly.
3For examples of reinforcement models see Macy (1989, 1991a, 1993, 1995),

Kanazawa (2000), and Bendor, Diermeier and Ting (2003); for examples of
satisficing models see Cyert and March (1963), Winter (1971), and Nelson
and Winter (1982).

4We have not seen these results in the literature. However, we cheerfully
acknowledge that they may already be understood by the small coterie of
formal modellers of reinforcement learning. If so, they should be regarded as
“folk theorems.”
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payoffs may be stochastic rather than deterministic: i.e., Theorems 1 and
2 allow for the possibility that a given vector of actions does not determine
a unique set of payoffs to the players but instead generates distributions of
payoffs. Second, over time payoffs may change. That is, Theorems 1 and
2 do not require stationary (time-homogeneous) payoffs. Indeed, the only
structure we impose on payoffs for Theorems 1 and 2 is that every player has
a minimum feasible payoff, i.e., Πi,t has a minimum for all i and t, and let
πi denote the smallest such minimum. Naturally, the twin assumptions of
deterministic and stationary payoffs—standard in repeated game theory and
common in computational modeling—are also permitted by Theorems 1 and
2. If payoffs are stationary we drop the time subscript and simply write Πi

and πi(o).
A player’s propensity to play action αi at t is denoted pi,t(αi) = 1 where

pi,t(·) is a probability measure over i’s set of actions. We write pi,t to denote
i’s measure over all actions at t. Aspiration levels are denoted by ai,t. We
assume that there is an aspiration level for each possible payoff level, i.e. for
each i, t and o there exists some ai,t such that ai,t = πi,t(o). In the case
of exogenous (“fixed”) aspiration levels we also write ai. That is, we have
ai,t = ai for all t. We denote agent i’s minimum and maximum feasible
aspirations ai and ai, respectively.

For the solution concept of all four Theorems we use Macy and Flache’s
concept (2002) of a self-reinforcing equilibrium (SRE). (The following discus-
sion describes the solution concept in terms of learning theories; the extension
to satisficing models is straightforward.) In an SRE with exogenous aspira-
tions players’ propensities to try certain actions generate outcomes and hence
feedback which are consistent with those original propensities. Thus the com-
bination of propensities, aspirations, actions, and payoffs form an equilibrium
in which all these different elements reinforce each other. (Hence, in terms
of an underlying stochastic process, an SRE is an absorbing state.) More
precisely, suppose that in period t every player has a propensity of 1.0 to try
some action. Then this set of propensities is, in combination with a vector of
fixed aspirations, a (pure) SRE if each player gets feedback in t such that all
of these propensities continue to hold in t + 1 (and, hence, thereafter). Thus
this set of propensities is indeed self-reinforcing: the actions produce pay-
offs that in turn reinforce the underlying propensities that generated those
actions in the first place. (In an SRE with endogenous aspirations, both
propensities and aspirations must be self-replicating.)
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Definition 1 A tuple (pi,t; ai,t)
t
i is a Self-Reinforcing Equilibrium iff

for all i, t and αi:
(i) pi,t+1(αi) = pi,t(αi), and
(ii) ai,t+1 = ai,t.

Note that (ii) is trivially satisfied if aspirations are exogenous.

Reinforcement learning. Models of reinforcement learning (including
the well-known Bush-Mosteller model) are designed to capture the “Law of
Effect” (Thorndike 1911): positive reinforcement increases the tendency to
play an action, negative reinforcement decreases it. To capture this general
idea both of our Theorems on learning models use a very general axiom of
positive reinforcement, Axiom 1, which says that if an action produces a
satisfactory payoff in the current period then the agent will not decrease his
propensity on that action.5 Note that this axiom is weaker than the Law of
Effect since it does not make any assumptions about the impact of negative
feedback.

Axiom 1 (positive feedback): For all i, t, and action αi chosen by player i
in period t, if πi,t ≥ ai,t then pi,t+1(αi) ≥ pi,t(αi).

Theorem 1 Consider any repeated game, with either stationary or nonsta-
tionary payoffs, in which players adjust their action-propensities by any ar-
bitrary mix of adaptive rules that satisfy Axiom 1 and where aspirations are
exogenously fixed. Then any outcome o of the stage game can be sustained
as a stable outcome by some pure SRE.

(For the proof of Theorem 1 and of all other results, see the appendix.)
Proving Theorem 1 is easy because one is free to exogenously fix aspira-

tions.6 Thus a person could be content with even the lowest payoff in a game,

5The assumption is stated for the case of endogenous aspirations. To refor-
mulate it for exogenous aspirations is easy: one just replaces the endogenous
aspiration, ai,t, by the exogenous one, ai, in the assumption’s key inequality,
below.

6As mentioned above, the proof of the theorem uses the assumption that
for each payoff there is a corresponding aspiration level. (Theorem 2’s proof
uses the same assumption.) Not only is this assumption very mild, relaxing
it does not significantly change the results. For example, suppose that each
player i has a lowest aspiration level satisfying ai > πi. Then the conclusion
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if his aspiration level is low enough. Exactly the same mechanism works in
the context of satisficing-and-search models (with exogenous aspirations).
We turn to these models now.

Satisficing Theories. Behavioral theories of search are based on the
premise that search is problem-driven: decision makers search for new al-
ternatives if and only if today’s action is unsatisfactory, i.e., yields a payoff
that falls below the decision maker’s aspiration level. When this informal
theory is formalized as a mathematical or computational model, the basic
premise naturally leads one to construct a stochastic process in which the
state space is the vector of actions chosen by the agents. Thus, if the process
is Markovian, then the actor stays where s/he is (satisfices) if the current
payoff is satisfactory, and with some positive probability transits to a dif-
ferent alternative tomorrow if today’s payoff is unsatisfactory (Simon 1955).
Hence a key difference—possibly the major one—between learning theories
and satisficing-and-search theories is how they specify their state spaces:
whereas the latter describes its states directly in terms of decision makers’
actions, the former’s state space is more complex, being actors’ propensities
over actions. (Each type of theory includes aspirations in the state space if
aspirations are endogenous; see Theorems 3 and 4, below.)

We continue to use exactly the same assumptions about the nature of
the stage game as we used for learning theories. (In particular, this means
that Theorem 2, like Theorem 1, allows for payoffs that are stochastic or
nonstationary or both.) But instead of Axiom 1 we use Axiom 2.7

Axiom 2 (satisficing): For all i, t, and action αi chosen by player i in
period t, if πi,t ≥ ai,t then player i will choose action αi in period t + 1.

of both theorems must be modified in the following way: “. . . any outcome
o in which πi(o) ≥ ai can be sustained as a stable outcome.” Intuitively,
the condition that each player’s payoff is at least as high as her aspiration
level is more-or-less the adaptive analogue to the requirement in the full-
rationality folk theorems of game theory that every person get at least his
maxmin payoff. An optimizing player will never settle for getting less than
her maxmin; analogously, an adaptively rational player will not be satisfied
with something less than her aspiration level. As long as these criteria are
satisfied, anything is stable.

7Note that just as Theorem 1 does not need any assumption about how
agents respond to negative feedback, so Theorem 2 only needs an assumption
about what happens when payoffs are satisfactory. It is not tied to a specific
model of search.
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It is important to note that Axiom 2 is strictly stronger than Axiom 1: if
the decision maker satisfices then with probability one he retains the action
he used in t. Because his propensity to choose that action in period t + 1 is
1, it cannot be less than it was in t. This fact makes it easy to show that
Theorem 2—which is identical to Theorem 1 except that Axiom 2 replaces
Axiom 1—holds. (The proof is therefore omitted.)

Theorem 2 Consider any repeated game, with either stationary or nonsta-
tionary payoffs, in which players satisfice-and-search by any arbitrary mix
of adaptive rules that satisfy Axiom 2 and where aspirations are exogenously
fixed. Then any outcome o can be sustained as a stable outcome by some pure
SRE.

Endogenous Aspirations
A natural criticism of positing fixed aspirations is that that premise pre-

cludes an important kind of learning: aspirations should reflect one’s payoff-
experience. Indeed, to assume otherwise—to keep aspirations constant in
the face of discrepant evidence—seems inconsistent with the spirit of the un-
derlying research program: people are boundedly rational but they do adapt
(learn from experience). Thus endogenizing aspirations should be a major
part of the modeling effort for substantive reasons. Surprisingly, however, in
an important class of circumstances (games), endogenizing aspirations does
not by itself solve the methodological problem of low predictive power. That
is, if we confine ourselves to the context that is standard in game theory
and common in agent-based models—deterministic and stationary payoffs—
it remains true that “anything can happen” even when aspirations adjust to
experience.8 This is the content of our next results: Theorems 3 and 4.

Since aspirations are endogenous in these results, we must specify some
properties of adjustment. It turns out that we only need one assumption,
Axiom 3, below.

Axiom 3 For all i and t, if πi,t = ai,t then ai,t+1 = ai,t.

Note that Axiom 3 is consistent with any model of aspiration-adjustment
in which an agent’s aspiration level tomorrow is a weighted average of today’s

8It turns out that the combination of endogenous aspirations and stochas-
tic payoffs is one solution to the problem of low predictive power (see Theorem
5). We postpone a discussion of this issue to the next section.
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level and today’s payoff: i.e., if ai,t+1 = λai,t + (1 − λ)πi,t, where λ ∈ [0, 1],
then ai,t+1 = ai,t whenever πi,t = ai,t, for any value of λ.

We first consider models of reinforcement learning (with endogenous as-
pirations).

Theorem 3 Consider any repeated game with deterministic and stationary
payoffs in which players adjust their action-propensities by any arbitrary mix
of adaptive rules that satisfy Axiom 1 and adjust their aspirations by any
arbitrary mix of rules that satisfy Axiom 3. Then any outcome of the stage
game can be sustained as a stable outcome by some pure SRE.

The proof of Theorem 3 (see the appendix) is similar to that of Theorem
1. The only twist arises because here aspirations adjust to experience, and
so one must be more careful in specifying a vector of aspirations that will
self-replicate.

As with learning theories, we can now make aspirations in behavioral the-
ories of search endogenous. Here, we use Axiom 2 just as before. (Theorem 4
also inherits Theorem 3’s assumptions on payoffs: they must be deterministic
and stationary.) We then get the following result. (The proof closely follows
that of Theorem 3 and so is omitted.)

Theorem 4 Consider any repeated game with deterministic and stationary
payoffs in which players satisfice-and-search by any arbitrary mix of adaptive
rules that satisfy Axiom 2 and adjust their aspirations by any arbitrary mix
of rules that satisfy Axiom 3. Then any outcome of the stage game can be
sustained as a stable outcome by some pure SRE.

Although the domains of Theorems 3 and 4 are smaller than those of 1 and
2 in being confined to games with deterministic and stationary payoffs, it is
worth noting that their domains remain large in several important respects.
First, they hold for any number of players, including one-person decision
problems. Second, each player can have any number of actions, finite or
infinite. Third, the game can be symmetric or asymmetric. Hence the players
may, for example, have completely different sets of actions. Fourth, the
results do not even require that players must keep using the same adaptive
rule over time: a person could switch to different methods of adjusting his/her
action-propensities or aspirations, provided only that new rules continued to
satisfy the relevant axioms (i.e., Axioms 1 or 2 and Axiom 3).
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So both game theory and behavioral theories of learning and of search
suffer from similar defects of weak empirical content. Indeed, in some ways
the adaptive theories are in worse shape, qualitatively speaking, than the
full-rationality theory: any outcome of the stage game can be sustained as
an SRE, even those below the maximin level. Hence in terms of predicting
the range of possible outcomes, the empirical content of the adaptive theories
is even less than game theory’s.9 For example, in the iterated PD neither
adaptive theory can exclude even the extreme outcome in which one person is
always suckered by his partner, whereas noncooperative game theory excludes
this case because in such circumstances the exploited player could always
unilaterally guarantee his security level by defecting.

The key to overcoming this methodological problem is to ensure that the
adaptive process does not “lock-in” too easily. That is, the theorist must “tie
his/her own hands.” The reward for this self-control is a model with much
more empirical content. We turn to this idea next.

3 The Individual Solution – Randomness

In this part of the paper we examine a diverse set of assumptions that
ensure that a model of aspiration-based adaptation has empirical content,
i.e., it does not predict that “anything can happen.” In fact, these changes
ensure that the model generates unique predictions. The key modification is
to introduce randomness at the level of individual decision making and adap-
tation. Of course, the model already permits probabilistic decision-making
(the propensity to play an action need not equal one or zero). However, now
we require individual decisions to have a random component.

9If, of course, we could independently measure (observe) aspiration levels,
then even deterministic models of adaptation could sometimes make sharp,
falsifiable predictions. Consider, for example, Macy and Flache’s (2002) anal-
ysis of the prisoner’s dilemma. If in an experiment we could induce (fixed)
aspirations in the (P, R) interval (where P is the payoff to mutual defection
and R is the payoff for mutual cooperation), then their prediction that mu-
tual cooperation is the only stable outcome would be testable. What renders
the theory hard to falsify is the testing of a joint hypothesis that includes
both the adaptive processes and the agent’s aspiration level. Theorems 1 and
2 imply that for any observation of any kind of stable behavior, there always
exists a joint hypothesis that cannot be rejected. This creates a temptation
for the analyst to use ad hoc maneuvers (“Ah ha! So the agent must have had
an aspiration level of such-and-such.” ) that are methodologically suspect.
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This modification ensures that reinforcement learning can be modeled as
a Markov chain. Adding randomness thus requires the use of a different so-
lution concept of our model. Rather than solving for SREs we now need to
characterize the process’s long-run behavior. That is, the appropriate solu-
tion concept is now a stable distribution. As we show below, our stochastic
process has a unique stable distribution. Moreover, the process must eventu-
ally converge to that unique distribution from any starting point, i.e., from
any initial configuration of agents’ propensities and aspirations. Thus, the
process yields a unique, albeit stochastic, prediction.10

It is important to understand the nature of this claim. We do not mean
that the players’ behavior necessarily settles down in the long run (e.g. to
cooperation). This would happen only if their propensities settled down to
the corresponding pure values (e.g., all pairs of players reached a cooperation-
propensity of one). This need not happen, even for arbitrarily rare trembles.
Instead, consider a large number of identical games. The state space can then
be thought of as a finite “grid” of propensity and aspiration values. Then
in the long run, the frequency distribution over this grid will settle down to
a probability distribution. In the simple case where each player eventually
plays only the same pure strategy (e.g., mutual cooperation in the Prisoner’s
Dilemma), this distribution is degenerate. As we shall see shortly, however,

10It is possible to relate the idea of a distribution as a solution concept to
the perhaps more familiar idea of an equilibrium as a solution of the model,
whether the equilibrium is Nash or Self-Reinforcing. This can be done by
considering the limit of sequences of probabilistic distributions. Suppose we
start out with any (benchmark) tremble probability (i.e., with some exoge-
nously fixed probability agents randomly do something other than they had
intended) and then gradually reduce it toward zero, holding all other pa-
rameters constant. This yields a sequence of (unique) limiting distributions
and their associated statistics (e.g., the population’s average propensity to
cooperate). As the tremble probabilities get sufficiently small, by continuity,
further diminutions in these probabilities can have only negligible effects on
the associated limiting distributions. In short, as the trembles go to zero
the limiting distributions themselves converge. In the limit, we are left with
a distribution that assigns non-zero probability only to finitely many states
(usually a unique state). Note, however, that when the tremble probability is
exactly zero (not arbitrarily small, in the limit), the corresponding learning
rule would be subject to Theorems 3 and 4. That is, it would lack empirical
content. So, we require some randomness to ensure a unique prediction, but
the amount of randomness can be arbitrarily small. See Foster and Young
(1990) or Bendor, Diermeier and Ting (2003) for details.
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there may be cases in which the frequency distribution of players over states
is not degenerate. Note that the notion of a limiting distribution does not
imply that in any particular game the players’ actions settle down on one
point of the state space grid. Rather, while the specific action profiles taken
may change indefinitely, the population of players’ action profiles will settle
down.11

We now need to define a stochastic version of reinforcement learning.
Since we are interested in proving general existence and uniqueness results
the model needs to be defined in a fairly general fashion. Specifically, we
construct a stationary Markov chain that describes the behavior of N (N ≥ 1
and finite) players over time. Each agent, i, has finitely many feasible actions
in the stage game, αi

1, . . . , α
i
m(i), where m(i) > 1 for all i. (The set and

number of actions could be different for each agent; hence the dependence on
i is necessary. But for the sake of economy of expression we shall virtually
always suppress the relevant subscripts) We assume throughout that each
agent has finitely many possible propensity values for each action, where
each propensity value is non-negative. Thus, in every period each agent i
has a finitely many vectors of propensity values over her possible actions of
the form: (pi,t(α

i
1), . . . , pi,t(α

i
m(i))), where

∑m(i)
j=1 pi,t(α

i
j) = 1. So, each vector

constitutes a probability measure.
Agents also have aspiration levels that partition current payoffs into sat-

isfactory and unsatisfactory. Each agent has finitely many feasible aspiration
levels. Agent i’s aspiration levels are denoted by ai

1, . . . , a
i
n(i), where n(i) > 1.

An agent’s sets of feasible propensity vectors and feasible aspiration levels
are the same in every period. Let p

i
denote i’s minimal propensity value for

any action, and let pi denote i’s maximal propensity value. We assume that
for every agent i feasible propensity values satisfy the following condition:
pi + (m(i) − 1)p

i
= 1, where m(i) is the number of actions that agent i has

in the stage game. This condition must hold if p
i

= 0 and pi = 1. Note,
however that we do not require (but in general permit) that p

i
= 0 and

pi = 1. That is, we allow for adaptive models where propensities are never
“pure.” Indeed, as part (2) of Theorem 5 shows, this is one of the ways in
which we can ensure a unique limiting distribution.

Thus the state of the Markov process is a vector of N elements, where each

11This misunderstanding—believing that the behavior of a single sample
path will settle down as time goes to infinity—is so common that in his
seminal work on stochastic processes Feller (1950) devoted a good part of
one chapter to dispelling it.
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element (for, say, agent i) is composed of i’s vector of current propensities
over her feasible actions and her current aspiration level. Because there are
finitely many actions, finitely many possible propensities over these actions,
finitely many aspirations, and finitely many agents, this is a finite state
Markov chain.

To help visualize the state space, one might think about a game in which
each person has only two actions. In this case the state space for every
player is a two dimensional finite grid, where the horizontal axis is the current
propensity for playing action 1 and the vertical axis is the player’s current
aspiration level; see figure 1. (The current propensity for action 2 is just
the complement of action 1’s propensity, so it can be omitted.) Hence, for
N−player games the state space consists of N such grids.

[figure 1 about here]

Note that the model allows for two forms of randomness. First, as in the
base-line model discussed in the previous section, randomness may be present
because agents use propensities strictly between 0 and 1. This randomness
is captured by the propensity levels in each grid. We will call a vector of
propensities totally mixed if every propensity-value in the vector exceeds zero.
Second, learning and adapting corresponds to the transitions from one part of
the grid to another. The system’s transition rules describe how agents adjust
their propensities and aspirations, based on what they have done in t and
their current payoffs. These transition rules themselves may be probabilistic.
Indeed, to exhibit a unique limiting distribution these transitions must be
structured such that we do not get ”stuck” easily on a particular point on the
grid. Intuitively, this corresponds to a randomly perturbed learning process.
We now discuss some of the features of such processes.

Inertia. In our model we wish to capture agents that learn by trial-
and-error, i.e., propensities and aspirations may adjust to payoff experience.
However, since an actor’s attention may be on other matters, these codings do
not invariably lead to adjustments in propensities or aspirations. Consistent
with the spirit of bounded rationality, we allow for the possibility that hu-
mans are sometimes inertial: they do not invariably adapt or learn. That is,
we assume that each agent may be inertial with respect to either adjustment
mechanism with a probability that is in (0, 1). If the agent is not inertial
with respect to an adjustment mechanism, then we say that s/he is alert with
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respect to that mechanism. The probabilities of being inertial with respect
to propensity-adjustment and aspiration-adjustment are assumed to be i.i.d.
across players and across periods, but they need not be independent. It is
only required that all four possibilities—(active, active), (active, inertial),
(inertial, active), and (inertial, inertial)—occur with positive probability.

Assumptions about propensity-adjustment. The following assump-
tions about the two adjustment mechanisms hold whenever the agent in
question is alert.

A4 (positive feedback): If i used action αi in t and if πi,t ≥ ai,t

then Pr(pi,t+1(α
i) ≥ pi,t(α

i)) = 1; if pi,t(α
i)) < pi and πi,t > ai,t then

Pr(pi,t+1(α
i) > pi,t(α

i)) = 1.

A5 (negative feedback – direct effect): If i used action αi in t and if
πi,t < ai,t then Pr(pi,t+1(α

i) ≤ pi,t(α
i)) = 1; if pi,t(α

i) > p
i
then Pr(pi,t+1(α

i) <

pi,t(α
i)) = 1.

A6 (negative feedback – indirect effect): If i used action αi
r in t and

if πi,t < ai,t, then for every other action αi
s (where s 6= r), with positive

probability i moves to some new propensity vector in t + 1 in which αi
s has

positive weight.

Note that A4 is stronger than A1; i.e., A4 implies A1 but the converse
does not hold. Intuitively, it requires reinforcement to be strictly positive, if
possible. A5 is the corresponding axiom on negative feedback. In conjunction
they are simply a probabilistic version of the Law of Effect. A6 additionally
requires that no action is a priori excluded. Rather, each other action must
be reachable with some (possibly arbitrarily small) probability. Note that
A6 does not require that there be any new propensity vector that i moves to
in t + 1 in which all actions (other than the one used in t) receive positive
weight. Instead, there could be a set of propensity vectors, one in which α1

gets positive weight, another in which α2 does, and so on. Note also that in
the case where an agent has only two actions A6 is already implied by A5.

Assumptions about aspiration-adjustment. We continue to use A3,
as defined above, to stipulate what happens when current payoffs equal
current aspirations. For the reader’s convenience it is restated here. The
new aspiration-adjustment assumptions, A7 and A8, stipulate what happens
when current payoffs do not equal current aspirations. Again, both axioms
are simply probabilistic versions of endogenous aspirations.
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A3: If πi,t = ai,t then Pr(ai,t+1 = ai,t) = 1.

A7: If πi,t > ai,t then Pr(ai,t < ai,t+1 ≤ πi,t) = 1.

A8: If πi,t < ai,t then Pr(πi,t ≤ ai,t+1 < ai,t) = 1.

Because these adjustment properties are stationary (time homogeneous),
the resulting transition probabilities of the Markov chain are also stationary.
We refer to any process that satisfies these axioms as an “aspiration-based
adaptive process.”

Stochastic Payoffs A third potential source of randomness may originate
from stochastic payoffs, i.e. the assumption that the payoff to a player is not
completely determined by the choices of all players, but also has a random
component.12 That is, payoffs are modeled as a non-degenerate (conditional)
probability distribution with finite support for each action profile. For each
action profile outcome we denote realized payoffs by πi,t(o) with correspond-
ing random variables Πi,t. Let πi(o) denote agent i’s minimal possible payoff
given outcome o, and πi(o) her maximal payoff. For example, in the two-
person prisoner’s dilemma πi,t(C, C) denotes agent i’s payoff at time t given
that both agents have cooperated.13 We assume that payoff realizations are
mutually independent across agents and time.

Different payoff assumptions then correspond to different restrictions on
the respective distribution, such as assumptions on the ordering of expec-
tations or the supports of the random variables. These restrictions can be
applied to different aspects of the distribution. For example, one may require
that each agent’s expected payoff from mutual cooperation in the 2-person
PD is strictly higher than the expected payoff from mutual defection. For-
mally, for all t,

E[Πi,t(C, C)] > E[Πi,t(D, D)]

Alternatively, one may assume that distributions are ordered in terms of
their best or worst possible realizations. For example, one may assume that

12This approach is sometimes called a “random utility model”. It is com-
mon in empirical studies of decision making, e.g. consumer decisions, and can
provide a decision-theoretic foundation for logit regressions. See e.g. McFad-
den (1973). The approach is less well-known in game-theoretic approaches.

13In this example we simply identify strategy combinations with outcomes.
That is, Ω is the identity function. In general, it simplifies the analysis to
use general outcome functions.
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each agent’s maximal payoff from mutual cooperation in the 2-person PD is
strictly higher than the maximal payoff from mutual defection:

πmax
i (C, C) > πi(D, D).

Of course, which one of these assumptions makes sense depends on the phe-
nomenon being modeled.

Theorem 5 An aspiration-based adaptive process has a unique limiting
distribution if any of the following conditions hold:

1. Action trembles: with a positive probability (which is i.i.d. across pe-
riods and independent across players), player i, instead of doing what he
intended to do, “experiments” by randomly playing some action given
by a totally mixed vector of probabilities over feasible actions. (This
vector is i.i.d across periods and independent across players.) Further,
in the stage game there is an outcome, o, in which nobody gets their
minimal payoff (i.e. πi(o) > πi for all i).

2. Extreme propensities excluded: neither 0 nor 1 are feasible propen-
sity values for any action for any player. Further, in the stage game
there is an outcome in which nobody gets their minimal payoff (i.e.,
(πi(o) > πi for all i).

3. Stochastic payoffs: every vector of actions produces a (nondegen-
erate) distribution of payoffs for every agent, where each distribution
is finitely valued. Payoffs are i.i.d. across periods and independently
distributed across players.

4. State trembles: with positive probability (again i.i.d. over periods
and independently across players) i’s state can randomly tremble to
any neighboring state on his grid.

Thus various forms of randomness in the transition from one state to
another ensure the existence of a unique limiting distribution. What all these
approaches have in common is that they act on the level of individual actions
or learning. They do not involve any reference to other actors. The next
section examines such a “social” solution to the problem of low predictive
content.
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4 The Social Solution – Reference Groups

In this section we introduce a quite different theoretical change in mod-
els of adaptation, one which has direct sociological content: how reference
groups affect the adjustment of aspirations (e.g. Merton and Rossi 1950).
It turns out that assuming that people are tied into social networks which
influence their aspirations has benign methodological effects, quite similar to
the effects of introducing randomness at the individual level. Hence, in order
to demonstrate cleanly that it is the introduction of these social compari-
son processes that restores empirical content to the model, in this section
we return to the base-line deterministic model from section 2 with stationary
stage-game payoffs. Accordingly we know, via Theorems 3 and 4, that absent
social influence on aspirations “anything could happen.”

In this model, agent i’s aspiration in period t + 1 will be a weighted
average of the payoffs of some of the other players in the game. We call such
people i’s reference group, and we say that i emulates his reference group.
(We continue to assume that i’s aspiration in t + 1 is influenced by ai,t and
πi,t, i.e., by his current aspiration and current payoff.) Thus we write

ai,t+1 = λi,0ai,t + (λi,1π1,t + · · · + λi,NπN,t) (1)

where for all i,
∑N

j=1 λi,j = 1 and λi,j ≥ 0. For the sake of continuity with
the model underlying Theorem 2, we assume that λi,0 and λi,i are strictly
positive for all i. We further assume that all λi,j’s are exogenously fixed
for each player, over the entire game. (We plan to investigate systems with
endogenous reference groups in subsequent work.) Note that if for all i,
λi,j = 0 (for all 0 6= j 6= i), then we recover an individualistic process of
aspiration adjustment that is consistent with property (A3).

There are many different kinds of Theorems that one can generate via
models in which social comparisons influence aspirations. Here we examine a
very broad class of such issues, by looking at all N -person games that satisfy
two properties: (1) N is finite and (2) each player’s action set is finite.
(Again we do not require that the game be symmetric.) Because computers
are finite state machines, all computational models that are actually run on
computers presume finitely many players and finite action sets, and so satisfy
assumptions (1) and (2). Thus, these conditions are not very restrictive.

The crucial property used in our next result is that the social networks of
emulation be dense enough so that “no man (or group) is an island,” i.e., no
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subset of players completely ignores everyone else’s payoffs. We now define
this property precisely.

Definition 2 N is nondecomposable if, for every partition of N into two
disjoint, nonempty subsets, at least one person in each subset emulates some-
one in the other subset.

Formally, N is nondecomposable if for every J with J & N and J 6= ∅ :
there exists some j ∈ J and i ∈ N\J such that: λj,i 6= 0 and
there exists some i′ ∈ N\J and j′ ∈ J such that: λi′,j′ 6= 0.

Theorem 6 Consider any N-person repeated game with deterministic pay-
offs in which N is finite and in which each person’s action set is finite. Fur-
ther, axiom A4 governs propensity-adjustment and (1) governs aspiration-
adjustment. If N is nondecomposable, then in any stable stage-game outcome
all players get the same payoff.

Thus when the set of players is nondecomposable, it is impossible to
sustain, as a stable pattern, outcomes in which some people do worse than
others. Hence, rather than saying that “anything can happen,” a model of
adaptation with social comparisons predicts that many things cannot hap-
pen.14

With just one more assumption about the nature of the stage-game, this
model also makes a sharp prediction about what combinations of actions are
stable.

(A9): If two players take different actions then they get different payoffs.15

This property holds in many of the games studied in agent-based models,
e.g. in the study of collective action. Obviously A9 holds in virtually all
variants of the prisoner’s dilemma. If, e.g., a player’s payoff is monotonically

14Theorem 6 describes a property—equal payoffs—that is necessary for
stability. It is easy to show that this property is also sufficient for stability
(i.e., for an outcome to be supported by a pure SRE). Putting necessity and
sufficiency together yields a characterization result: under the hypotheses of
Theorem 6, a stage-game outcome is stable if and only if all payoffs in that
outcome are equal.

15More formally, if αi,t denotes player i’s action in period t, then A8 says
that for all i 6= j, if αi,t 6= αj,t then πi,t 6= πj,t.
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falling in his/her degree of cooperation, then whoever cooperates more in a
given period must get a lower payoff than those who cooperate less. A bit
more subtly, it holds in most “threshold” games (e.g., Palfrey and Rosen-
thal 1984, Macy 1990, 1991b) as well. Consider, for example, a standard
N -person threshold game where each person has a binary choice of either
contributing or shirking. Suppose in period t player i contributed while j
shirked. If i is pivotal—without his/her contribution the group would fall
short of the required number of contributions—then i prefers contributing
over shirking. Thus unlike the PD defecting is not a dominant strategy in
this threshold game. Rather there are multiple Nash equilibria, one where
nobody cooperates and others where some or all players contribute. Suppose
player j took a different action in t than i, e.g. j did not contribute, then,
because the collective good was provided yet j “free-rode” on other peo-
ple’s contributions, j must have gotten a higher payoff than i did. Therefore
(obviously) i and j got different payoffs, so A9 holds in this kind of game.

Corollary 1 Suppose the hypotheses of Theorem 6 are satisfied, and in
addition A9 holds. Then in any stable stage-game outcome everyone takes
the same action (and receives the same payoff).

To see some of what this result implies, reconsider the binary choice, N -
person threshold game described above. Suppose that all the players belong
to a village that is trying to sustain a collective good (e.g., maintaining a
commons; see Ostrom 1991). The process is governed by adaptation with
endogenous aspirations with reference groups. Further, the community net-
works are sufficiently dense so that the community is nondecomposable. Then
there are only two stable outcomes: either everyone contributes to the collec-
tive good or no one does.16 All the other stage game outcomes that are stable
under the purely individualistic adjustment processes of Theorem 2 (one per-
son contributes, two contribute, . . . , N − 1 contribute) are destabilized by
social comparison processes.

Theorem 6 and its corollary also generate some interesting implications
about social hierarchies. Suppose in the preceding threshold game that a

16One is reminded of Putnam’s description (1993) of the good equilibrium in
northern Italy, with its high level of collective goods, and the bad equilibrium
in southern Italy where people contribute to public goods to much lesser
extent.
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community is decomposable: it can be partitioned into two distinct sub-
groups, A and B, such that nobody in A emulates anyone in B or vice versa.
Then exploitation of one group by the other is a stable outcome: all A’s con-
tribute (suppose that this meets the threshold criterion) while all B’s shirk.
Thus, although everyone enjoys the collective good, only the downtrodden
A’s bear the burden of providing the good. This outcome is supported by
an SRE in which the endogenous (but very different) aspirations of A’s and
B’s are consistent with these unequal payoffs. The key is disjoint reference
groups: people emulate only members of their own group.

It is a plausible hypothesis that elites throughout history have tried to
keep the aspirations of the lower classes in check and consistent with their
station in life. Theorem 6 and its corollary provide a micro-foundation (of
adaptive behavior) for this hypothesis.

These two solutions to the empirical content problem of adaptive models
seem quite different but they actually work via common mechanisms. To see
why this is so, let us compare the noise created by stochastic payoffs with
socially based aspirations. Consider the standard two-person, binary-choice
prisoner’s dilemma. Without noise or social comparison we can stabilize
the extreme outcome in which Row is always exploited by Column; hence
Row gets S, the lowest (“sucker’s”) payoff, and Column gets T , the highest
(“temptation”) payoff in every period. Now let us consider stochastic payoffs.
Specifically, there are now two payoff realizations for every pair of actions
(“high” and “low”), so that Row can get either S− or S+ and Column can
get either T− or T+. Focus on Row. Suppose she is exploited and in a series
of periods gets S+. By assumption (A6) eventually her aspiration level must
exceed S−. Now suppose that she is exploited and gets the lower payoff, S−.
Because this is below her aspiration level she is dissatisfied, and by A5 her
propensity to cooperate must fall. Thus, negative feedback induces her to
experiment with defecting in the next period.17

Now consider a deterministic PD in which both players emulate each
other. Again, suppose that we try to stabilize the asymmetric outcome in
which Column always exploits Row. But if that outcome were stable then
Row’s steady state aspiration would be a weighted average of S and T . Hence
it must exceed S. Consequently, getting exploited would be dissatisfying
for Row. Thus she would once again experience negative feedback when

17As Theorem 5 demonstrates this insight generalizes to other forms of
randomness.

18



cooperating—just as she did in the case of stochastic payoffs. And as before,
this negative feedback would induce her to experiment with another action.

We see, then, that social comparisons provide vicarious experience which
can lead players who are getting the short end of the stick to become dissat-
isfied. A similar process occurs, individualistically, when payoffs are random.
Thus although the two approaches appear at first glance to be quite different,
fundamentally they are closely related.

5 Conclusions

This paper has shown that an important class of behavioral models of
adaptation has little empirical content: models in this class imply that vir-
tually “anything can happen.” However, we have also demonstrated that two
approaches can restore predictive content: one can either introduce enough
noise so that agents will be shaken out of arbitrary patterns of behavior,
or one can keep the models deterministic but make aspirations depend on
social comparisons. The key common feature of both solutions lies in the
fact that actors are exposed to experiences other than those present in the
current equilibrium. This leads to feedback that destabilizes unsustainable
equilibria and restores empirical content to the model. Indeed, in the case of
stochastic learning, the model makes a unique probabilistic prediction.

Given the high predictive power of (appropriately specified) adaptive
models one may then want to investigate the relation between adaptive and
rational-choice based game-theoretic approaches. As shown in related work
(Bendor, Diermeier and Ting n.d., 2003) adaptive models should not be
understood as complements of classical game theory. That is, the limiting
distributions of e.g. reinforcement learning models do not in general put high
probability on Nash equilibria. For example, they may predict a high proba-
bility of cooperation in the prisoners’ dilemma (Bendor, Diermeier and Ting
2003) or high turnout in the turnout paradox in the study of voting (Ben-
dor, Diermeier and Ting n.d.). That is, adaptive models offer a conceptually
and empirically distinct alternative to the classical, rational-choice based ap-
proach. This suggests that one may use reinforcement learning models to
solve persistent anomalies confronting game theoretic models.
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Appendix

Proof of Theorem 1
Pick an arbitrary outcome, o, of the stage game and some period t. To

show that o is stable we construct the following SRE:

For all i: let pi,t(αi(o)) = 1 and ai = πi.

Then since πi,t(o) ≥ πi = ai, Axiom 1 implies that pi,t+1(αi(o)) ≥ pi,t(αi(o)).
But since pi,t(αi(o)) = 1, we must also have pi,t+1(αi(o)) = 1. Hence
pi,t+1(αi(o)) = pi,t(αi(o)). QED.

Proof of Theorem 2
Suppose payoffs are fixed: i.e. πi,t(o) = πi(o) for all t. Pick an arbitrary

outcome, o, of the stage game and some period t. To show that o is stable
we construct the following SRE:

For all i: let pi,t(αi(o)) = 1 and ai,t = πi(o).

Hence outcome o is attained in period t for sure and (given fixed payoffs) we
have πi(o) for each player i. Since ai,t = πi(o), by Axiom (2) we have ai,t+1 =
ai,t = πi(o). This satisfies condition (ii) for an SRE. Moreover, πi(o) ≥ ai,t,
we must have (as in the proof of Theorem 1) that pi,t+1(αi(o)) = pi,t(αi(o)).
QED.

Proof of Theorem 3
Below we follow the convention of using “with positive probability” (ab-

breviated by ‘wpp’) as a shorter way of saying “with strictly positive proba-
bility.”

A standard result in the theory of finite Markov chains is that if a sta-
tionary (finite) chain is irreducible and aperiodic then it has a unique lim-
iting distribution (Feller 1950, p.393-394). Given the assumptions described
above, our Markov chain must be aperiodic, since agents are inertial with
positive probability at every state. Hence it only remains to show that it is
irreducible for every case (i.e., for parts (1)-(4) of the Theorem). To show
this, the following lemma is very useful.
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Lemma 1 Any finite state Markov chain is irreducible if it has a state
which is accessible from all states.

Proof: Call such a state s∗. Since s∗ is accessible from all states it must
belong to every closed set of states. (A set of states C is “closed” if once the
process enters C then it must stay there forever.) By Theorem 3 of Feller
(vol. 1, chapter 15, p. 392), any Markov chain can be partitioned, in a
unique way, into nonoverlapping sets T,C1, C2, . . ., where T is composed of
all transient states and the Ck are closed sets. Since these closed sets are
disjoint and s∗ belongs to each of them, our chain must have only one closed
set, and a finite chain with a unique closed set is irreducible. QED.

We now return to the proof of the main result. (For parts (1), (2) and (4)
these proofs apply to payoffs with degenerate distributions, for a given vector
of actions. Extending them to cover nondegenerate distributions is straight-
forward.) Parts (1)-(3) exploit the lemma by identifying a state s∗, which
we will also call a distinguished state. This, together with the aperiodicity
provided by inertia, ensures existence of a limiting distribution.

Proof of (1) and (2)
By assumption there is at least one outcome, say o∗, in which everyone’s

payoff strictly exceeds their minimal payoff, i.e. πi(o
∗) > πi for all i. Now

consider the following state of the Markov process:
Associated with o∗ is a state in the Markov process, s∗, in which all

players put maximal propensity on the action corresponding to o∗, and have
an aspiration equal to the payoff they get from o∗. That is, s∗ := (p∗i,t; a

∗
i,t)i

such that for all i and some t: p∗i,t(αi(o
∗)) = pi and a∗i,t = πi(o

∗). We nominate
s∗ as a distinguished state, in the sense of lemma 1. Hence we must show
that given any arbitrary starting state, the process can reach s∗ wpp.

The assumption in both parts (1) and (2) ensure that each agent in every
period can play any action wpp, and hence also every outcome can occur
wpp in every period. Hence, every finite string of outcomes can occur wpp.

Consider an arbitrary starting state s. Now construct an arbitrarily long,
but finite string of outcomes in which player 1 gets his minimal payoff π1.
Such a string must occur wpp. For some finite t we then must have a1,t =
π1. To see why such a state must exits, note that because of A6 and A7
|π1 − a1,t| is decreasing in t. Equality is ensured by the fact that there are
only finitely many aspiration levels and that there exists an aspiration level
for each individual payoff level. Call such a state s1. Now consider a second
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string of outcomes, commencing at s1, where player 2 receives π2 and where
player 1 is inert with respect to his aspiration level. Since the event where
player 1 is inert occurs wpp and is independent of the updating process
of other players there must exist some t where a2,t = π2 and (by inertia)
a1,t = π1. Repeat this procedure for all n players until we reach state sN at
some t where for all i : ai,t = πi.

Next, consider an outcome o∗ and state transition where all i are inertial
with respect to their aspiration level, i.e. where we continue to have ai,t = πi

for all i. Such a state must be reached wpp. Then, we have πi(o
∗) > πi = ai,t

for all i. Hence, by A4, pi,t+1(αi(o
∗)) > pi,t(αi(o

∗)). Repeat this outcome
until for all i pi,t(αi(o

∗)) = pi while maintaining ai,t = πi for all i. Then
apply an analogous process for each i’s aspiration level. That is, consider a
sequence of states with outcome o∗ where agents are inert with respect to
their propensity; i.e. each agent’s propensity is frozen at pi,t(αi(o

∗)) = pi.
Since for all i, πi(o

∗) > ai,t, (A6) implies that πi < ai,t+1 ≤ πi(o
∗). By an

analogous argument, consider a finite sequence of states until for some t we
have ai,t = πi(o

∗) for all i. But this is exactly the distinguished state, s∗.
QED.

Proof of (3)
Here we will show that the state in which everyone puts maximal propen-

sity on some action α∗
i and in which everyone’s aspiration is their minimal

possible payoff from the outcome produced by (α∗
1, α

∗
2, . . . , α

∗
n) is a distin-

guished state. That is, there exists a profile of actions (α∗
1, α

∗
2, . . . , α

∗
n) with

o∗ := Ω(α∗
1, α

∗
2, . . . , α

∗
n) such that s∗ := (p∗i,t; a

∗
i,t)

t
i where for all i and t we

have p∗i,t(α
∗
i (o

∗)) = pi and a∗i,t = πi(o
∗).

From any state s in period t0, consider some agent i and action αi.
Case (a): Suppose pi,t0(αi) > 0. Then, construct an arbitrarily long

but finite string of states where in each state (i) every agent’s propensity is
frozen, in particular i’s propensity is constant at pi,t0(αi) (this occurs wpp
by inertia), (ii) player i’s realized action is αi (this must occur wpp by (i)),
(iii) the realized outcome is some fixed o (this must occur wpp by (i)), (iv)
agent i’s realized payoff is minimal, i.e. πi(o) (this occurs wpp given random
payoffs). Such a string must occur wpp. For some finite t1 we then must
have ai,t1 = πi(o). Then construct a second string of states with (i) every
agent j’s (including i’s) aspiration level frozen at aj,t1(αi) (again this occurs
wpp by inertia), (ii) agent i’s realized payoff is maximal, i.e. πi(o); since
πi(o) > ai,t = πi(o) for all t > t1, pi,t(αi) is strictly increasing until pi,t(αi)
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(by A3), (iii) the realized outcome is some fixed o (this must occur wpp by
(ii)), and (iv) player i’s realized action is αi (this must occur wpp by (ii)).
Thus at some t2 we must have pi,t2(αi(o)) = pi and ai,t2 = πi(o). These are
the desired αi and o∗.

Case (b): Suppose instead that pi,t0(αi) = 0. Then for some other ac-
tion α′

i we must have pi,t0(α
′
i) > 0. Now construct an arbitrarily long but

finite string of states where in each state (i) every agent j’s (including i’s)
propensity is frozen; in particular i’s propensity is frozen at pi,t0(α

′
i) (this

occurs wpp by inertia), (ii) player i’s realized action is α′
i (this must occur

wpp by (i)), (iii) the realized outcome is some fixed o′ (this must occur wpp
by (i)), (iv) agent i’s realized payoff is maximal, i.e. πi(o

′) (this occurs wpp
given random payoffs). Such a string must occur wpp. For some finite t1 we
then must have ai,t1 = πi(o

′). Now consider a state at t1 + 1 where (i)-(iii)
hold, but where agent i’s realized payoff is minimal, i.e. πi(o

′). But since
πi(o

′) < ai,t1 = πi(o
′), agent i is dissatisfied. Hence, A6 implies that wpp i

reaches a propensity vector in which pi,t2+2(αi) > 0. But then we are back
in case (a).

Hence in both cases there must be some t where pi,t(αi(o)) = pi and
ai,t2 = πi(o). But because this holds for all i and because each i’s aspiration
and propensity can be frozen by inertia we must eventually reach s∗. QED.

Proof of (4)
By assumption every player can tremble wpp to any neighboring state.

Hence all states communicate. Since we also have aperiodicity (via inertia),
ergodicity follows immediately. QED.

Proof of Theorem 6
The proof is by contradiction. Suppose that an outcome o∗ is stable (i.e., it
is supported by a pure SRE), but that in the associated steady state there
are at least two people who get different payoffs. That is, there exists an
SRE such that

for all i and t : let pi,t(αi(o
∗)) = 1 and ai,t = a∗i ,

(where a∗i is some constant), and there exist some distinct i and j such that
πi(o

∗) 6= πj(o
∗). Let πmin(o

∗) = min{πi(o
∗), πj(o

∗)}. Suppose first that for
some t : ai,t > πmin(o

∗). Then pi,t+1(αi(o
∗)) < 1. But then we cannot have a

pure SRE. Since for all t, ai,t = a∗i we have a∗i ≤ πmin(o
∗).

Now we can partition N into two nonempty subsets, A and B, such that
everyone in A gets the minimal payoff πmin(o

∗) and everyone in B gets a
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higher one, i.e. for every k ∈ B : πk(o
∗) > πmin(o

∗). Now consider some
i ∈ A. Since N is nondecomposable, we can rewrite equation (1) as:

ai,t+1 = λi,0ai,t + (λi,1π1,t(o
∗) + · · · + λi,NπN,t(o

∗)) =

a∗i = λi,0a
∗
i +

∑
j∈A

λi,jπmin(o
∗) +

∑
k∈B

λi,kπk(o
∗).

But since a∗i ≤ πmin(o
∗) < πj(o

∗) for all k ∈ B, we also have

λi,0a
∗
i +

∑
j∈A

λi,jπmin(o
∗) +

∑
k∈B

λi,kπk(o
∗) > a∗i

which is a contradiction. QED.
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Figure 1: State Space in a 2x2 Game

aspirations

propensities

p1,t(a1
1)p1,t(a1

1)

a1,t

a1,t

Player 1: middling propensities, low aspirations.
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Player 2: high propensity for action 1, high aspirations.


