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In many of the numerical methods for pricing American options based on the dynamic
programming approach, the most computationally intensive part can be formulated as

the summation of Gaussians. Though this operation usually requires O�NN ′� work when
there are N ′ summations to compute and the number of terms appearing in each summation
is N , we can reduce the amount of work to O�N +N ′� by using a technique called the
fast Gauss transform. In this paper, we apply this technique to the multinomial method
and the stochastic mesh method, and show by numerical experiments how it can speed up
these methods dramatically, both for the Black-Scholes model and Merton’s lognormal jump-
diffusion model. We also propose extensions of the fast Gauss transform method to models
with non-Gaussian densities.
(Option Pricing; American Options; Fast Gauss Transform; Jump-Diffusion Model)

1. Introduction
Many options traded in the market have American
features, and it is therefore optimal to exercise before
maturity. The rational price of such options can be
calculated as a discounted expectation value under
the risk-neutral measure (Duffie 1996) of the payoff
under the optimal (adapted) exercise strategy, that is

Q0�S0�= sup
�

e−r�E0�h��S��� (1)

where St is the stock price at time t, ht�St� is the
payoff from exercise at time t, and � is a stopping
time. However, unlike European options, there are no
explicit formulas for the option price Q0�S0�, except
for some special cases such as the perpetual American
option, and one has to resort to numerical methods
for pricing.

Many of the numerical methods for American
option pricing use a dynamic programming approach.
In this approach, we discretize the time, and starting
from the option value at maturity QT �ST � = hT �ST �,

compute the option value at each time step by work-
ing backwards. Specifically, the option price at time t
and with asset price St is computed as the maximum
of the immediate exercise value and the continuation
value as follows:

Qt�St�= max�ht�St�� e
−r�tEt�Qt+1�St+1��� (2)

In the actual algorithms, we also discretize the space
as �St�1� St�2� � � � � St�N ′�, as shown in Figure 1, and ap-
proximate the continuation value at point �t� St� i� as
follows:

E�Qt+1�St+1��St� i�
N∑
j=1

wijQt+1� j � i = 1�2� � � � �N ′� (3)

Here, Qt+1� j denotes the option value at time t + 1
and asset price St+1� j , and wij is the weight of Qt+1� j

used in the evaluation of the continuation value at
St� i. Some of the numerical procedures that can be
cast into this framework are binomial and multino-
mial methods, explicit finite difference methods, and
the stochastic mesh method.
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Figure 1 Calculation of the Continuation Value
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Apparently, (3) seems to require O�NN ′� computa-
tion for each time step, and in fact, in the algorithms
listed above, most of the computational effort is spent
to evaluate the expectation value through (3). How-
ever, in some cases it can be shown that the matrix
�wij � has a special property that enables much faster
evaluation of (3). Such a situation arises, for example,
when the underlying assets follow the (multidimen-
sional) geometric Brownian motion process. In this
case, as we will show in the following sections, the
weight matrix �wij � can be written as a Gaussian func-
tion:

wij = c exp
{�xi−yj�2

�

}
� (4)

where xi and yj are state variables at time t and t+1,
respectively, and c and � are constants. Then, the
sums in the right-hand side of (3) can be evaluated in
O�N +N ′� time using a method called the fast Gauss
transform (FGT), instead of O�NN ′� time needed for
direct evaluation. This technique can also be extended
to deal with the lognormal jump-diffusion model, and
more generally, models for which the weight matrix
�wij � has a rapidly converging expansion with respect
to the state variables xi and yj . In this paper, we use
multinomial type methods and the stochastic mesh
method as examples and show how the FGT can
improve the efficiency of these methods under the
Black-Scholes or lognormal jump-diffusion models.
We also give a brief sketch on how our method can be
generalized to treat Kou’s double-exponential jump-
diffusion model (Kou 2002) and stochastic volatility
models at the end of this paper.

There are other approaches to the computation of
the continuation value. When the state variables are
defined on a regular mesh and the weight wij depends
only on the difference xi − yj , as in (4), the compu-
tation of the continuation value can be regarded as
discrete convolution. Reiner (2000) exploits this fact
to compute (3) using the fast Fourier transform (FFT).
Van Steenkiste and Foresi (1999) consider a situation
where the underlying asset prices follow an affine
jump-diffusion process, and using the fact that the
conditional characteristic function is given explicitly,
propose an FFT method to compute the continuation
value. While these methods apply to a wider class of
processes, our approach is more efficient when appli-
cable, because it requires only O�N� work when the
number of mesh points at each time step is N , instead
of O�N logN� work required by the FFT-based meth-
ods. Unlike the FFT approach, our method does not
require that the state variables be defined on a regular
mesh. This may be particularly useful for models that
have time-varying parameters and in pricing options
with barriers.

Other approaches use the Monte Carlo method to
compute the continuation value; a recent comparsion
of methods is given in Fu et al. (2001). The stochas-
tic mesh (Broadie and Glasserman 1997) is a con-
vergent method which can estimate both lower and
upper bounds on the true price. We show in this
paper how the FGT can be used to speed the com-
putation of the continuation value in this method.
More recently, Longstaff and Schwartz (2001) propose
another Monte Carlo-based approach that approxi-
mates the continuation value function by regression.
Their method is very similar to the stochastic mesh
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method, where regression weights are used instead
of likelihood ratio weights for estimating the con-
tinuation value. Their method has been successfully
applied to many problems and has proven to be
especially useful for computing lower bounds for
option prices in some high-dimensional problems.
For low-dimensional problems (e.g., three assets or
less) where standard multinomial methods are appli-
cable, they are typically orders of magnitude faster
than simulation methods. Likewise, our method offers
significant improvement over standard multinomial
implementations.

This paper is organized as follows. In §2, we
describe the algorithm of the multinomial methods
for the Black-Scholes model and formulate the com-
putation of the continuation value as summations
of Gaussians. In §3, we give the basic idea of the
FGT and demonstrate how these summations can
be calculated in O�N +N ′� work. This technique is
applied to the multinomial method for Merton’s log-
normal jump-diffusion model and the stochastic mesh
method for the multifactor Black-Scholes model in §§4
and 5, respectively. Results of numerical experiments
can be found in §6. Section 7 treats extensions of the
FGT to non-Gaussian densities. Concluding remarks
are given in the final section.

2. Multinomial Methods
2.1. Construction of the Multinomial Lattice
In this section, we consider the risk-neutralized Black-
Scholes model where the asset price St follows the
geometric Brownian motion process

dSt = rdt+�dWt� (5)

where Wt is a Wiener process. This can also be written
in integral form as

St = S0 exp
{(

r− 1
2
�2

)
t+�Wt

}
� (6)

Though we restrict ourselves to a single asset case
here, extension of the method to multiasset cases is
quite straightforward.

In a multinomial method, we approximate the
Wiener process Wt by a discrete random variable
Wti

which is defined at discrete times ti = i�t, and
takes discrete values Wj = j�W . Following Alford and
Webber (2001), we require that if Wti

has the value
Wj at time ti, its value at time ti+1 takes the values in
the set �Wj+k�k=−b� � � � � b� for some constant b. Then,
each node of the lattice has l = 2b+ 1 branches and
there are 2bi+1 nodes at time ti, as shown in Figure 2.
This is called a multinomial lattice of branching order
l. We associate each of the branches with a branch-
ing probability pi. Let the option value at grid point
�i� j� be Qi� j . Then, because the approximation Wti

to
Wt readily leads to an approximation Sti to St , we can
compute the continuation value of (3) by

E�Qti+1
�Si� j =

b∑
k=−b

pkQi+1� j+k� (7)

To attain a high order of convergence in the multi-
nomial methods, one has to choose the probabilities pi
so that Wti

becomes a good approximation of Wt . One
of the guidelines for this is given by Heston and Zhou
(2000). They show that if the first q moments of Wti

match those of Wt , the multinomial method with M

time steps has a convergence rate of O�M
q−1

2 � under
the condition that the option payoff is 2q times differ-
entiable. One can easily match all the odd moments
(which are zero for Wt) by putting p−k = pk for k =
1� � � � � b. To match the first b even moments and to

Figure 2 A Pentanomial Lattice �b = 2�
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ensure that the sum of pis is 1, one has to solve the
following linear equation:


1 2 2 � � � 2

0 2 ·�W 2 2 · �2�W�2 � � � 2 · �b�W�2

0 2 ·�W 4 2 · �2�W�4 � � � 2 · �b�W�4

���
���

���
� � �

���

0 2 ·�W 2b 2 · �2�W�2b � � � 2 · �b�W�2b







p0

p1

p2

���

pb




=




1

�t

3�t2

���

�2b�!
2bb! ��t�

b



� (8)

Alford and Webber (2001) solve this equation
numerically and confirm that the resulting methods
for b = 3�7�11�15, and 19 have much higher rate of
convergence for European options than the binomial
methods.

2.2. The Continuation Value as the Sum
of Gaussians

Here, we consider a multinomial method with a large
value of b and show how it can be cast into a form to
take advantage of the FGT.

First, let

p�x�= 1√
2$�t

exp
(
− x2

2�t

)
� (9)

Then, from the definition of Riemann integral, we
have

lim
�W→0

+�∑
k=−�

�k�W�2np�k�W��W

=
∫ �

−�
x2np�x�dx = �2n�!

2nn! ��t�
n� (10)

Therefore, for sufficiently small �W ,

+�∑
k=−�

�k�W�2np�k�W��W � �2n�!
2nn! ��t�

n� (11)

By truncating the infinite sum, we have

b∑
k=−b

�k�W�2np�k�W��W � �2n�!
2nn! ��t�

n� (12)

This shows that by putting

pk = p�k�W��W� (13)

Equation (8) is approximately satisfied. Note that the
error introduced by approximation (11) is O�e−c/�W �,
because this is an approximation of the integration of
an analytical function over the entire real axis by a
trapezoidal rule (Sloan and Joe 1994). Also, the error
introduced by (12) decreases exponentially as the
number of branches increases. Thus, we can expect
the pk given by (13) is a very accurate approximate
solution of (8) when b is large.

From (7) and (13), the continuation value can be
computed as

E�Qti+1
�Si� j  =

�W√
2$�t

b∑
k=−b

Qi+1� j+k

· exp
{
− 1

2�t
�Wj −Wj+k�

2

}
� (14)

This has the form of sum of Gaussians and can be
computed efficiently by the FGT which we will intro-
duce in the next section.

3. The Fast Gauss Transform
3.1. The Basic Idea
In this section, we describe the basic idea of the FGT
introduced by Greengard and Strain (1991), Strain
(1991), and Greengard and Sun (1998), and show how
it can compute the sum in the right-hand side of (3)
in O�N +N ′� time. Though we only detail the one-
dimensional case here, the algorithm can be extended
to higher dimensional cases. For details of the exten-
sion, as well as for more comprehensive description of
the algorithm including error analysis, consult Green-
gard and Strain (1991) and Baxter and Roussos (2002).
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Suppose that we want to calculate the sums

G�xi�=
N∑
j=1

qj exp
{
�xi−yj�

2

�

}
� i = 1�2� � � � �N ′� (15)

This is called the Gauss transform of �qj �
N
j=1 with

respect to the point sets �xi�
N ′
i=1 and �yj�

N
j=1. Apparently,

it needs O�NN ′� work to evaluate these sums based
on the above definition.

The basis of the FGT is the following expansion of
the Gaussian in terms of Hermite functions:

e−�x−y�2 =
�∑

)=0

y)

)! h)�x�� (16)

where the Hermite function hn�x� is defined by

h)�x�= �−1�)
(

d

dx

))

e−x2
� (17)

It is known that this expansion converges very
quickly and truncation at n= 8 is sufficient to achieve
a relative error of 10−8 when �y�< 1/2.

For the FGT, we use a shifted and scaled version of
this expansion, namely,

e−�xi−yj �
2/� =

�∑
)=0

1
)!

(
yj −y0√

�

))

h)

(
xi−y0√

�

)
� (18)

The Hermite function appearing in the right-hand
side of this expression can further be expanded, and
we finally obtain

e−�xi−yj �
2/� =

�∑
+=0

�∑
)=0

1
+!

1
)!

(
yj −y0√

�

))

·h)++

(
x0 −y0√

�

)(
x0 −xi√

�

)+

� (19)

We first consider a special case where all the target
points �xi� are in a box (or an interval in the one-
dimensional case) with center x0 and side length

√
�

and all the source points �yj� are in another box with
center y0 and side length

√
�, as shown in Figure 3.

Then, the above expansion converges quickly by
truncating the sums in (19) at some integer )max and

Figure 3 The Source and Target Boxes

the sum can be written as

G�xi� �
N∑
j=1

qj

)max∑
+=0

)max∑
)=0

1
+!

1
)!

(
yj −y0√

�

))

·h)++

(
x0 −y0√

�

)(
x0 −xi√

�

)+

=
)max∑
+=0

1
+!

(
x0 −xi√

�

)+

·
{)max∑

)=0

h)++

(
x0 −y0√

�

){
1
)!

N∑
j=1

qj

(
yj −y0√

�

))}}
�

(20)

This expression shows that the computation of
G�xi� can be divided into three steps:
Step 1. Compute

A) ≡
1
)!

N∑
j=1

qj

(
yj −y0√

�

))

for )= 0� � � � �)max�

Step 2. Compute

B+ ≡
)max∑
)=0

A)h)++

(
x0 −y0√

�

)
for += 0� � � � �)max�

Step 3. Compute

G�xi�=
)max∑
+=0

B+

1
+!

(
x0 −xi√

�

)+

for i = 1� � � � �N ′�

When )max is fixed, Steps 1 and 3 require O�N� and
O�N ′� computational effort, respectively, while Step 2
can be done in a constant time that does not depend
either on N or N ′.
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In the general case, we divide the space into boxes
of side length

√
� and apply the above method to each

of the possible pairs of a source box and a target box.
Let J and I denote the source box and the target box,
respectively, and yJ and xI denote their centers. The
algorithm can be written as follows:

1. Compute

A)�J ≡
1
)!

∑
yj∈J

qj

(
yj −yJ√

�

))

for )= 0� � � � �)max and for each source box J .
2. Compute

B+� I ≡
∑
J

)max∑
)=0

A)�J h)++

(
xI −yJ√

�

)

for += 0� � � � �)max and for each target box I .
3. Compute

G�xi�=
)max∑
+=0

B+� I

1
+!

(
xI −xi√

�

)+

for i = 1� � � � �N ′.

Here I is the target box xi belongs to.
Because each xi and yj belong to only one box, the

total work for Steps 1 and 3 is still O�N� and O�N ′�,
respectively, while Step 2 needs work proportional to
O�N 2

box�, where Nbox is the number of the boxes.

3.2. Implementation Details
In the actual algorithm, we can improve the efficiency
of the above method by adopting some modifications,
as we will state below.

First, because the Gaussian function e−�x−y�2 de-
creases very rapidly when the distance between x and
y becomes large, the interaction between distant boxes
in Step 2 can be omitted. It is shown in Greengard
and Strain (1991) that considering only 2n+ 1 near-
est boxes with n= 8 is sufficient for double precision
accuracy.

Second, if both the source and target boxes contain
only a small number of points, it may be faster to
evaluate the Gaussian directly than to use the Her-
mite expansion. Or, if the target box contains only
a few points, it may be faster to expand the Gaus-
sian only with respect to yj and use (18) to evaluate
G�xi�. Greengard and Strain (1991) recommend setting
some threshold for the number of points in the box

and using different evaluation methods according to
whether the number of points in the source and target
boxes is above or below the threshold.

Finally, it is possible to use alternative basis func-
tions to expand the Gaussian. Greengard and Sun
(1998) propose the use of an expansion formula based
on the Fourier transform of the Gaussian, instead of
the Hermite expansion, and show that it can reduce
the work required in Step 2 drastically. This choice
seems preferable when the number of points is mod-
erate and the computation in Step 2 occupies a con-
siderable part of the total work.

3.3. Application to Multinomial Methods
The algorithm described above is readily applicable
to the computation of the continuation value (14) in
the multinomial methods. This makes it possible to
increase the branching order l = 2b+ 1 and attain a
higher order of convergence without much increasing
the computational work. When the number of time
steps is M , the average number of nodes at each time
step is O�bM� and the total computational work is
O�bM2�.

The resulting algorithm is especially useful for
Bermudan options, i.e., a variant of the American
option for which the exercise opportunity is lim-
ited to d discrete time points during the life of the
option. This is because the method can approximate
the underlying asset price process accurately even if
the time step is large, thanks to the large number
of branches. As a result, we can omit the time steps
between the exercise dates and reduce the computa-
tional work to O�bd2�, which is linear in the parameter
controlling the accuracy. In contrast, in the binomial
method, one has to increase the number of time steps
M to get a convergent result even if the number of
exercise dates is fixed. This results in a computational
work of O�M2�, which is quadratic in the parameter
controlling the accuracy.

4. Applications to Merton’s Model
4.1. Multinomial Methods for the Lognormal

Jump-Diffusion Model
We next extend our method to deal with the log-
normal jump-diffusion model introduced by Merton
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(1992). In this model, the asset price follows the
equation

St+�t=Stexp

{(
r− 1

2
�2

)
�t+�

√
�tz0+

NP
t ��t�∑
i=1

��zi−2�

}
�

(21)

where NP
t ��t� is the number of jumps between time t

and t + �t, which follows a Poisson process with
intensity 3, and zi �i = 0�1� � � � � are independent
and follow the standard normal distribution N�0�1�.
2 and � are constants that determine the mean and the
standard deviation of the jumps, respectively. In this
model, the market becomes incomplete because of the
existence of jumps and therefore the standard option
pricing argument based on the replicating portfolio is
no longer valid. However, under the assumption that
jump risk is diversifiable, Merton (1992) shows that
the price can be written as

Q0�S0�= e−rT E0�hT �ST �� (22)

Because this has the same form as the formula in
the complete market case, the incompleteness of the
market causes little difficulty from the computational
point of view.

To apply our method to this model, we introduce a
change of variables and work with

xt = log St −
(
r− 1

2
�2

)
t� (23)

which satisfies the equation

xt+�t = xt +�
√
�tz0 +

NP
t ��t�∑
i=1

��zi−2�� (24)

If we fix the number of jumps between time t and
t+�t to n, we have

xt+�t = xt +�
√
�tz0 +

n∑
i=1

��zi−2�

∼ N�xt −n2��2�t+n�2�� (25)

because the sum of Gaussian random variables is
again a Gaussian random variable. We write the con-
ditional probability density function of xt+�t as

p�n��xt+�t�xt� ≡ p�xt+�t�xt�N P
t ��t�= n�

= 1√
2$�n

exp
{
− 1

2�2
n

�xt+�t −xt −4n�
2

}
�

(26)

where

�2
n = �2�t+n�2� (27)

4n = −n2� (28)

Now we approximate the stochastic process xt by
a discrete random variable xti which is defined at
discrete times ti = i�t and takes discrete values xj =
j�x. Then, as we have shown in the previous subsec-
tion, the expectation value of the option price condi-
tioned on the current asset price and NP

t ��t� = n can
be approximated as

E�Qti+1
�Si� j �N P

t ��t�= n� �x
b∑

k=−b

Qi+1� j+kp
�n��xj+k�xj��

(29)

Finally, the continuation value is calculated by

E�Qti+1
�Si�j  =

�∑
n=0

Pr�N P
t ��t�=n�E�Qti+1

�Si�j �N P
t ��t�=n

=
�∑
n=0

e−3�t �3�t�
n

n! E�Qti+1
�Si�j �N P

t ��t�=n�

(30)

where for numerical computations the infinite sum
can be truncated at a sufficiently large value of n, say
Njump.

Note that in the jump-diffusion case, unlike in
the Black-Scholes model, the variances of p�n��xt+�t�xt�
�n= 1�2� � � � � remain finite even when �t→ 0 because
of the existence of jumps. It is therefore mandatory
to use a value of b large enough to approximate
p�n��xt+�t�xt�’s accurately. Hence, computing the sums
of (29) by a direct method is computationally expen-
sive. Note also that it is inefficient to use a multino-
mial lattice as shown in Figure 2, because the number
of nodes increases rapidly with the number of time
steps. Instead, we use a modified lattice as shown in
Figure 4, in which the number of nodes remains a
constant throughout the time.

4.2. Improving the Efficiency by the FGT
Now we can apply the FGT to compute the sums in
the right-hand side of (29) efficiently. When the num-
ber of nodes at each time step is N and the number of
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Figure 4 A Modified Pentanomial Lattice �b = 2�

∆

 

t

∆x

t = 0 t = 1 t = 2 t = 3

time steps is M , the resulting algorithm has compu-
tational work of O�MNNjump�, regardless of the value
of b. Thus, we can safely use the maximum value of
b, which corresponds to using all the nodes at time
ti+1 to compute the expectation values at each node at
time ti.

It is possible to further reduce the computa-
tional work by modifying the algorithm of the FGT.
Using the truncated version of (19), we can expand
p�n��xj+k�xk� as follows:

p�n��xj+k�xk� =
1√

2$�n

)max∑
+=0

)max∑
)=0

1
+!

1
)!

(
xj+k−x′′
√

2�

))

·
(
�

�n

))++

h)++

(
x′ −x′′ +4n√

2�n

)

·
(
x′ −xj√

2�

)+

� (31)

where x′ and x′′ are the centers of boxes containing xj
and xj+k, respectively. By putting this expansion into
the right-hand side of (29) and substituting the result
into (30), E�Qti+1

�Si� j  can be written as

�x
b∑

k=−b

Qi+1�j+k

)max∑
+=0

)max∑
)=0

1
+!

1
)!

(
xj+k−x′′
√

2�

))

·
{

Njump∑
n=1

e−3t �3t�
n

n!
1√

2$�n

(
�

�n

))++

h)++

(
x′ −x′′ +4n√

2�n

)}

·
(
x′ −xj√

2�

)+

� (32)

Comparing this expression with (20), we know that
we can construct an algorithm similar to the FGT by
replacing the Hermite function with a weighted sum
of shifted and scaled Hermite functions. Specifically,
we have only to replace the formula to compute B+

(see §3.1) with the following:

B+ =
)max∑
+=0

A)

{Njump∑
n=1

e−3t �3t�
n

n!
1√

2$�n

(
�

�n

))++

·h)++

(
x′ −x′′ +4n√

2�n

)}
� (33)

This will enable us to compute E�Qti+1
�Si�j  with only

one FGT instead of Njump transforms and reduce the
computational work from O�MNNjump� to O�MN�.

In implementing this algorithm, it is important to
note that the box size must be determined from the
smallest �n, that is �0=��t, to ensure the conver-
gence of expansion (31). On the other hand, the num-
ber of boxes interacting with a given box must be
determined from the cut-off radius of the Gaussian
with the largest �n, that is �Njump

. As a result, the num-
ber of the interacting boxes becomes larger compared
with the ordinary FGT. However, this will have lit-
tle effect on the efficiency of the algorithm, because
the computational work for the box-box interaction
is a constant that depends neither on the number of
source nor target points.

The method we have introduced in this section is
especially suited to pricing Bermudan options, as is
the case of the multinomial methods for the Black-
Scholes model, and it requires only O�dN� work when
the number of exercise dates is d. As we shall see in
§7.1, the method can also be extended to the double-
exponential jump-diffusion model proposed by Kou
(2002).

4.3. Amin’s Algorithm
An alternative way to compute the option price under
the lognormal jump-diffusion model is an algorithm
proposed by Amin (1993). In this algorithm, the time
step �t is taken to be small enough to be able to
neglect the possibility of multiple jumps between t
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and t+�t. The jump probabilities are approximated
as follows:

Pr�N P
t ��t�=0�=1−3�t�

Pr�N P
t ��t�=1�=3�t�

(34)

Then, using a multinomial lattice as shown in
Figure 4, the expectation value (29) for n=0 is com-
puted by a binomial-type method, with nonzero
branching probabilities only for k=+1 (single-up)
and k=−1 (single-down). The expectation value for
n=1 is computed with a sufficiently large value of
b to represent the jump distribution. Amin (1993)
showed that by setting the discretization step in the
x-direction to �x=�

√
�t and using all the nodes at

time ti+1 to compute the expectation values for n=1
at each node at time ti, the European and American
option price calculated by this algorithm converges to
the true price when �t approaches 0. When the num-
ber of time step is M , this algorithm requires compu-
tational work of O�M2� per time step, or of O�M3� for
the entire procedure.

We can apply the FGT to this algorithm to com-
pute the expectation values for n=1 in O�M� work,
thereby reducing the total work to O�M2�. In the
numerical results which follow in §6.2, we label this
method FGT I. It is also possible to reduce the work to
O�M2� by selecting a small number of nodes and com-
pute the expectation values for n=1 by direct evalu-
ation using only these nodes (Amin 1993). However,
the accuracy of this algorithm is lower than that of the
original one, and according to Amin (1993), the differ-
ence is around one cent when the option price is ten
dollars and 30 selected nodes are used. In contrast,
our approach based on the FGT can attain computa-
tional work of O�M2� without sacrificing the accuracy
of the calculated prices.

5. The Stochastic Mesh Method
5.1. The Basic Algorithm
As another example of DP-based American option
pricing methods that can be sped up by the FGT,
we take up the stochastic mesh method proposed by
Broadie and Glasserman (1997). This method is based

on Monte Carlo simulation and computes the expec-
tation value in (3) using randomly distributed sam-
ple points at time t+1. Unlike many other pricing
algorithms based on Monte Carlo methods, it has the
advantage that it can estimate the upper bound on
the American option price, and has successfully been
applied to the pricing of high-dimensional Ameri-
can options. Also, several extensions to improve the
convergence and parallel implementations have been
studied.

Assume that there are n assets and the dynamics of
the price vector St is given in the form of the condi-
tional probability density function

Pr�St+�t�St�=f S
t �St+�t�St�� (35)

In an implementation of the stochastic mesh
method using the average mesh density function (for
details see Broadie and Glasserman 1997), we first dis-
cretize the time and generate b independent sample
paths of the asset prices, as in the usual Monte Carlo
approach. Let the vector of prices on path i and time
step t be St�i. Then, the option value at maturity (t=T )
for each path is given by

QT �ST �i�=hT �ST �i�� (36)

where ht is the payoff function. Next, we calcu-
late the continuation value on each path at time
t=T −1 by estimating the conditional expectation
value E�QT �ST ��ST−1�i, using the sample points at
t=T . However, this cannot be done by taking a sim-
ple average, because one needs a set of sample points
that follow the conditional distribution function
f S
T−1�ST �ST−1�i� to calculate E�QT �ST ��ST−1�i, whereas

the actual sample points follow the distribution

gS
T �ST �=

1
b

b∑
i=1

f S
T−1�ST �ST−1�i�� (37)

from the construction of the sample paths.
To overcome this difficulty, the stochastic mesh

method uses the following relationship:

E�Qt�St��St−1�i =
∫
Qt�u�f

S
t−1�u�St−1�i�du

=
∫
Qt�u�

f S
t−1�u�St−1�i�

gS
t �u�

gS
t �u�du

= E

[
Qt�St�j �

f S
t−1�St�j �St−1�i�

gS
t �St�j �

]
� (38)
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The last expression is an expectation value under the
density function gS

�t−1� and can be calculated using the
sample points at t=T as

E

[
Qt�St�j �

f S
t−1�St�j �St−1�i�

gS
t �St�j �

]
=

b∑
j=1

Qt�jwt�ij � (39)

where �wt�ij � is a weight matrix defined by

wt�ij =
f S
t−1�St�j �St−1�i�

gS
t �St�j �

= f S
t−1�St�j �St−1�i�∑b

i′=1f
S
t−1�St�j �St−1�i′�

� (40)

Apparently, the formation of and multiplication by
the weight matrix needs O�b2� computation, and this
is the most time-consuming part in the stochastic
mesh method.

5.2. Improvement of Efficiency by the FGT
Prior to applying the FGT to the stochastic mesh
method, we first investigate the effect of changing the
variables in the calculation. Suppose we change the
variable from St to yt , which is again an n-dimensional
vector. Then, the conditional probability density func-
tion of yt is related to that of St by

f S
t−1�St�St−1�=f

y
t−1�yt�yt−1�

∣∣∣∣8yt8St

∣∣∣∣� (41)

where
∣∣8yt/8St∣∣ is the Jacobian matrix. By substituting

this into the expression of wt�ij , we have

wij�t =
f S
t−1�St�j �St−1�i�∑b

i′=1f
S
t−1�St�j �St−1�i′�

=
f
y
t−1�yt�j �yt−1�i�

∣∣8yt/8St∣∣St=St�j∑b
i′=1f

y
t−1�yt�j �yt−1�i′�

∣∣8yt/8St∣∣St=St�j

= f
y
t−1�yt�j �yt−1�i�∑b

i′=1f
y
t−1�yt�j �yt−1�i′�

� (42)

Thus, we have established that the weight matrix in
the stochastic mesh method (using the average mesh
density function) is invariant under change of vari-
ables. So we can choose any convenient represen-
tation of the state variables to compute the weight
matrix and the sum in (39).

We now turn our attention to the multiasset Black-
Scholes model:

dSm = rmSmdt+�mSmdWm�

dWmdWl = :mldt �m �= l��
(43)

where Sm is the price of the mth asset, and dWm is a
Wiener process. By changing the variables from Sm to

xm= logSm−
(
rm−

1
2
�2
m

)
t� (44)

we get a vector variable x= �x1���� �xn�
t which satisfies

dxdxt = ;R;dt�

; = diag��1���� ��n�� (45)

R = �:ij ��

By further introducing a new change of variables
using the Cholesky decomposition R=LLt as

y=L−1;−1x� (46)

we finally have the vector y of n independent Wiener
process which satisfies

dydyt= I dt� (47)

For this new variable, the conditional probability
density function can be seen to be

f
y
t−1�y1���� �yn�=

n∏
m=1

1√
2$�t

exp
{
− 1

2�t
�yt−1�m−ym�

2

}
�

(48)

and multiplication by the weight matrix can be done
using the FGT. It is also straightforward to extend
this approach to Merton’s lognormal jump-diffusion
model by using the technique introduced in §4.

6. Numerical Experiments
6.1. Multinomial Methods for the

Black-Scholes Model
We implemented the multinomial method using the
FGT for European and Bermudan options under the
Black-Scholes model and compared its efficiency with
that of the binomial method by Cox et al. (see, e.g.,
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Kwok 1998). In all of the cases below, we used a
closed-form solution by the Black-Scholes formula for
the continuation value at the penultimate time step,
as suggested in Broadie and Detemple (1996). In the
case of European options, this corresponds to replac-
ing the actual payoff function at maturity with an ana-
lytical payoff function at the penultimate time step,
and is effective in removing the oscillatory conver-
gence characteristic of the binomial and multinomial
type methods.

All the experiments were done on a 266MHz Pen-
tium II PC with Red-Hat Linux using gnu C++ com-
piler. Throughout this section, we denote the initial
asset price, the strike price, and the option price at
t=0 by S0, K, and Q0, respectively. We also denote
the riskless annual interest rate, dividend rate, and
volatility by r , q, and � , respectively. Finally, we use
T (in years) for option maturity and d for the number
of exercise dates.

6.1.1. European Option on a Single Asset. We
show the results for a European call option in
Figure 5. Here, S0=K=100, r=0�03, q=0�07, �=0�20,
and T =0�5. The exact price by the Black-Scholes
formula is 4.57776128. We calculated the option value
using a binomial method with time steps M from 500
to 10,000 (in increments of 500) and a multinomial
method with 2b+1 branches, where b=10 to 150 (in
increments of 10). The values of these parameters are
also shown in the graph. In the multinomial method,
the number of time steps was fixed to 10, because
it can guarantee convergence without increasing the
number of time steps when the number of branches
is increased.

In Figure 5, the vertical axis and the horizontal axis
represent the error in the calculated option price and
the computational time, respectively, both in a log
scale. As can be clearly seen from the graph, the steep-
ness of the binomial result is −1/2, implying that the
error decreases as O�M−1�. On the other hand, the
graph of the multinomial method is nearly vertical,
which confirms the very high order of convergence
theoretically guaranteed when the option payoff func-
tion is analytical. Note that the computational time
of the multinomial method and the binomial method
cross around error ∼10−4, and the former becomes
faster when a higher accuracy is needed.

Figure 5 European Call Option Price Under the Black-Scholes Model

6.1.2. Bermudan Option on a Single Asset. Next,
we calculated the prices of Bermudan call options.
The parameters are the same as in the case of the
European option described above, except that the
strike price K is varied from 90 to 110 (in incre-
ments of 5). The number of exercise dates is d=10.
We adopted the prices calculated by the multinomial
method with b=409�600 as reference prices against
which to compute the error. These values are listed
in Table 1 and they agree with the values calculated
by the Binomial Black-Scholes Richardson extrapo-
lation (BBSR) method (Broadie and Detemple 1996)
with 5,00,000 time steps to at least six digits after
the decimal point. The time steps of the binomial
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Table 1 Bermudan Call Option Price Under the Black-Scholes Model

K 90 95 100 105 110

Q0 10�73001013 7�32288562 4�75727741 2�94105489 1�73255637

method is from 1,000 to 32,000 (in increments of
1,000), and b for the multinomial method is set to
25·2k �k=0�1���� �12�. The number of time steps in the
multinomial method was set equal to the number of
exercise dates. The result is shown in Figure 6. Here,
the vertical axis represents the root mean square error
of the five calculated prices.

Figure 6 Bermudan Call Option Price Under the Black-Scholes Model

In this case, again, the multinomial method is more
efficient than the binomial method when the required
accuracy is higher than 10−4. However, the conver-
gence speed of the multinomial method is slower than
in the European option case. This seems to be because
the payoff function of the Bermudan option is not
analytical, i.e., it has a discontinuity in the second-
and higher-order derivatives at the exercise boundary
(see, e.g., Kwok 1998).

6.2. Merton Results
We also implemented the numerical methods for
pricing the options under Merton’s lognormal jump-
diffusion model which we described in §4. The meth-
ods we take up are as follows:

• Amin’s original algorithm.
• Amin’s algorithm with the FGT (FGT I): The con-

ditional expectation values corresponding to a single
jump between two time steps are calculated using the
FGT.

• Multinomial method with the FGT (FGT II): for
European and Bermudan options only. The option
prices are computed only on the exercise dates and
the possibility of multiple jumps between two time
steps is taken into account. This is the algorithm
described in §4.2.

We use the parameters S0=40, K=30 to 50 (in
increments of 5), r=0�08, q=0, �=√

0�05, and T =
1�0. The jump intensity and variance of the jumps
are 3=5�0/year and �=√

0�05, respectively, and the
mean of the jump size is set to −�1/2��2. These are
the values used in Amin (1993). We computed the
price of European options, American options, and
Bermudan options with ten exercise dates. As refer-
ence prices for the European options, we used the
prices computed by Merton’s formula. For the Ameri-
can options, we adopted the prices obtained by extra-
polating the results from Amin’s algorithm. For the
Bermudan options, we used the values computed by
FGT II with N =204�801, where N is the number
of nodes at each time step. These prices, which we
denote by QE

0 , QA
0 , and QB

0 , respectively, are listed in
Table 2.

The numerical results for the European, American,
and Bermudan options are shown in Figures 7, 8, and
9, respectively. The number of nodes N at each time
step is also shown in the graph. N is connected with
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Table 2 Put Option Prices Under Merton’s Model

K 30 35 40 45 50

QE
0 2�62113699 4�41159556 6�69595339 9�42219161 12�52384675

QA
0 2�71690583 4�59897152 7�02293320 9�94610561 13�30914732

QB
0 2�70636133 4�58094453 6�99527475 9�90671277 13�25586096

the number of time steps M by N =2M+1 in the case
of Amin’s original algorithm and FGT I. For Amin’s
algorithm and FGT I, it can be clearly seen that the
errors decrease as T −1/3

c and T −1/2
c , respectively, where

Tc is the computational time. This is in agreement
with our observation in §4.3 that the computational

Figure 7 European Put Option Price Under Merton’s Model

Figure 8 American Put Option Price Under Merton’s Model

work of Amin’s algorithm can be reduced from M3

to M2 without sacrificing the accuracy by using the
FGT. For Bermudan options, the efficiency can further
be improved by omitting the intermediate time steps
using the algorithm FGT II, resulting in a convergence
rate of T −1

c . From these results, we can conclude that
the FGT is especially useful in computing the option
price under the jump-diffusion models.

6.3. Stochastic Mesh Method Results
We also implemented the stochastic mesh method for
pricing Bermudan options with and without the FGT
and compared the speed and accuracy of the two
implementations. The options we chose are Bermu-
dan call options on one, two, and three underlying
assets under the Black-Scholes model. The environ-
ment of the experiments is the same as described
in the previous subsection and we use the same
notation.
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Figure 9 Bermudan Put Option Price Under Merton’s Model

The options we used in our experiment are as
follows:

• A Bermudan call option on a single underlying
asset, with S0=K=100, r=0�05, q=0�10, �=0�20, T =
3�0, and d=2.

• A Bermudan max call option on two underly-
ing assets, with S0=K=100, r=0�05, q=0�10, �=0�20,
T =1�0, and d=3. The correlation between the two
option is :=0�3.

• A Bermudan max call option on three underly-
ing assets, with S0=K=100, r=0�05, q=0�10, �=0�20,
and T =1�0. The correlation between the two option
is :=0�3.

The parameter values used in Option 1 are the same
as those used in Andersen and Broadie (2001), and the
option price given there is 7.18. The values in Case 2
are the same as in Fu et al. (2001), and the price given
there is 9.390.

Tables 3, 4, and 5 and Figures 10 and 11 show the
results of our computation. For each case, we changed
the number of sample paths from b=1�000 to 100,000.
As can be seen from the tables, the FGT can speed
up the stochastic mesh method drastically, making it
more than 1,300 times faster in the one-dimensional
case when b=10�000, and about 60 times faster in the
two-dimensional case when b=10�000. The speedup
is less striking in the three-dimensional case, but still
the new implementation is nearly ten times faster
when b=30�000 and more than 30 times faster when
b=100�000. It is also apparent that the computational
time is linear in the number of sample paths for the
implementation with the FGT, while it is quadratic
for the conventional implementation. As for the accu-
racy, we can say that the FGT is sufficiently accurate,

Table 3 Bermudan Call Option on a Single Asset

Number of
Direct calculation Fast Gauss transform

sample paths Price Time Price Time

1,000 7�754283 4�04 s 7�754283 0�03 s
3,000 7�445551 36�37 s 7�445551 0�11 s

10,000 7�365219 412�34 s 7�365219 0�31 s
30,000 7�276099 (Timer overflow) 7�276099 0�96 s
100,000 — — 7�202183 3�38 s

Table 4 Bermudan Max Call Option on Two Underlying Assets

Number of
Direct calculation Fast Gauss transform

sample paths Price Time Price Time

1,000 10�387124 7�07 s 10�387124 2�95 s
3,000 9�597424 63�11 s 9�597424 5�95 s
10,000 9�546258 706�21 s 9�546258 11�96 s
30,000 — — 9�438231 21�96 s
100,000 — — 9�337766 49�26 s

Table 5 Bermudan Max Call Option on Three Underlying Assets

Number of
Direct calculation Fast Gauss transform

sample paths Price Time Price Time

1,000 13�241150 7�21 s 13�241150 109�33 s
3,000 12�397652 65�01 s 12�397652 161�85 s
10,000 12�294868 733�77 s 12�294868 329�62 s
30,000 12�075991 7236�2 s 12�075991 778�07 s
100,000 — 73377 s∗ 12�015780 2253�76 s

∗Estimated time.
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Figure 10 Bermudan Call Option on a Single Asset

for the option prices calculated by the two implemen-
tations agree to at least six digits after the decimal
point.

7. Extension to Non-Gaussian
Densities

7.1. Extension to Kou’s Double-Exponential
Jump-Diffusion Model

Kou (2002) proposed a new jump-diffusion model in
which the logarithm of the jump size has a double-

exponential distribution instead of the normal distri-
bution. In this model, the asset price at time t+�t can
be written as

St+�t=St exp

{(
4− 1

2
�2

)
�t+�

√
�tz+

NP
t ��t�∑
i=1

Xi

}
� (49)

where NP
t ��t� is the number of jumps between time t

and t+�t, which follows a Poisson process with
intensity 3, z∼N�0�1�, and Xi are independent vari-
ables that follow a double-exponential distribution:

fX�x�=
1

2@
e−�x−2�/@� 0<@<1� (50)

This model has an advantage over the lognormal
jump-diffusion model in that it can have both higher
peak and heavier tails than normal distribution.

We first change the variable from St to

ut= logSt−
(
4− 1

2
�2

)
t� (51)

as we did in §4.1. Then, ut satisfies the equation

ut+�t=ut+�
√
�tz+

NP
t ��t�∑
i=1

Xi� (52)

To apply our method, we need an explicit
form of the conditional probability density function
fu�ut+�t�ut�. As in the case of the lognormal jump-
diffusion model, this can be written as a sum over the
number of jumps between t and t+�t:

fu�ut+�t�ut� =
�∑
n=0

Pr�N P
t ��t�=n�fu�ut+�t�ut�N

P
t ��t�=n�

=
�∑
n=0

e−3�t �3�t�
n

n! f �n�
u �ut+�t−ut�� (53)

where f
�n�
u �x� is a distribution function of the sum of

�
√
�tz and n random variables �Xi�

n
i=1 that follow the

double-exponential distribution (50).
Kou (2002) shows that sum of double-exponential

random variables can be decomposed into a random
sum of exponential random variables as follows:

n∑
i=1

Xi−n2=




M�n�∑
j=1

Aj with probability 1/2�

−
M�n�∑
j=1

Aj with probability 1/2�

(54)
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Figure 11 Bermudan Max Call Option on Two Underlying Assets (Left Graph) and on Three Underlying Assets (Right Graph)

where �Aj� are independent random variables which
follow an exponential distribution with mean @, and

Pr�M�n�=m�= 2m

22n−1

(
2n−m−1

n−1

)
� 1≤m≤n� (55)

He also shows that if X�m� is a random variable such
that

X�m�=




m∑
j=1

Aj with probability p�

−
m∑
j=1

Aj with probability 1−p�

(56)

and Y ∼N�0��2�, then the probability density func-
tion of X�m�+Y is

fX�m�+Y �v�=
�m

@m

e�
2/�2@2�

�
√

2$

{
pe−v/@Hhm−1

(
−v@−�2

�@

)

+�1−p�ev/@Hhm−1

(
v@+�2

�@

)}
� (57)

Here, Hhm�x� is a Hh function defined by

Hhm�x�=
1
m!

∫ �

x
�t−x�me−t2/2dt� (58)

By combining these results, we can write the term
fu�ut+�t�ut� as

fu�ut+�t�ut� =
�∑
n=0

e−3�t �3�t�
n

n! f �n�
u �ut+�t−ut�

=
�∑
n=0

n∑
m=1

e−3�t �3�t�
n

n!
2m

22n−1

·
(

2n−m−1
n−1

)
fX�m�+Y �ut+�t−ut−n2��

Because fu�ut+�t�ut� is given as a sum of fX�m�+Y �ut+�t−
ut−n2�, we only need to develop a fast algorithm
for the latter. Moreover, because this consists of two
terms as shown in (57), we only have to consider each
of the terms, that is,

f �−��v�=e−v/@Hhm−1

(
−v@−�2

�@

)
(59)

and

f �+��v�=ev/@Hhm−1

(
v@+�2

�@

)
� (60)
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We consider an expansion of f �+��xi−yj�, as we did
in (19). First, from the recurrence of the Hh function

d

dx
Hhm�x�=−Hhm−1�x�� m=0�1�2���� � (61)

we can find a Taylor expansion of the Hh function
as we did in (18), where the Taylor coefficients are
expressed again by Hh functions (though Hhm func-
tions are defined only for m≥−1, we can naturally
extend the definition for m<−1 by using the Hermite
functions defined by (17)). Then, we can again expand
the Hh function in the sum using (61), obtaining a
two-sided expansion of the Hh function as we had in
(19). Moreover, for the other factor in (60), ev/@, we
have an expansion

exi−yj =exi−x0ex0−y0ey0−yj � (62)

In this way, f �+��xi−yj� has the same form of expan-
sion as (19). Based on this, we can construct a fast
algorithm like the FGT.

The approach we took here to derive a fast algo-
rithm can be applied to other jump-diffusion models
as well, if the conditional probability density function
fu�ut+�t�ut� has a two-sided expansion as shown
in (19). For example, if the state space is homo-
geneous, that is, fu�ut+�t�ut� depends only on the
difference ut+�t−ut , the conditional probability den-
sity function can be expressed as a Fourier integral:
fu�ut+�t�ut�=

∫
g�k�eik�ut+�t−ut�dk. Then, the integral can

be discretized to give a Fourier series, and the expo-
nential function can be decomposed as in (62), leading
to a two-sided expansion of the conditional probabil-
ity density function.

While this method is quite general, its efficiency
depends critically on whether the Fourier series con-
verges sufficiently fast or not. It is therefore worth-
while to explore problem-specific expansions such as
(19) and the expansion we have developed in this sec-
tion. We are now developing such an expansion for
other jump-diffusion models including the variance
gamma model.

7.2. Extension to Stochastic Volatility Models
Another important class of models to which our
method has potential application is the stochastic
volatility model of Heston (1993) and other models in

the affine jump-diffusion class treated in Duffie et al.
(2000). In these models, the state space consists of
two components, namely the log asset price xt and its
volatility vt . To apply our method, we need the condi-
tional probability density function f �xt+�t�vt+�t�xt�vt�.
Although this is typically not known in closed form,
for affine jump-diffusion models, its Fourier trans-
form with respect to xt+�t and vt+�t can be obtained in
closed form. It is in principle possible to exploit this
fact and derive a two-sided expansion of the condi-
tional probability density function.

However, it is not so straightforward to implement
this idea efficiently, because the two-dimensional
space of xt and vt is not homogeneous, in contrast
to the cases which we have dealt with so far. This
means that the shape of the conditional probability
density function (cpdf) differs much according to the
value of vt , and as a result, a large number of basis
functions are necessary to represent the cpdf accu-
rately for all values of vt . We are now developing a
method to reduce the number of the basis functions
and improve the efficiency of our method for these
models.

8. Conclusion
In this paper, we have shown that in many of the
numerical methods for pricing American options, the
most computationally intensive part can be formu-
lated as summation of Gaussians. In particular, we
demonstrated this for the multinomial method and
the stochastic mesh method for the Black-Scholes
model and the lognormal jump-diffusion model. We
then introduced the idea of the FGT, and showed how
it can reduce the order of computational work from
O�NN ′� to O�N+N ′�, where N ′ is the number of sum-
mations and N is the number of terms appearing in
each summation.

The results of numerical experiments show that the
multinomial method based on the FGT has a con-
vergence rate much higher than that of the binomial
method, and is more efficient than the latter when
higher accuracy is needed. It was also shown that
the stochastic mesh method can be accelerated by
the FGT considerably, at least in one, two, and three
dimensions.
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Finally, we proposed an extension of the FGT to
handle non-Gaussian densities, in particular, Kou’s
(2002) double-exponential jump-diffusion model. In
future work, we plan to extend our approach to
stochastic volatility models and other models in the
affine jump-diffusion class.
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