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Abstract

The pricing of corporate debt is still a challenging and active research area in corporate
finance. Starting with Merton (1974), many authors proposed a structural approach in
which the value of the assets of the firm is modeled by a stochastic process, and all other
variables are derived from this basic process. These structural models have become more
complex over time in order to capture more realistic aspects of bankruptcy proceedings.
The literature in this area emphasizes closed-form solutions that are derived by either par-
tial differential equation methods or analytical pricing techniques. However, it is not al-
ways possible to build a comprehensive model with realistic model features and achieve a
closed-form solution at the same time. In this paper, we develop a binomial lattice method
that can be used to handle complex structural models such as ones that include Chapter 11
proceedings of the U.S. bankruptcy code. Although lattice methods have been widely used
in the option pricing literature, they are relatively new in corporate debt pricing. In partic-
ular, the limited liability requirement of the equity holders needs to be handled carefully in
this context. Our method can be used to solve the Leland (1994) model and its extension
to the finite maturity case, the more complex model of Broadie, Chernov, and Sundaresan
(2005), and others.

I. Introduction

A model for pricing risky corporate debt is important for both determining
optimal capital structure and explaining observed yield spreads. In this paper,
we are interested in the numerical evaluation of structural models of corporate
debt valuation. In a structural model, the value of the firm’s assets or the firm’s
earnings process is modeled as a primitive variable, and all other variables are
derived from this basic variable. There is some freedom as to which aspects of
the debt contracts to include in a model because these contracts are not uniform in
practice. Contractual agreements and bankruptcy laws may lead to different treat-
ments when the firm fails to make debt payments and declares bankruptcy. For
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example, bankruptcy may lead to liquidation under Chapter 7 of the bankruptcy
code, reorganization under Chapter 11, or the debt may be renegotiated privately
between debt holders and equity holders. The literature in this field is still growing
as researchers add more complexity to the models in order to make their models
more realistic. Our aim in this paper is to introduce a numerical method that
can be used to solve complex models when analytical pricing techniques are not
available.

Merton (1974) first used a structural model for the valuation of risky zero
coupon bonds and risky perpetual coupon bonds. Black and Cox (1976) extended
this work by considering the case when asset sales are not allowed and equity
dilution is necessary to make coupon payments. Leland (1994) gives closed-
form solutions for perpetual coupon bonds in a general setting that includes costly
bankruptcy, tax benefits to coupon payments, and cash payouts by the firm. All of
these models treat bankruptcy and liquidation as the same event: the firm is taken
over by debt holders and liquidated when debt payments are not made in full.

More recent research attempts to model Chapter 11 proceedings by treat-
ing bankruptcy and liquidation events separately. In François and Morellec (FM
hereafter) (2004), after the firm value hits an endogenous barrier the equity hold-
ers start servicing the debt strategically for the duration of a certain grace period.
The firm is liquidated only if it stays in bankruptcy more than the granted grace
period. The debt service while in bankruptcy is determined by a Nash bargaining
game. In other recent work, Broadie, Chernov, and Sundaresan (BCS hereafter)
(2005) consider a similar setting, but they assume that instead of strategic debt
service while in bankruptcy, the coupon payments are stopped and are recorded
in an arrears account. The earnings of the firm are collected in a separate account.
The collected earnings are then used to pay the arrears when the firm comes out
of bankruptcy. The firm is liquidated if it stays in bankruptcy for more than the
granted exclusivity period. Other models that treat bankruptcy and liquidation
as separate events include Galai, Raviv, and Wiener (2003), Moraux (2002), and
Paseka (2003).

Most of the existing models in the literature attempt to derive analytical val-
uation formulas for debt and equity values by using simplifications to avoid time
and path dependence. To work in a time-independent setting, these models usu-
ally price infinite maturity bonds although these bonds are almost never used in
practice. It is difficult to obtain analytical solutions in models of bankruptcy pro-
ceedings that include automatic stay provisions, arrears payments, and grace pe-
riods since these features introduce path dependency. Therefore, the events that
happen while the firm is in bankruptcy are simplified by introducing bargaining
games at the boundary or by complete debt forgiveness.

Recognizing that it is hard to build a model with realistic features and pre-
serve analytical solutions at the same time, this paper introduces a numerical
method that can help extend existing models or build more complex ones. We
use lattice methods that are already very common in the option pricing literature
but have rarely been used in corporate debt pricing. We model the evolution of the
firm’s assets on a discrete lattice and then use a backward solution procedure for
the valuation of all other securities. We show that the delicate issue of the limited
liability of equity holders can easily be handled using our method. Path depen-
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dencies are also incorporated into our numerical method by increasing the state
space to record the value of path-dependent quantities. Our numerical method can
be used to extend models such as Leland (1994) and FM (2004) to finite maturity
debt, discrete coupon payments, or to solve new models such as BCS (2005).

Some other authors use numerical techniques in the context of corporate
debt pricing. Brennan and Schwartz (1978) solve the partial differential equation
(PDE) for a firm that issues a bond paying discrete coupons. Their model is very
restrictive with an exogenous bankruptcy boundary, and their valuation method
does not give debt and equity values separately. Anderson and Sundaresan (1996)
use a binomial lattice method to price finite maturity bonds, but they do not allow
equity dilution. They work in a simplified framework in which equity holders
and debt holders interact in an extensive form game to determine debt service
when firm cash flows are not enough to make the coupon payment. Anderson,
Sundaresan, and Tychon (1996) show that it is possible to recast the Anderson-
Sundaresan model in continuous time using PDEs. Anderson and Tu (1998) show
how to solve the related PDEs using finite difference methods. Fan and Sundare-
san (2000) also use PDEs for valuation of finite maturity debt in a very similar
setting. However, all these models are models of renegotiation rather than reorga-
nization in the sense of Chapter 11. Galai, Raviv, and Wiener (2003) consider a
model in which the firm’s excursions in the bankruptcy region can be given differ-
ent weights based on severity and recentness. They assume there is an exogenous
bankruptcy boundary and use Monte Carlo simulation for the valuation of zero
coupon bonds. However, it is not straightforward to use simulation methods to
price coupon bonds when equity dilution is allowed. The value of equity needs to
be known in order to decide if it is possible to make the coupon payment, and this
is not available when working forward in time.

As in some of the above-mentioned papers, it may be possible to write the
PDEs for equity, debt, and firm values and to solve them using finite difference
methods. Although the resulting PDEs are usually simple and easy to solve nu-
merically for plain vanilla models, they become much harder to solve once path-
dependent variables such as grace period and arrears are introduced. It is not clear
how to treat these variables when discretizing the state space in a finite difference
method. Our lattice method is much more intuitive and easier to implement for
both simple and complex models. By attaching auxiliary variables to lattice nodes
below the bankruptcy boundary and by using interpolation techniques when nec-
essary, these complexities are easily handled.

The rest of the paper is organized as follows. In Section II, we introduce
the basic setup. In Sections III–V, we describe the implementation of our method
for models with increasing complexity. We give some computational analysis in
Section VI. Section VII concludes the paper.

II. Basic Setup

We denote the firm’s asset value as Vt and use it as the primitive variable, and
hence all other variables can be seen as derivatives with respect to the asset value.
We assume that the value of Vt is independent of the capital structure choices and
its evolution under the risk-neutral measure Q is given by
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dVt

Vt
= (r − q)dt + σdWt,(1)

where Wt is a standard Brownian motion under Q, q is the payout ratio (i.e., cash
flow) of the firm, and σ is the volatility of asset returns. We assume that the risk-
free rate is constant at r, and that investors may lend and borrow freely at that rate.
The process given above for the firm’s asset value uses the same representation
as in the Black-Scholes model for a stock price that pays dividends at a constant
rate q.

The instantaneous cash generated by the firm is denoted by δt and is given
by

δt = qVt.(2)

We assume that the firm issued a bond that promises to pay coupons at constant
total rate C, continuously in time, until a default event occurs. The coupon is paid
from the firm’s generated cash flow δt at time t and equity holders receive any
surplus δt − C in the form of dividends. There may be cases when C > δt, i.e.,
the cash flows produced by the firm are not enough to make the coupon payment.
For modeling purposes, we can treat (C − δt)+ as a negative cash flow for equity
holders when C > δt. We will demonstrate that this is equivalent to dilution of
equity by the firm.

A. Binomial Lattice Method

We take Vt as our primitive variable, and using the representation in (1), build
a lattice based on the binomial method of Cox, Ross, and Rubinstein (1979). It is
straightforward to adapt our method to other binomial, trinomial, and multinomial
lattices. We start with an initial asset value V . Suppose that time horizon is
divided into small increments of length Δt. In the next time increment, the value
of the assets can increase by a factor of u to become Vu = uV , or decrease by
a factor of d to become Vd = dV . The probability of an up move is p and the
probability of a down move is 1 − p. Choosing these parameters to match the
mean and variance of the continuous time process and imposing u = 1/d, we
obtain

u = eσΔt,(3)

d = e−σΔt,

p =
a − d
u − d

,

where

a = e(r−q)Δt.(4)

We want to compute the initial values of three quantities on the lattice. The
first of these is the claim of the equity holders after the debt is issued, which we
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FIGURE 1

Binomial Step
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denote by E. The second quantity is the claim of the debt holders, which we
denote by D. Finally, we want to compute the total firm value, which is denoted
by F. A generic binomial step is shown in Figure 1.

At the current node, the present value of the equity is given by

E = e−rΔt (pEu + (1 − p)Ed) .(5)

The values of D and F can be calculated in a similar way:

D = e−rΔt (pDu + (1 − p)Dd) ,(6)

F = e−rΔt (pFu + (1 − p)Fd) .(7)

In computing (5)–(7), we are ignoring any events occuring at the current node.
These values will be modified based on events such as coupon payments, liquida-
tion, and distress cost. These model-specific modifications are considered in the
sections that follow.

B. Equity Dilution and Limited Liability

In this section, we show how to incorporate the limited liability requirement
in our numerical method. Basically, the limited liability requirement says that
shareholders should never experience negative cash flows and the most that they
can lose is their initial investment.

Suppose at a certain node in the binomial lattice we know the equity values
in the next step, and these are given by Eu and Ed. Assume that at the current
node, the firm has to make a coupon payment of C, and the cash flow generated
by the firm is given by δ. We want to know the value of equity, E, at the current
node. The present value of equity ignoring the current coupon payment and the
current cash flow is given by

Ẽ = e−rΔt (pEu + (1 − p)Ed) .(8)

We denote the difference between the coupon payment and the current cash flow
by C̄, i.e., we have C̄ = C − δ. When the firm cash flow is less than the coupon
payment, C̄ is positive and it shows the amount that needs to be raised by equity
dilution. A negative value of C̄ should be interpreted as the excess firm cash flow



3/29/2007-624–JFQA #42:2 Broadie and Kaya Page 6

6 Journal of Financial and Quantitative Analysis

over the coupon payment that is to be received by equity holders. We show below
that the equity value at the current node can be written as

E =

{
0 if Ẽ ≤ C̄

Ẽ − C̄ if Ẽ > C̄.
(9)

This means that we do not need to go through tedious calculations of equity di-
lution at each step even if the firm’s cash flow is not enough to cover the coupon
payment. The equity value can be found by checking for the liquidation event
and treating the net coupon payment C̄ as a negative cash flow to equity holders
if the firm is not liquidated. The following proposition shows that this is indeed
equivalent to equity dilution.

Proposition 1. If the liquidation event is checked properly as in (9), treating net
coupon payments as negative cash flows to equity holders is equivalent to equity
dilution, and this does not violate the limited liability requirement.

Proof. If C̄ < 0, then the current firm cash flow is sufficient to cover the coupon
payment, and the excess cash will be received by equity holders. Thus, Ẽ > C̄ in
this case, and E = Ẽ − C̄ will hold.

If C̄ ≥ 0 and Ẽ ≤ C̄, then the equity holders have a liability that is larger
than their current value and, therefore, will choose to liquidate the firm. Thus,
E = 0 in this case.

On the other hand if C̄ ≥ 0, and Ẽ > C̄, then equity holders will still have
positive holdings after making the net coupon payment. Therefore, they will
choose to raise money by the dilution of equity and make the payment. With-
out loss of generality, we can assume that there is one share outstanding. Equity
holders will want to issue x more shares so that C̄ is raised from the sale of new
shares. After the equity dilution, there will be (1 + x) shares outstanding. The
number of new shares to be issued can be found by solving

x
1 + x

Ẽ = C̄.(10)

The left side of equation (10) is the claim of the new shareholders in total equity
value Ẽ after making the net coupon payment. Solving this equation gives the
value of x as

x =
C̄

Ẽ − C̄
.(11)

The claim of the original shareholders in the equity value is 1/(1 + x). We
can plug in the value of x from above to evaluate E:

E =
1

1 + x
Ẽ =

(
1

1 + (C̄/(Ẽ − C̄ ))

)
Ẽ =

(
Ẽ − C̄

Ẽ

)
Ẽ = Ẽ − C̄.(12)

This can be generalized to all steps and nodes on the lattice by using induction.

We illustrate this further by a numerical example in Section III.B.
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III. Bankruptcy with Immediate Liquidation

In this section, we consider the setting in which equity holders do not have
the option of going into default and postponing coupon payments. Either the
coupons are paid in full or the firm is liquidated in which case the debt holders re-
ceive the proceedings from the liquidation process. Naturally, equity holders will
choose to liquidate the firm when the value of equity reaches zero. The limited
liability requirement prohibits states of the world in which equity has negative
value. If the firm is liquidated, αVt is incurred as liquidation costs and debt hold-
ers receive (1 − α)Vt.

We use the Leland (1994) model to illustrate our numerical method in this
setting. In this model, there is a consol bond with an infinite maturity that pays
a constant coupon per unit time. An infinite maturity bond is convenient to work
with since this makes all the variables time independent. Leland writes the PDEs
satisfied by the equity and debt values and solves them to obtain closed-form
solutions. However, his solutions do not extend to the case with finite maturity
bonds because of time and path dependency. Using the binomial lattice method,
we can easily extend Leland’s model to price finite maturity bonds.

A. Finite Maturity Case

Pricing the firm, debt, and equity on a binomial lattice is straightforward
once the limited liability requirement is properly included. We assume that the
firm has just issued a bond with maturity T that pays a continuous coupon of C
per year, and has face value P. We assume that the effective tax rate is τ and all
interest payments are tax deductible. Because the tax benefits accrue at rate τC
per year, the coupon payments effectively become (1 − τ)C per year from the
firm’s perspective. We choose a time step Δt and construct the binomial lattice
for the unlevered asset value V as described in Section II.A. If the value of the
assets at time t is Vt, then the instantaneous cash flow produced by the firm at t is
given by δt = Vtq. On the binomial lattice, since we are using discrete time steps
the total firm cash flow generated at a certain node with asset value Vt is given by
(Vte qΔt−Vt). We will slightly abuse notation and use δt to denote this value, thus
we write

δt = Vte
qΔt − Vt.(13)

This representation accounts for the cash flows accumulated between time
steps. This also ensures that the binomial lattice matches the initial asset price V0

exactly.
At maturity, we know the exact cash flows and the value of the firm’s assets,

so the debt, equity, and firm values are known. For all nodes at time T, we set
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If VT + δT ≥ (1 − τ)CΔt + P : E = VT + δT − (1 − τ)CΔt − P,(14)

D = CΔt + P,

F = VT + δT + τCΔt.

If VT + δT < (1 − τ)CΔt + P : E = 0,

D = (1 − α)(VT + δT),
F = (1 − α)(VT + δT).

Now we work backward to compute the equity, debt, and firm values at prior
times t < T. Since liquidation is determined by the value of the equity, we need
to compute E first. We compute the present value of equity ignoring anything that
happens at the current node, which we denote by Ẽ,

Ẽ = e−rΔt (pEu + (1 − p)Ed) .(15)

If the sum of the firm cash flow, δt, and the present value of equity value, Ẽ,
is enough to make the current coupon payment, there is no liquidation. However,
if this sum is not enough to make the coupon payment, then liquidation occurs.
So, we set:

If Ẽ + δt ≥ (1 − τ)CΔt : E = Ẽ + δt − (1 − τ)CΔt,(16)

D = CΔt + e−rΔt (pDu + (1 − p)Dd) ,

F = δt + e−rΔt (pFu + (1 − p)Fd) + τCΔt.

If Ẽ + δt < (1 − τ)CΔt : E = 0,

D = (1 − α)(Vt + δt),
F = (1 − α)(Vt + δt).

Working backward until time zero, we can find the equity, debt, and firm
values throughout the lattice. We illustrate this case with an example.

Example 1. We consider a firm with initial asset value V0 = 100, volatility σ =
30%, and firm cash flow ratio of q = 4%. The risk-free rate is r = 6%. The firm
has just issued a bond with face value of P = 100, annual coupon payments of
C = 5, and with maturity T = 3 years. We assume that the liquidation cost and tax
rate are zero, i.e., α = 0%, τ = 0%.

We want to find the equity, debt, and firm values. We use a three-step bino-
mial lattice so that we have Δt = 1 year. We construct the binomial lattice for the
asset value process Vt as described in Section II.A. We also record the firm cash
flow δt as given in (13) and also the total payment due to debt holders at each step.
This lattice is shown in Figure 2.

We then use (14)–(16) and work backward to find the equity, debt, and firm
values at each step. Figure 3 shows these values. We find that E0 = 21.57, D0 =
78.43, and F0 = 100.00.

B. Equivalent Equity Dilution Treatment

We return to the limited liability issue mentioned in Section II.B. The equity
value E we found in Figure 3 can be decomposed into the cash flows on the paths
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FIGURE 2

Binomial Lattice for Example 1

The top number at each node denotes the asset value, the middle number is the firm cash flow, and the bottom number is
the payment due to debt holders. Up and down probabilities are pu =0.4587 and pd =0.5413, respectively. The discount
factor is e−rΔt = 0.9418. The lattice construction using (3) and writing the firm cash flow using (13) matches the initial
asset price exactly. For example, for the first time step we have: e−rΔt(pu(134.99+5.51)+pd(74.08+3.02))=100.00.
Similar results hold for all time steps and nodes.
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FIGURE 3

Equity, Debt, and Firm Value Computations for Example 1

The top number at each node denotes the equity value, the middle number is the debt value, and the bottom number is
the firm value.

151.00

105.00

85.76 256.00

103.89
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21.57 140.49 14.42 140.49
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42.32

42.32

Time:  0 1 2 3

of the binomial lattice. If we write explicitly the contribution of each path on the
lattice to the value of E, we obtain the values shown in Table 1. The probability
of following each path is also shown in the last column of the table. Multiplying
the discounted cash flows with the probabilities and summing up, we can obtain
the same equity value that we find from the lattice, which is E = 21.57. We see
from the table that the discounted cash flows on paths 4, 6, 7, and 8 are negative.
This seems counterintuitive and in violation of the limited liability requirement.
However, we show below that this is just a computational convenience and we
obtain the same result when we use explicit dilution of equity.

The path cash flows can be decomposed in a different way when we look
at the situation from the equity dilution point of view. We will need to calculate



3/29/2007-624–JFQA #42:2 Broadie and Kaya Page 10

10 Journal of Financial and Quantitative Analysis

TABLE 1

Equity Cash Flow Decomposition

The letter u denotes an up move in the lattice and d denotes a down move. Corresponding probabilities are pu = 0.4587
and pd = 0.5413. The discount factor is e−rΔt = 0.9418.

Cash Flows
Path Path Discounted Path
No. Direction 1 2 3 Payoff Prob.

1 u–u–u 0.51 2.44 151.00 128.76 0.0965
2 u–u–d 0.51 2.44 35.49 32.29 0.1139
3 u–d–u 0.51 −0.92 35.49 29.31 0.1139
4 u–d–d 0.51 −0.92 0.00 −0.34 0.1344
5 d–u–u −1.98 −0.92 35.49 26.97 0.1139
6 d–u–d −1.98 −0.92 0.00 −2.68 0.1344
7 d–d–u −1.98 0.00 0.00 −1.86 0.1344
8 d–d–d −1.98 0.00 0.00 −1.86 0.1586

the dilution proportion (1 + x) where x is as given in (11) for each node, and use
this to calculate the total number of shares outstanding. Once we do this, we can
assume that the equity holders are exposed only to positive cash flows since the
negative cash flows are handled by equity dilution. Therefore, we compute the
cash flows (δt − C)+ for the intermediate nodes and (V + δt − C − P)+ for the
terminal nodes. The lattice in Figure 4 shows these calculations. The top number
is the net cash flow to be shared by total equity holders, and the bottom number
is the equity dilution proportion. The dilution proportion at a node is set to zero
if the firm has been liquidated.

FIGURE 4

Equity Dilution Calculations for Example 1

The top number at each node shows positive cash flows to equity holders, and the bottom number shows the equity
dilution ratios.

151.00

1.00

2.44

1.00
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1.00 1.00

0.00 0.00
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0.00 0.00
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0.00

0.00

0.00

0.00

Time:  0 1 2 3

We again write each path separately and look at the contribution of each path.
The shares are diluted along the way to make the coupon payments. Therefore,
if there are N shares outstanding at a particular node, the original shareholders
will have a claim of 1/N in the cash flow occurring at that node. N is found
by multiplying the dilution proportions of the nodes along each path. Table 2
shows these values explicitly. We obtain the net discounted contribution from
each path by discounting all the cash flows back to time zero and adding them up.
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Multiplying the contribution of each path with path probability and summing up,
we find the equity value as E = 21.57.

TABLE 2

Equity Dilution Path Decomposition

The numbers below cash flows show the total number of outstanding shares. If this number is zero, it means the firm has
been liquidated.

Cash Flows
Path Path Discounted Path
No. Direction 1 2 3 Payoff Prob.

1 u–u–u 0.51 2.44 151.00 128.76 0.0965
(1.00) (1.00) (1.00)

2 u–u–d 0.51 2.44 35.49 32.29 0.1139
(1.00) (1.00) (1.00)

3 u–d–u 0.51 0.00 35.49 28.35 0.1139
(1.00) (1.06) (1.06)

4 u–d–d 0.51 0.00 0.00 0.48 0.1344
(1.00) (1.06) (0.00)

5 d–u–u 0.00 0.00 35.49 19.02 0.1139
(1.46) (1.56) (1.56)

6 d–u–d 0.00 0.00 0.00 0.00 0.1344
(1.46) (1.56) (0.00)

7 d–d–u 0.00 0.00 0.00 0.00 0.1344
(1.46) (0.00) (0.00)

8 d–d–d 0.00 0.00 0.00 0.00 0.1586
(1.46) (0.00) (0.00)

The equity dilution approach demonstrated in Table 2 and the cash flow ap-
proach demonstrated in Table 1 give exactly the same results. This is a numerical
illustration of Proposition 1. This result is very useful because the cash flow ap-
proach is computationally much easier to apply on a binomial lattice.

C. Infinite Maturity Case

The procedure described above can also be used to price a consol bond with
infinite maturity. We need to use a very long time horizon, such as T = 200 years,
and change the terminal condition in (14). The terminal condition is not very
important since the time horizon is very long and the effect of the terminal nodes
on initial prices is very small. If the bond were riskless, its price would be C/r.
So, we treat the bond as if it has face value C/r and maturity T. At the final nodes,
we set:

If VT >
C
r

: E = VT − C
r

,(17)

D =
C
r

,

F = VT .

If VT <
C
r

: E = 0,

D = (1 − α)VT ,

F = (1 − α)VT .
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We then work backward and use (16) to update the values at the nodes other than
the terminal node.

Leland (1994) solves for the liquidation boundary, that is, the value of V
that gives zero equity value using PDE methods and invoking the smooth pasting
condition. The above procedure achieves this boundary endogenously. In the
consol bond setting, the liquidation boundary is constant and time independent.
As we work backward in the lattice, we observe zero equity value below a certain
level of nodes. The recursive procedure given in (16) computes the equity value
by comparing continuation and stopping values as seen from the perspective of
equity holders. Thus, the usual smooth pasting condition will be obtained in
the limit as Δt goes to zero. See Dixit and Pindick ((1994), pp. 130–132) for a
discussion of the optimal stopping problem and the smooth pasting condition.

D. Convergence of the Method

Leland (1994) gives closed-form solutions for the infinite maturity bond in
the setting described in the previous sections. We include these formulas in the
Appendix for reference. In this section, we analyze the convergence rate and
behavior of our numerical method by comparing our numerical results with ana-
lytical results.

The pricing of equity is similar to the pricing of a call option. Because of the
limited liability principle, when equity holders’ net worth is less than the coupon
payment due, they will default on the debt obligation, and hand the firm over to the
debt holders. Thus, there will be an implicit default boundary on the lattice below
which the equity has value zero. The pricing of debt is similar to the pricing of
a barrier option. When equity holders default on their debt, the firm is liquidated
and debt holders receive what is left of the firm. So the default boundary acts as a
knockout barrier on which debt value achieves its liquidation value.

Figure 5 shows the convergence of debt and equity pricing errors as the num-
ber of time steps is increased. Here the pricing error is defined as the difference
between the formula value and the value from the lattice. As the number of time
steps is increased, the spacing of the nodes on the lattice becomes finer. We use
T =200 as the maturity of the bond on the lattice to approximate an infinite matu-
rity bond. We find that increasing this maturity further does not have a significant
effect on the prices produced by the lattice. Figure 6 shows a magnified version
of the same convergence graph.

We see that the convergence of the equity error is smooth while debt error
convergence exhibits an oscillation similar to the ones observed in the pricing of
a barrier option (see, for example, Boyle and Lau (1994)). There are two sources
of error on the lattice. One is the discretization error caused by approximating the
continuous processes by their discretized versions on the lattice. The other is the
barrier error caused by approximating the values of the quantities on the default
boundary. The value of equity is already close to zero near the default boundary,
therefore, its value is not affected significantly by the barrier error. However, debt
is sensitive to both the value and the location of the boundary since its value is
affected by the liquidation event. The barrier error can further be decomposed into
two components. One source of error comes from the uncertainty of the exact
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FIGURE 5

Convergence of Debt and Equity Errors for the Leland (1994) Model

Model parameters are V0 = 100, σ = 20%, C = 3.0, r = 5%, q = 4%, α = 50%, and τ = 0%. The true value of debt is
49.8527, and the true value of equity is 46.0567.
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FIGURE 6

A Magnified View of the Convergence Graph in Figure 5

Figure 6 shows the oscillating pattern in the convergence of the debt value.
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default boundary. The default boundary is also approximated on the lattice by
looking at the first point on which equity fails to make the coupon payment. This
may differ slightly from the true bankruptcy point because of the discretization
error. The second component of barrier error comes from the relative positioning
of the barrier between the nodes. On a lattice, even if the barrier is between
the lattice nodes, it will effectively be moved to coincide with a level of nodes
since the calculations are done on the nodes of the lattice only. These two effects
contribute to the debt error and cause the oscillatory behavior of the debt values.

We can estimate the convergence rate of the debt and equity errors by posit-
ing a functional form in which |error| ≈ Mβ , i.e., absolute value of the error is
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proportional to M, the number of time steps on the lattice. We can estimate β by
using the error values from the convergence graph in Figure 6. For equity error,
we obtain a β value of −1.00, which indicates that the equity error converges lin-
early as the number of time steps is increased. For debt error, we use the values
on the tips of the zigzag patterns for estimation and obtain a β value of −0.58.
Gobet (1999) shows that the convergence rate for a barrier option is o(M− 1

2 ). Ac-
cording to our numerical results, the convergence rate of debt error is indeed close
to square root convergence similar to a barrier option.

Interpolation methods such as the one given in Derman, Kani, Ergener, and
Bardhan (1995) may help in reducing the size of the oscillations in the debt value.
Even without any numerical improvements, the highest debt error when using
around 5,000 time steps is less than 0.5% of the debt value. This level of accu-
racy is sufficient for corporate debt pricing where one is interested in qualitative
comparisons with different parameter values.

Table 3 shows further convergence results for various parameter combina-
tions. The linear convergence of the equity error is easily recognized from the
values in the table for all cases. The debt error convergence is not as smooth
because of the oscillations mentioned above. The highest relative debt error is
0.79% when 2,000 steps are used in the lattice, and 0.20% when 20,000 steps are
used. When convergence is smooth, as is the case for equity error, Richardson ex-
trapolation can be used to improve the convergence rate. For a general reference
on extrapolation methods, see, e.g., Brezinski and Zaglia (1991). See Broadie and
Detemple (1996) for an application of Richardson extrapolation to option pricing
in lattice methods.

TABLE 3

Convergence of Binomial Lattice Method for Leland’s (1994) Model Using Various
Parameter Combinations

Fixed parameters are V0 = 100, σ = 20%, r = 5%, q = 3%, and α = 30%. The error columns report the formula value
minus the lattice estimate.

C τ Steps Equity Estimate Equity Error Debt Estimate Debt Error

2.0 15% 200 67.9332 −0.8308 36.9565 0.9161
2,000 67.1860 −0.0836 37.7997 0.0728

20,000 67.1106 −0.0082 37.8436 0.0290

4.0 15% 200 40.2075 −1.6106 64.1990 3.0701
2,000 38.7672 −0.1703 67.1840 0.0851

20,000 38.6138 −0.0169 67.3027 −0.0336

2.0 35% 200 75.1869 −0.6353 37.3689 1.0512
2,000 74.6158 −0.0642 38.3156 0.1045

20,000 74.5580 −0.0064 38.4156 0.0045

4.0 35% 200 52.5637 −1.2629 69.1531 1.3927
2,000 51.4299 −0.1291 70.2787 0.2671

20,000 51.3136 −0.0128 70.4801 0.0658

IV. Bankruptcy with Grace Period and Bargaining

In the previous section, we assumed that bankruptcy and liquidation are
equivalent events. Coupon payments are always needed to be made in full by
the firm. If the sum of equity value and firm cash flow is not enough to make a
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coupon payment, then the firm is liquidated and the debt holders acquire what is
left of the firm’s assets after the liquidation costs are deducted. In reality, how-
ever, the equity holders can either liquidate the firm under Chapter 7 of the U.S.
Bankruptcy Code or renegotiate debt payments under Chapter 11. When a firm
declares bankruptcy under Chapter 11, the bankruptcy court grants the firm a cer-
tain observation period during which the company is allowed to restructure its
debt. Chapter 11 also implies the automatic stay of assets while in bankruptcy,
which prevents the debt holders from liquidating the firm’s assets. Therefore, a
firm in financial distress may declare bankruptcy under Chapter 11, spend some
time as a bankrupt firm without making the full coupon payments, and then re-
cover to continue as a healthy firm. On the other hand, if the firm spends too much
time in bankruptcy and exceeds the grace period granted by the court, it will be
liquidated and debt holders will acquire the firm’s assets less liquidation costs.

There are different ways of modeling how the debt is serviced once the firm
is in bankruptcy. In this section, we consider the approach of FM (2004). We
assume that, at a certain level of the firm asset value VB, equity holders decide
to declare bankruptcy. A grace period of G is granted by the bankruptcy court.
If the firm does not come out of bankruptcy at the end of this period, the firm is
liquidated. There is a distress cost ω that reduces the net firm cash flow when
the firm is in bankruptcy, i.e., the firm cash flow rate is reduced from q to q − ω.
While the firm asset value is under the default boundary VB, the debt is serviced
strategically. The exact amount of the debt service is the result of a bargaining
game between debt holders and equity holders at the time bankruptcy is declared.
We follow Fan and Sundaresan (2000) to determine the debt service using a Nash
bargaining game. We assume that the bargaining power of the equity holders is η
and the bargaining power of the debt holders is 1− η. As in the previous section,
α denotes the proportional liquidation cost.

The bargaining process between equity holders and debt holders works as
follows. If the firm is liquidated at the bankruptcy point, then debt holders receive
(1 − α)VB and equity holders receive nothing. However, if the firm is not liqui-
dated, its value will be FB and this amount will be shared between equity holders
and debt holders. If we denote the sharing rule at the bankruptcy point as θ, then
the incremental value gained by equity holders is θFB and the incremental value
gained by debt holders is (1 − θ)FB − (1 − α)VB. Therefore, the optimal sharing
rule satisfies

θ∗ = argmax
{
[θFB]η[(1 − θ)FB − (1 − α)VB]1−η

}
,(18)

and its solution is

θ∗ = η

(
1 − (1 − α)VB

FB

)
.(19)

As a result, at the bankruptcy point, the value of the claim of the equity holders is

θ∗FB = η (FB − (1 − α)VB) ,(20)

and the value of the claim of the debt holders is

(1 − θ∗)FB = (1 − η) (FB − (1 − α)VB) + (1 − α)VB.(21)
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The bargaining game conveniently determines the value of equity and debt at
the bankruptcy point through equations (20) and (21). Thus, we do not need to
know explicitly how the debt payments are made once the firm is in bankruptcy—
knowing the total firm value, FB, is enough.

A. Binomial Lattice Computations

We first set up the binomial lattice as described in Section II.A. We assume
that the bankruptcy boundary VB is known for each time step in the lattice. If the
bond that we are pricing is a consol bond with infinite maturity, this boundary
will be constant and time independent. However, if the bond has finite maturity,
the bankruptcy boundary will typically be time dependent; for example, it may be
given exogenously as a function of the present value of the face value of the bond.
We start with infinite maturity debt since it is easier to illustrate the numerical
method, and consider finite maturity debt in Section IV.D.

We assume that the default boundary VB coincides with a level of nodes on
the lattice. If this is not the case, we can approximate VB with the first node level
that is higher than VB. In order to do the calculations, we need to distinguish
among three types of nodes as follows:

• Nodes with V > VB. The firm is in a healthy state in these nodes, the coupons
are paid using the firm cash flow and from equity dilution if necessary. Equity,
debt, and firm values are updated in the following way:

If Ẽ + δt ≥ (1 − τ)CΔt : E = Ẽ + δt − (1 − τ)CΔt,(22)

D = CΔt + e−rΔt (pDu + (1 − p)Dd) ,

F = δt + e−rΔt (pFu + (1 − p)Fd) + τCΔt.

If Ẽ + δt < (1 − τ)CΔt : E = 0,

D = (1 − α)(Vt + δt),
F = (1 − α)(Vt + δt),

where Ẽ is as given in (15) and δt is as given in (13).

• Nodes with V < VB. The firm is in bankruptcy. The debt is served strategi-
cally based on the outcome of the bargaining game. We do not know explicitly
how the firm cash flow is shared between debt holders and equity holders. How-
ever, since equations (20) and (21) determine the value of debt and equity at the
bankruptcy point, we only need to keep track of the firm value F when the firm
is in bankruptcy. There are no tax benefits for payments to debt holders while
the firm is in bankruptcy. Since the payments to debt holders are not in the form
of pre-determined coupon payments anymore, there are no tax benefits for those
payments.

The total time spent in bankruptcy needs to be recorded so that it can be
checked against the allowed grace period G. Let g record the length of time the
firm spends in bankruptcy. Since we are working with discrete time steps on the
binomial lattice, g can only take discrete values. Therefore, we will represent g
in terms of the number of time steps rather than absolute terms. Let ḡ denote
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the maximum number of time steps that the firm can spend in bankruptcy. We
have ḡ = G/Δt, where G is the grace period and Δt is the time step. Assume for
simplicity that ḡ is an integer. Then, g will take values in [0, 1, . . . , ḡ−1, ḡ]. For a
given node and a given g, there are three possibilities in the next time step. First,
the firm can come out of bankruptcy, i.e., the asset value may move to the state
where V = VB. Second, if g = ḡ − 1 in the current node, and V < VB in the next
node, then the grace period will expire and the firm will be liquidated. Finally, the
firm can still be in bankruptcy without an expired grace period, in which case the
current node will connect to a state that has value of g one higher than the current
one in the next node. For each node, we need to keep track of the firm value in
every possible state of g. Thus, F[i] will denote the firm value at the current node
when g = i. We can update the firm value in the following way:

F[i] =
{

δ̄t + e−rΔt (pFu[i + 1] + (1 − p)Fd[i + 1]) for i = 1, . . . , ḡ − 1

(1 − α)(V + δ̄t) for i = ḡ
,(23)

where

δ̄t = Vte
(q−ω)Δt − Vt.(24)

Here, δ̄t represents the distress cost adjusted (i.e., net) cash flow of the firm.

• Nodes with V = VB. This is the last healthy state before the firm goes into
bankruptcy or the first healthy state after the firm comes out of bankruptcy. The
equity and debt values at this level are found through equations (20) and (21) after
the firm value is computed. We update firm, equity, and debt values as follows:

F[0] = δt + e−rΔt (pFu + (1 − p)Fd[1]) ,(25)

F[i] = δ̄t + e−rΔt (pFu + (1 − p)Fd[1]) for i = 1, . . . , ḡ,

E = η (F[0] − (1 − α)VB) ,

D = (1 − η) (F[0]− (1 − α)VB) + (1 − α)VB.

Here, F[0] represents the value of the firm at the bankruptcy boundary VB without
the firm having been in bankruptcy, and this value will be used as input for the
nodes reaching VB from above. The F[i] values represent the values of the firm
just coming out of bankruptcy, and these will be used as inputs for the nodes
reaching VB from below. Therefore, the calculation of F[i] takes into account the
distress cost, while the calculation of F[0] does not.

Note that in the above calculations, for nodes with V > VB, we do not have
to keep track of the grace period and, therefore, we write them using the format F
rather than F[.]. Finally, at contract termination, bankruptcy will occur if the full
debt payment is not made, so this case can be handled using the equations given
in (14).

B. Optimal Bankruptcy Boundary

The above procedure gives us the debt, equity, and firm values for a chosen
level of the bankruptcy boundary. Often we want to be able to choose this bound-
ary endogenously. Since default is usually the equity holders’ decision, the default
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boundary will be chosen to maximize the equity value. In the case of infinite ma-
turity debt, we can do a numerical optimization to find the default boundary that
maximizes the equity value as well as the debt, equity, and firm values on that
boundary.

We first choose an arbitrary bankruptcy boundary that is likely to be lower
than the optimal boundary. One natural choice is the Leland (1994) liquidation
boundary given in equation (40) on which equity has value zero. Any boundary
lower than that will not be effective and will degenerate to the liquidation bound-
ary. We then start increasing the bankruptcy boundary on the lattice and reprice.
The equity value first increases and then starts to decrease after it achieves its
maximum value as we move the bankruptcy boundary up on the lattice. There-
fore, we stop moving the boundary when the equity value starts to decrease. Thus,
we obtain equity value as a function of the bankruptcy boundary at discrete ob-
servation points. We can fit a cubic spline to approximate the exact functional
form and use this spline to find the maximum value of equity and the maximiz-
ing boundary. After that, we can fit cubic splines to the debt and firm values and
obtain the values that correspond to the equity maximizing boundary. Figure 7
illustrates the cubic spline interpolation to find the equity maximizing boundary
for the FM (2004) model. We use the cubic spline routines given in Section 3.3 of
Press, Teukolsky, Vetterling, and Flannery ((1992), pp. 113–116) in our numerical
experiments. Using the procedure described above, we are effectively solving the
first-order condition dE/dVB = 0 numerically. The second-order condition, i.e.,
concavity, is also verified numerically as shown in Figure 7.

FIGURE 7

Illustration of Cubic Spline Interpolation for Equity

The four circles mark the four data points used in the interpolation. These points plot the equity value as the bankruptcy
boundary is moved up on the nodes of the lattice. The model parameters are the same as in Figure 8, and 3,000 time
steps are used in the lattice. The maximum equity value and the corresponding bankruptcy boundary are E∗ = 47.0883
and V∗

B = 38.3460.
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C. Convergence of the Method

FM (2004) give analytical formulas for debt and equity values for an infinite
maturity bond in the setting described above. We include these formulas in the
Appendix for reference. We analyze the convergence of our numerical method
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by comparing the results from the binomial lattice method with their closed-form
formulas.

Figure 8 shows the convergence of debt and equity errors as the number of
time steps is increased. In a bankruptcy model with a grace period, both equity
and debt values on the bankruptcy boundary are significant. Since we do an in-
terpolation on the bankruptcy boundary, both of these values are affected by the
relative positioning of the nodes and the boundary. This change in the positioning
of the nodes as the number of steps increases causes the oscillating behavior of
the errors. The size of the oscillations is relatively small. Even the largest error
value is less than 0.2% of the true value when we use around 5,000 time steps.

FIGURE 8

Convergence of Debt and Equity Errors for the FM (2004) Model

Model parameters are V0 = 100, σ = 20%, C = 3.0, r = 5%, q = 4%, α = 50%, τ = 0%, ω = 2%, η = 50%, and grace
period G = 1 year. The true value of debt is 49.8761, and the true value of equity is 46.9983.
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Figure 9 shows a similar convergence graph in log scale as the number of
time steps is increased. Although not very smooth because of the oscillations,
the slopes of the lines are very close to −1. Thus, the errors seem to converge
linearly. This shows that the interpolation method helps recover the usual linear
convergence similar to pricing a plain vanilla option on a binomial lattice instead
of the slower barrier option convergence.

D. Pricing Finite Maturity Debt

We can use the procedure described in Section IV.A for pricing a finite ma-
turity bond with coupon C, face value P, and maturity T. We need to specify the
values at the terminal nodes to reflect the payment of the face value. At maturity,
the full face value of the bond plus any accumulated coupons have to be paid,
otherwise the firm will be liquidated. Also, if the firm value is still under the
bankruptcy boundary VB when the bond matures, the firm will be liquidated. So,
the terminal values will be calculated in the following way:
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FIGURE 9

Convergence of Debt and Equity Errors for the FM (2004) Model in Log Scale

Model parameters are the same as in Figure 8.
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• Nodes with V > VB:

If VT + δT ≥ (1 − τ)CΔt + P : E = VT + δT − (1 − τ)CΔt − P,(26)

D = CΔt + P,

F = VT + δT + τCΔt.

If VT + δT < (1 − τ)CΔt + P : E = 0,

D = (1 − α)(VT + δT),
F = (1 − α)(VT + δT),

where δT is as given in (13).

• Nodes with V < VB:

F[i] = (1 − α)(VT + δ̄T) for i = 1, . . . , ḡ,(27)

where δ̄T is as given in (24).

• Nodes with V = VB:

If VT + δT ≥ (1 − τ)CΔt + P : E = VT + δT − (1 − τ)CΔt − P,(28)

D = CΔt + P,

F[0] = VT + δT + τCΔt,

F[i] = VT + δ̄T + τCΔt for i = 1, . . . , ḡ.

If VT + δT < (1 − τ)CΔt + P : E = 0,

D = (1 − α)(VT + δT),
F[0] = (1 − α)(VT + δT),
F[i] = (1 − α)(VT + δ̄T) for i = 1, . . . , ḡ.
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The valuation for the other nodes in the lattice will be done as in Section
IV.A. It is thus straightforward to compute the bond price for a given VB. Here
we assume that VB is a vector that contains the bankruptcy boundary for each
time step on the lattice. If the bankruptcy boundary is given exogenously by a
covenant, for example, then we can use the above procedure by using the appro-
priate value of VB for each time step.

In Section IV.B, we show how to determine the VB that maximizes the equity
value for an infinite maturity bond. In general, the optimal VB in the finite maturity
setting will not be constant, but rather will be time dependent since the remaining
value of the bond is changing over time. Determining a VB that will maximize the
equity value is significantly harder in this case, even using a numerical method.
However, we may assume a functional form for the bankruptcy boundary and let
the equity holders choose a parameter of that function to maximize the equity
value. One alternative in this case is taking the bankruptcy boundary as a linear
function of the riskless bond price. So, we may have

Vt
B = βPt,(29)

where Vt
B is the bankruptcy boundary at an intermediate time t, Pt is the risk-

less bond price at time t, and β is a positive number that is time independent.
This construction makes intuitive sense since equity holders will want to declare
bankruptcy at a lower level for a cheaper bond, and at a higher level for a more
expensive bond. Given this form of the bankruptcy boundary, equity holders will
choose β to maximize the equity value. Since an infinite maturity bond has the
same riskless price for all t, this construction would imply a constant VB for each
time step, and thus is consistent with what we do in Section IV.B for an infinite
maturity bond. The optimization can be done as explained in Section IV.B, but β
will be the variable parameter to change in the search algorithm.

In Table 4, we give some numerical examples for the pricing of finite matu-
rity bonds using the method described. Note that for a discount bond, the default
boundary will be an increasing function of time t; for a par bond, it will be con-
stant; and for a premium bond, it will be a decreasing function of t.

TABLE 4

Numerical Examples for the FM (2004) Model Using Finite Maturity Bonds

Fixed parameters are V0 = 100, σ = 20%, r = 5%, q = 3%, G = 1 year, ω = 1%, η = 0.5, τ = 25%, and α = 50%. The
face value of the bond is P = 60. The bond maturity T is given in years, and the time increment used in the lattice is Δt
= 0.005.
T C Riskless Price Equity Estimate Debt Estimate Firm Estimate Yield Spread (bps)

10 2.0 52.13 54.13 46.79 100.92 130
2.5 56.07 51.37 50.33 101.70 134
3.0 60.00 48.68 53.77 102.45 141
3.5 63.93 46.04 57.08 103.11 150
4.0 67.87 43.46 60.29 103.75 160

15 2.0 49.45 58.56 43.92 102.49 105
2.5 54.72 54.89 48.60 103.49 110
3.0 60.00 51.31 53.10 104.41 118
3.5 65.28 47.84 57.43 105.26 127
4.0 70.55 44.48 61.45 105.93 142
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V. Bankruptcy with Grace Period, Automatic Stay, and
Arrears Account

We mentioned in the previous section that even in the existence of Chapter
11 bankruptcy there can be different ways of modeling the events that happen
once the firm declares bankruptcy. In this section, we consider the approach of
BCS (2005) and show how to solve this model using our binomial lattice method.

Different from the models considered in the previous sections, this model
uses as its primitive variable the earnings before interest and taxes (EBIT). The
treatment of taxes is slightly different in this case, but the basics are the same. The
earning process corresponds to a firm asset value process as given in equation (1).
Therefore, we can still build our binomial lattice using the firm’s asset value as
the primitive variable. Equity value needs to be multiplied by (1 − τ) after the
computations are done to account for the tax payments. Also, the firm value at
time zero is found using the sum of debt and tax deducted equity values, i.e.,
F0 = (1 − τ)E0 + D0.

The bankruptcy event is triggered when the firm’s asset value reaches a cer-
tain value VB. We consider a consol bond with infinite maturity, and thus this
bankruptcy level is time independent. When the firm asset value satisfies V > VB,
the firm is in a healthy state and, as in the previous models considered, coupon
payments are made from the firm cash flow and by dilution of equity if necessary.
When the firm asset value reaches VB, equity holders declare bankruptcy under
Chapter 11. The bankruptcy court grants a grace period of length G, and the
firm is liquidated if it does not recover to a healthy state before that grace period
expires. While the firm is in bankruptcy, all the coupon payments are stopped,
and unpaid coupons are recorded in an arrears account At. If the firm returns
to a healthy state at some future point T, the firm will pay θAT to debt holders,
0 ≤ θ ≤ 1. The parameter θ controls the debt forgiveness when the firm is in
bankruptcy.

When the firm is in default, the entire firm cash flow or EBIT is accumulated
in a separate account, St. If the firm reaches a healthy state at a future time T,
the amount ST is used to pay the arrears θAT . If there is any leftover, this is
distributed to shareholders. If ST is not enough to cover θAT , the rest of arrears
is paid by equity dilution. If the firm spends too much time in default or if the
equity value reaches zero, the firm is liquidated with a proportional liquidation
cost of α. In the event of liquidation, the value of ST is added to the value of the
firm’s asset. Finally, when in bankruptcy, the firm is exposed to a continuously
accruing proportional distress cost ω. This distress cost is reflected as a direct cost
to equity holders.

A. Binomial Lattice Computations

In this case, we will first set up our binomial lattice and do the computa-
tions for a given default boundary. We can then do a numerical optimization to
maximize equity value by changing the default boundary, and observe how eq-
uity, debt, and firm values change with the changing default boundary. Here, we
assume that we are pricing an infinite maturity bond. However, the method de-
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scribed below can be used for pricing finite maturity bonds after making slight
modifications as explained in Section IV.D for the FM model.

We first set up the binomial lattice as described in Section II.A. We assume
that the default boundary VB coincides with a level of nodes on the lattice. If this
is not the case, we can approximate VB with the first node level that is higher than
VB. In order to do the calculations, we need to distinguish among three types of
nodes:

• Nodes with V > VB. The firm is in the healthy state in these nodes, and the
coupons are paid using the firm cash flow and from equity dilution if necessary.

• Nodes with V < VB. The firm is in bankruptcy. The coupons are recorded in an
arrears account to be paid when the firm goes out of bankruptcy, and the firm cash
flows are accumulated in a separate account. The total time spent in bankruptcy
needs to be recorded to be checked against the allowed grace period.

• Nodes with V = VB. This is the first healthy state after the firm goes through
bankruptcy. All arrears have to be cleared and the firm’s automatic stay payoffs
have to be distributed accordingly when the firm comes out of bankruptcy.

We next explain how to update the variable values for the three different types of
nodes in the lattice.

1. Nodes with Vt > VB

This is similar to the Leland (1994) case in Section III. Note that even though
we say the firm is in a healthy state, there may still be cases when the firm’s cash
flow is less than the coupon payment, and we may need equity dilution to make
the coupon payment. This in turn may result in the liquidation of the firm if the
equity value reaches zero. The notion of healthiness here means that the firm did
not declare bankruptcy and all coupon payments have to be made in full.

For these nodes, we update the equity and debt values in the following way:

If Ẽ + δt ≥ CΔt : E = Ẽ + δt − CΔt,(30)

D = CΔt + e−rΔt (pDu + (1 − p)Dd) .

If Ẽ + δt < CΔt : E = 0,

D = (1 − α)(Vt + δt),

where Ẽ is as given in (15) and δt is as given in (13). Note that we do not reduce
the coupon payments for equity by multiplying with (1− τ) because of the EBIT
modeling of the cash flows. The cash flows of the firm represent the EBIT, which
implies that there is no tax deduction for interest payments.

2. Nodes with Vt < VB

In this region, the firm is in bankruptcy. The coupon payments are accu-
mulated in an arrears account A and the firm cash flows are accumulated in an
automatic stay payoff account S. Also, there is a grace period G, which is the
maximum amount of time that the firm can spend in bankruptcy. If the firm is
not out of bankruptcy after G years, it is liquidated. Therefore, there are three
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variables to keep track of once the firm’s asset value falls below the bankruptcy
boundary: accumulated coupons A, accumulated payoffs S, and the time spent
in bankruptcy g. However, since the coupons are constant, keeping track of g is
enough, and accumulated coupons can be deduced from the value of g. We will
add two state variables to each node to represent the values of g and S for each
node.

We have explained how to keep track of g on the lattice in Section IV.A. To
keep track of the automatic stay payoffs S, we will use a discretized grid for its
values and then use linear interpolation. An upper bound on the value of S is given
by S̄ = VB(eqΔt − 1)G. Assume we want to use M values in the discretized grid.
Then S is represented by the values on the grid Sj = jS̄/M, where j takes values
in the set [0, 1, . . . , M − 1, M]. We use M = 20 points for the numerical results
reported in this paper. Our numerical experiments show that the results are not
very sensitive to the choice of M, and using a higher value does not change the
results significantly.

For a given node, the variables equity and debt will have values for each
state of g and S. Therefore, we will use an index representation; for example,
E[i, j] denotes the equity value in the current node when g = i and S = Sj. We
assume we know the equity values Eu[i, j] in the up state in the next time step and
Ed[i, j] in the down state in the next time step for all i and j. Clearly, E[i, j] will
connect to a state with g = i + 1 in the next time step and the move is either up or
down. We need to determine what will happen to S. If S = Sj in the current node,
then it will be

Su = Sje
rΔt + δu,(31)

Sd = Sje
rΔt + δd(32)

for the up and down moves, respectively. Here δu and δd denote the firm cash
flows in the next time step. We find the equity values that connect to the current
node in the next time step by linearly interpolating on the value of S:

Ẽu[i + 1, j] = Eu[i + 1, j] +
Su − Sj

Sj+1 − Sj
(Eu[i + 1, j + 1] − Eu[i + 1, j]) ,(33)

Ẽd[i + 1, j] = Ed[i + 1, j] +
Sd − Sj

Sj+1 − Sj
(Ed[i + 1, j + 1] − Ed[i + 1, j]) .(34)

More elaborate interpolation schemes can be used at the expense of increased
computation time. We can compute the interpolated values of debt, D̃u[i+1, j] and
D̃d[i+1, j], in the same way. Next, we compute the present value of equity ignoring
anything that happens at the current node, which we denote by Ẽ[i, j]:

Ẽ[i, j] = e−rΔt
(
pẼu[i + 1, j] + (1 − p)Ẽd[i + 1, j]

)
.(35)

Before we finalize the values, we need to check for liquidation. Liquidation
in this case may occur because of the distress cost. This cost is proportional to the
asset value and is given by ωVtΔt, where Vt is the current asset value. The values
are updated by checking for liquidation:
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If Ẽ[i, j] ≥ ωVtΔt : E[i, j] = Ẽ[i, j] − ωVtΔt,

D[i, j] = e−rΔt
(
pD̃u[i + 1, j] + (1 − p)D̃d[i + 1, j]

)
.

If Ẽ[i, j] < ωVtΔt : E[i, j] = 0,

D[i, j] = (1 − α)(Vt + Sj).

This procedure is repeated for all states of the current node, and then all nodes of
the current time step that are below VB.

3. Nodes with Vt = VB

We consider this level of nodes separately since this is the first level when
the firm reaches a healthy state after being in bankruptcy. We will need to account
for the arrears A, and the automatic stay payoffs S once the firm reaches this level
after coming out of bankruptcy.

We first find the present value of equity ignoring anything that happens in
the current node. If the next move is up, the firm will be in a healthy state, but if
the next move is down, then the firm will go into bankruptcy. Therefore, present
value of equity is given by

Ẽ = e−rΔt
(
pEu + (1 − p)Ẽd[1, 0]

)
,

where Ẽd[1, 0] is the interpolated value of equity in the down state as in (34).
Of course, the firm may have reached the nodes Vt = VB either from above,

being in a healthy state, or from below, being in bankruptcy. To accommodate the
former case, we define a special state [0, 0] and define the associated values as

If Ẽ + δt ≥ C Δt : E[0, 0] = Ẽ + δt − CΔt,(36)

D[0, 0] = CΔt + e−rΔt
(
pDu + (1 − p)D̃d[1, 0]

)
.

If Ẽ + δt < CΔt : E[0, 0] = 0,

D[0, 0] = (1 − α)(Vt + δt).

For the case when the firm comes out of bankruptcy, we interpret E[i, j] as
the value of equity after the firm has been in bankruptcy for g = i time steps and
accumulated a payoff of Sj. This will act as a boundary condition and will be used
to find the values under the bankruptcy boundary. We denote the accumulated
arrears by Ai, the coupon amount accumulated by staying in bankruptcy for i time
steps.

For the firm to continue in a healthy state, it needs to clear the arrears. There-
fore, the sum of automatic stay payoffs Sj and the present value of equity should
be larger than Ai, otherwise the firm will be liquidated. This does not mean that
there are cases when the firm comes out of bankruptcy and is immediately liqui-
dated in a healthy state. It is actually a convenient boundary condition so that the
values under VB can be correctly calculated—the actual liquidation will occur un-
der VB before reaching the healthy state. Equity holders will choose to liquidate
the firm if they accumulate arrears to the point that it is not possible to clear them
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when VB is reached. The variable values for all remaining states [i, j] are updated
according to

If Ẽ + Sj ≥ Ai : E[i, j] = Ẽ + Sj − Ai,(37)

D[i, j] = Ai + e−rΔt
(
pDu + (1 − p)D̃d[1, 0]

)
.

If Ẽ + Sj < Ai : E[i, j] = 0,

D[i, j] = (1 − α)(Vt + Sj).

B. Optimal Bankruptcy Boundary

For a given bankruptcy boundary VB, we can find the equity, debt, and firm
values by using the above procedure. If VB is chosen endogenously to maximize
one of these values, we need to do a numerical optimization similar to the one
described in Section IV.B, and solve the first-order condition numerically.

For example, let us assume that we want to find the value VB that maximizes
the equity value, as well as the debt and firm values for this equity maximizing VB.
We perform a numerical optimization as follows. We start with an initial value of
VB that is equal to Leland’s (1994) bankruptcy boundary as explained in Section
III. We then obtain discrete observation points that give the equity, debt, and firm
values at various values of VB. We fit a cubic spline to these discrete observation
points and find the V∗

B that maximizes equity value on that spline. We can also
find the corresponding debt and firm values by fitting cubic splines for these and
reading off the values for V∗

B . This gives a way of obtaining a good approximation
to an optimal bankruptcy boundary even though our ability to choose a specific
bankruptcy boundary on the lattice is limited.

VI. Computational Analysis and Comparisons

A. Pricing Finite Maturity Coupon Bonds

In this section, we study the prices and yield spreads of coupon bonds with
finite maturity and compare them with infinite maturity bonds. We consider the
setting described in Section III in which bankruptcy leads to immediate liqui-
dation. The length of the granted grace period in a Chapter 11 setting may be
different for bonds with different maturities. Therefore, we ignore the alternative
of going into Chapter 11 bankruptcy with a grace period in order to make uniform
comparisons and observe the effects of maturity on prices. Leland and Toft (1996)
consider the pricing of finite maturity coupon bonds using a stationary debt struc-
ture setting in which the firm always replaces retired debt with the same amount
of new debt. This simplification makes the default boundary a time-independent
constant and they are able to obtain closed-form solutions. However, when the
firm does not roll over its debt in this way, the debt structure will not be station-
ary and the default boundary will be time dependent. No closed-form solutions
exist for this general case, so we use our numerical method introduced in Section
III.A. We use bonds that pay continuous coupons to be consistent with the rest
of the literature, however, pricing coupon bonds that pay discrete coupons is also
straightforward with our method.
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We consider a bond that pays a continuous coupon of C per year with matu-
rity T years and face value of P. For an infinite maturity bond that pays C per year,
the riskless price would be C/r. We choose the face value of the finite maturity
bond such that P = C/r. Thus, at maturity, the bondholders will have to be paid
the riskless value of an infinite maturity bond. Of course, they may not be able
to obtain the full amount if equity holders default on their debt. In this setting, as
the maturity date increases, the price of the finite maturity bond converges to the
price of an infinite maturity bond. By looking at the effects of maturity on vari-
able values, we can see how fast this convergence is, and when infinite maturity
bonds become good approximations for finite maturity bonds.

Figure 10 shows the graphs of equity, debt, and spread values as the maturity
is increased. The yield spread is calculated by first solving the equation,

C
y

(1 − e−yT) + Pe−yT = D,(38)

for y. Here, y is the yield of the bond, and D is the debt value from the lattice.
Thus, y is the rate that produces a bond’s market price when used to discount
the bond’s cash flows. The yield spread is then defined as s = y − r, where r is
the riskless interest rate. As expected, when maturity increases, the equity value
increases and the debt value decreases. The curves seem to flatten at around a ma-
turity of 30 years. The equity value curve moves higher and the debt value curve
moves lower with increasing volatility. The behavior of yield spreads is broadly
consistent with empirical results. Sarig and Warga (1989) study the empirical
term structure of yield spreads for zero coupon bonds. They find that the yield
spread curve is upward sloping for high rated bonds, humped for medium rated
bonds, and downward sloping for low rated bonds. Although they do not study
coupon bonds extensively because of a lack of data, their sample results show that
the same may hold for coupon bonds. Usually, low rated firms are associated with
higher volatilities and high rated firms with lower volatilities. Therefore, the yield
spreads in Figure 10 show close resemblance to their empirical findings.

Table 5 shows yield spreads for a variety of values for σ, τ , and C. The
leverage of the firm increases as the coupon value increases. Merton (1974) de-
fines the quasi debt firm value ratio as the ratio of the riskless value of debt to the
firm value. We denote this ratio by Q, and define it for coupon bonds as

Q =
(C/r)(1 − e−rT) + Pe−rT

V0
.(39)

So the coupon values of C = 3, 4, and 5 correspond to Q = 60%, 80%, and 100%,
respectively.

We see that even for a relatively long maturity of 20 years, the finite maturity
bond may have a yield spread that is about 130 basis points higher than the infinite
maturity bond. Yield spreads increase with increasing firm volatility and leverage,
and decrease with an increasing tax rate. The leverage has a more pronounced
effect on shorter than longer maturities. The reverse is true for the effect of the tax
rate. Since the weight of interest payments in the total debt value increases with
maturity, taxes become more effective for longer maturities. Merton (1974) shows
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FIGURE 10

Effect of Maturity on Equity, Debt, and Spread for a Coupon Bond
for Various Firm Volatility Values

The model parameters are V0 = 100, C = 3.0, P = C/r = 60.0, r = 5%, q = 2%, α = 50%, and τ = 15%. The time
increment used in the lattice is Δt = 0.0003 years.
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that, for zero coupon bonds, yield spread is a decreasing function of maturity
when the quasi debt firm value ratio satisfies Q ≥ 1. The results in Table 5 show
that coupon bonds show similar behavior: as coupon value increases, the yield
spreads become very high for maturities close to zero. This is because when
leverage is high, the firm becomes insolvent as maturity T approaches zero and
the spreads approach infinity.

B. Comparison of Alternative Bankruptcy Procedures

In this section, we analyze the effects of different bankruptcy procedures
on equity, firm, and spread values. We consider three alternatives correspond-
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TABLE 5

Yield Spreads as σ, C, and τ Change

Fixed parameters are V0 = 100, r = 5%, q = 2%, α = 50%, and P = C/r .

Yield Spread (in basis points)

σ C T = 2 T = 5 T = 10 T = 20 T = ∞
τ = 15%
0.2 3.0 83 125 108 81 52
0.3 3.0 381 351 272 200 143
0.4 3.0 783 605 449 334 254

0.2 4.0 586 369 237 153 95
0.3 4.0 1099 645 421 286 202
0.4 4.0 1542 902 603 424 324

0.2 5.0 1730 752 417 253 159
0.3 5.0 2093 981 583 381 272
0.4 5.0 2446 1212 753 516 398

τ = 35%
0.2 3.0 82 120 100 69 33
0.3 3.0 377 342 258 179 113
0.4 3.0 777 592 430 307 218

0.2 4.0 573 349 213 124 59
0.3 4.0 1083 622 393 251 158
0.4 4.0 1523 877 572 386 275

0.2 5.0 1666 694 361 196 95
0.3 5.0 2047 936 535 328 207
0.4 5.0 2408 1171 708 464 333

ing to the three models described in detail in the previous sections. The first of
these is the Leland (1994) model, which treats bankruptcy and liquidation as the
same events. The second is the FM (2004) model in which equity holders can
declare bankruptcy and start servicing the debt strategically for an allowed grace
period. Through a bargaining process, equity holders and debt holders share the
surplus generated by the prevention of immature liquidation. The last model is
BCS (2005) in which, again, the equity holders can declare bankruptcy and stop
servicing the debt for an allowed grace period. Debt payments are recorded in an
arrears account, and there is no explicit bargaining but some of the debt may be
forgiven.

We compare these models using infinite maturity bonds since this is the orig-
inal setting in which the models are presented. We investigate how the Chapter 11
alternative in the FM and the BCS models changes the spreads and other variables
as compared to immediate liquidation in the Leland model. In the FM model, the
bargaining power of the equity holders, denoted by η, determines how the surplus
generated by the bankruptcy proceedings is shared between equity holders and
debt holders. There is no bargaining in the BCS model, but a similar parameter θ,
expressed in percentage, shows how much of the arrears has to be cleared when
the firm comes out of bankruptcy. Although there is not a one-to-one correspon-
dence between η in the FM model and θ in the BCS model, we try to gain some
understanding of the effects of these parameters by looking at the extreme values
of 0% and 100% for both parameters.

Figure 11 shows the firm, equity, and spread values for the three models as
the coupon value increases. We ignore any tax benefits in order to observe only
the differences caused by bankruptcy alternatives. We assume that equity holders
choose the bankruptcy boundary,VB, in both the FM and BCS models. One imme-
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diate observation is that both the FM and BCS models generate equity values that
are at least as high as the Leland model. This is expected since the equity holders
are assumed to be in control of the firm and they choose the bankruptcy boundary
to maximize their own wealth. They can always choose the Leland boundary in
the worst case scenario, so equity holders are expected to benefit from Chapter 11
proceedings. How much they benefit depends on the model parameters: equity
holders’ bargaining power in the FM model, which is represented by η, and the
fraction of arrears to pay in the BCS model, which is represented by θ. When
η = 0% in the FM model, the equity holders have no bargaining power and they
obtain the same equity value as in the Leland model.

FIGURE 11

Comparison of the Leland (1994), FM (2004), and BCS (2005) Models
for Infinite Maturity Bonds

Model parameters are V0 = 100, σ = 30%, r = 5%, q = 4%, α = 50%, and τ = 0%. For the FM and the BCS models,
distress cost ω = 0% and the grace period while in default is two years. It is assumed that equity holders choose VB in
both the FM and BCS models. The time increment used in the lattice for the BCS model is Δt = 0.02, M = 20 points are
used in the automatic stay payoffs grid, and T = 200 years is used to approximate the infinite maturity bond. The Leland
and FM models are solved using analytical formulas.
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We observe that in the BCS model, spreads are higher than the Leland model,
while in the FM model they can be higher or lower depending on the value of η. If
η is low, debt holders will get most of the surplus from the bankruptcy proceedings
and they will be better off; if it is high, then the debt holders may be worse off
and the spreads increase.

Total firm values seem to contrast for the FM and the BCS models. The FM
model generates higher firm values than the Leland model, while the BCS model
generates lower firm values. Together with the results for equity and spread values
this shows that in the BCS model, equity holders use the bankruptcy procedures
to transfer wealth from debt holders and while doing this they increase the total
liquidation costs incurred. By introducing a bargaining process at the bankruptcy
boundary, the FM model prevents this wasteful liquidation. This is merely be-
cause the bargaining is done on the excess wealth generated by the bankruptcy
proceedings. The results for the BCS model show that if equity holders are al-
lowed to go into bankruptcy without any motivation to generate excess wealth,
they can actually cause more wasteful liquidation to maximize their own wealth.
BCS (2005) show how this can be prevented by shifting some of the power to debt
holders. They show that it is possible to generate excess wealth when debt hold-
ers are given some control, but this need not necessarily be through a bargaining
process on the wealth. They consider a setting in which equity holders choose the
bankruptcy level and debt holders choose the granted grace period. They show
that this kind of power shift may help in generating higher firm values than the
Leland model.

VII. Conclusion

In this paper, we present a lattice method for pricing risky corporate debt
using structural models. Our method takes the asset value of the firm as the prim-
itive variable and prices other quantities as derivatives of this basic variable. We
show that our method generates results that are consistent with the limited liabil-
ity of equity principle. Since a backward valuation method is used, the continu-
ation value of equity is known at each time step, which in turn is used to make
bankruptcy decisions.

We show that our method is easily extendable to the case when the firm has a
Chapter 11 bankruptcy alternative. By adding a bankruptcy boundary and increas-
ing the state space on the lattice nodes if necessary, models of different complexity
can be solved. We described the details of the implementation for three different
models: Leland (1994), François and Morellec (2004), and Broadie, Chernov and
Sundaresan (2005). We also illustrate the convergence of our method by compar-
ing numerical results from the lattice method with analytical results when they
exist.

Our method can be beneficial to corporate debt pricing in several ways.
Many existing models use infinite maturity bonds to obtain closed-form solu-
tions. Our method can be used to solve these models for finite maturity bonds.
It can also be used for pricing bonds with discrete coupon payments, as well as
pricing multiple bonds with different coupon payments and different maturities.
Our method is intuitive and easily extendable compared to the alternative of us-
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ing finite difference methods on PDEs. Especially in a Chapter 11 setting when
there are different variables such as grace period and arrears in consideration, our
approach provides a convenient solution method.

We analyze the term structure of yield spreads for finite maturity coupon
bonds when there is no Chapter 11 bankruptcy option. The yield spread behavior
is broadly consistent with empirical findings. We also analyze some alternative
bankruptcy procedures. The assumptions about what happens once the firm is
in bankruptcy and the balance of power between equity holders and debt hold-
ers have a significant effect on the variable values. Therefore, further research
in this area may be directed to experiment with the complexities of bankruptcy
procedures.

Appendix. Formulas for the Leland and François and
Morellec Models

In this appendix, we give the closed-form formulas from Leland (1994) and François
and Morellec (2004) for their respective models. We assume that the initial firm value V ,
the firm asset volatility σ, the firm payout ratio q, and the risk-free interest rate r are given.
The firm has just issued a perpetual bond that pays a continuous coupon of C per year. The
effective tax rate is τ , and the proportional liquidation cost is α. The variables of interest
are the equity maximizing bankruptcy boundary VB and the corresponding values for debt
D, equity E, and firm F.

Leland (1994) derives the following closed-form formulas:

VB =

�
(1 − τ )C

r

��
X

1 + X

�
,(40)

D =
C
r

+
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��
V
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,(43)

where

X =

�
(r − q − 0.5σ2) +

�
(r − q − 0.5σ2)2 + 2σ2r

�1/2
�

/σ2.

For the François and Morellec model, we have the following additional parameters:
G is the grace period while in default, ϕ is the distress cost, and η is the bargaining power of
equity holders. François and Morellec (2004) derive the following closed-form formulas:

VB =
ξ

ξ + 1
C[1 − τ + ητ (1 − d)]

r − rη[α(1 − c) − ϕ
q (qa − c)]

,(44)
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where b = (1/σ)(r − q − 0.5σ2), λ =
√

2r + b2, and ξ = (1/σ)(b + λ). In the equations
above, we have
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λ

�
1
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+

1
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Φ(−λ
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G)

Φ(λ
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�
,
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2π exp
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x2

2
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with N (·) the cumulative standard normal distribution function.
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