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The stochastic differential equations for affine jump diffusion models do not yield exact solutions that can be directly
simulated. Discretization methods can be used for simulating security prices under these models. However, discretization
introduces bias into the simulation results, and a large number of time steps may be needed to reduce the discretization
bias to an acceptable level. This paper suggests a method for the exact simulation of the stock price and variance under
Heston’s stochastic volatility model and other affine jump diffusion processes. The sample stock price and variance from
the exact distribution can then be used to generate an unbiased estimator of the price of a derivative security. We compare
our method with the more conventional Euler discretization method and demonstrate the faster convergence rate of the error
in our method. Specifically, our method achieves an O�s−1/2� convergence rate, where s is the total computational budget.
The convergence rate for the Euler discretization method is O�s−1/3� or slower, depending on the model coefficients and
option payoff function.
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1. Introduction
Financial models usually specify the dynamics of the state
variables, e.g., stock price, volatility, and interest rate, as
stochastic differential equations (SDE). If these SDEs yield
closed-form solutions, then Monte Carlo simulation can be
used to generate an unbiased estimator of the price of a
derivative security. When using Monte Carlo simulation,
many sample paths of the state variables are generated and
the payoff of the derivative is evaluated for each path. Dis-
counting and averaging over all paths gives an estimator
of the derivative price. The error in the Monte Carlo esti-
mator can be calculated using the central limit theorem
and converges to zero as the number of sample paths used
increases. If generating each sample path requires a roughly
equal amount of time, then the convergence rate for such
an unbiased Monte Carlo estimator is O�s−1/2�, where s is
the total computational budget.
If the SDEs that define the dynamics of the state vari-

ables do not yield closed-form solutions, it is still pos-
sible to use Monte Carlo simulation by discretizing the
time interval and simulating the state process dynamics
on this discrete-time grid. However, the approximation of
continuous-time processes by discrete-time processes intro-
duces bias into the simulation estimator. This bias causes
several important problems when estimating the prices or
Greeks of derivative securities. First, because the magnitude
of the bias is unknown, it is difficult to obtain valid confi-
dence intervals. Second, many time steps may be necessary

to reduce the bias to an acceptable level, and even more
computational effort is needed to verify that the bias is
small enough. Finally, both the number of time steps and
number of sample paths need to be increased together to
decrease the total error of the simulation estimator, but the
optimal choice of these parameters is difficult to specify in
advance. Duffie and Glynn (1995) study optimal rules for
allocating the total computational budget between the num-
ber of time steps and the number of simulation trials. They
show that, under some regularity conditions, the error for a
first-order method such as Euler discretization has O�s−1/3�
convergence.
In this paper, we propose a method that recovers the

O�s−1/2� convergence rate of an unbiased Monte Carlo esti-
mator for simulating derivative prices under some affine
jump diffusion models. We first consider the stochastic
volatility (SV) model of Heston (1993), which models the
variance as a square-root process that is correlated with the
stock price. Scott (1996) uses Fourier inversion methods
to sample from the integral of a square-root process in an
interest rate setting. Willard (1997) observes that the stock
price is lognormally distributed conditional on a path of the
Brownian motion driving the variance process. A similar
“mixing result” was independently discovered in Romano
and Touzi (1997). We build on the ideas from these papers
to generate an exact sample from the distribution of the
terminal stock price. We first generate a sample from the
final value of the variance. Then, using Fourier inversion
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methods and conditioning, we get a sample from the inte-
gral of the variance. Finally, conditional on the values for
the variance process, we are able to generate a sample from
the stock price. We also show how to extend the method
for models involving jumps in addition to the stochastic
volatility. Strong empirical evidence of stochastic volatil-
ity and jumps in financial markets is documented in many
recent papers, including Bates (1996), Bakshi et al. (1997),
Broadie et al. (2006), Chernov et al. (2003), Eraker et al.
(2003), and others.
Some other authors used Monte Carlo simulation for

pricing derivatives under the stochastic volatility models.
When the stock price and volatility are instantaneously
uncorrelated, Hull and White (1987) show that the stock
price has a lognormal distribution conditional on the inte-
gral of the variance process. They write the price of a call
option as a Black-Scholes price given the integral of the
variance. They simulate paths of the variance process and
find the unconditional price of the option by taking the
average of the conditional Black-Scholes prices. Willard
(1997) considers the case when the stock price and volatil-
ity are instantaneously correlated. He observes that the
stock price is lognormally distributed conditional on the
entire path of the Brownian motion driving the variance
process, and the call option price can be written as a Black-
Scholes price conditional on this path. He simulates the
variance process on a discrete-time grid and uses a condi-
tional Monte Carlo approach to get the option price. His
method still suffers from discretization bias because of the
discretization of the variance process. Heath and Platen
(2002) propose a variance reduction technique based on Itô
calculus and show how their method can be applied for
simulation under Heston’s stochastic volatility model. Their
approach uses discretization methods to simulate the state
processes, and therefore does not eliminate the discretiza-
tion bias.
The rest of this paper is organized as follows: §2 intro-

duces the SV model dynamics and Euler discretization
method. Section 3 is a step-by-step introduction to our
method for exact simulation. In §4, we give some numeri-
cal results and compare our method to Euler discretization.
In §5, we show that the efficiency of our simulation method
can be further improved using conditional Monte Carlo
techniques. Section 6 shows how to extend the method to
models that involve jumps. In §7, we give an application
of the exact simulation method to the pricing of forward
start options. Section 8 contains concluding remarks. The
derivation of the characteristic function of the integral of
the variance is given in the appendix.

2. SV Model and Euler Discretization

2.1. Specification of the SV Model

Heston’s model (1993) is based on the following equations,
which represent the dynamics of the stock price and the

variance processes under the risk-neutral measure:

dSt = rStdt+
√
VtSt

[
�dW

�1�
t +√1−�2dW�2�

t

]
 (1)

dVt = ���−Vt�dt+�v
√
VtdW

�1�
t � (2)

The first equation gives the dynamics of the stock price:
St denotes the stock price at time t, r is the risk-neutral
drift, and

√
Vt is the volatility. The second equation gives

the evolution of the variance, which follows the square-
root process: � is the long-run mean variance, � repre-
sents the speed of mean reversion, and �v is a parameter
that determines the volatility of the variance process. W�1�

t

and W�2�
t are two independent Brownian-motion processes,

and � represents the instantaneous correlation between the
return process and the volatility process.

2.2. Euler Discretization

Euler discretization can be used to approximate the paths
of the stock price and variance processes on a discrete-
time grid. Let �0 = t0 < t1 < · · · < tM = T � be a partition
of a time interval into M equal segments of length �t, i.e.,
ti = iT /M for each i = 01 � � � M . The discretization for
the stock price process is

Sti =Sti−1+rSti−1�t+
√
Vti−1Sti−1

[
��W

�1�
ti

+√1−�2�W�2�
ti

]


(3)

where �W�j�
ti

=W�j�
ti

−W�j�
ti−1 , j = 12. The discretization for

variance process is

Vti = Vti−1 +���−Vti−1��t+
√
Vti−1�v�W

�1�
ti
� (4)

To simulate the Brownian increments, the fact that each
increment W�j�

ti
− W

�j�
ti−1 is independent of others is used.

Each such increment is normally distributed with mean 0
and standard deviation

√
�t. In particular, we can simu-

late these increments by first generating a uniform ran-
dom variate U and then replacing �W�j�

ti
by

√
�tF −1�U�,

where F �x� is the cumulative distribution function of a
standard normal random variable. There are efficient algo-
rithms for accurately approximating the inverse function of
a normal distribution function. We use the algorithm by
Moro (1995). For each increment, we use an independent
uniform random variate, so we need a total of 2M uni-
form random variates to simulate a path of stock price and
variance processes. When using Euler discretization with
a large number of simulation trials and a large number of
time steps, the number of uniform random variates needed
may be huge. We use the random number generator by
Matsumoto and Nishimura (1998), which has a very long
period. To avoid the negative values for variance and stock
price, we set these to zero if we encounter negative values
during the simulation.
By repeating this procedure, many paths can be gener-

ated. Because no-arbitrage derivative prices are given by
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their expected discounted payoffs under the risk-neutral
measure, the price of a derivative, written as E�f �ST ��, can
be estimated by Monte Carlo simulation using

1
N

N∑
k=1
f
( �SMT ) (5)

where N is the number of sample paths used in simulation
and �SMT denotes the simulated value of ST over each sam-
ple path using M time steps. This Monte Carlo estimator
converges to the correct price E�f �ST �� as the number of
time steps M and the number of samples N become large.
There are two types of error associated with the Monte

Carlo estimator given in (5). First, there is a statistical error
that decreases at the rate O�1/

√
N�. This is due to the

central limit theorem: The standard error of the simula-
tion estimator is �f /

√
N , where �f is the standard devi-

ation of f � �SMT �. Second, there is a discretization error or
discretization bias defined as �E�f �ST ��−E�f � �SMT ���. This
error is caused by simulation of continuous-time processes
using discrete-time approximations. Kloeden and Platen
(1992) show that, under the conditions stated in their The-
orem 14.5.2, this error decreases at the rate O�1/M� for
Euler discretization. Talay and Tubaro (1990) and Bally and
Talay (1996) give similar results and show that the error
can be expanded in powers of 1/M under some regularity
conditions on the coefficients of the SDEs and the func-
tion f . The conditions for first-order convergence do not
hold for the SDEs in (1) and (2), so the actual convergence
may be slower in this case.
Duffie and Glynn (1995) study the optimal allocation of

a computational budget between the number of time steps
and the number of simulation trials. Their result implies
that it is optimal to choose the number of time steps pro-
portional to the square root of the number of simulation
trials for first-order methods, although the optimal constant
of proportionality is left undetermined. They show that with
their allocation rule the convergence rate of the error for
the Euler discretization is O�s−1/3�, where s is the total
computational budget. More generally, if p is the conver-
gence order of the bias, then an optimal allocation has error
convergence of O�s−p/�2p+1��. However, because the con-
ditions for first-order convergence do not hold, O�s−1/3�
convergence rate is not guaranteed in this case. Indeed, the
numerical examples we consider in §4 demonstrate that
Euler discretization may achieve a lower convergence rate
depending on the convergence rate of the bias.
There are higher-order discretization schemes that can

be used instead of Euler for discretization of stock price
and variance processes. For example, the Milstein scheme
is a discretization scheme that achieves second-order con-
vergence for the bias under the conditions given in Kloeden
and Platen (1992). In theory, such a second-order method
would improve the convergence of the total simulation error
to O�s−2/5�, but again, because the conditions for con-
vergence are not satisfied by the dynamics of the state

variables, this method is not guaranteed to achieve a
second-order convergence rate. Also, the convergence is not
very smooth. For an example of this for the SV model, see
Glasserman (2003). Another disadvantage of the Milstein
scheme is that it is harder to implement and takes more
time per replication than the Euler discretization method.

3. Exact Simulation of the SV Model
In this section, we give the details of the exact simulation
method. In particular, we show how to generate an exact
sample from the distribution of St by conditioning on the
values generated by the variance process.
The stock price at time t, given the values of Su and Vu

for u< t, can be written as

St = Su exp
[
r�t− u�− 1

2

∫ t

u
Vs ds+�

∫ t

u

√
Vs dW

�1�
s

+√1−�2 ∫ t

u

√
Vs dW

�2�
s

]
(6)

and the variance at time t is given by

Vt = Vu+���t− u�−�
∫ t

u
Vs ds+�v

∫ t

u

√
Vs dW

�1�
s � (7)

We go through the following steps to sample from the
distribution of �St Vt�.

Exact Simulation Algorithm for the SV Model

Step 1. Generate a sample from the distribution of Vt
given Vu.
Step 2. Generate a sample from the distribution of∫ t

u
Vs ds given Vt and Vu.
Step 3. Recover

∫ t
u

√
Vs dW

�1�
s from (7) given Vt , Vu, and∫ t

u
Vs ds.
Step 4. Generate a sample from the distribution of St

given
∫ t
u

√
Vs dW

�1�
s and

∫ t
u
Vs ds.

Next, we specify the details of each of these steps.

3.1. Sampling from Vt Given Vu

The distribution of Vt given Vu for some u < t is, up to a
scale factor, a noncentral chi-squared distribution as noted
by Cox et al. (1985). The transition law of Vt can be
expressed as

Vt =
�2v �1− e−��t−u��

4�
% ′2
d

(
4�e−��t−u�

�2v �1− e−��t−u��
Vu

)
 t > u

(8)

where % ′2
d �'� denotes the noncentral chi-squared random

variable with d degrees of freedom, and noncentrality
parameter ', and

d= 4��
�2v

� (9)



Broadie and Kaya: Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes
220 Operations Research 54(2), pp. 217–231, © 2006 INFORMS

This says that, given Vu, Vt is distributed as �
2
v �1 −

e��t−u��/�4�� times a noncentral chi-squared random vari-
able with d degrees of freedom and noncentrality parameter

'= 4�e−��t−u�

�2v �1− e−��t−u��
Vu� (10)

Thus, we can sample from the distribution of Vt exactly,
provided that we can sample from the noncentral chi-
squared distribution.
Let %2d denote a chi-squared random variable with d

degrees of freedom. Johnson et al. (1994) show that for
d > 1, the following representation is valid:

% ′2
d �'�= % ′2

1 �'�+%2d−1� (11)

To generate % ′2
d �'�, d > 1, we can generate %

2
d−1 and an

independent standard normal random variable Z and set

% ′2
d �'�=

(
Z+√

'
)2+%2d−1� (12)

Thus, sampling from a noncentral chi-squared distribution
is reduced to sampling from an ordinary chi-squared and
an independent normal when d > 1.
For any d > 0, a noncentral chi-squared random vari-

able can be represented as an ordinary chi-squared random
variable with a random degrees of freedom parameter. In
particular, if N is a Poisson random variable with mean
�1/2�', then %2d+2N has the same distribution as % ′2

d �'�.
Therefore, to sample from % ′2

d �'�, we can first generate a
Poisson random variable N and then, conditional on N ,
we can sample a chi-squared random variable with d+2N
degrees of freedom.
In the simulation of Vt , we use the representation given

in (12) when d > 1, and we use the Poisson method
described above otherwise. To sample from the chi-squared
distribution, the methods to sample from gamma distribu-
tion can be used because chi-squared is a special case of
this distribution. We use algorithms GS∗ and GKM3 in
Fishman (1996) to sample from the gamma distribution.
The first of these is used when the degrees of freedom
parameter for chi-squared distribution is less than one, and
the second one is used otherwise.

3.2. Sampling from
∫ t

u
Vs ds Given Vt and Vu

Once we have a sample for Vt , we want to sample from
the distribution of

∫ t
u
Vs ds given Vt and Vu. Scott (1996)

uses Fourier inversion techniques to invert the characteris-
tic function of this distribution to sample from the same
distribution in an interest rate setting. We follow a similar
approach to generate a sample for the integral. The Laplace
transform

E

[
exp

(
−a∗

∫ t

u
Vs ds

)∣∣∣VuVt
]

can be derived using the results in Pitman and Yor (1982).
Details of the derivation are given in the appendix. The
characteristic function follows by setting a∗ =−ia:

*�a�=E
[
exp

(
ia
∫ t

u
Vs ds

)∣∣∣VuVt
]

= +�a�e�−1/2��+�a�−���t−u��1− e−��t−u��
��1− e−+�a��t−u��

× exp
{
Vu+Vt
�2

[
��1+ e−��t−u��
1− e−��t−u�

− +�a��1+ e−+�a��t−u��
1− e−+�a��t−u�

]}

×
I0�5d−1

[√
VuVt

4+�a�e−0�5+�a��t−u�
�2�1−e−+�a��t−u��

]
I0�5d−1

[√
VuVt

4�e−0�5��t−u�
�2�1−e−��t−u��

]  (13)

where +�a�=√
�2− 2�2ia, d is as given in (9), and I-�x�

is the modified Bessel function of the first kind.
The probability function can be computed using Fourier

inversion methods. If we let V �u t� denote the random
variable that has the same distribution as the integral∫ t
u
Vs ds conditional on Vu and Vt , then we can write (see

Feller 1971)

F �x�≡ Pr.V �u t�� x/= 1
0

∫ �

−�
sinux
u

*�u�du

= 2
0

∫ �

0

sinux
u

Re�*�u��du� (14)

We use the trapezoidal rule to compute the probability
distribution numerically:

Pr.V �u t�� x/= hx

0
+ 2
0

�∑
j=1

sinhjx
j

Re�*�hj��− ed�h�
(15)

where h is a grid size to be set to achieve any desired
level of accuracy, and ed�h� is the resulting discretization
error. The trapezoidal rule works well for periodic and other
oscillating integrands, because the errors tend to cancel.
The discretization error ed�h� can be bounded above and
below by using a Poisson summation formula as shown in
Abate and Whitt (1992):

0� ed�h�=
�∑
k=1

[
F

[
2k0
h

+ x
]
− F

[
2k0
h

− x
]]

� F c
[
20
h

− x
]
 (16)

where F c�x�= 1− F �x�.
If we want to achieve a discretization error 3, then the

step size should be

h= 20
x+ u3

�
0

u3
 where F c�u3�= 3 and 0� x� u3�

(17)
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Finding the correct u3 is not straightforward, but the
moments of the distribution can easily be found using the
characteristic function in (13). We use the mean, plus five
or more standard deviations, to get a value with a small-tail
probability.
To be able to calculate Pr.V �u t� � x/ using (15), we

need to determine a point at which the summation can be
terminated. Let N represent the last term to be calculated
so that the approximation becomes

Pr.V �u t�� x/

= hx

0
+ 2
0

N∑
j=1

sinhjx
j

Re�*�hj��− ed�h�− eT �N � (18)

where eT �N � denotes the truncation error caused by using
N terms in the finite sum. The magnitude of the characteris-
tic function, �*�u��, has value one at u= 0 and it decreases
as u increases. Because �sin�ux��� 1, the integrand in (14)
is bounded by

2�Re�*�u���
0u

�
2��*�u���
0u

= 4�u�� (19)

Because the integrand is oscillating, the bound for the last
term gives a good estimate for the truncation error, i.e.,
we set eT �N �= h4�Nh�. The summation is terminated at
j =N when

�*�hN��
N

<
03

2
 (20)

where 3 is the desired truncation error.
It should be noted that very often the error bounds stated

above for determination of the grid size h and the trun-
cation point N are conservative. By trial and error one
can get h and N that achieve the desired accuracy with a
smaller number of terms.
The hardest and numerically most time-consuming part

of (15) is the evaluation of the characteristic function. The
characteristic function given in (13) involves two modified
Bessel functions of the first kind, and the one in the numer-
ator has a complex argument. The modified Bessel function
of the first kind is characterized by the following power
series:

I-�z�=
(
1
2
z

)- �∑
j=0

(
1
4z
2
)j

j!6�-+ j + 1�  (21)

where 6�x� is the gamma function and z is a complex
number. We used a routine written by Amos (1986) to cal-
culate these functions. The routine uses the power series
for small �z�, the asymptotic expansion for large �z�, the
Miller Algorithm normalized by the Wronskian and a
Neumann Series for intermediate magnitudes, and the uni-
form asymptotic expansion for large orders. The routine
can also calculate a scaled version of the Bessel function,
e−�Re�z��I-�z�, which makes it possible to compute the func-
tion value for very large orders.

The representation of I-�z� given in (21) is not complete
because the function z- , which is a factor on the right-hand
side, is a multivalued function and needs precise specifica-
tion. It is defined to be exp�- log z�, where the argument
of z is given its principal value so that

−0 < arg�z��0�
This is the definition most software packages and pro-

gramming library routines use to calculate the function
value. However, the function I-�z� defined in this way is
discontinuous at each point along the negative x-axis, as
are all functions defined on a specific branch of arg�z�.
Therefore, to get around this problem and accomplish the
continuity of the characteristic function, we need to keep
track of arg�z� and change the branch when necessary. We
use the following continuation formula from Abramowitz
and Stegun (1972) for this purpose, which makes it possi-
ble to calculate the value of I-�z� for arg�z� different than
its principal value:

I-�ze
m0i�= em-0iI-�z� .m integer/� (22)

As this formula shows, to calculate the function on a differ-
ent branch, we need to multiply the value on the principal
branch by a factor em0-i.
To simulate the value of the integral, we use the

inverse transform method. We generate a uniform ran-
dom variable U and then find the value of x for which
Pr.V �u t�� x/ is equal to U . We use a second-order
Newton’s method to find the solution for x. This method
is used to solve equations of the form f �x�= 0 using the
iteration

xn+1 = xn−
f ′�xn�
f ′′�xn�

(
1−

√
1− 2f �xn�f ′′�xn�

f ′�xn�2

)
�

The conditional distribution of the integral is approxi-
mately normal and the initial guess for x is calculated using
the inverse normal distribution function with the mean and
standard deviation of the correct distribution. The moments
of the correct distribution are found using (13). We set the
starting value to a small value, such as 0.01 times the mean,
if the normal value is negative. The first and second deriva-
tives of the distribution function are calculated numeri-
cally, using the derivatives of the approximation (15). The
iterative procedure achieves five-decimal-place accuracy in
three to four iterations. We use a bisection search method
when the abovementioned method fails to converge to true
value, which typically occurs when U is very close to
0 or 1.

3.3. Generating a Sample for St

After having generated samples from Vt and
∫ t
u
Vs ds, we

use (7) to get∫ t

u

√
Vs dW

�1�
s =

(
1
�v

)(
Vt −Vu−���t− u�+�

∫ t

u
Vs ds

)
�

(23)
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Furthermore, because the process for Vt is indepen-
dent of the Brownian motion W

�2�
t , the distribution of∫ t

u

√
Vs dW

�2�
s , given the path generated by Vt , is normal,

with mean 0 and variance
∫ t
u
Vs ds.

Using these two results, we get that the conditional dis-
tribution of logSt is normal with mean

m�ut�= logSu+
[
r�t−u�− 1

2

∫ t

u
Vs ds+�

∫ t

u

√
Vs dW

�1�
s

]

and variance

�2�u t�= �1−�2�
∫ t

u
Vs ds�

To generate a sample from St , we generate a standard nor-
mal random variable Z and then set

St = em�u t�+��u t�Z�
We can use the value of St generated in this way to find
the price of any derivative that depends on the value of St .
Repeating over many sample paths, taking the average and
discounting gives us an unbiased estimator of the derivative
price.

4. Numerical Results
In this section, we present some numerical comparisons of
the Euler and the exact simulation method described above.
We use a European call option for this purpose. Heston
(1993) gives a closed-form solution for the price of this
option, so we are able to calculate and compare the two
methods through their root-mean-squared (RMS) errors. If
�9 is the simulation estimator used for the derivative price
and 9 is the true price, then the bias of the estimator is
given by �E� �9�− 9� and the variance is given by E�� �9−
E� �9��2�. RMS error is then defined as �bias2+variance�1/2.
The bias for Euler discretization with a specific number
of time steps can be estimated using a very large number
of simulation trials to estimate E� �9�, and then taking the
difference with the true price. The variance for each sim-
ulation experiment is estimated by the sample variance of
the simulation output.
The simulation experiments in this and the other sec-

tions of the paper were performed on a desktop PC with an
AMD Athlon 1.66 GhZ processor and 624 MB of RAM,
running Windows XP Professional. The codes were written
in the C programming language, and the compiler used was
Microsoft Visual C++ 6.0.
Table 1 gives simulation results for a European call

option. The set of parameters for the SV model are taken
from Duffie et al. (2000). These were found by minimiz-
ing the mean squared errors for market option prices for
S&P 500 on November 2, 1993. The bias column is esti-
mated using 40 million simulation trials. The number of
time steps for the Euler discretization is set equal to the
square root of the number of simulation trials.

Table 1. Simulation results under the SV model for a
European call option.

(a) Simulation with the exact method

No. of Computing
simulation trials RMS error time (sec.)

10,000 0.0750 3�8
40,000 0.0373 15�2
160,000 0.0186 60�0
640,000 0.0093 239�4

2,560,000 0.0046 955�7
10,240,000 0.0023 3822�6

(b) Simulation with the Euler discretization

No. of No. of
simulation time Standard RMS Computing
trials steps Bias error error time (sec.)

10,000 100 0.1543 0.0772 0.1725 0�2
40,000 200 0.1003 0.0381 0.1073 1�9
160,000 400 0.0662 0.0189 0.0689 15�2
640,000 800 0.0395 0.0094 0.0406 121�3

2,560,000 1600 0.0267 0.0047 0.0272 970�0
10,240,000 3200 0.0161 0.0023 0.0163 7758�6

Note. Option parameters: S = 100, K = 100, V0 = 0�010201,
	= 6�21, 
 = 0�019, �v = 0�61, =−0�70, r = 3�19%, T = 1�0 year,
true option price= 6�8061.

The time needed for the exact method is more than the
Euler discretization for a small number of simulation trials.
However, the exact method requires less computation time
as the desired accuracy is increased.
There are some cases for which the bias of the Euler

discretization is very large even if a large number of time
steps is used. This is especially true when �2��/�2v � � 1
and �v is large relative to �. In this case, the variance pro-
cess for Euler discretization often hits to 0, causing a large
discretization bias. Table 2 demonstrates this case. The bias
column is estimated using 40 million simulation trials.
As seen from the simulation results in Table 2, signif-

icant bias remains in the Euler discretization even when
3,200 time steps are used with 10,240,000 simulation tri-
als. The RMS error for our exact method with the same
number of trials is about 30 times smaller with much less
computation time. Figures 1 and 2 show the convergence
of the RMS graphically for both methods. The faster con-
vergence rate of the exact method is demonstrated by the
steeper slope in the graphs.
One apparent problem when using Euler discretization is

the choice of the number of time steps to be used in the
simulation. Our choice of setting the number of time steps
equal to the square root of the number of simulation tri-
als is somewhat arbitrary. Duffie and Glynn (1995) show
that, asymptotically, it is optimal to increase the number of
time steps proportional to the square root of the number
of simulation trials for first-order methods such as Euler
discretization. However, the optimal constant of proportion-
ality is not easy to determine. Ideally, for a specific number
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Table 2. Simulation results under the SV model for a
European call option.

(a) Simulation with the exact method

No. of Computing
simulation trials RMS error time (sec.)

10,000 0.6125 3�8
40,000 0.2904 15�3
160,000 0.1464 61�3
640,000 0.0726 244�5

2,560,000 0.0362 978�6
10,240,000 0.0181 3916�5

(b) Simulation with the Euler discretization

No. of No. of
simulation time Standard RMS Computing
trials steps Bias error error time (sec.)

10,000 100 2.1962 0.6568 2.2923 0�2
40,000 200 1.6413 0.3247 1.6731 1�9
160,000 400 1.2151 0.1544 1.2248 15�4
640,000 800 0.9265 0.0761 0.9296 122�6

2,560,000 1600 0.7093 0.0379 0.7103 980�4
10,240,000 3200 0.5367 0.0188 0.5370 7838�4

Note. Option parameters: S = 100, K = 100, V0 = 0�09, 	 = 2�00,

= 0�09, �v = 1�00, =−0�30, r = 5�00%, T = 5�0 years, true option
price= 34�9998.

of simulation trials, one should choose the number of time
steps such that the magnitude of the discretization bias and
the standard error will be close. Then, as more accuracy
is needed, the number of time steps should be increased
proportional to the square root of the number of simulation
trials. This way, the simulation estimate converges to the
true value with neither of the errors dominating the other.
Of course, in practice, we do not usually know the true

Figure 1. Convergence of the RMS errors of the two
methods for the option in Table 1 (SV
model).
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Figure 2. Convergence of the RMS errors of the two
methods for the option in Table 2 (SV
model).
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value of the quantity we want to estimate, and therefore it
is not possible to know what the bias is. Even for the cases
where we do know the true value, we might need to do a
convergence study with many simulation trials to estimate
the bias. Thus, the choice of the number of time steps is
another shortcoming of the Euler discretization method.
Table 3 shows the bias values for various time steps for

the two options considered before. The bias values are esti-
mated using 40 million simulation trials. For both options,
the bias dominates the standard error when number of time
steps, M , is set to the square root of the number of simula-
tion trials, N . For the first option, the number of time steps
that makes bias and standard error approximately equal is
between

√
N and 10

√
N , while for the second option this

value is greater than 10
√
N .

Careful examination of the bias values in Table 3 reveals
another problem with the convergence of the Euler dis-
cretization method. The bias values do not decrease to half
of their values when the number of time steps is doubled.
We mentioned in §2.2 that the conditions for first-order
convergence do not hold for the SDEs in (1) and (2). These
examples demonstrate that the convergence for discretiza-
tion bias may indeed be significantly slower. As shown in
Duffie and Glynn (1995), if p is the convergence order of
the bias, then an optimal allocation has error convergence
of O�s−p/�2p+1��. The convergence rate of the bias for these
examples is close to O�1/

√
M�. Assuming that this rate is

the real convergence rate, the convergence rate of the total
error for an optimal allocation would be O�s−1/4�. In prac-
tical cases, a nonoptimal allocation may be used because
the real convergence rate of the bias is unknown, leading
to even slower convergence rates. These arguments provide
another motivation for using an exact simulation method
instead of biased methods.
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Table 3. Effect of the number of time steps in Euler discretization.

Bias values for various time steps �M�
No. of simulation Standard
trials �N � error M = 0�1√N Bias M =√

N Bias M = 10√N Bias

(a) Bias values for the option in Table 1
10,000 0.0772 10 0.5348 100 0.1543 1000 0.0364
40,000 0.0381 20 0.3897 200 0.1003 2000 0.0225
160,000 0.0189 40 0.2667 400 0.0662 4000 0.0163
640,000 0.0094 80 0.1745 800 0.0395 8000 0.0099

2,560,000 0.0047 160 0.1156 1600 0.0267 16000 0.0067
10,240,000 0.0023 320 0.0739 3200 0.0161 32000 0.0029

(b) Bias values for the option in Table 2
10,000 0.6568 10 6.0489 100 2.1962 1000 0.8408
40,000 0.3247 20 4.5423 200 1.6413 2000 0.6257
160,000 0.1544 40 3.2997 400 1.2151 4000 0.5142
640,000 0.0761 80 2.4358 800 0.9265 8000 0.3731

2,560,000 0.0379 160 1.7914 1600 0.7093 16000 0.2935
10,240,000 0.0188 320 1.3501 3200 0.5367 32000 0.2273

5. Conditional Monte Carlo for
the SV Model

Willard (1997) proposed a conditional Monte Carlo method
to improve the efficiency of the simulation estimators under
stochastic volatility models. His method is applicable to
path-independent derivatives that have closed-form solu-
tions under the Black-Scholes model. In this section, we
apply the conditional Monte Carlo method to improve the
efficiency of the exact simulation method we described
in §3. We also compare the improved results with the
results of Euler discretization in the same setting.
We follow the approach of Willard and use a European

call option to demonstrate the conditional Monte Carlo
method. We assume that the dynamics of the stock price
and the variance processes are as given in (1) and (2). Let
BS�S0�� denote the Black-Scholes formula for a Euro-
pean call option with maturity T , strike K, and written on
a stock with initial price S0 and constant volatility � . Let ��
be the average volatility of the stock over the time horizon:

�� ≡
√
1
T

∫ T

0
Vs ds� (24)

Willard observes that conditional on a path of the
Brownian motion driving the variance process, the price of
the call option can be written as

BS
(
S0< ��

√
1−�2) (25)

where

< = exp
(
−�

2

2

∫ T

0
Vs ds+�

∫ T

0

√
Vs dW

�1�
s

)
� (26)

Then, using the law of iterated expectations, the uncon-
ditional price of the option can be written as

E
[
BS
(
S0< ��

√
1−�2 ∣∣W�1�

s

)]
� (27)

The notation used emphasizes that the Black-Scholes price
inside the expectation is conditional on a path of the
Brownian motion W�1�

s . Actually, it is not necessary to con-
dition on the entire path of the Brownian motion. We can
just write

E

[
BS

(
S0< ��

√
1−�2

∣∣∣ ∫ T

0
Vs ds

∫ T

0

√
Vs dW

�1�
s

)]
(28)

because we only need
∫ T
0 Vs ds and

∫ T
0

√
Vs dW

�1�
s to com-

pute the Black-Scholes price. We can now use the above
representation to estimate the option price using conditional
Monte Carlo.
The above approach can also be used to generate unbi-

ased estimators of the Greeks under the SV model. For
example, to calculate the delta of a European call option,
we can differentiate the expression in (28) and get

E

[
�

(
S0< ��

√
1−�2

∣∣∣ ∫ T

0
Vs ds

∫ T

0

√
Vs dW

�1�
s

)
<

]
 (29)

where ��S v� denotes the Black-Scholes delta. See
Broadie and Glasserman (1996) for more details about
the pathwise method to estimate option Greeks in a
Monte Carlo simulation. Extensions of the exact simulation
method in this paper to the development of unbiased sim-
ulation estimates of Greeks for various exotic options are
given in Broadie and Kaya (2004).
In §3, we described the steps to sample from the final

variance value VT , and the integral of the variance value∫ T
0 Vs dW

�1�
s , and also showed how to recover

∫ T
0

√
Vs dW

�1�
s

given these two. When using the exact simulation method
with conditional Monte Carlo, we can complete these steps
and then use (25) to get the conditional option price. By
repeating over many paths and taking the average, we can
get an unbiased estimator of the option price.
When using Euler discretization with conditional Monte

Carlo, only the variance process needs to be simulated
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using the discretization in (4). Simulation of the stock price
is not needed, because after simulating a path of the vari-
ance process, one can use (25) to find the conditional option
price. Using conditional Monte Carlo cuts the simulation
time for Euler discretization roughly in half because only
one process is simulated instead of two. However, it does
not eliminate the discretization bias because the variance
process is still being simulated on a discrete-time grid.
Tables 4 and 5 show the simulation results for the

two options considered in the previous section, this time
using conditional Monte Carlo with the exact simulation
and Euler discretization methods. Although the conditional
Monte Carlo method decreases the simulation time and the
standard error for the Euler discretization, the bias is almost
unchanged. Figures 3 and 4 show the convergence of the
RMS errors.
Comparing the RMS error for the exact method using

conditional Monte Carlo and unconditional Monte Carlo,
we see that conditional Monte Carlo can lead to significant
variance reduction. For the second option considered, more
than 50-fold variance reduction is achieved using condi-
tional Monte Carlo.
In addition to the conditional Monte Carlo method

described above, Willard (1997) uses quasi-Monte Carlo
(low-discrepancy) methods and shows that it results in sig-
nificant efficiency improvements. Quasi Monte Carlo helps
in improving the convergence of the simulation error, but it
does not decrease the discretization bias. Therefore, quali-
tative results similar to the ones above will hold in compar-

Table 4. Simulation results for a European call option
using conditional Monte Carlo.

(a) Simulation with the exact method

No. of Computing
simulation trials RMS error time (sec.)

10,000 0.0395 3�6
40,000 0.0199 14�5
160,000 0.0099 57�7
640,000 0.0050 230�4

2,560,000 0.0025 921�6
10,240,000 0.0012 3687�4

(b) Simulation with the Euler discretization

No. of No. of
simulation time Standard RMS Computing
trials steps Bias error error time (sec.)

10,000 100 0.1574 0.0421 0.1630 0�1
40,000 200 0.1000 0.0207 0.1022 1�0
160,000 400 0.0649 0.0102 0.0657 8�1
640,000 800 0.0419 0.0050 0.0422 64�1

2,560,000 1600 0.0267 0.0025 0.0268 511�1
10,240,000 3200 0.0170 0.0012 0.0170 4082�8

Note. Option parameters: S = 100, K = 100, V0 = 0�010201,
	= 6�21, 
 = 0�019, �v = 0�61, =−0�70, r = 3�19%, T = 1�0 year,
true option price= 6�8061.

Table 5. Simulation results for a European call option
using conditional Monte Carlo.

(a) Simulation with the exact method

No. of Computing
simulation trials RMS error time (sec.)

10,000 0.0803 3�8
40,000 0.0398 15�1
160,000 0.0199 60�1
640,000 0.0100 239�7

2,560,000 0.0050 958�9
10,240,000 0.0025 3835�7

(b) Simulation with the Euler discretization

No. of No. of
simulation time Standard RMS Computing
trials steps Bias error error time (sec.)

10,000 100 2.1046 0.1002 2.1070 0�1
40,000 200 1.5870 0.0469 1.5877 1�0
160,000 400 1.2025 0.0227 1.2027 8�4
640,000 800 0.9154 0.0110 0.9155 64�2

2,560,000 1600 0.7022 0.0054 0.7022 512�1
10,240,000 3200 0.5391 0.0026 0.5391 4086�5

Note. Option parameters: S = 100, K = 100, V0 = 0�09, 	 = 2�00,

= 0�09, �v = 1�00, =−0�30, r = 5�00%, T = 5�0 years, true option
price= 34�9998.

ing the exact method and the Euler discretization method
when quasi Monte Carlo is used for both.

6. Extensions to Other Models

6.1. Simulation Under the SVJ Model

The stochastic volatility with jumps (SVJ) model is an
extension of the SV model to include jumps in the stock

Figure 3. Convergence of the RMS errors of the two
methods for the option in Table 4 (SV
model).
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Figure 4. Convergence of the RMS errors of the two
methods for the option in Table 5 (SV
model).
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price process. The risk-neutral dynamics are

dSt = �r −'=̄�Stdt+
√
VtSt

[
�dW

�1�
t +√1−�2dW�2�

t

]
+ �<s − 1�dNt (30)

dVt = ���−Vt�dt+�v
√
VtdW

�1�
t  (31)

where Nt is a Poisson process with constant intensity ',
and <s is the relative jump size in the stock price. In par-
ticular, when a jump occurs at time t, then St+ = St−<s .
The distribution of <s is lognormal with mean =s and vari-
ance �2s . The parameters =s and =̄ are related to each other
by the equation

=s = log �1+ =̄�− 1
2�

2
s

and only one of them needs to be specified.
To sample from the final stock price, the jump part and

the diffusion part can be simulated separately. In other
words, we can first simulate the diffusion part of the stock
price, and then multiply by the realized jump sizes. This
makes it possible to extend the exact simulation method to
simulate under the SVJ model.
To generate a sample for the derivative payoff that has

maturity T , we use the following procedure.

Exact Simulation Algorithm for the SVJ Model

Step 1. Disregard the jump part, and simulate the stock
price ST as in the SV model using the exact simulation
method described in §3.
Step 2. Generate a Poisson random variable with mean

�'T � to determine the number of jumps that occurred in
the time horizon, and call this number J .

Step 3. Generate independent jump sizes <si for i =
1 � � �  J , from the lognormal distribution with mean =s and
variance �2s .
Step 4. Find the adjusted final stock price S̃T by multi-

plying the price from Step 1 with the jump sizes, i.e., set
S̃T = ST

∏i=J
i=1 <

s
i .

Step 5. Compute the derivative payoff using S̃T .

Table 6 gives numerical results for a European call
option using exact simulation and Euler discretization
methods. The model parameters are taken from Duffie et al.
(2000); these are fitted parameters for S&P 500 on a par-
ticular day. The bias of the Euler discretization method
is relatively small for the set of parameters used. There-
fore, we choose the number of time steps, M , to be equal
to 0�1

√
N , where N is the number of simulation trials.

The bias column is estimated using 500 million simulation
trials. Figure 5 shows the convergence of the RMS errors
for the two simulation methods used. The exact method has
a better RMS error than the Euler discretization method
when more than one second of computation time is used.

6.2. Simulation Under the SVCJ Model

The SVCJ model (stochastic volatility with contempo-
raneous jumps in the stock price and variance) introduced
in Duffie et al. (2000) is similar to the SVJ model, but it
also includes jumps in the variance process. The governing
equations are

dSt = �r −'=̄�Stdt+
√
VtSt

[
�dW

�1�
t +√1−�2dW�2�

t

]

Table 6. Simulation results under the SVJ model for a
European call option.

(a) Simulation with the exact method

No. of Computing
simulation trials RMS error time (sec.)

10,000 0.2232 0�6
40,000 0.1124 2�3
160,000 0.0560 9�1
640,000 0.0280 36�2

2,560,000 0.0140 144�7
10,240,000 0.0070 579�4

(b) Simulation with the Euler discretization

No. of No. of
simulation time Standard RMS Computing
trials steps Bias error error time (sec.)

10,000 10 0.5902 0.2480 0.6402 0�1
40,000 20 0.2834 0.1169 0.3065 0�3
160,000 40 0.1322 0.0575 0.1442 1�9
640,000 80 0.0557 0.0283 0.0625 12�6

2,560,000 160 0.0196 0.0141 0.0241 97�7
10,240,000 320 0.0043 0.0070 0.0082 776�1

Note. Option parameters: S = 100, K = 100, V0 = 0�008836,
	= 3�99, 
 = 0�014, �v = 0�27,  = −0�79, � = 0�11, �̄ = −0�12,
�s = 0�15, r = 3�19%, T = 5�0 years, true option price= 20�1642.
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Figure 5. Convergence of the RMS errors of the two
methods for the option in Table 6 (SVJ
model).
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+ �<s − 1�dNt (32)

dVt = ���−Vt�dt+�v
√
VtdW

�1�
t + <vdNt (33)

where Nt is again a Poisson process with constant inten-
sity ', <s is the relative jump size of the stock price, and
<v is the jump size of the variance. The jumps in stock
price and the variance occur concurrently, and their mag-
nitudes have a correlation determined by the parameter �J .
The distribution of <v is exponential with mean =v. Given
<v, <s is lognormally distributed with mean �=s + �J <

v�
and variance �2s . The parameters =s and =̄ are related to
each other by the equation

=s = log ��1+ =̄��1−�J=v��− 1
2�

2
s

and only one of them needs to be specified.
The jumps in variance prevent us from using the same

method as in a SVJ model, but it is still possible to extend
the method to generate exact simulation estimators under
the SVCJ model. We need to divide the simulation horizon
according to the jump occurrences and simulate the values
of variance and stock price at each jump time.
To generate a sample for the derivative payoff that has

maturity T , we use the procedure described below. We
denote the initial stock price by S0, the initial variance value
by V0, and the current time by t0.

Exact Simulation Algorithm for the SVCJ Model

Step 1. Simulate a Poisson process with arrival rate '
and determine the time of the next jump, and denote this
time by tj . If tj > T , then set tj = T .
Step 2. Disregard the jump part, and simulate the vari-

ance value Vtj and stock price Stj using the exact simulation
method described in §3 using a time interval of �t = tj−t0.

Step 3. If tj = T , then set ST = Stj and go to Step 6.
Otherwise, generate <v by sampling from an exponential
distribution with mean =v. Update the variance value by
setting �Vtj = Vtj + <v.
Step 4. Generate <s by sampling from a lognormal dis-

tribution with mean �=s + �J <
v� and variance �2s . Update

the stock price by setting S̃tj = Stj <s .
Step 5. Set S0 = S̃tj , V0 = �Vtj , t0 = tj and go to Step 1.
Step 6. Compute the derivative payoff using ST .

Dividing the simulation horizon and using more time
steps affects the computation speed; therefore, the simu-
lation of the SVCJ model is slower than the SV or SVJ
models. If, for example, the arrival rate of jumps is one per
year, then the simulation of a five-year option will be about
five times slower. Some of the advantage of simulating the
stock price over a long horizon is lost, but still, the method
is practical and provides unbiased simulation estimators of
derivative prices.
The Fourier inversion step in the exact simulation

method may run into some problems when the simulation
interval is too small. Such cases may occur in the simula-
tion of the SVCJ model when two jumps are very close to
each other or when a jump is too close to maturity. If the
simulation interval is less than 0.01 year, instead of using
the exact simulation method, we use Euler discretization
with 100 time steps. This introduces negligible bias into the

Table 7. Simulation results under the SVCJ model for
a European call option.

(a) Simulation with the exact method

No. of Computing
simulation trials RMS error time (sec.)

10,000 0.0720 1�5
40,000 0.0369 5�8
160,000 0.0184 23�3
640,000 0.0092 93�5

2,560,000 0.0046 373�0
10,240,000 0.0023 1491�3
40,960,000 0.0011 5967�5

(b) Simulation with the Euler discretization

No. of No. of
simulation time Standard RMS Computing
trials steps Bias error error time (sec.)

10,000 10 0.0148 0.0729 0.0744 0�1
40,000 20 0.0090 0.0367 0.0378 0�2
160,000 40 0.0050 0.0183 0.0190 1�6
640,000 80 0.0024 0.0092 0.0095 13�3

2,560,000 160 0.0014 0.0046 0.0048 98�8
10,240,000 320 0.0012 0.0023 0.0026 784�4
40,960,000 640 0.0008 0.0011 0.0014 6254�7

Note. Option parameters: S = 100, K = 100, V0 = 0�007569,
	= 3�46, 
 = 0�008, �v = 0�14,  = −0�82, � = 0�47, �̄ = −0�1,
�s = 0�0001, �v = 0�05, J = −0�38, r = 3�19%, T = 1�0 year, true
option price= 6�8619.
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Figure 6. Convergence of the RMS errors of the two
methods for the option in Table 7 (SVCJ
model).
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simulation estimate and solves the complexities for very
small time intervals.
Table 7 gives some numerical results for simulation

under the SVCJ model with the exact and Euler discretiza-
tion methods. The model parameters are again the fitted
parameters for S&P 500 and taken from Duffie et al.
(2000). For the Euler discretization, we choose the num-
ber of time steps, M , to be equal to 0�1

√
N , where N is

the number of simulation trials. The bias column is esti-
mated using 500 million simulation trials. Figure 6 shows
the convergence of the RMS errors for both methods. In
this case, the point where the exact method starts dominat-
ing Euler discretization is closer to the right of the graph.
This is because the bias in the Euler discretization is rel-
atively small for this set of parameters, and because the
jumps increase the computation time of the exact simula-
tion method.

7. An Application: Pricing of Forward
Start Options

The exact simulation method of this paper can be applied to
the pricing of many exotic options. To illustrate this point,
in this section we consider the pricing of forward start
options. These are options whose strike is set at a future
date. In particular, if T1 is the time when strike is set, T2 is
the option expiration, Si is the stock price at time Ti, and
k is the constant that determines the strike, then the forward
start option payoff at time T2 is given by �S2− kS1�+. For
example, if k = 1, then at time T1, the option becomes an
at-the-money option with expiration T2. Kruse and Nögel
(2005) recently developed an expression for this option
under the SV model by integrating the pricing formula with
the conditional density of the variance value at time T1.
However, numerical evaluation of their expression is quite
complicated because it includes another level of integra-
tion to already complex integrals in the Heston formula.

Therefore, simulation may be considered as a more prac-
tical alternative for finding prices and sensitivities of this
option. Also, for the SVJ and SVCJ models, no similar
expressions are available, and so other numerical methods
are necessary for pricing forward start options under these
models.
It is straightforward to price a forward start option using

simulation: For each path, simulate the stock price values at
T1 and T2, and then evaluate the payoff function using these
two values. However, we can use an alternative method for
simulating a forward start option that will allow us to get
more efficient estimators. Note that at time T1 we know the
stock price, strike, and the expiration of the option. There-
fore, the option price at time T1 can be written using closed-
form formulas. Let CE�SKT V � denote the price of a
European call option with initial stock price S, strike K,
time to expiration T , and initial variance V . With this
notation, at time T1 the holder of the forward start option
has a call option with value CE�S1 kS1 T2−T1 V1�, where
V1 is the variance value at T1. Note also that the option
price is linearly homogenous with respect to the stock
price and the strike, i.e., we can write CE�SkST V � =
SCE�1 k T V �. Using this expression, and following the
above arguments, the price of a forward start option can be
written as

CFW =E�e−rT1S1CE�1 k T2− T1 V1��� (34)

Thus, we can price forward start options by simulating
the stock price and the variance values at time T1, and
then using the European option pricing formula to evaluate
the option payoff. Using the analytical formula in expres-
sion (34) eliminates the variance that occurs due to the
uncertainty after T1. Therefore, this estimator is expected to
give a better estimate than plain Monte Carlo simulation.
In Table 8, we give simulation results for a forward start

option under each model. The model parameters are taken
from Duffie et al. (2000), and are the same as given in

Table 8. Simulation estimates for a forward start
option.

Model

SV SVJ SVCJ

Plain simulation price 7�0213 7�0352 7�1376
Standard error 0�0778 0�0777 0�0798
No. of simulation trials 10,000 10,000 10,000
Computing time (sec.) 6�1 1�7 2�9

Formula simulation price 6�9708 6�8978 7�0593
Standard error 0�0088 0�0149 0�0136
No. of simulation trials 8,600 2,800 3,300
Computing time (sec.) 6�1 1�7 2�9

Note. Option parameters: S0 = 100, k = 1, T1 = 1 year, T2 = 2 years.
SV parameters are the same as in Table 1; SVJ parameters are
the same as in Table 6; and SVCJ parameters are the same as in
Table 7.
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the previous sections. The price estimator given in (34) is
denoted as the “formula simulation price,” and the plain
Monte Carlo estimate that simulates stock prices at T1 and
T2 is denoted as the “plain simulation price.” The computa-
tion time per simulation path is different for the two meth-
ods. We adjust the number of simulation trials for the for-
mula simulation method such that it takes roughly the same
amount of time as the plain simulation method. Both sim-
ulation estimators are unbiased because we use the exact
simulation algorithm, but combining the algorithm with the
analytical European call formula results in significant vari-
ance reduction.

8. Conclusion
In this paper, we propose a method for the exact simulation
of the stock price and variance under Heston’s stochas-
tic volatility and some other affine jump diffusion models.
Our method is based on Fourier inversion techniques and
conditioning arguments. The proposed simulation method
recovers the error convergence rate of O�s−1/2� for unbi-
ased Monte Carlo simulation, where s is the total computa-
tion time. Using the more conventional Euler discretization
method leads to O�s−1/3� or slower convergence, depending
on the convergence rate of the bias.
The proposed simulation method may be used to gener-

ate unbiased price estimators for path-independent deriva-
tives, and also for some path-dependent derivatives with
mild path dependence. By mild path dependence, we mean
that the derivative payoff should depend on the stock price
and variance values at few points during the life of the
derivative. Bermudan options and American call options
with discrete dividends are some examples. In the case
of path-independent derivatives, any type of payoff that
depends on the final stock price and variance can be han-
dled. Also, under the SV model, it is possible to gener-
ate unbiased estimators of the Greeks of path-independent
derivatives using the conditional Monte Carlo method.
The exact simulation method has several advantages over

the discretization methods. The bias for the discretiza-
tion methods may be large, and many time steps may be
needed to reduce the bias to an acceptable level, which
increases the computation time. Also, because the bias is
unknown, the standard error may be a poor estimate of the
actual error, and valid confidence intervals are not avail-
able. Finally, it is difficult to determine the optimal trade-
off between the time steps and simulation trials because the
convergence rate of the bias is unknown.
We verified the faster convergence rate of our exact sim-

ulation methods through numerical examples. We demon-
strated that they achieve a smaller RMS error than the Euler
discretization under the SV and SVJ models, except when a
very small amount of computation time is used. The exact
simulation method is relatively slower for simulation under
the SVCJ model, but it is still more efficient than the Euler
discretization approach when high accuracy is needed. We

have also shown that the conditional Monte Carlo methods
of Willard (1997) can be used to improve the efficiency of
the exact method for simulation of certain path-independent
options under the SV model.

Appendix. Derivation of the Laplace
Transform
In this appendix, we derive the Laplace transform for the
integral of

∫ t
u
V �s�ds given V �u� and V �t�. We follow

the approach of Chesney et al. (1993) to get a square-
root process with volatility parameter � = 2, and then use
the results of Pitman and Yor (1982) to write the Laplace
transform.
V �t� follows the following square-root process:

V �t�= V �0�+
∫ t

0
���−V �s��ds+

∫ t

0
�
√
V �s�dWs�

(35)

Now,∫ t

0
�
√
V �s�dWs = 2

∫ t

0

√
V �s�

�

2
dWs

� 2
∫ t

0

√
V �s�dW�2s/4 (in law)

= 2
∫ t

0

√
V

(
4
�2
�2

4
s

)
dW�2s/4� (36)

The second equality in (36) follows from the scaling
property of Brownian motion. Define u = �2s/4, so we
have du= ��2/4�ds. We can write (35) as
V

(
4
�2
�2

4
t

)
= V �0�+ 4

�2

∫ �2t/4

0
�

[
�−V

(
4
�2
u

)]
du

+ 2
∫ �2t/4

0

√
V

(
4
�2
u

)
dWu�

Defining the process ��u�= V �4u/�2�, we obtain
���2t/4�= ��0�+ 4

�2

∫ �2t/4

0
���−��u��du

+ 2
∫ �2t/4

0

√
��u�dWu� (37)

Setting n= 4��/�2 and j =−2�/�2, we get
��t�= ��0�+

∫ t

0
�2j��u�+n�du+2

∫ t

0

√
��u�dWu� (38)

The infinitesimal generator of this process is 2xD2 +
�2jx+n�D, where D= d/dx. Pitman and Yor (1982) give
the following formula for the squared Bessel process X�s�,
which has generator 2xD2+ nD:
�E
[
exp

{
−b

2

2

∫ t

0
X�s�ds

}∣∣∣X�0�= x X�t�= y]

=
(

bt

sinh bt

)
exp

{
x+ y
2t

�1− bt coth bt�
}

× I-
( √

xyb

sinh bt

)/
I-

(√
xy

t

)
 (39)
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where - = n/2− 1, I-��� is the modified Bessel function
of the first kind, and �E denotes the expectation taken with
respect to the law of the squared Bessel process. To be
able to use this formula for the process in (38), we need
to apply a change of law formula to eliminate the random
component of the drift term and get a process with j = 0.
We now write the Laplace transform we want to derive:

E

[
exp

{
−a

∫ t

u
V �s�ds

}∣∣∣V �u� V �t�]

=E
[
exp

{
−a

∫ t

u
�

(
�2s

4

)
ds

}∣∣∣�(�2u
4

)
 �

(
�2t

4

)]

=E
[
exp

{
−4a
�2

∫ �2t/4

�2u/4
��s�ds

}∣∣∣�(�2u
4

)
 �

(
�2t

4

)]
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[
exp

{
−
(
4a
�2

+ j2

2

)

·
∫ �2t/4

�2u/4
��s�ds
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4
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 �

(
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/

�E
[
exp
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− j2

2

∫ �2t/4

�2u/4
��s�ds

}∣∣∣�(�2u
4
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 �

(
�2t
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)]
�

The last equality follows from the change of law for-
mula �6�d� of Pitman and Yor (1982). The expectations
in the numerator and the denominator are calculated using
formula (39).
After arranging the terms and changing back to the V ���

domain, we get the Laplace transform as

E

[
exp

{
−a

∫ t

u
V �s�ds

}∣∣∣V �u� V �t�]

= +�a�e�−1/2��+�a�−���t−u��1− e−��t−u��
��1− e−+�a��t−u��

× exp
{
V �u�+V �t�

�2

[
��1+ e−��t−u��
1− e−��t−u�

− +�a��1+ e−+�a��t−u��
1− e−+�a��t−u�

]}

×
I0�5n−1

[
4+�a�

√
V �u�V �t�

�2
e−0�5+�a��t−u�
�1−e−+�a��t−u��

]
I0�5n−1

[
4�
√
V �u�V �t�

�2
e−0�5��t−u�
�1−e−��t−u��

]  (40)

where +�a�=√
�2+ 2�2a.
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