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Model Specification and Risk Premia:
Evidence from Futures Options
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ABSTRACT

This paper examines model specification issues and estimates diffusive and jump risk

premia using S&P futures option prices from 1987 to 2003. We first develop a time

series test to detect the presence of jumps in volatility, and find strong evidence in

support of their presence. Next, using the cross section of option prices, we find strong

evidence for jumps in prices and modest evidence for jumps in volatility based on

model fit. The evidence points toward economically and statistically significant jump

risk premia, which are important for understanding option returns.

THERE ARE TWO CENTRAL, RELATED, issues in empirical option pricing. The first
issue is model specification, which comprises identifying and modeling the fac-
tors that jointly determine returns and option prices. Recent empirical work
on index options identifies factors such as stochastic volatility, jumps in prices,
and jumps in volatility. The second issue is quantifying the risk premia associ-
ated with the jump and diffusive factors using a model that passes reasonable
specification hurdles.

The results in the literature regarding these issues are mixed. For exam-
ple, tests using option data disagree over the importance of jumps in prices:
Bakshi, Cao, and Chen (1997) (BCC) find substantial benefits from including
jumps in prices, whereas Bates (2000) and others find that such benefits are
economically small, if not negligible.1 Furthermore, while studies using the
time series of returns unanimously support jumps in prices, they disagree with
respect to the importance of jumps in volatility. Finally, there is general dis-
agreement regarding the magnitude and significance of volatility and jump risk
premia.
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1 Pan (2002) finds that pricing errors decrease when jumps in prices are added for certain strike-

maturity combinations, but increase for others. Eraker (2004) finds that adding jumps in returns

and volatility decreases errors by only 1%. Bates (2000) finds a 10% decrease, but it falls to around

2% when time-series consistency is imposed.
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Figure 1. Time series of implied volatility. This figure displays the time series of implied

volatility, as measured by the VIX index, from 1987 to March 2003.

One plausible explanation for the above disparities is that most papers use
data covering only short time periods. For instance, BCC and Bates (2000) use
the cross section of options from 1988 to 1991 and 1988 to 1993, respectively,
Pan (2002) uses two options per day from 1989 to 1996, and Eraker (2004) uses
up to three options per day from 1987 to 1990. Since jumps are rare, short
samples are likely to either over- or under-represent jumps and/or periods of
high or low volatility, and thus could generate the disparate results. Figure 1,
which displays a time-series plot of the VIX index, shows how short subsamples
may be unrepresentative over the overall sample. Hence, to learn about rare
jumps and stochastic volatility, and investors’ attitudes toward the risks these
factors embody, it is important to analyze as much data as possible.

In this paper, we use an extensive data set of S&P 500 futures options from
January 1987 to March 2003 to shed light on these issues. In particular, we
address three main questions. (1) Is there option-implied time-series evidence
for jumps in volatility? (2) Are jumps in prices and volatility important factors
in determining the cross section of option prices? (3) What is the nature of the
factor risk premia embedded in the cross section of option prices?

Regarding the first question, we develop a test to detect jumps in volatility. In-
tuitively, volatility jumps should induce positive skewness and excess kurtosis
in volatility increments. To test this conjecture, we first extract a model-based
estimate of spot variance from options. We then calculate skewness and kurtosis



Model Specification and Risk Premia 1455

statistics and simulate the statistics’ finite sample distribution. The tests re-
ject a square-root stochastic volatility (SV) model and an extension with jumps
in prices (the SVJ model), as these models assume that volatility increments
are approximately normal. These rejections are robust to reasonable param-
eter variations, excluding the crash of 1987, and factor risk premia. A model
with contemporaneous jumps in volatility and prices (SVCJ) easily passes these
tests.

Next we turn to the information in the cross section of options prices to exam-
ine model fit and estimate risk premia. In estimating models using the cross
section of option prices, we depart from the usual pure calibration approach
and follow Bates (2000) by constraining certain parameters to be consistent
with the time-series behavior of returns. More precisely, the volatility of volatil-
ity and the correlation between the shocks to returns and volatility should be
equal under the objective and risk-neutral probability measures. We impose
this constraint for both pragmatic and theoretical reasons. First, there is little
disagreement in the literature over these parameter values.2 Second, absolute
continuity requires these parameters to be equal in the objective and risk-
neutral measures. Finally, joint estimation using both options and returns is a
computationally demanding task.

In terms of pricing, we find that adding price jumps to the SV model improves
the cross-sectional fit by almost 50%. This is consistent with the large impact
reported in BCC, but contrasts with the negligible gains documented in Bates
(2000), Pan (2002), and Eraker (2004). Without any risk premium constraints,
the SVJ and SVCJ models perform similarly in and out of sample. This is not
surprising, as price jumps, which generate significant amounts of skewness
and kurtosis, and stochastic volatility are clearly the two most important com-
ponents for describing the time series of returns or for pricing options. Jumps
in volatility have a lesser impact on the cross section of option prices. This does
not mean volatility jumps are not important, however, as they are important
for two reasons. First, volatility jumps are important for explaining the time
series of returns and option prices. Second, it is dangerous to rely on risk premia
estimated from a clearly misspecified model. Thus, even if the cross-sectional
fit of the SVJ and SVCJ models is similar, the risk premia estimated using the
SVJ model should not be trusted.

Turning to risk premia, our specification allows for the parameters that index
the price and volatility jump size distributions to change across measures; we
refer to the differences as “risk premia.” Thus, we have a mean price jump
risk premium, a volatility of price jumps risk premium, and a volatility jump
risk premium. The premium associated with Brownian shocks in stochastic
volatility is labeled the diffusive volatility risk premium.

The risk premia have fundamentally different sources of identification. In
theory, the term structure of implied volatility primarily identifies diffusive

2 As an example, the reported estimates for the volatility of volatility and correlation parameters

in the SVCJ model are 0.08 and −0.48 (Eraker, Johannes, and Polson (2003)), 0.07 and −0.46

(Chernov et al. (2003)), and 0.06 and −0.46 (Eraker (2004)), respectively.
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volatility premia, while the implied volatility smile identifies jump risk premia.
In our sample, it is difficult to identify the diffusive volatility risk premium be-
cause most traded options are short dated and the term structure of implied
volatility is flat.3 In contrast to the noisy estimates of diffusive volatility risk
premia, the implied volatility smile is very informative about the risk premia
associated with price jumps and volatility jumps, resulting in significant esti-
mates.

Using the SVJ model, the mean price jump risk premia is 3% to 6%, depending
on the volatility of price jumps risk premium. Mean price jump risk premia of
this magnitude are significant, but not implausible, at least relative to simple
equilibrium models such as Bates (1988). Using the SVCJ model, the mean
price jump risk premium is smaller, about 2% to 4%, depending again on the
assumptions regarding other premia. In all cases, the mean price jump risk
premia are highly significant, though modest compared to previously reported
estimates. We also find statistically significant volatility of price jumps and
volatility jump risk premia.

Finally, to quantify the economic significance of the risk premia estimates,
we consider the contribution of price jump risk to the equity risk premium
and analyze how jump risk premia affect option returns. First, price jump risk
premia contribute about 3% per year to an overall equity premium of 8% over
our sample. Second, we use our estimates to decompose the historically high
returns to put options, commonly referred to as the “put-pricing” anomaly.4

Based on our estimates, roughly half of the high observed returns are due to
the high equity risk premium over the sample, while the other portion can
be explained by modest jump risk premia. We therefore conclude that even
relatively small jump risk premia can have important implications for puts.
The main reason these returns appear to be puzzling is that, not surprisingly,
standard linear asset pricing models have difficulty capturing jump risks.

I. Models and Methods

A. Affine Jump Diffusion Models for Option Pricing

On (�, F , P), we assume that the equity index price, St, and its spot variance,
Vt, solve

dSt = St(rt − δt + γt)dt + St

√
VtdWs

t + d

(
Nt∑

n=1

Sτn−
[
eZ s

n − 1
]) − Stμ̄sλ dt (1)

3 On average, the slope of the term structure of implied volatility is very small. In our data set,

the difference in implied volatilities between 1-month and 3- to 6-month options is less than 1% in

terms of Black–Scholes implied volatility.
4 Bondarenko (2003), Driessen and Maenhout (2004b), and Santa-Clara and Saretto (2005) doc-

ument that writing puts deliver large historical returns, about 40% per month for at-the-money

puts. They argue these returns are implausibly high and anomalous, at least relative to standard

asset pricing models or from a portfolio perspective.
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dVt = κv(θv − Vt) dt + σv

√
VtdWv

t + d

(
Nt∑

n=1

Z v
n

)
, (2)

where Ws
t and Wv

t are two correlated Brownian motions (E[Ws
t Wv

t ] = ρt), δt is
the dividend yield, γ t is equity premium, Nt is a Poisson process with intensity
λ, Zs

n | Zv
n ∼ N(μs + ρsZv

n, σ 2
s ) are the jumps in prices, and Zv

n ∼ exp(μv) are the
jumps in volatility. The SV and SVJ models are special cases, assuming that
Nt = 0 and Zv

n = 0, respectively. The general model is given in Duffie, Pan, and
Singleton (DPS) (2000).5

DPS specify that price jumps depend on the size of volatility jumps via ρs.
Intuitively, ρs should be negative, as larger jumps in prices tend to occur with
larger jumps in volatility, at least if we think of events such as the crash of 1987.
Eraker, Johannes, and Polson (2003) (EJP) and Chernov, Gallant, Ghysels, and
Tauchen (CGGT) (2003) find negative but insignificant estimates of ρs. Eraker
(2004), on the other hand, finds a slightly positive but insignificant estimate.
This parameter is extremely difficult to estimate, even with 15 or 20 years
worth of data, because jumps are very rare events.6 Moreover, because ρs pri-
marily affects the conditional skewness of returns, μs and ρs play a very similar
role. Due to the difficulty in estimating this parameter precisely and for par-
simony, we assume that the sizes of price jumps are independent of the sizes
of jumps in volatility. This constraint implies that the SVCJ model has only
one more parameter than the SVJ model and ensures that the SVJ and SVCJ
models have the same price jump distribution, which facilitates comparisons
with the existing literature. We also assume a constant intensity under P, as
CGGT and Andersen, Benzoni, and Lund (ABL, 2002) find no time-series-based
evidence for a time-varying intensity, and Bates (2000) finds strong evidence
for misspecification in models with state-dependent intensities.

The term −Stμ̄sλ dt, where μ̄s = exp(μs + σ 2
s /2) − 1, compensates the jump

component and implies that γ t is the total equity premium. It is common to
assume that the Brownian contribution to the equity premium is ηs Vt, although
the evidence on the sign and magnitude of ηs is mixed (see Brandt and Kang
(2004)). The jump contribution to γ t is λμ̄s − λQμ̄Q

s , where Q is the risk-neutral
measure. If price jumps are more negative under Q than P, then λμ̄s − λQμ̄Q

s > 0.
The total premium is γt = ηsVt + λμ̄s − λQμ̄Q

s .
The market generated by the model in (1) and (2) is incomplete, implying

that multiple equivalent martingale measures exist. We follow the literature

5 The earliest formal model incorporating jumps in volatility is the shot-noise model in Book-

staber and Pomerantz (1989). The empirical importance of jumps in volatility is foreshadowed in

Bates (2000) and Whaley (2000), who document that there are large outliers or spikes in implied

volatility increments.
6 The small sample problem is severe. Since jumps are rare (about one or two per year), samples

with 15 or 20 years of data generate relatively small numbers of jumps with which to identify this

parameter. For an example, using the jump parameters in Eraker, Johannes, and Polson (2003),

the finite sample distribution of ρs, assuming price and volatility jumps are perfectly observed,

results in significant mass (about 10%) greater than zero. The uncertainty is greater in reality, as

price and volatility jump sizes are not perfectly observed.
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by parameterizing the change of measure and estimating the risk-neutral pa-
rameters from option prices. The change of measure or density process is given
by Lt = LD

t LJ
t . Following Pan (2002), we assume that the diffusive prices of

risk are �t = (�s
t , �v

t ) = (ηs
√

Vt , ηκvσ
−1
v

√
Vt) and LD

t = exp(
∫ t

0 �sdWs − 1
2

∫ t
0 �s ·

�s ds). The jump component is then

LJ
t =

Nt∏
n=1

(
λQ

τn
πQ(τn, Zn)

λτnπ (τn, Zn)

)
exp

(∫ t

0

{∫
Z

[
λsπ (s, Z ) − λQ

s πQ(s, Z )
]

dZ
}

ds
)

, (3)

where Z = (Zs, Zv) are the jump sizes or marks, π and πQ are the objec-
tive and risk-neutral jump size distributions, and λτn and λQ

τn
are the corre-

sponding intensities. Assuming sufficient regularity (Bremaud (1981)), Lt is a
P-martingale, E[Lt] = 1, and dQ =LT dP. By Girsanov’s theorem, Nt(Q) has

Q-intensity λ
Q
t , Z (Q) has joint density πQ(s, Z ), and W j

t (Q) = W j
t (P) − ∫ t

0 �
j
udu

for j = s, v are Q-Brownian motions with correlation ρ.
Measure changes for jump processes are more flexible than those for dif-

fusions. Girsanov’s theorem only requires that the intensity be predictable
and that the jump distributions have common support. With constant inten-
sities and state-independent jump distributions, the only constraint is that
the jump distributions be mutually absolutely continuous (see Theorem 33.1
in Sato (1999) and Corollary 1 of Cont and Tankov (2003)). We assume that
πQ(Z v) = exp(μQ

v ) and πQ(Z s) = N (μQ
s , (σQ

s )2), which rules out a correlation be-
tween jumps in prices and volatility under Q. A correlation between jumps in
prices and volatility would be difficult to identify under Q because μQ

s plays the
same role in the conditional distribution of returns.

Our specification allows the jump intensity and all of the jump distribution
parameters to change across measures. This is more general than the specifi-
cations considered in Pan (2002) or Eraker (2004), although, we are not able to
identify all of the parameters under Q.7 At first glance it may seem odd that we
allow σs �= σQ

s , as prior studies constrain σs = σQ
s . This constraint is an impli-

cation of the Lucas economy equilibrium models in Bates (1988) and Naik and
Lee (1990), which assume power utility over consumption or wealth. While the
assumptions in these equilibrium models are reasonable, the arguments above
imply that the absence of arbitrage does not require σs = σQ

s .
Under Q, the equity index and its variance solve

dSt = St(rt − δt) dt + St

√
VtdWs

t (Q) + d

(
Nt (Q)∑
n=1

Sτn−
[
eZ s

n(Q) − 1
]) − Stλ

Qμ̄Q
s dt

(4)

dVt = [κQ
v (θv − Vt)Vt] dt + σv

√
VtdWv

t (Q) + d

(
Nt (Q)∑
n=1

Z v
n(Q)

)
, (5)

where μ̄Q
s = exp(μQ

s + 0.5(σQ
s )2) − 1. For interpretation purposes, we refer to

the difference between the P and Q parameters as risk premia. Specifically, we

7 As we discuss later, we follow Pan (2002) and Eraker (2004) and impose λQ = λ.



Model Specification and Risk Premia 1459

let μs − μQ
s denote the mean price jump risk premium, σQ

s − σs the volatility
of price jumps risk premium, μQ

v − μv the volatility jump risk premium, and
ηv = κQ

v − κv the diffusive volatility risk premium. Below, we generally refer
to μs − μQ

s and σQ
s − σs together as the price jump risk premia. We let �P =

(κv, θv, σv, ρ , λ, μs, σs, μv) denote the objective measure parameters and �Q =
(λ, ηv , μQ

s , σQ
s , μQ

v ) denote risk-neutral parameters.
It is important to note that the absolute continuity requirement implies that

certain model parameters, or combinations of parameters, are the same un-
der both measures. This is a mild but important economic restriction on the
parameters. In our model, a comparison of the evolution of St and Vt under
P and Q demonstrates that σ v, ρ, and the product κvθv are the same under
both measures. This implies that these parameters can be estimated using ei-
ther equity index returns or option prices, but that the estimates should be the
same from either data source. One way to impose this theoretical restriction
is to constrain these parameters to be equal under both measures, as advo-
cated by Bates (2000). We impose this constraint and refer to it as time-series
consistency.

We use options on S&P 500 futures. Under Q, the futures price Ft solves

dFt = σv Ft−
√

Vt−dWs
t (Q) + d

(
Nt (Q)∑
n=1

Fτn−
(
eZ s

n(Q) − 1
)) − λQμ̄Q

s Ft dt (6)

and the volatility evolves as in equation (5). As Whaley (1986) discusses, since
we do not deal with the underlying index, dividends do not impact the results.
The price of a European call option on the futures is C(Ft , Vt , �, t, T , K , r) =
e−r(T−t) EQ

t [(FT − K )+], where C can be computed in closed form up to a numer-
ical integration. Since the S&P 500 futures options are American, we use the
procedure in Appendix A to account for the early exercise feature.

B. Existing Approaches and Findings

ABL, CGGT, and EJP use index returns to estimate models with stochas-
tic volatility, jumps in prices, and in the latter two papers, jumps in volatility.
Specifically, ABL use S&P 500 returns and find strong evidence for stochas-
tic volatility and jumps in prices. They find no misspecification in the SVJ
model. CGGT use Dow Jones 30 returns and find strong evidence in support of
stochastic volatility and jumps in prices, but little evidence supporting jumps
in volatility. In contrast, EJP use S&P 500 returns and find strong evidence for
stochastic volatility, jumps in prices, and jumps in volatility. Other approaches
also find evidence for jumps in prices; see, for example, Aı̈t-Sahalia (2002),
Carr and Wu (2003), and Huang and Tauchen (2005). In conclusion, these pa-
pers agree that diffusive stochastic volatility and jumps in prices are important,
but they disagree over the importance of jumps in volatility.

Similar disagreement regarding specification exists among studies that use
option prices. BCC calibrate the SV and SVJ models to a cross section of S&P
500 options from 1988 to 1991. They find strong evidence for both stochastic
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volatility and jumps in prices, showing that adding price jumps to the SV model
reduces pricing errors by 40%, but they find that the SVJ model is misspecified.
Bates (2000) uses S&P 500 futures options and finds that adding price jumps to
the SV model improves fit by about 10%, but only about 2% if time-series con-
sistency is imposed, and that all models are misspecified; he suggests adding
jumps in volatility. Pan (2002) uses up to two options per day and S&P 500
index returns sampled weekly from 1989 to 1996. Her tests indicate that the
SVJ model outperforms the SV model in fitting returns and for certain, but not
all, strike/maturity option categories. Eraker (2004) analyzes S&P 500 options
from 1987 to 1991. He finds that jumps in prices and volatility improve the time-
series fit, but he finds no in-sample option pricing improvement. These mixed
results are surprising in the sense that the time-series evidence overwhelm-
ingly points toward the presence of jumps in prices. One potential explanation
for these inconsistent results is that the above studies use different sample
periods, cross sections, and test statistics.

Regarding factor risk premia, the evidence is again inconclusive. First, theory
provides no guidance regarding the sign of the diffusive volatility risk premium.
Coval and Shumway (2001) and Bakshi and Kapadia (2003) find large returns
to delta-hedged option positions and use this to argue for a diffusive volatility
risk premium. However, these results are also consistent with price jump or
volatility jump risk premia, and as Branger and Schlag (2004) note, the tests
in these papers are not powerful. Moreover, the studies that formally estimate
diffusive volatility risk premia obtain conflicting results, depending on the data
set and the model specification used. In the SV model, Chernov and Ghysels
(2000) estimate ηv = −0.001, Pan (2002) estimates ηv = −0.0301, Jones (2003)
estimates ηv = 0.0326 using data from 1987 to 2003 and ηv = −0.0294 using
post-1987 data, and Eraker (2004) estimates ηv = −0.01 and reports that the
parameter is marginally significant. The estimates in Jones (2003), post-1987,
and the estimates in Pan (2002) imply explosive volatility under the Q measure
(κQ

v < 0). Given the well-known shortcomings of the pure SV model, the extreme
variation in estimates is likely due to misspecification.

In the more reasonable SVJ model, Pan (2002) argues that ηv is insignificant,
and constrains it to zero.8 She finds an economically and statistically significant
mean price jump risk premium (18%). Eraker (2004) estimates ηv = −0.01 in
the SVJ and SVCJ models, but finds that the mean price jump risk premium
is insignificant. Although Eraker (2004) finds marginally significant estimates
of ηv, the magnitudes are extremely small. He argues (in his figure 1), that on
average volatility days the presence of diffusive volatility risk premium results
in an extremely small change in the term structure of implied volatility. Even
on days with very high or low volatility, the difference is at most about 1% or 2%
in terms of implied volatility. Finally, Driessen and Maenhout (2004a) develop
a multifactor APT-style model to quantify volatility and jump risk. They find
that the diffusive volatility risk premium is statistically insignificant, the price

8 Interestingly, Pan (2000), an earlier version of Pan (2002), reports ηv = 0.029 in the SVJ model,

which is insignificant but of the opposite sign when compared to the SV model.
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jump risk premia are statistically significant, and the price jump risk premia
are much larger than the diffusive volatility risk premia.

II. Our Approach

A. Consistency between Returns and Option Prices

The model in equations (1) to (5) places joint restrictions on the return and
volatility dynamics under P and Q. This implies, for example, that the infor-
mation in returns or in option prices regarding certain parameters should be
consistent across measures. Specifically, κvθv, σv, and ρ should be the same un-
der P and Q. Despite the fact that the parameters should be identical under
both measures, option-based estimates of certain parameters, mainly σ v and
ρ, are generally inconsistent with the time series of returns and volatility, as
noted in BCC and Bates (2000). These authors find that option-based estimates
of σ v are much larger and estimates of ρ are more negative than those obtained
from time-series-based estimates. This inconsistency implies either the model
is misspecified, or that the data source is not particularly informative about
the parameters.

In principle, an efficient estimation procedure would use both returns and
the cross section of option prices over time (see Chernov and Ghysels (2000),
Pan (2002), and Eraker (2004)). The advantage of such an approach is that
it appropriately weighs each data source, simultaneously addressing a model’s
ability to fit the time series of returns and the cross section of options. However,
there is a crucial drawback to this approach. Computational burdens severely
constrain how much and what type of data can be used. As noted earlier, Pan
(2002) and Eraker (2004) use a small number of options and short data samples.

Our approach is a pragmatic compromise between the competing constraints
of computational feasibility and statistical efficiency. For the parameters that
are theoretically constrained to be equal across measures, we use P-measure
parameter estimates obtained from prior time-series studies. Then, given these
parameters, we use the information embedded in options to estimate volatility
and the risk-neutral parameters. This two-stage approach uses the information
in a long time-series of returns and the information in the entire cross section
of option prices over a long time span, and is similar to the approach used in
Benzoni (2002) and Duffie, Pedersen, and Singleton (2003).

In the models that we consider, there are only three parameters that are re-
stricted, namely, κvθv, σv, and ρ. Table I summarizes the P-measure parameter
estimates obtained by ABL, CGGT, EJP, and Eraker (2004).9 Although these
papers use different data sets and time periods, the results are quite similar,
especially for σ v and ρ. In fact, taking into account the reported standard errors,
the parameters are not statistically distinguishable. The only major difference

9 For the mean jump size in the SVCJ model, we use μ̂s = μs + ρsμv, which is the expected jump

size. EJP find that ρs is slightly negative, but that it is statistically insignificant. Since μ̂s does not

appear under the risk-neutral measure, this does not affect our option pricing results.
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Table I
Objective Measure Parameter Estimates

Objective measure parameters estimated by Eraker, Johannes, and Polson (2003), Andersen,

Benzoni, and Lund (2002), Chernov et al. (2003), and Eraker (2004). The parameter values cor-

respond to daily percentage returns. These values could be easily converted to annual decimals—

another common measure—by scaling some of the parameters: for example, multiplying κv, and λ

252,
√

252θv/100 gives the mean volatility, and
√

252μv/100 gives the mean jump in volatility. In

the SVCJ model, in the column labeled μs we report μ̂s = μs + ρsμv, which is the expected jump

size.

κv θv σ v ρ λ μs (%) σ s (%) μv

SV EJP 0.023 0.90 0.14 −0.40 · · · ·
ABL 0.016 0.66 0.08 −0.38 · · · ·
CGGT 0.013 0.59 0.06 −0.27 · · · ·
Eraker 0.017 0.88 0.11 −0.37 · · · ·

SVJ EJP 0.013 0.81 0.10 −0.47 0.006 −2.59 4.07 ·
ABL 0.013 0.66 0.07 −0.32 0.020 0 (fixed) 1.95 ·
CGGT 0.011 0.62 0.04 −0.43 0.007 −3.01 0.70 ·
Eraker 0.012 0.83 0.08 −0.47 0.003 −3.66 6.63 ·

SVCJ EJP 0.026 0.54 0.08 −0.48 0.006 −2.63 2.89 1.48

CGGT 0.014 0.61 0.07 −0.46 0.007 −1.52 1.73 0.72

Eraker 0.016 0.57 0.06 −0.46 0.004 −2.84 4.91 1.25

is that CGGT and ABL’s estimates of σ v are lower, which is an expected im-
plication given their data sets: CGGT use the Dow Jones 30 index and ABL
use data from 1980 to 1996, omitting the volatile period after 1996. It is also
natural to assume that there would be more variation in parameter estimates
for the SV model, as it is clearly misspecified. In the case of the SVCJ model,
which is the least misspecified judging by the time-series tests, the estimates
of σ v vary from 0.06 to 0.08 and the estimates of ρ vary from −0.46 to −0.48.

In our empirical implementation, we use the P-measure parameter estimates
for θvκv, σv, and ρ from EJP. First, their sample (1980 to 2000) is closest to ours
(1987 to 2003). Second, they used S&P 500 returns and our options are on S&P
500 futures. Third, EJP’s estimates generally have the highest σ v and lowest ρ,
which generate greater nonnormalities, and give the SV model the best chance
of success. Below, we discuss the potential sensitivity of our results to the choice
of P-measure parameter estimates.

It is easy to obtain misleading results if one ignores the theoretical restric-
tions that certain parameters must be consistent across measures. To see this,
Figure 2 provides calibrated implied volatility curves on a representative day,
August 5, 1999, placing no constraints on the parameters and minimizing the
pricing errors over all strikes for the four stated maturities. This is similar to
the estimation approach of BCC. For example, in the SV model, we optimize over
Vt, θv, ρ , κv, and σ v to fit the observed prices. The fits are remarkably similar
across models: The root mean square errors (RMSE) of Black–Scholes implied
volatility for the SV, SVJ, and SVCJ models are 1.1%, 0.6%, and 0.5%, respec-
tively. One might be inclined to conclude that there is little, if any, benefit to
the more complicated models.
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Figure 2. Calibrated implied volatility curves, August 5, 1999. Parameter estimates are

obtained using all four curves for each of the models, with no restrictions on the parameters. The

units on the X-axis are in terms of the options’ moneyness, K/F, and the units on the Y-axis are the

annualized Black–Scholes implied volatility.

However, this approach ignores the fact that σ v and ρ, should be consistent
across data sources: Option-based estimates of σ v and ρ in the SV model are
grossly inconsistent with their corresponding time-series estimates. For exam-
ple, the calibrated σ v is 2.82 in the SV model, while Table I indicates that the
highest reported σ v from time-series studies is 0.14! Bates (2000), who first
noted this problem, suggests constraining these parameters to be equal across
measures. A simulated path using these parameters values is given in Figure 3
and shows that the option-implied parameters generate unrealistic volatility
paths.

This shows that while it is possible, as a curve-fitting exercise, to make the
SV model fit the market data, the resulting parameter estimates are inconsis-
tent with the requirement of absolute continuity. Forcing a misspecified model
to fit observed prices is particularly dangerous if, as is commonly the case,
the fitted parameters are then used to price or hedge other derivatives. The
misspecification is also important for risk premium estimation. Much of the
literature documenting volatility risk premia finds these premia in the context
of pure stochastic volatility models. As Anderson, Hansen, and Sargent (2003)
note, model misspecification can appear in the form of a risk premium. Thus,
it is important to be cautious when estimating and interpreting risk premia in
poorly specified models.
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Figure 3. Simulated volatility paths. This graph provides volatility paths simulated based

on options (θv = 3.63, κv = 0.06, σv = 2.8, ρ = −0.66), and index returns (θv = 0.90, κv = 0.025, σv =
0.15, ρ = −0.40). The time corresponds to 2 years (500 trading days) and the same Brownian in-

crements are used for both paths to allow for a direct comparison.

Figure 4 repeats the previous exercise constraining κvθv, σv, and ρ to be equal
to the estimates obtained in EJP (see Table I). The RMSEs for the SV, SVJ, and
SVCJ models are now 8.73%, 2.97%, and 1.43%, respectively, and we see that
the SV model does an extremely poor job. Also, the SVJ model has pricing errors
roughly twice as large as the SVCJ model. The SV model does poorly because,
once time-series consistency is imposed, it cannot generate sufficient amounts
of conditional skewness and kurtosis.10

B. Time-Series Tests

Option prices are highly informative about spot volatility. In this section,
we develop an intuitive test to detect volatility jumps. Our approach is simi-
lar in spirit to those implemented in Pan (2002), Johannes (2004), and Jones

10 The constraint on κvθ v has little effect as the long-run level of volatility and the speed of mean

reversion are both second-order effects on options prices and implied volatilities over the maturities

for which we have data.
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Figure 4. Calibrated Black–Scholes implied volatility curves, August 5, 1999. Parameter

estimates are obtained using all four curves for each of the models, constraining the P-measure

parameters to be equal to their time-series counterparts.

(2003) in that we focus on higher-moment behavior to diagnose jump-induced
misspecification.

We use the following internally consistent procedure. In the first stage, given
model parameters and option contract variables, we invert spot volatility from
a representative at-the-money call option for every day in our sample. This

provides a time series of model-implied spot variances, {Vimp
t }T

t=1. These vari-
ances differ from Black–Scholes implied variance, as the model-based variance
takes into account, for example, jumps or mean reversion in volatility. Given the
implied variances, we compute the skewness and kurtosis, which are standard
measures of tail behavior. As the models that we consider have state-dependent
diffusion coefficients, we focus on “conditional” skewness and kurtosis using the
standardized increment:11

Vskew = skewP

(
Vt+1 − Vt√

Vt

)
and Vkurt = kurtP

(
Vt+1 − Vt√

Vt

)
. (7)

Unconditional measures of skewness and kurtosis provide the same conclu-
sions. However, given the persistence and heteroscedasticity of volatility, the

11 The motivation for the conditional measures is that if Vt follows a square root process, then∫ t+1

t

√
VsdWv

s ≈ N (0, Vt ) and (Vt+1 − Vt )/
√

Vt is approximately normally distributed.
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conditional statistics are likely to have greater power for detecting misspecifica-
tion. To highlight the importance of jumps in prices, we also report the skewness
and kurtosis of returns conditional on volatility, as the distribution of returns
will have first-order importance on the cross section of option prices. These mea-
sures are defined as Rskew = skewP(Rt+1/

√
Vt) and Rkurt = kurtP(Rt+1/

√
Vt).

We refer to these conditional measures merely as skewness or kurtosis, omit-
ting the conditional modifier.

Pritsker (1998) and Conley, Hansen, and Liu (1997) find that asymptotic
approximations are unreliable when the data are highly persistent and recom-
mend a Monte Carlo or bootstrapping approach. Accordingly, we follow their
recommendation and simulate G = 1,000 sample paths from the null model,
{Vg

t }T
t=1 for g = 1, . . . , G, and then compute each of the statistics for each path.

To implement this procedure, we use the P-measure parameters estimated
from returns; specifically, we use those from EJP. We also perform sensitivity
analysis by varying the parameters that control the tail behavior of the volatil-
ity process. Our conclusions regarding the misspecification of the square root
volatility process hold for any set of parameters in Table I. We also document
that our conclusions are not sensitive to reasonable risk premia, as we compute
the statistics for the risk premia that we later estimate.

C. Estimating Pricing Errors and Risk Premia

We next focus on the information embedded in the cross section of option
prices. Our goal is to understand how the misspecification manifests in option
prices and to estimate risk premia. Given our flexible risk-premium specifica-
tions, μs, σ s, and μv do not enter into the option pricing formula. Thus, the only
parameters that we use from the returns-based data are λ, θvκv, σv, and ρ. As
we mention earlier, our conclusions regarding the relative merits of the models
do not depend on the choice of the �P parameters because these parameters,
once constrained to be consistent with the objective measure, have very little
impact on option prices. For example, our conclusion that the SVJ and SVCJ
models outperform the SV models holds for all of the parameters reported in
Table I.

To estimate parameters and variances, we minimize squared differences of
model and market Black–Scholes implied volatilities, that is,

(
�̂Q, V̂t

) = arg min
T∑

t=1

Ot∑
n=1

[
IVt(Kn, τn, St , r) − IV

(
Vt , �Q | �P, Kn, τn, St , r

)]2
,

(8)

where T is the number of days in our sample, Ot is the number of cross-
sectional option prices observed on date t, IVt(Kn, τn) is the market-observed
Black–Scholes implied volatility for strike Kn and maturity τn, and IV (Vt ,
�Q | �P, Kn, τn, St , r) is the Black–Scholes implied volatility of the model
price. The implied volatility metric provides an intuitive weighting of op-
tions across strikes and maturities. In contrast, minimizing squared deviations
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between model and market option prices places greater weight on expensive
in-the-money and long-maturity options. Indeed, others advocate discarding
all in-the-money options for this reason (Huang and Wu (2004)). Christoffersen
and Jacobs (2004) provide a detailed discussion of the objective function choice.

The second component in the objective function is the choice of option con-
tracts, that is, Kn and τn. Since it is not possible to observe traded option prices
of all strikes and maturities simultaneously, there are two ways to construct
a data set, namely, to use close prices or to sample options over a window of
time. We follow Bates (2000) and aggregate trades during the day. Bates (2000)
chooses a 3-hour window, and we extend this window to the entire day. Since
we identify diffusive volatility and price and volatility jump risk premia from
longer-dated options and deep out-of-the-money (OTM) options, respectively, it
is important to include as many of these as possible.

Because there are hundreds or thousands of option transactions each day,
using all of them generates a number of issues. For example, the vast major-
ity of the recorded trades in our sample involve short-maturity at-the-money
(ATM) options. Equal weighting of all trades would effectively overweight the
information from short-maturity ATM options, which are less interesting as all
models provide similar ATM prices. As we outline in Appendix B, we take all
daily transactions, fit a flexible parametric curve, and then use the interpolated
curve in the objective function. It is common to perform interpolation for data
reduction purposes (see also Bliss and Panigirtoglou (2004) and Huang and Wu
(2004)). We view this approach as a pragmatic compromise, as it uses nearly all
of the information in the cross section of option prices without, in our opinion,
introducing any substantive biases.

Our approach jointly estimates Vt and �Q using the cross section of option
prices. Thus, if a model is poorly specified, our estimation procedure could gen-
erate implausible estimates of Vt or �Q. For example, the arguments in Sec-
tion II.A indicate that the SV model, once constrained to be consistent with
the time series, provides a very poor fit to the cross section. Additionally, from
Figure 4, it is clear that spot volatility in the SV model is higher than ex-
pected, as the estimation procedure increases spot volatility in an attempt to
find the best fit including non-ATM options. This explains why it is important
to be careful interpreting volatility or risk premia estimates in a model that is
clearly misspecified, based on, for example, time-series evidence.

Another issue with cross-sectional estimation relates to assessing statistical
significance. As Bates (2000, p. 195) notes, “A fundamental difficulty with im-
plicit parameter estimation is the absence of an appropriate statistical theory
of option pricing errors.” This means, in particular, that it is difficult to assign
standard errors to parameters estimated using the cross section. We overcome
this difficulty using a computationally expensive, but intuitive, nonparamet-
ric bootstrapping procedure. We randomly select 40 Wednesdays from 1987 to
2003 and estimate the risk premia and spot variances. We then repeat this pro-
cedure (reestimating risk premia and spot variances) until the bootstrapped
standard errors do not change appreciably. We find that 50 replications are
sufficient (consistent with Efron and Tibshirani (1994)). The reported point
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estimates are averages across the 50 replications. We report RMSE between
the model fit and our interpolated implied volatility curves across all of the 50
replications, which provides a large sample of option transactions. We also re-
port an “out-of-sample” experiment by randomly selecting 50 days, reestimating
the spot variance (holding the risk premia estimates constant), and evaluating
RMSE’s.

III. Empirical Results

A. Time-Series Specification Tests

To implement the time-series-based tests, we use a representative option
price to compute a model-based estimate of Vt. We select a representative daily
option price that (1) is close to maturity (to minimize the American feature),
(2) is at the money, (3) is not subject to liquidity concerns, (4) is an actual
transaction (not recorded at the open or the close of the market), (5) has a
recorded futures transaction occurring at the same time, and (6) is a call option
(to minimize the impact of the American early exercise feature). Appendix B
describes the procedure in greater detail.

We also report the summary statistics using the VIX index and ATM implied
volatilities extracted from daily transactions using our interpolation scheme
(see Whaley (2000) for a description of the VIX index). Although not reported,
we also compute all of the statistics using a sample of put options, and none
of our conclusions change. We adjust the options for the American feature, as
described in Appendix A. We use interpolated Treasury bill yields as a proxy
for the risk-free rate.

Table II summarizes the implied volatilities and scaled returns for the differ-
ent data sets and models. In the first panel, the first two rows labeled “VIX” pro-
vide summary statistics for the VIX index (including and excluding the crash of
1987), the rows labeled “Calls” provide statistics for our representative call op-
tion data set, and the rows labeled “Interpolated” use the ATM implied volatility
interpolated from all of the daily transactions.12 In this first panel, the implied
volatility is based on the Black–Scholes model (BSIV) and the subsequent pan-
els report model-based (as opposed to Black–Scholes) implied variances.

Although there are some quantitative differences across data sets, the qual-
itative nature of the results is unchanged: We observe large positive skewness
and excess kurtosis in the variance increments and negative skewness and pos-
itive excess kurtosis in standardized returns. The minor variations across the
data sets are due to differences in underlying indices (the VIX is based on the
S&P 100 index) and in the timing and nature of the price quotes (the VIX is
based on close prices, the calls are actual transactions in the morning, and the
interpolated set averages all transactions in a given day).

12 Formerly, the VIX was calculated from S&P 100 options instead of S&P 500 options. As of

September 22, 2003, the VIX uses options on the S&P 500 index. We use the old VIX index (current

ticker VXO).
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Table II
Volatility and Return Summary Statistics

The first three rows provide summary statistics for variance increments and standardized returns

using the VIX index, a time series of call option implied volatility (see Appendix B), and the ATM

interpolated implied volatility (see Appendix B). In these three cases, the variance used is that from

the Black–Scholes model. The second, third, and fourth panels contain model implied variances for

the SV, SVJ, and SVCJ models assuming options are priced based on the objective measure. We

also include risk premiums (RP) and document the effect of increasing σ v in the SV model.

Period Vkurt Vskew Rkurt Rskew

VIX (BSIV) 1987 to 2003 2996.58 50.41 13.72 −1.02

1988 to 2003 20.93 1.74 5.69 −0.43

Calls (BSIV) 1987 to 2003 1677.16 32.78 22.99 −1.46

1988 to 2003 15.17 1.25 5.64 −0.40

Interpolated (BSIV) 1987 to 2003 2076.58 38.21 21.04 −1.38

1988 to 2003 25.17 1.79 5.82 −0.43

SV Model 1987 to 2003 1035.71 23.85 17.39 −1.18

1988 to 2003 14.33 1.29 6.04 −0.41

SV Model (RP) 1987 to 2003 907.57 21.85 17.87 −1.20

1988 to 2003 13.44 1.25 5.74 −0.40

SV Model (σ v = 0.2) 1987 to 2003 1039.98 23.91 17.97 −1.22

1988 to 2003 14.41 1.29 6.10 −0.43

SVJ Model 1987 to 2003 850.41 21.16 17.75 −1.20

1988 to 2003 15.66 1.37 6.10 −0.42

SVJ Model (RP) 1987 to 2003 1048.51 24.21 15.91 −1.06

1988 to 2003 16.01 1.40 7.09 −0.42

SVCJ Model 1987 to 2003 1015.13 23.62 16.62 −1.12

1988 to 2003 15.16 1.34 6.31 −0.40

SVCJ Model (RP) 1987 to 2003 546.52 16.08 15.96 −1.02

1988 to 2003 13.44 1.38 6.77 −0.35

For the formal tests, we use the call option data set. Our conclusions are the
same using the other data sets, although the call option data have fewer issues
(interpolation, averaging effects, stale quotes, etc.). The bottom three panels in
Table II report statistics using model-based implied variances for the SV, SVJ,
and SVCJ models using three sets of parameters. The first set is from EJP who,
as we mention earlier, report higher σ v estimates than other papers. Because
the parameter σ v primarily controls the kurtosis of the volatility process, this
set of parameters gives the SV and SVJ models the best chance of success.
For robustness, we include statistics using two additional parameter sets. The
results in the rows labeled “RP” incorporate risk premia in order to gauge
their impact on implied variances.13 The third set of results uses the SV model
and σ v = 0.20, which is roughly five standard deviations away from the point
estimate in EJP in the SV model.

Table III provides quantiles of the finite sample distribution for each of the
statistics using the Monte Carlo procedure described in the previous section

13 We use the risk premium values estimated later in the paper.
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Table III
Statistics’ Finite Sample Distribution

For each model and set of parameters, we report the appropriate quantiles from the statistics’ finite

sample distribution. The base parameters are taken from Eraker, Johannes, and Polson (2003) as

reported in Table I.

Quantile Vkurt Vskew Rkurt Rskew

SV model 0.50 3.27 0.34 3.02 −0.05

0.95 3.51 0.41 3.14 −0.10

0.99 3.67 0.43 3.19 −0.12

SV model 0.50 3.55 0.48 3.05 −0.06

σ v = 0.2 0.95 3.96 0.55 3.16 −0.12

0.99 4.26 0.60 3.23 −0.14

0.50 3.05 0.15 22.05 −1.48

SVJ model 0.95 3.23 0.22 106.05 −5.07

0.99 3.34 0.26 226.77 −8.66

0.01 261.02 9.94 7.73 −0.63

0.05 320.24 13.18 10.72 −0.92

SVCJ model 0.50 615.40 21.04 24.77 −1.91

0.95 1649.03 34.87 78.90 −4.15

0.99 2500.51 43.73 175.67 −6.66

0.01 3.28 0.20 3.02 0.06

SVCJ model 0.05 13.21 1.01 3.21 −0.02

μv = 0.85 0.50 217.70 8.98 7.13 −0.46

λ = 0.0026 0.95 1150.76 27.53 37.92 −2.20

0.99 2012.62 39.34 94.16 −4.11

and for each of the model-parameter configurations. Note that these results
are simulated under the P-measure. Thus, there are no separate entries for the
cases incorporating risk premia, as the P-measure behavior does not change.

The SV model cannot generate enough positive skewness or excess kurtosis to
be consistent with the observed data. For example, the model generates Vkurt =
3.67 at the 99th quantile, which is orders of magnitude lower than the value
observed in the data (around 1,000). Similarly, the SV model cannot generate
the large positive skewness observed in the data. We also note in passing that,
not surprisingly, the SV model cannot come close to generating the observed
nonnormalities in returns either.

Before concluding that the SV model is incapable of capturing the behavior
of option implied volatility, it is important to document that our results are
robust. To do so, we show that the results are unchanged even if we ignore the
crash of 1987, we account for volatility risk premia, or we increase σ v. The rows
labeled “1988 to 2003” in Table II provide the statistics from 1988 to 2003, a
period excluding the crash of 1987.14 Based on the post-1987 sample, the SV

14 Of course, we do not advocate “throwing out” data, especially outlier events in jump models.

Since jumps are rare, these tail observations are invaluable for characterizing jumps. However, in

this setting, the post-1987 sample highlights the severe problems with the square root process in

the SV and SVJ models.
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model is still incapable of generating these observed statistics, even though the
parameters are estimated including the crash. If the SV model were estimated
using post-1987 data, it is very likely that θv, κv, and σ v would be lower, which
implies that the model generates even less nonnormalities. The conclusion is
unchanged even if we increase σ v to 0.20.

Finally, the row labeled “SV model (RP)” in Table II indicates that the results
are robust to realistic risk premia. Diffusive volatility and volatility jump risk
premia change the level and speed of mean reversion in volatility, which can
have a significant impact on implied variance in periods of very high volatility
(e.g., October 1987). Risk premia, however, cannot explain the nonnormalities
in the observed data. This is most clear in the post-crash subsample, in which
risk premia have a minor impact. Thus, we can safely conclude that the SV
model is incapable of capturing the observed behavior of option prices.

In the SV model, volatility increments over short time intervals,

Vt+1 − Vt ≈ κv(θv − Vt) + σv

√
Vt

(
W v

t+1 − W v
t

)
, (9)

are approximately conditionally normal (see also Table III). The data, however,
are extremely nonnormal, and thus the square root diffusion specification has
no chance to fit the observed data.

The following example provides the intuition by way of specific magnitudes.
Consider the mini-crash in 1997: On October 27th the S&P 500 fell about 8%
with Black–Scholes implied volatility increasing from 26% to 40%. In terms of
variance increments, daily variance increased from 2.69 to 6.33, which trans-
lates into a standardized increment, (Vt − Vt−1)/

√
Vt , of 2.22. To gauge the size

of this move, it can be compared to the volatility of standardized increments
over the previous 3 months, which was 0.151 (remarkably close to the value σ v =
0.14 used above). Thus, the SV would require a roughly 16-standard deviation
shock to generate this move. This example shows the fundamental incompati-
bility of the square root specification with the observed data. What we have here
is not an issue of finding the right parameter values; rather, the model is fun-
damentally incapable of explaining the observed data. Whaley (2000) provides
other examples of volatility “spikes.”

The SV and SVJ models share the same square root volatility process, sug-
gesting the SVJ model is also incapable of fitting the observed data. The third
panel in Table III indicates that it does generate different implied variances
(due to the different volatility parameters and jumps), but it cannot generate
the observed skewness or kurtosis. Subsamples or risk premia do not change the
conclusion. Since the SV and SVJ models share the same volatility process, the
conclusions are unchanged with σ v = 0.20. The SVJ model can generate realis-
tic amounts of skewness and kurtosis in returns. This should not be surprising
as the jumps generate the rare, large negative returns observed in prices.

The lower panels in Tables II and III demonstrate that the SVCJ model is
capable of capturing both the behavior of implied variances and standardized
returns for the full sample. In Table III, the panel reports the 1st, 5th, 50th,
95th, and 99th quantiles of each of the statistics. For example, Vkurt based on
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option prices is about 1,000, and the sample statistics fall somewhere between
the 50th (about 600) and 95th quantile (1,600). The skewness generated by
the model is almost identical to the value observed in the data; with the 50th
quantile equal to 21.04 in simulations, compared to 21.16 in the data. The in-
frequent, exponentially distributed jumps in volatility naturally generate the
combination of high kurtosis and positive skewness observed in the data. The
model can also capture the conditional distribution of returns. The final rows
in Table II indicate that the conclusions are unchanged if we include diffusive
volatility and jump risk premia. The kurtosis in the SVCJ model falls in the
full sample with risk premia because the jump premia (volatility and jumps
in prices) alter the model-implied variances, especially during the crash of
1987.

A comparison of the subsamples in Table II with the quantiles generated
by the SVCJ models using the base parameters indicates that over the post-
1987 period, the SVCJ model with parameters from EJP generates too much
kurtosis and skewness. This can be seen by comparing, for example, Vkurt from
1988 to 2003 in Table II with the 1st quantile for the SVCJ model in Table III.
This result is not at all surprising since the base case parameters in EJP are
estimated using data that include the crash of 1987: Because jumps are rare
events that generate conditional nonnormalities, if one removes these outliers
the observed data (variance increments or standardized returns) become more
normal, by construction. Of course, this does not indicate that the SVCJ model
is misspecified, but rather when using the parameters estimated using the full
sample, that it generates too much excess kurtosis and skewness. Naturally, if
the SVCJ model were estimated omitting the crash of 1987, it is likely that the
parameters governing the jump sizes would change.

To document that this is not a generic problem with the SVCJ model, the
final panel in Table III shows that if one reduces the jump intensity to λ =
0.0026 and μv = 0.85 (about two standard errors below the point estimates in
EJP), the model fits both periods within a 5% to 95% confidence band.15 Note
that we do not suggest using these ad hoc parameters; we simply use them to
illustrate the flexibility of the SVCJ model. The key point is to contrast this
result with those that obtain using the SV and SVJ models: These models, due
to the diffusion specification, could not fit the data over either of the samples,
even using a value of σ v that is implausibly high.

We conclude that the SV and SVJ models are incapable of capturing the
time-series behavior of option implied variances, while the SVCJ model can
easily capture the observed behavior. Since a primary goal of this paper is to
estimate risk premia, it is important to have a well-specified model as model
misspecification can easily distort risk premia estimates. Finally, our results are
related to Jones (2003), who shows that the square root and constant elasticity of
variance models cannot explain the dynamics of implied volatility. We confirm

15 This value of λ is not implausible as it is consistent with studies that use shorter samples.

For example, Pan’s (2002) estimates imply about 0.3 jumps per year on average (λ = 0.0012) and

Eraker (2004) finds about 0.5 jumps per year (λ = 0.002).
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Table IV
Risk-Neutral Parameter Estimates

For each parameter and model, the table gives the point estimate, computed as the average param-

eter value across 50 bootstrapped samples, and the bootstrapped standard error. For the SVJ and

SVCJ models, an entry of σ s in the σ
Q
s column indicates that we impose the constraint σs = σ

Q
s .

ηv μ
Q
s (%) σ

Q
s (%) μ

Q
v RMSE (%)

SV 0.005 (0.07) — — — 7.18

SVJ 0.010 (0.03) −9.97 (0.51) σ s — 4.08

SVJ 0.006 (0.02) −4.91 (0.36) 9.94 (0.41) — 3.48

SVJ 0 −9.69 (0.58) σ s — 4.09

SVJ 0 −4.82 (0.33) 9.81 (0.58) — 3.50

SVCJ 0.030 (0.21) −6.58 (0.53) σ s 10.81 (0.45) 3.36

SVCJ 0.031 (0.18) −5.39 (0.40) 5.78 (0.70) 8.78 (0.42) 3.31

SVCJ 0 −7.25 (0.50) σ s 5.29 (0.18) 3.58

SVCJ 0 −5.01 (0.38) 7.51 (0.83) 3.71 (0.22) 3.39

Jones’s (2003) findings, and, in addition, we provide a model with jumps in
volatility that is capable of capturing the observed dynamics.

B. Model Specification and Risk Premium Estimates

Table IV provides risk premium estimates and overall option fit for each
model, and Table V evaluates the significance of the model fits. We estimate
the risk-neutral parameters and compute total RMSE using the procedure in
Section II.C based on the cross section of option prices. While the time-series
results above indicate that the SV and SVJ models are misspecified, we still
report cross-sectional results for these models in order to quantify the nature
of the pricing improvement in the SVCJ model and to analyze the sensitivity
of the factor risk premia to model misspecification.

We discuss model specification and risk premia in turn. Our procedure gen-
erates the following intuitive metric for comparing models. We compute the
number of bootstrapped samples for which the overall pricing error (measured
by the relative difference between BSIVs) for one model is lower than another
by 5%, 10%, 15%, or 40%.

Because it is difficult to statistically identify ηv, we report the results for
versions of the models with or without a diffusive volatility risk premium.
Throughout this section, we constrain λQ to be equal to λ and use the value
from EJP. In general, it is only possible to estimate the compensator, λQμ̄Q

s ,
and not the individual components separately. Pan (2002) and Eraker (2004)
imposed the same constraint. The estimate in EJP implies approximately 1.5
jumps per year, which is higher than most other estimates and will result in
conservative price jump and volatility jump risk premia estimates.

Finally, for the jump models, we consider cases that depend on whether or
not σ s is equal to σQ

s . This is the first paper that allows these parameters to
differ. We believe it is important to document the size of this risk premium and
how it affects the estimates of the other premia.
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Table V
Model Comparison Results

Comparison of the RMSEs across models. The table reads as follows: The probability that model

[name in a row] is better than model [name in a column] by [number in a row]% is equal to [number

in the intersection of the respective row and column]. The numbers in parentheses are out-of-sample

values. For example, the probability that the RMSE of the SVCJ model is smaller than the RMSE

of the SVJ (σ
Q
s = σs) model by 10% is 0.76.

SV SVJ SVJ SVCJ

σ
Q
s �= σs σ

Q
s = σs σ

Q
s = σs

5% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SV 10% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

15% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

40% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

5% 1.00 (1.00) 1.00 (1.00) 0.26 (0.66)

SVJ σ
Q
s �= σs 10% 1.00 (1.00) 0.98 (0.98) 0.04 (0.36)

15% 1.00 (1.00) 0.42 (0.66) 0.00 (0.16)

40% 1.00 (1.00) 0.00 (0.02) 0.00 (0.02)

5% 1.00 (1.00) 0.00 (0.00) 0.00 (0.02)

SVJ σ
Q
s = σs 10% 1.00 (1.00) 0.00 (0.00) 0.00 (0.00)

15% 1.00 (1.00) 0.00 (0.00) 0.00 (0.00)

40% 0.70 (0.70) 0.00 (0.00) 0.00 (0.00)

5% 1.00 (1.00) 0.06 (0.00) 0.96 (0.80)

SVCJ σ
Q
s = σs 10% 1.00 (1.00) 0.00 (0.00) 0.76 (0.36)

15% 1.00 (1.00) 0.00 (0.00) 0.26 (0.00)

40% 0.96 (0.96) 0.00 (0.00) 0.00 (0.00)

B.1. Model Specification: Pricing Errors

A number of points emerge from Tables IV and V. Regardless of the assump-
tions on the risk premium parameters, the SVJ and SVCJ models provide sig-
nificant pricing improvement over the SV model. This is true in a point-wise
sense in Table IV, as the RMSEs of the pricing errors are reduced by almost
50%, and is also true based on the bootstrapped samples. Under any of the risk
premia assumptions and in all 50 bootstrapped samples, the SVJ and SVCJ
models provide at least a 15% pricing error improvement over the SV model,
and in most samples, more than a 40% improvement. These results are consis-
tent with BCC (who find a 40% improvement) and in contrast to Bates (2000),
Eraker (2004), and Pan (2002). The reasons for our clear results are twofold:
We impose time-series consistency, and we use option prices that span a long
time period.

Next, consider a comparison of the overall pricing errors in the SVJ and
SVCJ models in Table IV. The SVJ model, with no constraints on risk premia,
has an overall pricing error of 3.48%. By comparison, the unconstrained SVCJ
model has pricing errors of 3.31%, which is an improvement of 5%. If we impose
σQ

s = σs in the SVJ model, the SVCJ model generates a larger improvement of
18% (4.08% vs. 3.36%). If σQ

s �= σs, σQ
s increases drastically, allowing the SVJ

model to generate more conditional kurtosis in returns, a role very similar to
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that played by jumps in volatility. In fact, a comparison of the unconstrained
SVJ model and the SVCJ model with the same number of parameters (σQ

s = σs

in the SVCJ model) shows that the pricing errors are quite similar: 3.48%
and 3.36%, respectively. This result is consistent with objective measure time-
series results in Table III, which show that the SVJ model can generate realistic
amounts of nonnormalities in returns through jumps in prices.

In Table V, we test for differences for the most important variations of the
models. We compare the SV model, the SVJ model with and without constraints
on σQ

s , and the SVCJ model assuming σQ
s = σs. The constrained SVCJ model is

of interest for model fit because the unconstrained SVJ and constrained SVCJ
models have the same number of parameters. The SVCJ (σQ

s = σs) model has
pricing errors that are at least 5% lower than those of the SVJ (σQ

s = σs) model
in 96% of the bootstrapped replications. Thus, the SVCJ model provides a sta-
tistically significant improvement in overall option fit. However, a comparison
of the unconstrained SVJ model with the constrained SVCJ model indicates
that the SVCJ (σQ

s = σs) model outperforms by more than 5% in only 6% of the
trials, an indication that SVCJ adds little to the cross section of returns when
the risk premia are unconstrained in SVJ. In order to ensure the robustness
of our findings, we also evaluate “out of sample” RMSEs by using the param-
eter values reported in Table IV on 50 randomly selected days in our sample
that were not used for risk premia estimation. For each of the 50 days, we es-
timate the spot variance and then computed RMSEs, holding the risk premia
constant. The results are qualitatively the same, with a slight improvement in
the unconstrained SVJ model relative to the SVCJ model.16

We sort option pricing errors by maturity, strike, and volatility. The only ma-
jor pattern that emerges is that pricing errors tend to be higher for all models
in periods of high volatility. Given that our objective function focuses on ab-
solute differences in volatility (as opposed to percentage differences), this is
not a surprise. Pan (2002) finds a similar pattern. The SVJ and SVCJ models
outperform the SV model in all categories, however, there is little systematic
difference between the SVJ and SVCJ models.

We conclude that there is some in-sample pricing improvement by including
jumps in volatility, but the effect is modest. However, as our tests in the previous
section indicate, the SVJ model cannot capture the dynamics of Vt. Thus, the
SVCJ is our preferred model as it is consistent simultaneously with the time
series and the cross section.

B.2. Estimates of Risk Premia

Table IV summarizes the Q-measure parameter estimates. For each param-
eter and specification, the table provides estimates and bootstrapped standard
errors based on 50 replications. A number of interesting findings are apparent.

16 In the interest of saving space, we do not report the unconstrained SVCJ model results. How-

ever, the unconstrained SVCJ model modestly outperforms all of the other models both in and out

of sample.
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Table VI
The Average Term Structure of S+P 500 Index Implied Volatility

For each year, we compute average at-the-money implied volatility from our Black–Scholes implied

volatility curves as computed in Appendix B and bin the results into three categories: options that

mature in under 1 month, those that mature in 1 to 2 months, and those that mature in 3 to 6

months.

Year 1 Month 2 Month 3–6 Months

1987 28.01 28.96 21.62

1988 21.67 22.30 22.39

1989 14.79 15.35 15.90

1990 19.50 19.99 20.22

1991 16.12 16.55 17.02

1992 13.14 13.67 14.62

1993 10.81 10.99 12.06

1994 11.58 11.84 12.98

1995 10.44 10.62 11.55

1996 14.34 14.37 14.64

1997 20.06 20.24 20.16

1998 21.20 22.33 23.57

1999 21.33 22.18 24.02

2000 20.63 20.32 21.36

2001 23.69 23.43 21.82

2002 25.20 24.60 23.25

2003 28.72 28.09 26.27

Mean 18.90 19.17 19.03

The diffusive volatility risk premium ηv is insignificant in every model. As
mentioned earlier, there are several reasons to believe that this parameter
is difficult to identify, and our finite-sample procedure generates quite large
standard errors relative to the point estimate. This does not necessarily mean
that ηv = 0; instead it suggests only that we cannot accurately estimate the
parameter. When we constrain ηv = 0, there is virtually no change in the RMSE,
which indicates that its impact on the cross section is likely to be minor.

Why is it so hard to estimate ηv, even with a long data set? The main reason
is that, as shown in Table VI, the implied volatility term structure is flat, at
least over the option maturities that we observe. Focussing on the whole sam-
ple, the difference between short- (less than one month) and longer-dated (3 to
6 months) implied volatility is only about 0.1%.17 In the context of our models,
it is important to understand what could generate such a flat term structure.
Since jumps in prices contribute a constant amount to expected average vari-
ance over different horizons, any variation in the term structure shape will
arise from the stochastic volatility component.

17 According to Bates (1996), the bias arising from Jensen’s inequality from the use of implied

volatilities rather than implied variances is less than 0.5% for 1-month to 12-month at-the-money

options. Hence, the flat term-structure observation is not likely due to Jensen’s inequality.
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The stochastic volatility model could generate a flat average term structure
via two conduits. First, ηv could be small, implying that the term structure is
flat on average. Second, ηv could be large (of either sign), but the term struc-
ture could still be flat over short horizons if risk-neutral volatility is very per-
sistent. Given the near unit root behavior of volatility under P, volatility will
also be very persistent under Q for a wide range of plausible ηvs, generat-
ing a flat term structure of implied volatility. This implies that we can only
distinguish between these two competing explanations if we have long-dated
options.

It is also the case that using a more efficient estimation procedure, such as
one including returns and option prices, would improve the accuracy of the
parameter and risk premia estimates. However, joint estimation must still con-
front the fact that the term structure is flat, which implies that merely using
a different estimation procedure is not likely to alleviate the problem that ηv

is insignificant, unless the procedure incorporates long-dated options. In large
part, this explains why the existing literature using options and returns finds
unstable, insignificant, or economically small estimates.

We find evidence for modest but highly significant jump risk premia in the
SVJ and SVCJ models, as the information in the volatility smile allows us to
accurately estimate μQ

s , σQ
s , and μQ

v . In the SVJ model, μQ
s ranges from about

−9% (imposing σQ
s = σs) to about −5% (σQ

s �= σs). In the SVJ and SVCJ models,
estimates of μs are generally around −2% to −3% based on the time-series
of returns, which implies a modest mean price jump risk premium of about
2% to 6%. In the SVCJ model, the estimates of μQ

s are again significant and
generate a risk premium of similar magnitude, about 2% to 3% when (σQ

s �= σs)
and 4% to 5% when (σQ

s = σs). When σQ
s �= σs, the SVJ and SVCJ models deliver

remarkably consistent results: The estimates of μQ
s vary from a low of −5.39%

to a high of −4.82%. The risk premium estimates do not appear to depend on
whether or not jumps in volatility are present, and thus are a robust finding. A
significant mean price jump risk premium should not be a surprise since jumps
cannot be perfectly hedged with a finite number of instruments.

In both the SVJ and SVCJ models, there is strong evidence that σQ
s �= σs,

an effect that has not previously been documented. Moreover, as we note in
the previous paragraph, this has important implications for the magnitudes
of the premium attached to the mean price jump size. Estimates of σ s in the
SVJ model are around 4%, while estimates of σQ

s are more than 9%. However,
it appears that this premium is largely driven by specification. As mentioned
earlier, the time-series tests indicate the presence of jumps in volatility. These
jumps generate large amounts of excess kurtosis in the distribution of returns.
Since the SVJ model does not allow volatility to jump, it can only fit observed op-
tion prices by drastically increasing σQ

s to create a large amount of risk-neutral
kurtosis. When jumps in volatility are allowed in the SVCJ model, estimates
of σQ

s fall to about 6% (with a standard error of 0.7%) in the unconstrained
SVCJ model and to around 7.5% (with a standard error of 0.83%) when ηv is
constrained to be zero. Unlike the significant estimates of μQ

s and the insignif-
icant estimates of ηv in all models, the very large risk premium attached to σ s
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in the SVJ model appears to be driven by model specification, although, even
with jumps in volatility, there is evidence for a modest premium.

For every variant of the SVCJ model, there is strong evidence for a volatility
jump risk premium, that is, μQ

v > μv. In the SVCJ model, μQ
v plays two roles;

namely, it generates conditional kurtosis in returns and it influences the long-
run risk-neutral mean of Vt. The fact that μQ

v > μv shows the need for greater
risk-neutral kurtosis to fit the volatility smile. As in the other models, ηv is in-
significant. However, this parameter impacts estimates of μQ

v : By constraining
ηv = 0, μQ

v estimates fall drastically. This occurs because the long-run mean of
volatility is

EQ[Vt] = κvθv + μQ
v λ

κv + ηv
. (10)

A large value of μQ
v , while generating a large conditional kurtosis of returns,

has little impact on the long-run mean of the variance because its impact is
largely nullified by ηv. When ηv = 0, μQ

v estimates are more reasonable and
more precise.

To interpret the magnitude of μQ
v , recall that EJP report an estimate of μv

of about 1.5 (with a standard error of 0.34). With no constraints on σQ
s , we

estimate μQ
v to be 3.71. If average annualized volatility is 15%, an average

sized jump increases annualized volatility to 25% under P and 34% under Q.
Even if σQ

s = σs, the estimate of 5.29 implies that an average-sized, risk-neutral
jump increases volatility to 39%, which is plausible given the large increases
observed historically.

Finally, to see the impact of risk premia on option prices, Figure 5 displays the
Black–Scholes implied volatility curves for the SVJ and SVCJ models for 1 and
3 months to expiration. For the SVJ model, the solid line displays the implied
volatility curve based on P-measure parameters, the dotted line includes risk
premia and constrains σQ

s = σs, and the dashed line allows σQ
s �= σs. For the

SVCJ model, we consider the case in which σQ
s = σs, as the implied volatility

curves when σQ
s �= σs are qualitatively similar.

Note first from the two upper panels that the SVJ model using the P-measure
parameters or with σQ

s = σs generates monotonically declining implied volatil-
ity curves (the smirk). These models generate very little risk-neutral condi-
tional kurtosis and they therefore miss the hook, that is, the increase in im-
plied volatility for ITM puts or OTM calls (see, DPS, Pan (2002), and EJP).
When the constraint on σQ

s is relaxed, the model generates more risk-neutral
kurtosis (note the difference between the dashed line and the solid and dotted
lines). Risk premia play a lesser role in the SVCJ model as this specification
can generate a reasonable smile effect at both short- and intermediate-term
maturities even under the P measure. It is also clear from the Figure 5 that
when σQ

s is unconstrained, the SVJ model generates implied volatility curves
that are quite similar to those of the SVCJ model.

This discussion illustrates that, given sufficiently flexible risk premia, one
cannot distinguish among different models based on options’ cross section only.
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Figure 5. Black–Scholes implied volatility curves for the SVJ and SVCJ models based
on P- and Q-measure parameters. This figure plots the implied volatility curves generated from

the SVJ and SVCJ models using estimated parameters under various assumptions on the risk

premia. A “P” after a model indicates that the figures are computed with no risk premia. SVJ-Q

(σ
Q
s = σP

s ) indicates that the price jump volatility is held constant across measures, but other risk

premia are included using the values from Table IV. SVJ-Q and SVCJ-Q are implied volatility

curves computed using the risk premia in Table IV.

However, a good option pricing model must be able to fit both cross-sectional
and time-series properties. In our case, this means that SVCJ is the only model
capable of successfully addressing all aspects of the data.

B.3. Interpreting the Risk Premia

In this section, we examine the degree to which the risk premia are reason-
able, and we assess their economic significance. To do so, we examine the mean
price jump size premia in the context of simple equilibrium models, the contri-
bution of jump risk to the overall equity premium, and the impact of price and
volatility jump risk premia on option returns.

First, consider Bates’s (1988) constant volatility jump diffusion equilib-
rium model. Bates finds that μQ

s = μP
s − AδS,W , where A is the power utility
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risk-aversion parameter and δS,W is the covariance between the jumps in the
stock market and those in total wealth. It is reasonable to assume that stock
price jumps are highly correlated with wealth (at least financial wealth) and
therefore reasonable values of A can easily generate the 2% to 6% wedge that we
find. Levels of risk aversion under 10 are generally considered to be reasonable.
Bates (2000) estimates μQ

s to be around 9% and σQ
s to be around 10% to 11%,

and notes that these estimates give “little reason to believe that the jump risk
premia introduce a substantial wedge between the ‘risk-neutral’ parameters
implicit in option prices and the true parameters” (p. 193). Additionally, the
P-measure parameters are measured with more noise than the risk-neutral
parameters, which indicates that the wedge between the two could be even
smaller in a statistical sense.

Next, consider the jump risk contribution to the equity premium. Using P-
measure parameter estimates from EJP and the decomposition of the equity
risk premium from Section I.A, the contribution of the price jump risk premia
is 2.7% and 2.9% per annum in the SVJ and SVCJ models (with ηv = 0), respec-
tively. Over our sample, the equity premium is about 8%, implying that jumps
generate roughly one third of the total premium. As a benchmark, time-series
studies find that jumps in prices explain about 10% to 15% of overall equity
volatility (EJP or Huang and Tauchen (2005)). It appears that jumps generate
a relatively larger share of the overall equity premium. While significant, it is
difficult to argue that these premia are unreasonable.

Finally, we consider our risk premium estimates in the context of a rapidly
growing literature that identifies a “put-pricing puzzle” (see e.g., Bondarenko
(2003), Driessen and Maenhout (2004b), Jones (2006), or Santa-Clara and
Saretto (2005)). Using data similar to ours (Bondarenko uses S&P 500 futures
options from 1987 to 2000), these authors document that average monthly re-
turns of ATM and OTM puts are approximately −40% to −95%, respectively,
and have high Sharpe ratios. Naturally, average returns of this magnitude are
difficult to explain using standard risk-based asset pricing models such as the
CAPM or Fama–French three-factor model, and they are also puzzling from a
portfolio perspective (Driessen and Maenhout (2004b)) or based on a nonlinear
factor model (Jones (2006)).

Our models and risk premium estimates provide a natural setting in which
to explore a risk-based explanation of the put-pricing anomaly. To examine this
issue, we simulate the SVCJ model, calculate put returns with and without risk
premia, and compare the returns to results previously reported. Table VII pro-
vides these average values and the 5% to 95% bootstrapped confidence bounds
reported by Bondarenko (2003). To compute model-based returns, we estimate
the population values of average options returns by simulating 20,000 monthly
index and option returns from the SVCJ model. We are careful to precisely fol-
low the empirical design of Bondarenko and compute the holding period returns
of options with 1 month left to maturity. We consider three scenarios with re-
spect to the values of the risk premia. The case SVCJ-P corresponds to the zero
risk premia, the case SVCJ-Q-μQ

s considers only the effect of a mean price jump
risk premium, the case SVCJ-Q-μQ

v adds the volatility jump risk premium. In
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Table VII
The Impact of Risk Premia on Option Returns in the SVCJ Model

We compare out-of-the-money (OTM) average option returns (measured in percent) and their boot-

strapped percentiles reported by Bondarenko (2003) (Average, 5%, 95%) to population average

options returns implied by the SVCJ model assuming zero risk premia (SVCJ-P) and using the

estimated risk premia (SVCJ-Q). The dagger (†) denotes returns outside the confidence intervals.

Moneyness 6% 4% 2% 0%

Data Average −95.00 −58.00 −54.00 −39.00

5% −99.00 −80.00 −72.00 −54.00

95% −89.00 −35.00 −36.00 −24.00

Model SVCJ-P −20.70† −21.91† −21.78† −19.96†

SVCJ-Q-μ
Q
s −68.46† −58.36 −45.21 −32.18

SVCJ-Q-μ
Q
v −75.78† −64.67 −50.01 −35.27

each case, we match the overall average equity risk premium over the sample,
which is about 8%.

Table VII provides a number of interesting implications. The SVCJ-P re-
sults indicate that a model without any risk premia generates about −20%
per month for average put returns. These large negative put returns are solely
driven by the very high S&P 500 returns: A short put position has a high
“beta” on the index (around −25 to −30 for ATM puts, see Coval and Shumway
(2001)). Intuitively, if the equity premium is high, puts often end up OTM, with
a 100% return to the writer. Thus, a large component of the put pricing puz-
zle is due to the high equity premium over the 1990s. The SVCJ-Q-μQ

s results
indicate that adding a small mean price jump risk premium alone generates
returns that are inside the confidence bands for most strikes. The final row in-
dicates that adding the volatility jump risk premium generates option returns
that are very close to the historical sample means. The only case that is not
within the bounds is that of deep OTM puts; here, the returns are economically
close.18

We conclude that jump risk premia provide an attractive risk-based explana-
tion for the put-pricing puzzle. Although the returns are extremely large, these
option positions are highly levered. Since our intuition and models (CAPM)
are often based on normal distributional assumptions, the high returns (and
Sharpe ratios) seem puzzling. However, these models are not well suited for un-
derstanding nonnormal risks such as those embedded in jumps. In our model
with jumps, once we allow for even modest jump risk premia, the returns on
these option strategies are not necessarily puzzling.

Although this section argues that these jump premia are not unreasonably
large and that they have important economic implications, we are agnostic

18 The average return of 6% OTM puts is outside the confidence band, but the bands could be

unreliable because of the small number of observations in this moneyness category (see table 2 in

Bondarenko (2003)).
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about their exact sources. These jump risk premia may arise, for example, from
standard utility functions; from asymmetric utility of gains and losses, which
leads investors to care more about large negative returns; from the presence
of heterogeneous investors with more risk-averse investors buying put options
from the less risk-averse investors; from an inability to hedge jump risks; or
from institutional explanations. Several papers explore some of these potential
explanations. Liu, Pan, and Wang (2005) argue that an aversion to parameter
uncertainty could generate the premia. Bollen and Whaley (2004) show that
there are demand effects, in the sense that changes in implied volatility are
related to the demand for options, and Garleanu, Pedersen, and Poteshman
(2005) model demand effects with heterogenous investors. Disentangling the
sources of the jump risk premia and characterizing their relationship to investor
demand appears to be a fruitful avenue for future research.

IV. Conclusions

In this paper, we use the time series and cross section of option prices to
address a number of important option pricing issues. Using the time series, we
find strong evidence for jumps in volatility, which, in conjunction with prior
work, implies that stochastic volatility, jumps in prices, and jumps in volatility
are all important components for option pricing. Using the cross section of option
prices, we find that models with jumps in prices (with or without jumps in
volatility) drastically improve overall pricing performance. Jumps in volatility
offer a significant pricing improvement in the cross section unless a model with
only price jumps is allowed to have a premia attached to the volatility of price
jumps. In this case, the SVJ model requires that a relatively large premium
be attached to the volatility of price jumps in order to generate the substantial
amount of risk-neutral kurtosis observed in the cross section.

We find that estimates of risk-neutral mean price jumps are consistent across
models, are on the order of 5% to 7%, are highly statistically significant, and im-
ply a mean price jump risk premium of about 2% to 5%. We also find evidence
for volatility of price jumps and volatility jump risk premia. The premia are
economically plausible. The mean price jump risk premium is consistent with
a modest level of risk aversion in simple equilibrium models. Jump risks con-
tribute just under 3% to the total equity premium of 8% over our sample. Our
jump risk premia also have important implications for the so-called “put-pricing
puzzle,” which refers to the extremely high returns to writing put options that
were observed in the 1990s. We find that a large proportion of the puzzle can
be explained by the high returns on the underlying index, and that the remain-
ing proportion can be generated by our modest price and volatility jump risk
premia.

While our results resolve a number of existing issues in the literature, we
conclude by mentioning three topics that represent promising avenues for fu-
ture research. First, joint estimation and new types of data (variance swaps,
volatility futures, etc.) would improve parameter estimates, especially ηv and
ρs, if options of multiple strikes and maturities were used. Second, it is certainly
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the case that our preferred model has shortcomings. For example, our model
(as well as all others estimated in the literature) assumes that the long-run
mean of volatility is constant. Casual observation indicates that this may be a
tenuous assumption, as there are long periods during which volatility is higher
or lower than its unconditional long-run mean. DPS and Pan (2002) suggest
a model with a time-varying central tendency factor, which could be identi-
fied from longer-dated options. Such a model, estimated using more efficient
methods and longer-dated options, might also resolve the issues surrounding
the diffusive risk premium estimates. Similarly, more flexible variance jump
distributions are of interest. Finally, we find preliminary evidence that the
risk-neutral jump parameters vary over time, increasing in periods of mar-
ket stress and decreasing during other periods. Santa-Clara and Yan (2005)
also find evidence for time-varying jump risk premia. It would be interesting
to develop diagnostics based on, for example, the slope of the implied volatil-
ity curve, to identify these time-varying premia, and to further examine their
implications.

Appendix A: Adjusting for the Early Exercise Premium

Given that the S&P 500 futures options are American, this complicates the
parameter estimation procedure because of the considerable additional time
needed to compute model American prices versus European prices. We circum-
vent this computational difficulty by transforming American prices to European
prices, and then estimating model parameters based on European prices. This
approach has two main advantages. First, the computational savings is very
significant, rendering the parameter estimation procedure feasible. Second, it
eliminates the need to develop analytical approximations for American option
values under each model.

We now quantify the magnitude of the approximation error introduced by this
procedure. Assume that market prices are generated by a particular model, for
example, the SV model. Let SV A(�̃) denote the American option price under the
SV model with parameters �̃ = (�, K , τ, St , Vt , r, δ), and let SV E (�̃) denote the
corresponding European option price with the same parameters. Suppose that
the market American price C is SV A(�̃). According to our model assumptions,
a European option would trade for SV E (�̃). Using the observed price C we
compute an American Black–Scholes implied volatility, that is, a value σBS

such that C = BSA(σ BS , �̃), where BSA denotes the Black–Scholes American
option price. We then estimate that an equivalent European option would trade
in the market at a price BSE (σ BS , �̃), where BSE denotes the Black–Scholes
European option price.

We test the accuracy of this procedure by computing absolute, BSE (σ BS , �̃) −
SV E (�̃), and relative, (BSE (σ BS , �̃) − SV E (�̃))/SV E (�̃), errors over a large
set of model parameters chosen to be representative of those estimated based on
our data set. Similar definitions apply for the SVJ model. For the SV model, we
test all combinations of the parameters that straddle the estimated values in
Table I: κv ∈ {0.008, 0.032}, σv ∈ {0.1, 0.25}, ρ ∈ {−0.1, −0.7}, θv ∈ {0.57, 1.59},
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Table AI
European Price Approximation Errors

We test the accuracy of the approximation procedure by computing absolute and relative errors

over a large set of model parameters that are consistent with our data set. The relative error

(BSE (σ BS , �̃) − M E (�̃))/M E (�̃), where M is either SV or SVJ, is reported for options with prices

above $0.5. The absolute error BSE (σ BS , �̃) − M E (�̃) is relevant for lower priced options. We

summarize the errors by the root mean square (RMS) and maximum absolute (Max) errors.

SV SVJ

Relative Absolute Relative Absolute
Model

Error RMS Max RMS Max RMS Max RMS Max

Call 1.5 months 0.17% 0.26% 0.0006 0.0017 0.28% 0.71% 0.0014 0.0044

6 months 0.26% 1.08% 0.0029 0.0065 0.37% 0.85% 0.0020 0.0035

Put 1.5 months 0.05% 0.11% 0.0008 0.0034 0.10% 0.42% 0.0013 0.0060

6 months 0.30% 1.26% 0.0020 0.0045 0.36% 1.37% 0.0023 0.0064

Vt ∈ {0.57, 1.59}, r ∈ {0.008%, 0.03%}, and τ ∈ {1.5, 6} (months). We choose
rather long maturities as the exercise premium is increasing in maturity. Given
the initial stock price St = 100, we test strikes from the set K ∈ {85, 90,
105} for put options and K ∈ {95, 100, 115} for call options. We test a total
of 768 combinations of SV model and option parameters. For the SVJ model,
we test all combinations of the previous parameters, together with all combi-
nations of the jump parameters: λ ∈ {0.004, 0.008}, μs ∈ {−1.00%, −5.00%}, and
σs ∈ {2.00%, 8.00%}. All of the parameters are in daily units.19 We test a total
of 6,144 combinations of SVJ model and option parameters.

We determine accurate American prices using two-dimensional finite differ-
ence routines. These finite difference routines are much slower than the Fourier
inversion methods that we use for pricing European options. The computation
time required for American options makes calibration to a very large set of
options impractical.

Let εi denote the error (either absolute or relative) for the ith set of option
parameters. We summarize the errors by the RMS error measure and the worst
case, or maximum, absolute error. For low-priced options, absolute error is
the relevant error measure, while for higher-priced options, relative error is
more relevant. We choose a price of $0.50 as the separator between low-priced
and high-priced options, consistent with previous studies (e.g., Broadie and
Detemple (1996)).

Table AI provides summary results for the SV and SVJ models. The results
show that approximating European prices under the SV (or SVJ) model by us-
ing the market American prices and subtracting the BS early exercise premium
leads to very small approximation errors. RMS relative errors for high-priced
options are less than 0.4% while the maximum absolute relative error is 1.4%.

19 In terms of annual decimal parameters, the values are: κ ∈ {2, 8}, σv ∈ {0.1, 0.25}, ρ ∈
{−0.1, −0.7}, θ ∈ {(0.12)2, (0.2)2}, Vt ∈ {(0.12)2, (0.2)2}, r ∈ {0.02, 00.08}, λ = {1, 2}, and τ ∈ {30/252,

120/252}. The jump distribution parameters are unchanged.
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Table AII
Exercise Premium in the SVJ Model

We illustrate the magnitudes of the exercise premium and the approximation error on the exam-

ple of individual put options under the SVJ model. We evaluate the put option prices assuming

St = $100,Vt = 1.59, σ v = 0.25, ρ = −0.7, λ = 0.008, μs = −5.0%, σ s = 8.0%, and r = 3.0%.

Strike Maturity κv θv SVJA SVJE BSE Absolute ε

85 1.5 months 0.008 1.59 0.201 0.201 0.201 0.000

90 1.5 months 0.008 1.59 0.561 0.560 0.561 0.000

105 1.5 months 0.008 1.59 6.154 6.139 6.139 −0.001

85 6 months 0.008 1.59 1.583 1.574 1.576 0.003

90 6 months 0.008 1.59 2.658 2.638 2.643 0.005

105 6 months 0.008 1.59 8.994 8.884 8.904 0.020

85 1.5 months 0.032 0.57 0.161 0.161 0.161 0.000

90 1.5 months 0.032 .057 0.460 0.459 0.460 0.001

105 1.5 months 0.032 .057 5.909 5.894 5.894 0.000

85 6 months 0.032 .057 0.953 0.945 0.949 0.004

90 6 months 0.032 .057 1.804 1.787 1.795 0.008

105 6 months 0.032 .057 6.963 6.846 6.883 0.038

To put these numbers in perspective, a $10 option with the largest observed
relative error of 1.4% has an absolute price error of only $0.14. For low-priced
options RMS absolute errors are less than $0.003 while the maximum absolute
error is only $0.007. These errors are far smaller than typical bid–ask spreads.
Furthermore, the largest errors occur for extreme option parameters that do
not obtain in our data set. For example, the largest errors are for long matu-
rity in-the-money options with a large difference between initial and long-run
volatilities, while the most actively traded options in our data set are those with
short maturities and out-of-the-money strikes.

In order to better understand these summary statistics, results for individ-
ual put options in the SVJ model are given in Table AII. It is clear that this
procedure works well because the early exercise premia (i.e., American minus
European option values) are small to begin with, and approximating the SV or
SVJ early exercise premium by the corresponding early exercise premium in
the BS model reduces the error even further.

To recap, our calibration procedure begins by converting American market
prices to equivalent European market prices. This allows us to use computation-
ally efficient European pricing routines that render the large-scale calibration
procedure feasible. The results in this Appendix show that the approximation
error using this procedure is minimal.

Appendix B: Data Issues

We obtain daily time and sales files for the S&P 500 futures and futures
options from the Chicago Mercantile Exchange (CME). The files record trans-
actions and bid–ask quotes for both the futures and the options. We only use
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transaction prices. Beginning with 2,246,426 option transactions, we are able
to find a matching futures transaction within five minutes for 2,081,727 trans-
actions, which consists of 947,635 call and 1,134,092 put transactions. By matu-
rity, 1,090,462 transactions are under 30 days to maturity, 803,971 are between
30 and 89 days to maturity, and 187,294 are 90 days or more to maturity. By
strike, 412,327 have K/F < 0.95, 1,474,517 have 0.95 < K/F < 1.05, and 194,883
have K/F > 1.05.

S&P 500 futures options do not have the wild card feature that is present
in S&P 100 options. A wildcard feature arises because the trading day in op-
tions ends at 3:15 CST even though the stocks underlying the index cease trad-
ing at 3:00 CST. The S&P 100 options are American and holders of options
can exercise their options until 3:20. If exercised, the options are settled in
cash based on the index value at 3:00 CST. This generates an additional valu-
able option for option holders, which is commonly called the wildcard option
(see Fleming and Whaley (1994)). For S&P 500 futures options, there is not
a wildcard feature as exercised options receive a long or short position in the
futures marked at the bid or ask price at the time of exercise (see Chapter
351A, Section 02.B of the CME rulebook). Since the futures trade after hours,
the futures contract will take into account any news and there is no wildcard
effect.

We use two different data sets, namely, a time series of “representative”
option prices for the specification tests and the cross section of option prices
for each maturity on each date. For the representative option data set we use
the following four selection criteria. (1) Select all option-futures pairs that are
traded between 9:30 a.m. and 10:30 a.m., have a time difference of less than 1
minute, and for which |K/S| < 1.02. If three or more pairs match these condi-
tions, the pair that has the median volatility is selected. (2) If less than three
records are selected using criterion 1, then we add more records by allowing
pairs traded during any time of the day (ordered by closeness to a trade time of
10:00 a.m.). The time difference and strike conditions are still in effect. If three
or more pairs match both criteria 1 and 2, then the three records that best
satisfy the criteria are selected for median computation. (3) If less than three
records are selected in criteria 1 and 2, then we add more records by allowing
pairs with any moneyness (ordered by closeness to K/S = 1). The time differ-
ence condition is still in effect. If three or more pairs match criteria 1, 2, and 3,
then we select the three records that best satisfy the criteria for median com-
putation. (4) If less than three records are selected in criteria 1, 2, and 3, then
we add more records by allowing pairs with any time difference. In this case,
records are ordered so that time difference is the lowest (in 5 minute blocks,
so that a time difference of 4 minutes and 59 seconds is just as good as a time
difference of 1 minute and 1 second). Any ties in the ordering of the 5 minute
blocks is broken by choosing the pair closest to the money. If three or more pairs
match criteria 1, 2, 3, and 4, then we select the three records that best satisfy
the criteria for median computation. If there are less than three pairs, then we
select the “best” record.
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For risk premium estimation, we construct a data set for each trading day
using every option transaction that can be time-matched within 5 minutes to
a futures transaction. This typically produces hundreds of matched options-
futures transactions per day. We then use the following curve-fitting procedure
to combine all matched transactions into a representative curve for each option
maturity on each trading day. First, for each option price, we compute its Ameri-

can option-implied volatility under the Black–Scholes model, σ
i,j
t for each strike

Kj and time to maturity τ i. We compute σ
i,j
t using an iterative solver together

with a binomial or finite difference American option pricing routine. Then, for
each day and maturity, we fit a piecewise quadratic function to the implied
volatilities, that is,

y = 1[x≤x0]

[
a2(x − x0)2 + a1(x − x0) + a0

]
+ 1[x>x0]

[
b2(x − x0)2 + a1(x − x0) + a0

] + ε,

where y is the American Black–Scholes implied volatility, x is the moneyness
(K/S), x0 is the knot point of the piecewise quadratic, and the coefficients are
least-square estimates. The knot point is allowed to vary on the nearest matu-
rity, but for longer maturities it is fixed at 1. If the maturity has 10 or fewer
option transactions, then a linear function replaces the piecewise quadratic
function. Figure B1 shows a representative day, August 6, 1999, with four
fitted curves for each of the traded maturities. The maturities are 14 days,
42 days, 70 days, and 133 days and we have 302, 134, 17, and 24 put and call
transactions, respectively, for these maturities.

We experiment with a number of other specifications, including piecewise
cubic functions, fixed knot points for all maturities, linear and piecewise func-
tions, etc., and evaluate these alternative specifications by a cross-validation
procedure. For each maturity on each day, we divide the set of options in half.
For each half, we fit parametric curves and assess the fitting error using the
other half of the data. The overall fitting error is the average of the two out-
of-sample results. For maturities with a small number of data points, say m,
we use m − 1 points to fit the curve and assess the error in fitting the mth
point. The overall fitting error is the average of the m results, each time leav-
ing out one data point. The piecewise quadratic approach is the best when
there were more than 10 data points: Piecewise cubic functions overfit the data
(perform relatively poorly on the cross-validation test), while linear functions
tend to underfit the data. For 10 data points or fewer, we find the linear func-
tion approach is the best, as quadratic and piecewise quadratic functions tend
to overfit the data. We experiment with a number of other cases and spec-
ifications. For example, we allow x0 to vary within the range of x-values in
the data for each maturity, and we fix x0 at x0 = 1 for all maturities. These
generate only minor differences in the implied volatility fits. If the optimizer
does not converge to an x0 inside the range of x-values in the data then we
fix x0 at 1.
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Figure B1. Market observed implied volatilities and fitted implied volatility curves.
This figure displays observed call and put prices for various maturities and the resulting piecewise

quadratic fits.

Given the resulting smile curves, we calibrate option models by minimizing
squared differences between market and model Black–Scholes implied volatil-
ities using equation (8) and a discrete set of points from these curves. In effect,
we calibrate option models in a two-stage approach. The first stage fits implied
volatility curves to transactions data. The second stage finds model parameters
that best fit the implied volatility curves. This two-stage approach dramatically
reduces the computational requirements without sacrificing accuracy. Because
the objective function is not globally convex, each optimization problem is solved
from multiple diverse starting points to ensure convergence to the global opti-
mum.20 Other details of the optimization procedure are available on request.

20 Huang and Wu (2003) use a two-stage estimation procedure, alternating between optimizing

over parameters and daily volatilities. While significantly reducing the search dimension, we find

that this procedure can converge to local minima that given substantively different results. In our

procedure, we jointly optimize over (Vt , �Q) even though this procedure is more computationally

intensive.
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