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exercisable American options. Under the Black-Scholes framework, the pricing of these options can be reduced to evaluation
of a series of convolutions of the Gaussian distribution and a known function. We compute these convolutions efficiently
using the double-exponential integration formula and the fast Gauss transform. The resulting algorithms have computational
complexity of O�nN�, where the number of monitoring/exercise dates is n and the number of sample points at each date
is N , and our results show the error decreases exponentially with N . We also extend the approach and provide results for
Merton’s lognormal jump-diffusion model.

Subject classifications : finance: asset pricing.
Area of review : Financial Engineering.
History : Received January 2003; revision received March 2004; accepted September 2004.

1. Introduction
There are many traded options whose payoff depends on
the maximum, the minimum, or the average of the under-
lying asset price during the whole or part of the life of
the option. An example of such path-dependent options is
the barrier option, which has a payoff equal to that of the
European option except that the option is nullified or acti-
vated if the underlying asset price reaches a barrier during
the life of the option. Other examples include the lookback
option, whose payoff depends on the difference between
the asset price at maturity and the maximum or the min-
imum of the asset price; and the hindsight option, whose
payoff depends on the difference between the maximum or
the minimum and a fixed strike price. American options
are also sometimes called quasi path-dependent options
because the decision of early exercise is made based on the
path of the asset price.
Many of these options have closed-form solutions or

analytical approximation formulas under the Black-Scholes
(Black and Scholes 1973) model. See Goldman et al.
(1979) and Conze and Viswanathan (1991) for look-
back options and Rubinstein and Reiner (2000) and Rich
(1995) for barrier options. These formulas are based on the
assumption that the extremum or the average is taken over
the entire continuous path of the underlying asset, or early
exercise is possible at any moment during the life of the
option. However, for many traded path-dependent options,

the extremum or the average is taken over a finite set of
time points called monitoring dates. Similarly, for some
American-style options, early exercise is only allowed on
a finite set of time points called exercise dates, and such
options are known as Bermudan options. For these dis-
crete options, it has long been recognized that the formulas
developed under the assumption of continuous monitoring/
exercise give only a poor approximation. If the number
of monitoring dates is not too small, corrections to these
formulas proposed by Broadie et al. (1997, 1999) work
well and give satisfactory results for the standard barrier
and lookback options. However, when the number of mon-
itoring dates is small or if one needs to price a more
exotic form of path-dependent options, such as the look-
back option with American features, one has to resort to
numerical methods.
In principle, the price of these discrete options can be

calculated by simple forward or backward recursion over
time. For example, in the case of the discrete knockout
option, which is a barrier option that is nullified if the
underlying asset price reaches a barrier at one of the moni-
toring dates, one needs a probability density function (pdf)
Pi�Si� at each date i such that Pi�Si�dSi represents the
probability that the option is still alive at time ti and the
asset price at ti is between Si and Si + dSi. Of course, all
pricing computations are done with risk-neutral pdfs (see
Duffie 2001 for more detail). Strictly speaking, it would
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be more appropriate to call Pi�Si�s “subprobability” den-
sity functions (consistent with a risk-neutral distribution)
because they do not integrate to one. However, hereafter
we simply call them pdfs for brevity. The pdf Pi�Si� can
be calculated by multiplying Pi−1�Si−1� with the transition
pdf (tpdf) p�Si � Si−1�, integrating over Si−1 and setting
to zero any probability outside the barrier. In the case of
a Bermudan option, one has to compute the continuation
value at time ti−1. This is calculated by multiplying the
option value at time ti with the tpdf p�Si � Si−1� and inte-
grating over Si. In both cases, the key computation in one
step of the recursion is the integration of a product of a
known function and the tpdf. In particular, under the Black-
Scholes model, the tpdf becomes a Gaussian probability
density function by adopting the log asset price as a vari-
able and the above integration reduces to a convolution of
a given function and the Gaussian density.
Many numerical methods for option pricing are based

on this idea. For instance, binomial and trinomial methods
(see Cox et al. 1979, Boyle 1988) correspond to dividing
the time between the two monitoring/exercise dates into
smaller time steps so that the width of the tpdf for one time
step is small enough that the convolution can be approx-
imated by a sum of two or three terms. However, such
an approach needs many time steps even when the num-
ber of monitoring/exercise dates is small. Even then the
generic binomial and trinomial algorithms require special
modifications to price barrier and lookback options (see
Ahn et al. 1999, Boyle and Lau 1994, Cheuk and Vorst
1996, Ritchken 1995). Finite-difference approaches to this
problem are explored in Boyle and Tian (1998, 1999) and
Zvan et al. (2000). Numerical methods for pricing dis-
crete barrier and lookback options under alternative (i.e.,
non Black-Scholes) processes are considered in Boyle and
Tian (1998, 1999), Davydov and Linetsky (2001), and Duan
et al. (2003).
An efficient approach in the Black-Scholes model in

the case of discretely monitored/exercisable options is to
compute the convolution by numerical integration without
using intermediate time steps. The convolution method pro-
posed by Reiner (2000) adopts this latter approach. The
method uses equally spaced grid points to discretize the log
asset price at each date and computes the convolution by
the trapezoidal rule or a quadrature based on cubic fitting.
The convolution is computed via the fast Fourier transform
(FFT), so when the number of points at each date is N ,
the computational work for one convolution is O�N logN�,
which is far less than the work of O�N 2� that would be
required for direct evaluation. However, the convergence of
this method is not very fast. The error due to numerical
integration decreases only as N−c, where c is a constant
and c = 2 for the trapezoidal rule. This means that to attain
d digits accuracy, one needs O�ed/c� sample points. This
is because for the integral appearing in the convolution,
either the integration region is a half-infinite line (in the
case of barrier and lookback options) or the integrand has

a discontinuity in its derivative (in the case of Bermudan
options). The trapezoidal rule and other lower-order inte-
gration rules are known to be inefficient for either of the
cases.
Another development along this direction is the tridiag-

onal probability algorithm for barrier and hindsight options
proposed by Tse et al. (2001). The method uses Gaussian
quadrature, which can attain far more accuracy than the
trapezoidal rule with the same number of sample points,
and can compute the option price to a specified accuracy.
The main disadvantage of this method is that the sample
points of the Gaussian quadrature are not equally spaced
and the FFT can no longer be used to compute the convo-
lution. This results in O�N 2� computational work for each
time step. Gaussian quadrature is also used in the approach
of Sullivan (2000).
In this paper, we propose a new algorithm for pricing

discrete path-dependent and quasi path-dependent options.
Our algorithm is also based on the idea of computing the
convolution by numerical integration, but attains faster con-
vergence and less computational work for each time step at
the same time by adopting two techniques from numerical
analysis, namely, the double-exponential (DE) integration
formula (Takahashi and Mori 1974, Mori 1985) and the
fast Gauss transform (FGT) (Greengard and Strain 1991).
The DE formula computes an integral over a finite inter-
val or a half-infinite line by converting it to an integral
over the entire real axis. Its convergence is very fast and
the error decreases faster than any negative power of N .
Typically, the error decreases as e−cN , where c is some
constant, which means that one needs only O�d� sample
points to attain d digits accuracy. However, as in the case of
the Gaussian quadrature, its sample points are not equally
spaced and the FFT cannot be used. We therefore use the
FGT, which is a fast algorithm to compute the convolu-
tion of a given function and a Gaussian in O�N� work.
In addition to being asymptotically faster than the FFT, it
has a marked advantage that the sample points need not
be equally spaced. By combining these two techniques, we
can construct a fast and accurate algorithm for the pricing
of barrier, lookback, hindsight, and Bermudan options.
In this paper, we assume that the underlying asset fol-

lows geometric Brownian motion (Black-Scholes model) or
geometric Brownian motion with lognormal jumps (Merton
model). However, it is in principle possible to extend our
algorithm to other asset price models if the analytical
expression of the transition probability density function is
given. See, for example, Broadie and Yamamoto (2003)
for an idea for applying our approach to Kou’s jump-
diffusion model (2002). It is also possible to extend the
algorithm to options on more than one asset by using the
multidimensional version of the DE formula and the FGT.
Our algorithm can also be used to price true American
options by letting the time interval �t between monitoring
dates approach zero. However, in this case, the fast con-
vergence property of our algorithm is masked by the large
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monitoring date error of O��t�. Therefore, the advantage
of our algorithm is fully exploited when pricing purely dis-
crete options.
In the next section, we first consider barrier options and

show how the pricing computation can be reduced to a
series of convolutions of a function with a Gaussian density.
We also introduce the basic ideas of the double-exponential
integration formula and the FGT and formulate our algo-
rithm by combining them. Extensions of the method to
Merton’s model and to barrier options with Bermudan fea-
tures are also discussed. Section 3 deals with the applica-
tion of our method to lookback and hindsight options, along
with extensions. The application to Bermudan options is
investigated in §4. Numerical results that demonstrate the
effectiveness of our method are shown at the end of each
section. Section 5 contains concluding remarks.

2. Barrier Options

2.1. The Pricing Problem

In this section, we set up a framework for pricing a
European barrier option with discrete monitoring dates. Let
us consider a Black-Scholes economy with a dividend-
paying asset St and a money-market account Bt with a con-
stant risk-free interest rate r . Then, under the risk-neutral
probability measure, St follows the stochastic differential
equation

dSt = �r − q�Stdt+�St dWt� (1)

where q is a constant dividend yield and Wt is a standard
Brownian motion process. Also, the value of the money-
market account is given by

Bt = exp�rt�� (2)

We now consider a time horizon �0� T � and n+1 discrete
time points ti = i�t �i = 0�1� � � � � n�, where �t = T /n,
and denote Sti

by Si. The discrete down-and-out call option
with maturity T , monitoring dates �ti�

n−1
i=1 , barrier H , and

strike K is defined as an option whose payoff at time T is
�Sn−K�+ if Si > H for all i �1� i� n−1� and zero other-
wise. Here �x�+ denotes max�x�0�. Other types of barrier
options such as the down-and-in call and the up-and-out put
are defined similarly, and the numerical method we develop
in this section can be applied in a similar way, so we limit
ourselves to the down-and-out call in this section.
To formulate the option-pricing problem, we introduce a

set of (risk-neutral) probability density functions �Pi�Si��
n
i=1

such that Pi�S�dS represents the probability that Sj > H
for 1� ∀j � i and S � Si � S + dS. Then, the price QDOC

0

of the discrete down-and-out call option at time 0 can be
written as follows:

QDOC
0 �S0�K�H�= e−rT

∫ �

K
Pn�Sn��Sn −K�dSn� (3)

Let p�Si � Si−1� denote the transition probability density of
the asset price. Then, from the definition, �Pi�Si��

n
i=1 satisfy

the following recursion formula:

P1�S1�=
{
p�S1 �S0� if S1>H�

0 otherwise�
(4)

Pi�Si�=




∫ �

H
p�Si �Si−1�Pi−1�Si−1�dSi−1

if Si >H�

0 otherwise

(5)

�i=2�����n��

We can therefore start from P1�S1� defined by Equa-
tion (4), compute P2�S2�� � � � � Pn�Sn� by the forward recur-
sion formula (5) and, finally, compute the option price by
Equation (3).
For our purposes, it is more convenient to change vari-

ables and work with

xt = ln�St�−
(
r − q − 1

2�
2
)
t� (6)

Then, xt evolves according to the stochastic differential
equation

dxt = �dWt� (7)

and the transition probability density function is seen to be

p�xi � xi−1�= pG�xi − xi−1�

≡ 1√
2%�t�

exp
{
− �xi − xi−1�2

2�2�t

}
� (8)

which is a Gaussian density. The option-pricing formula (3)
and the recursion formulas (4) and (5) become

QDOC
0 �S0�K�H�

=e−rT
∫ �

k
Pn�xn�

[
exp

{
xn+

(
r−q− 1

2�
2
)
T
}−K

]
dxn�

(9)

and

P1�x1�=
{
pG�x1 − lnS0� if x1 > h1�

0 otherwise�
(10)

Pi�xi�=




∫ �

i−1
pG�xi − xi−1�Pi−1�xi−1�dxi−1

if xi > hi�

0 otherwise�

(11)

�i= 2� � � � � n�

respectively. Here,

k= lnK − (
r − q − 1

2�
2
)
T and

hi = lnH − (
r − q − 1

2�
2
)
i�t�

(12)

Thus, we have established that the price of the down-and-
call price can be computed by a series of convolutions
of Pi�x� and the Gaussian density.
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2.2. The Double-Exponential Formula

Note that Pi�x� �i = 1� � � � � n − 1� is analytical over the
region �hi��� by construction, so the integral in Equa-
tion (11) is an integral of an analytical function over a half-
infinite line. The double-exponential formula proposed by
Takahashi and Mori (1974), Mori (1985), and Ooura and
Mori (1991) is particularly efficient for computing such an
integral, and it is known that when the number of sam-
ple points N is increased, its discretization error decreases
faster than any negative power of N .
To derive the formula heuristically, we consider an inte-

gral of a function g�u� over the entire real axis. We
assume that g�u� is analytical in this region, and the
function value and all of its derivatives approach zero
quickly when x →±�. We then truncate the infinite
integral

∫ +�
−� g�u�du at a lower limit u− and an upper

limit u+. These limits are chosen so that g�u� and its
higher-order derivatives can be regarded as zero outside
the limits (for more rigorous discussion, see the com-
plex functional analysis-based approach in Takahashi and
Mori 1974, Mori 1985, Sugihara 1997). We then determine
step size h, choose integers N+ > 0 and N− < 0 so that
�N− − 1�h < u− � N−h and N+h � u+ < �N+ + 1�h, and
apply the trapezoidal rule with step size h to the integral∫ N+h

N−h
g�u�du. Let the value of the integral approximated in

this way be Ih. Then, because we can neglect the truncation
error, we can evaluate the error in Ih by the Euler-Maclaurin
formula (Evans 1993, Krommer and Ueberhuber 1998) as
follows:

Ih−
∫ +�

−�
g�u�du

�
{ N+∑

j=N−
g�jh�− 1

2�g�N
−h�+g�N+h��

}
h−

∫ N+h

N−h
g�u�du

=
m∑

k=1

B2k

�2k�!h
2k−1{g�2k−1��N+h�−g�2k−1��N−h�

}+Em� (13)

where Bk are the Bernoulli numbers with B3 = B5 = · · · = 0
and B1 =−1/2, B2 = 1/6, B4 =−1/30, g�n��u� is the nth
derivative of g�u�, and

Em = �N+h−N−h�
B2m+2h2m+2

�2m+ 2�! g�2m+2��.� (14)

with N−h < . < N+h. Equation (13) holds for any fixed
positive integer m. Recalling that higher-order derivatives
of g�u� can be regarded as zero at u=N−h and u=N+h,
we know that the error can be approximated by Em, which
is O�h2m+2�. Because m is arbitrary, we can say that the
error of the trapezoidal rule decreases faster than any power
of h in this case.
The DE formula exploits this fact by converting an inte-

gral over a half-infinite region into one over the entire real
axis. Let the integral we want to compute be

I =
∫ �

c
f �x�dx� (15)

We introduce the following change of variables, the double-
exponential transformation

x = c+ exp
(

%

2
sinhu

)
� (16)

which leads to a new expression for the integral

I=
∫ �

−�
f

(
c+exp

(
%

2
sinhu

))
exp

(
%

2
sinhu

)
%

2
coshudu�

(17)

We can now apply the trapezoidal rule with step size h to
this integral, obtaining the approximation

Ih = h
�∑

j=−�
f

(
c+ exp

(
%

2
sinh�jh�

))

· exp
(

%

2
sinh�jh�

)
%

2
cosh�jh�� (18)

It is known that if the original integral (15) converges, the
integrand in Equation (17) decreases at least as fast as the
double-exponential function exp�− exp��u��� as u →±�,
and the sum (18) can be truncated at a modest value of �jh�
without affecting the computed result. To see this, note first
that the integrand in Equation (15) has to decrease at least
faster than 1/x as x →� for the infinite integral to exist.
Therefore, we assume that f �x�∼ x−1−0 as x →�, where
0 > 0, and put this into the integrand of Equation (17).
Then, the integrand becomes

(
c+ exp

(
%

2
sinhu

))−1−0

exp
(

%

2
sinhu

)
%

2
coshu

∼
(
exp

(
%

2
sinhu

))−0
%

2
coshu

∼ exp
(
−%0

4
expu

)
%

4
expu

= %

4
exp

(
u− %0

4
expu

)
� (19)

When, for example, 0∼ 1, this function becomes less than
10−16 at u= 4, and the infinite sum of Equation (18) can be
safely truncated at �jh� ∼ 4 if double precision arithmetic
is used. Thus, the number of the sample points is N =
O�h−1�, and we can conclude that the discretization error
decreases faster than any negative power of N .
Takahashi and Mori (1974) show that the double-

exponential transformation (16) is optimal for a wide class
of functions in the sense that it can achieve the maximum
accuracy for a given number of points (Takahashi and Mori
1974, Mori 1985, Sugihara 1997). However, convergence
faster than any negative power of N is attained as long as
(a) the transformation is analytical, (b) it maps the origi-
nal integration region onto the entire real axis, and (c) the
integrand in Equation (17) approaches zero fast enough
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when x →±�. Hence, it is sometimes more appropriate
to modify the transformation by taking into account special
properties of the original integrand f �x�. We will do this
for the convolution (11) in §2.4.
It is important to note that the integrand in Equation (11)

is analytical for asset price models other than the Black-
Scholes model. For example, the integrand for Merton’s
lognormal jump-diffusion model (Merton 1992) is also ana-
lytical because the jump size is lognormally distributed and
the transition probability density p�xi � xi−1� can be rep-
resented as a sum of Gaussians. Also, the tpdf in Kou’s
jump-diffusion model (2002) is analytical because it can be
represented as a sum of products of an exponential func-
tion and the Hh function, both of which are analytical. This
indicates that the DE method has potential application to
these models. We illustrate an example of this in §2.5.

2.3. The Fast Gauss Transform

To compute the convolution, we first rewrite the DE for-
mula by defining the sample points aj and wj as follows:

IN
h =

N+∑
j=N−

f �aj�wj� (20)

ai
j = hi + exp

(
%

2
sinh�jh�

)
� (21)

wj = h exp
(

%

2
sinh�jh�

)
%

2
cosh�jh�� (22)

where N− and N+ are determined so that N+h ∼
−N−h ∼ 4 and the total number of sample points is
N =N+ −N− + 1. Using this formula, we can approximate
Equation (11) by

Pi�a
i
j �=

N+∑
j ′=N−

pG�ai
j − ai−1

j ′ �Pi−1�a
i−1
j ′ �wj ′

�j =N−� � � � �N+�� (23)

Note that we do not need sample points in the region
xi < hi because pi�xi� is always zero there. Apparently,
Equation (23) requires O�N 2� computation for each time
step. Moreover, the FFT cannot be used here to reduce the
computational work because the sample points �ai

j� and
�ai−1

j ′ � are not equally spaced. We therefore use the FGT,
which is a fast algorithm introduced by Greengard and
Strain (1991) and Greengard and Sun (1998) to compute
the discrete convolution of a given function with a Gaussian
function in O�N� work.
Suppose that we want to calculate the sums

G�xj�=
N∑

k=1
qkexp

{
− �xj −yk�

2

4

}
� j=1�2�����M� (24)

To compute the multiple sums efficiently, the FGT uses the
following expansion of the Gaussian:

e−�xj−yk�
2/4 =

�∑
6=0

�∑
0=0

1
6!

1
0!

(
yk − y0√

4

)0

·h0+6

(
x0 − y0√

4

)(
xj − x0√

4

)6

� (25)

This formula can be shown easily by using the expansion
of the Gaussian in terms of Hermite functions h0�x�:

e−�x−y�2 =
�∑

0=0

y0

0!h0�x�� (26)

h0�x�= �−1�0

(
d

dx

)0

e−x2� (27)

and by further expanding the Hermite function in the right-
hand side of Equation (26). It is known that this expansion
converges very quickly and the double infinite sum over
0 and 6 can be truncated at a reasonably small integer,
0 = 6 = 0max. It is known that 0max = 8 is sufficient to
achieve a relative error of 10−8 when ��yk −y0�/

√
4�< 1/2

and ��xj − x0�/
√

4�< 1/2 (Greengard and Strain 1991).
Now we consider a special case where all the target

points �xj� are in an interval with center x0 and length
√

4
and all the source points �yk� are in another interval with
center y0 and length

√
4. Then, the expansion (25) con-

verges quickly by truncating the sums over 0 and 6 at
0 = 6 = 0max. By substituting this into Equation (24), we
can approximate G�xj� as

G�xj��
N∑

k=1
qk

0max∑
6=0

0max∑
0=0

1
6!

1
0!

(
yk − y0√

4

)0

·h0+6

(
x0 − y0√

4

)(
xj − x0√

4

)6

=
0max∑
6=0

1
6!

(
xj − x0√

4

)6

·
{0max∑

0=0
h0+6

(
x0 − y0√

4

){
1
0!

N∑
k=1

qj

(
yk − y0√

4

)0}}
�

(28)

This expression shows that the computation of G�xj� can
be divided into three steps:
Step 1. Compute

A0 ≡
1
0!

N∑
k=1

qk

(
yk − y0√

4

)0

for 0= 0� � � � �0max�

Step 2. Compute

B6 ≡
0max∑
0=0

A0h0+6

(
x0 − y0√

4

)
for 6= 0� � � � �0max�
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Figure 1. Illustration of the FGT algorithm.

Note. The source points xi and target points yj lie in intervals of
length

√
4 centered at x0 and y0, respectively.

Step 3. Compute

G�xj�=
0max∑
6=0

B6

1
6!

(
xj − x0√

4

)6

for j = 1� � � � �M�

When 0max is fixed, Steps 1 and 3 require O�N� and
O�M� computational effort, respectively, while Step 2 can
be done in a constant time that does not depend either on N
or M . See Figure 1 for an illustration of the FGT algorithm.
In the general case, we divide the space into intervals

of length
√

4 and apply the above method to each of the
possible pairs of a source interval and a target interval. Let
K and J denote the source interval and the target inter-
val, respectively, and yK and xJ denote their centers. The
algorithm can be written as follows:
Step 1. Compute

A0�K ≡ 1
0!

∑
yk∈K

qk

(
yk − yK√

4

)0

for 0= 0� � � � �0max

and for each source interval K.
Step 2. Compute

B6�J ≡
∑
K

0max∑
0=0

A0�Kh0+6

(
xJ − yK√

4

)
for 6= 0� � � � �0max

and for each target interval J .
Step 3. Compute

G�xj�=
0max∑
6=0

B6�J

1
6!

(
xj − xJ√

4

)6

for j = 1� � � � �M�

Here J is the target interval xj belongs to.
Because each xj and yk belong to only one interval,

the total work for Step 1 and Step 3 is still O�N� and
O�M�, respectively, while Step 2 needs work proportional
to O�N 2

int�, where Nint is the number of intervals.

By applying the fast Gauss transform with source points
�ai−1

j ′ �, target points �ai
j�, and

qk = Pi−1�a
i−1
k �wk� (29)

4= 2�2�t� (30)

we can compute the discrete convolution (23) in O�N�
work.
Note that we gave only the basic idea of the FGT, and

in the actual algorithm several techniques to further speed
up the computation are employed. For the details of these
techniques, as well as for the error analysis and extensions
to higher dimensions, consult Greengard and Strain (1991),
Greengard and Sun (1998), and Baxter and Roussos (2002).
We conclude this subsection by noting that there are

other approaches to computing the discrete convolu-
tion (23) with computational effort less than O�N 2�. One
possibility is to use nonuniform FFTs, or variants of the
FFT for unequally spaced grids Dutt and Rokhlin (1993)
and Ware (1998). One of the disadvantages of this approach
is that it needs O�N logN� work when the number of grid
points is N , as opposed to O�N� work required by the FGT.
In addition, from our preliminary experiments, nonuniform
FFTs were seen to be about 10 times slower than FFTs
for equally spaced grids. We conclude that it is more effi-
cient to use problem-specific convolution methods such as
the FGT when they are available. However, convolution
based on nonuniform FFTs has a marked advantage that it
can deal with a much wider class of transition probability
density functions. We are exploring the possibility of fast
pricing methods based on this approach.

2.4. The DE-FGT Method for Barrier Options

The method described in the previous subsection gives a
straightforward approach to computing the price of discrete
down-and-out options using the combination of the DE for-
mula and the FGT. However, we can construct a more effi-
cient method by taking into account the properties of the
integrand in Equation (11) and by slightly modifying the
transformation (16).
As xi−1 →�, the integrand in Equation (11) approaches

zero faster than the Gaussian, because pG�xi − xi−1� is
Gaussian and Pi−1�xi−1� also approaches zero. If we apply
the ordinary double-exponential transformation to this inte-
gral, we have another factor that approaches zero dou-
ble exponentially. Although this gives rise to an advantage
that the integrand vanishes extremely fast and the integra-
tion region can be truncated at a smaller upper bound, it
also causes a disadvantage that the integrand changes very
rapidly and a finer mesh is necessary in the integration
region. According to our numerical experiments, this dis-
advantage exceeds the advantage.
Intuitively, it seems more appropriate to construct a

transformation that works as the DE transformation near
the lower end of the integral and approaches an identity
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transformation as xi−1 →�, because the original integrand
pG�xi −xi−1�Pi−1�xi−1� vanishes rapidly enough. We there-
fore adopt the following transformation:

x = ln
{
ec + exp

(
%

2
�1+ u− e−u�

)}
� (31)

This is obtained by replacing the eu in the sinh func-
tion with 1+ u and taking the logarithm. It has the prop-
erty that it approaches the DE transformation x = c +
e−c exp�−�%/2� exp�−u�� when u→−� and approaches
a linear transformation x = �%/2�u when u→�. The orig-
inal integral (15) is converted into

I =
∫ �

−�
f

(
ln
{
ec + exp

(
%

2
�1+ u− e−u�

)})

· exp
(
�%/2��1+ u− e−u�

)
�%/2��1+ e−u�

ec + exp
(
�%/2��1+ u− e−u�

) du� (32)

Applying the trapezoidal rule with step size h to this inte-
gral, we can find the sample points and the weights of the
modified DE formula as follows:

ai
j = ln

{
ec + exp

(
%

2
�1+ jh− e−jh�

)}
and (33)

wj = h
exp

(
�%/2��1+ jh− e−jh�

)
�%/2��1+ e−jh�

ec + exp
(
�%/2��1+ jh− e−jh�

) � (34)

By putting these into Equation (23) and computing the dis-
crete convolution using the FGT, we can construct a method
for pricing the discrete down-and-out options efficiently.
We name this the DE-FGT method.
Our numerical experiments show that numerical integra-

tion based on the transformation (31) requires only half
as many sample points as that based on (16) to attain the
same level of accuracy. We therefore use this transforma-
tion in the subsequent sections whenever an integral over a
half-infinite line is necessary.

2.5. Extensions of the Basic Algorithm

2.5.1. Time-Varying Barriers and Double Barriers.
So far we have assumed, for simplicity, that the barrier
level H is constant through time and the monitoring dates
are equally spaced between t = 0 and t = T . However, as
can be inferred from the derivation of the algorithm, there
is no difficulty in dealing with the case of time-varying
barriers or nonequally spaced monitoring dates. We can
also extend the algorithm to a double-barrier option with a
lower barrier HL and an upper barrier HH . In this case, the
integral appearing in convolution (11) becomes one over a
finite interval �hL�hH�, and one can use the finite-interval
version of the double-exponential transformation

x = hH +hL

2
+ hH −hL

2
tanh

(
%

2
sinhu

)
(35)

instead of (31).

2.5.2. Computation of Delta and Gamma. Our
method can also be used to compute the option delta
and gamma. To see this, differentiate both sides of Equa-
tions (10) and (11) with respect to the initial stock price S0.
Then, we know that :Pi/:S0 satisfies the same recur-
rence as Pi itself and can therefore be computed with our
DE-FGT method. After obtaining :Pn/:S0, we can differ-
entiate Equation (3) with respect to S0, put :Pn/:S0 in the
right-hand side, and compute the option delta :QDOC

0 /:S0.
The option gamma can be computed in the same manner.

2.5.3. Application to Merton’s Model. We can extend
our method to deal with the lognormal jump-diffusion
model introduced by Merton (1992). In this model, the
asset price follows the equation

Si = Si−1 exp
{(

r − q − 1
2�

2 − ;<
)
�t+�

√
�tz0

+
NP

t ��t�∑
l=1

(
4zl +? − 1

24
2
)}

� (36)

where �t is the time interval between ti−1 and ti, NP
t ��t�

is the number of jumps during this interval, which follows
a Poisson process with intensity <, and zl �l = 0�1� � � ��
are independent and follow the standard normal distribution
N�0�1�. The constants ? and 4 determine the mean and
the standard deviation of the jumps, respectively, and

; = e? − 1� (37)

In this model, the market becomes incomplete due to the
existence of jumps, and the standard argument for option
pricing based on the replicating portfolio no longer holds.
Merton (1992) derives an option-pricing formula under
the assumption that jump risk is diversifiable so that risk-
neutral pricing is appropriate. Bates (1996) and Naik and
Lee (1990) derive option-pricing formulas in representative
agent general equilibrium models. The form of their pric-
ing equations are identical to the Merton formula, but with
altered parameter values that account for the market price
of jump risk. The pricing problems in these models are
therefore equivalent from a computational viewpoint: One
simply substitutes the appropriate “risk-adjusted” parame-
ters into the risk-neutral pricing formula.
We can apply the change of variable

xt = ln�St�−
(
r − q − 1

2�
2 − ;<

)
t (38)

to Equation (36) and obtain an equation for xi:

xi = xi−1 +�
√

�tz0 +
NP

t ��t�∑
l=1

(
4zl +? − 1

24
2
)
� (39)

Note that the Poisson probability can be written as

Pr
(
NP

t ��t�= n
)= e−<�t �<�t�n

n! � (40)
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and when the number of jumps is n, xi − xi−1 follows a
Gaussian distribution with the variance and mean given by

�2
n = �2�t+ n42 and (41)

@n = n
(
? − 1

24
2
)
� (42)

respectively. We can then write the tpdf of xi as

p�xi � xi−1�= pM�xi − xi−1�

≡
�∑

n=0
e−<�t �<�t�n

n!
1√
2%�n

· exp
{
− �xi − xi−1 −@n�

2

2�2
n

}
� (43)

As can be easily seen, the probability density

pM�xi − xi−1�

has the following expansion, which corresponds to Equa-
tion (25) in the Gaussian case (Broadie and Yamamoto
2003):

pM�xi − xi−1�=
0max∑
6=0

0max∑
0=0

1
6!

1
0!

(
xi − x′′
√
2�

)0

·
{ �∑

n=0
e−<�t �<�t�n

n!
1√
2%�n

(
�

�n

)0+6

·h0+6

(
x′ − x′′ +@n√

2�n

)}(
xi−1 − x′
√
2�

)6

�

(44)

where x′ and x′′ are the centers of intervals of length
√
2�

containing xi−1 and xi, respectively. Comparing this expres-
sion with Equation (25), we know that we can construct
an algorithm similar to the FGT by replacing the Hermite
function with a weighted sum of shifted and scaled Hermite
functions. Specifically, we have only to replace the formula
to compute B6 (see §2.3) with the following:

B6 =
0max∑
6=0

A0

{
Njump∑
n=1

e−<�t �<t�n

n!
1√
2%�n

(
�

�n

)0+6

·h0+6

(
x′ − x′′ +@n√

2�n

)}
� (45)

where we have truncated the sum over the number of jumps
at Njump. This algorithm enables us to compute the convo-
lution of pM�x� and a given function almost as easily as
in the Gaussian case. We refer the reader to Broadie and
Yamamoto (2003) for more detailed derivation of the algo-
rithm and implementation issues.

2.5.4. Barrier Options with Bermudan Features. It
is also easy to extend our DE-FGT method to the pricing of
barrier options with Bermudan features. To do this, we use
the DE-FGT method for Bermudan options, which we will

introduce in §4 as a basis. In this method, we use backward
recursion and compute the continuation value at time ti−1
as a convolution of the option price Qi�xi� at time ti and
the transition probability density function. Because Qi�xi�
has a discontinuity in the derivatives at the optimal exer-
cise boundary xi = xc, we divide the integration region into
two parts, namely �−�� xc� and �xc���, and apply the DE
formula to each of them.
To price barrier options such as down-and-out options

with a Bermudan feature using this algorithm, we only have
to replace the lower integral region with �hi� xc�, where hi

is the barrier level given by Equation (12), and use the DE
formula (35) for a finite interval.

2.6. Numerical Results

We implemented the DE-FGT method for European down-
and-out call options under the Black-Scholes model and
Merton’s model and studied its speed and accuracy. All of
the experiments, including those in the later sections, were
done on a 266 MHz Pentium II PC with Red Hat Linux
using gnu C++ compiler, unless otherwise noted.

2.6.1. Down-and-Out Call Option Under the Black-
Scholes Model. We show results for European down-and-
out call options under the Black-Scholes model in Figure 2.
The parameters are S0 =K = 100, T = 0�2, r = 0�1, q = 0,
and � = 0�3. We varied the barrier level from H = 91 to
H = 99 in increments of 2 and set the number of monitor-
ing dates to n= 5, 25, or 50. These are the values used in

Figure 2. European down-and-out call option price
under the Black-Scholes model.
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Table 1. European down-and-out call prices under the Black-Scholes
model.

n= 5 n= 25 n= 50 n=�
H = 91 6.1872900302 6.0320261243 5.9770686565 5.8077713405
H = 93 5.9997553594 5.6875323983 5.5843399451 5.2768140270
H = 95 5.6711051343 5.0814151587 4.9067890354 4.3975025272
H = 97 5.1672453684 4.1158152250 3.8339777052 3.0595631676
H = 99 4.4891724312 2.8124392982 2.3363868958 1.1707931057

Broadie et al. (1997), Reiner (2000), and Tse et al. (2001).
As reference prices against which to compute the errors, we
used the values shown in Table 1, which were obtained by
Reiner’s convolution method (2000) with the cubic fitting
quadrature and N = 32�000 grid points for each date. These
values agree with the results of Tse et al. (2001) to at least
10 digits after the decimal point for n= 5 and n= 25. For
comparison, we also show the prices of the continuously
monitored down-and-out call options (denoted as n = �)
computed using the analytical formula (Kwok 1998).
In Figure 2, the vertical axis and the horizontal axis rep-

resent the error in the calculated option price and the com-
putational time, respectively, both in log scale. The errors
are root mean square errors of five options with different
barrier levels, and the time is for computing one option
price. In the computation of Equation (32), we truncated
the integral at the lower bound umin =−4�0 and the upper
bound umax = lnH + 5�

√
T and used N sample points to

approximate the integral. The value of N is also shown in
the graph. For comparison, we also plotted the error and the
computational time of Reiner’s method with up to 16,000
points and Broadie et al.’s (BGK) (1999) trinomial lattice
method with 5,000 time steps. For the former method, we
truncated the integral of Equation (11) at the upper bound
of 10�

√
T . For the latter method, the computation was

done on a 2.0 GHz Xeon PC, and their computation times
were multiplied by 4, for the Xeon machine was found to
be about four times faster than the Pentium II machine.
As can be seen from the graph, our method converges

much faster than Reiner’s method and attains the same level
of accuracy. Compared with the trinomial lattice method,
our method gives much more accurate prices in much
shorter time. The error of our method decreases almost
exponentially with N , because as N is incremented by a
constant, the position of the corresponding point in the
graph moves downward by a constant distance. Finally, our
method is extremely fast, because even the option with
50 monitoring dates can be priced within 0.5 CPU second
to an accuracy of 10−10.
As an example of down-and-out call options with longer

times to maturity and larger number of monitoring dates,
we show the results for one-year �T = 1�0� options with
252 monitoring dates in Figure 3. Other parameters are the
same as those for options mentioned above. The reference
prices computed by Reiner’s method with 64,000 points are

shown in Table 2. In this case, the computation was done
on a 2.0 GHz Xeon PC.
It can be seen from the graph that the convergence behav-

ior of both Reiner’s method and our DE-FGT method is the
same as that for options with a smaller number of monitor-
ing dates, and the DE-FGT method is superior when higher
accuracy is needed.

2.6.2. Up-and-Out Call Option Under the Black-
Scholes Model. Up-and-out call options, which are nul-
lified when the underlying asset price reaches a barrier
level from below, are known to present difficulties for
most numerical pricing procedures due to the discontinu-
ous nature of their payoff. However, our DE-FGT method,
as well as Reiner’s convolution method, does not suffer
from this at all. In fact, all we need to do is to replace the
half-infinite integration interval �k��� in Equation (9) with
a finite interval �k�hn� and use the DE formula based on
Equation (35).

Figure 3. European down-and-out call option price
under the Black-Scholes model (T = 1�0,
252 monitoring dates).
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Table 2. European down-and-out call prices
under the Black-Scholes model
(T = 1�0, 252 monitoring dates).

n= 252

H = 91 11�3121524522
H = 93 9�7292574722
H = 95 7�8438846454
H = 97 5�6306538930
H = 99 3�1673854834

Results for up-and-call options with S0 = K = 100,
T = 0�2, r = 0�1, q = 0, and � = 0�3 are illustrated in
Figure 4. Here, the barrier level is varied from H = 121 to
H = 129 and the number of monitoring dates was set to n=
5, 25, or 50. The reference values computed by Reiner’s
method are shown in Table 3. In this case, the computation
was also done on a 2.0 GHz Xeon PC. It can easily be seen
from the graph that both our method and Reiner’s method
can compute the prices with the same speed and accuracy
as for the down-and-out call options.

2.6.3. Down-and-Out Call Option Under Merton’s
Model. We also computed European down-and-out call
option prices under Merton’s model. The parameter values
are the same as for the down-and-out call options under
the Black-Scholes model with T = 0�2, and for the jump
parameters, we used < = 2�0, ? = 0, and 4 = 0�3. The

Figure 4. European up-and-out call option price under
the Black-Scholes model.
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Table 3. European up-and-out call prices
under the Black-Scholes model.

n= 50

H = 121 2�9102779978
H = 123 3�3933815021
H = 125 3�8446456577
H = 127 4�2550087291
H = 129 4�6196180375

reference prices computed by the convolution method with
N = 64�000 are shown in Table 4.
Figure 5 shows the convergence of the DE-FGT method

and the convolution method. In this case, we extended the
upper bound of integral Equation (11) for the convolution
method to 30�

√
T to attain the same level of accuracy as

in the Black-Scholes case. For the DE-FGT method, we
used the same value of umin as in the Black-Scholes case
and increased umax to lnH +5�

√
T . Again, it is clear from

the graph that the error of our method decreases exponen-
tially with N .

3. Lookback Options

3.1. Reduction to a One-Dimensional Problem

Here we formulate the problem of pricing discrete look-
back put options using the notation of §2.1. A lookback
put option on an asset is the right to sell the asset at matu-
rity at the highest asset price between initial and maturity
dates. Lookback call options are defined similarly and can
be priced in a completely parallel manner, so here we deal
with only put options. The asset price is monitored on a
finite number of dates for discrete lookback options. For
details, see Goldman et al. (1979) or Broadie et al. (1999).
Let us consider a discrete lookback option with matu-

rity T and monitoring dates �ti�
n−1
i=1 . Also, denote the asset

price on these monitoring dates by �Si�
n−1
i=1 and let

Mi = max
1�k�i

Sk� (46)

Then, the payoff of this option at maturity can be written
as Mn − Sn. Under the risk-neutral probability measure Q,
the price of the option at time 0 is given by

QLP
0 �S0�= e−rT E0�Mn − Sn�� (47)

Table 4. European down-and-out call option prices
under Merton’s model.

n= 5 n= 25 n= 50

H = 91 8.6304893283 8.2843010923 8.1796345791
H = 93 8.2883832522 7.7161307812 7.5470008678
H = 95 7.7707276025 6.8204546460 6.5607004413
H = 97 7.0559324990 5.4877084298 5.0916199042
H = 99 6.1639697190 3.7626493142 3.1078183986
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Figure 5. European down-and-out call option price
under Merton’s model.
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where Et�·� is the conditional expectation operator under Q
given information up to time t.
Equation (47) involves two random variables Sn and

Mn at time T , so we need the joint distribution function
of them to compute the expectation value. To reduce the
dimensionality of the problem, we apply a change of mea-
sure (see Babbs 2000, Andreasen 1998) and rewrite Equa-
tion (47) as

QLP
0 �S0�= e−qT S0E

′
0

[
Mn

Sn

− 1
]
� (48)

where E ′
t�·� denotes the conditional expectation operator

under a new measure Q′ defined by

dQ′ = Sn

Ste
�r−q��T−t�

dQ� (49)

Under this measure,

W ′
t =Wt −�t (50)

becomes a Brownian motion and the stochastic differential
equation (1) becomes

dSt = �r − q +�2�St dt+�St dW ′
t � (51)

By further introducing the log stock prices

si = ln�Si/S0� and (52)

mi = ln�Mi/S0�� (53)

we can finally write the option price as

QLP
0 �S0�= e−qT S0E

′
0�e

mn−sn − 1�� (54)

This shows that it is sufficient to find the distribution of
mn − sn to compute the option price.
To compute Equation (54), we consider the distribution

of mi − si �i = 0�1� � � � � n�. Apparently, the distribution
function is zero when mi − si < 0 and there is a finite
probability mass at mi − si = 0. We therefore represent
the distribution of mi − si by two quantities, namely, a
scalar ci, which represents the probability that mi − si = 0,
and a function g�x� �x > 0�, which represents the proba-
bility density in the region mi − si > 0. Note that the pdf
of mi − si can be formally written as ci4�x�+ gi�x�, where
4�x� is the Dirac delta function. At time 0, we have

c0 = 1 and (55)

g0�x�= 0 (56)

by definition. To compute ci and gi�x� given ci−1 and
gi−1�x�, we use the identity

mi − si =max�0�mi−1 − si�

=max�0� �mi−1 − si−1�+ �si−1 − si��� (57)

Because si−1 − si is an increment of the Brownian motion
between time ti−1 and ti and is independent of mi−1− si−1,
Equation (57) shows that the pdf of mi − si is obtained
by computing the convolution of the pdf of mi−1 − si−1
with that of si−1− si and collecting all the probability mass
corresponding to mi − si < 0 to the point mi − si = 0. In
summary, we have the following recursion formula:

ḡi�x�=
∫ �

−�
�ci−14�y�+ gi−1�y��f �x− y�dy

= ci−1f �x�+
∫ �

0
gi−1�y�f �x− y�dy� (58)

ci =
∫ 0

−�
ḡi�x�� (59)

gi�x�= ḡi�x� �x > 0�� (60)

where f �x� is the probability density function of si−1 − si
given by

f �x�= 1√
2%�t�

exp
{
−
(
x+ (

r − q + 1
2�

2
)
�t

)2
2�2�t

}

= pG
(
x+ �r − q + 1

2�
2��t

)
� (61)

Equations (55), (56), (58), (59), and (60), along with Equa-
tion (54), provide us with a means of computing the
lookback option price by a series of convolutions and
integrations.
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3.2. Application of the DE-FGT Method

The application of the DE formula and the FGT is now
straightforward. We first rewrite the integral (58) as

ḡi�x�= ci−1f �x�+
∫ �

−b
gi−1�y

′ + b�pG�x− y′�dy′� (62)

where

b = (
r − q + 1

2�
2
)
�t� (63)

This convolution has the same form as that in Equa-
tion (11), and the method described in the previous section
can be applied. After calculating gi�x�, we can use the DE
formula again to compute ci by Equation (59).

3.3. Extensions of the Basic Algorithm

3.3.1. Pricing of Hindsight Options. Using the nota-
tion we have defined in §3.1, the discrete hindsight call
option with strike K is defined as an option whose payoff
at T is �Mn − K�+. To compute the price QHS

0 �S0�K� of
this option, we use the following relationship between the
hindsight calls and the lookback puts (see, e.g., Broadie
et al. 1999):

QHS
0 �S0�K�=QLP

0 �S0�K�+ S0 − e−rT K� (64)

where QLP
0 �S0�M� is the price of a generalized lookback

option for which the historical maximum asset price at
time 0 is regarded to be a given value M instead of S0. We
can compute the price of such an option easily by changing
the distribution of m0 − s0 from 4�x� (as given in Equa-
tions (55) and (56)) to 4�x− ln�M/S0��. Then, by putting
the result into Equation (64), we obtain the hindsight option
price.

3.3.2. Application to Merton’s Model. We next con-
sider the pricing of the lookback option under Merton’s
model (1995). Andreasen (1998) shows that under the prob-
ability measure Q′ defined by Equation (49), Si follows a
new equation:

Si = Si−1 exp
{
�r − q + 1

2�
2 − ;<��t+�

√
�tz′0

+
N ′P

t ��t�∑
l=1

�4z′l +? + 1
24

2�

}
� (65)

where N ′P
t ��t� follows a Q′ Poisson process with intensity

<′ = <e? (66)

and z′l �l = 0�1� � � �� are independent and follow the stan-
dard normal distribution N�0�1� under Q′. If we define the
log stock price by Equation (52), we can show that si−1− si
follows the distribution

f �x�=
�∑

n=0
e−<′�t �<

′�t�n

n!
1√
2%�n

exp
{
− �x+@n�

2

2�2
n

}
� (67)

where

�2
n = �2�t+ n42 and (68)

@n =
(
r − q + 1

2�
2 − ;<

)
�t+ n

(
? + 1

24
2
)
� (69)

Then, we have only to replace the function f �x� given by
Equation (61) with that given by Equation (67) in the com-
putation of Equation (58). The resulting convolution can
be computed efficiently by the DE-FGT method explained
in §2.5.3.

3.4. Numerical Results

3.4.1. Hindsight Call Option Under the Black-Scholes
Model. Figure 6 shows the results of our DE-FGT
method applied to hindsight call options under the Black-
Scholes model. The parameters are S0 =K = 100, T = 0�5,
r = 0�1, q = 0, and � = 0�3. The number of monitoring
dates are n = 5, 25, or 50. As reference prices, we used
the values given in Tse et al. (2001), which were computed
using the tridiagonal probability algorithm and are claimed
to be accurate up to 10 decimal places. These values, along
with the computational time for the tridiagonal algorithm,
are shown in Table 5. For comparison, we also included
the results obtained with Broadie et al.’s (1999) trinomial
lattice method with 5,000 time steps.

Figure 6. Hindsight call option price under the Black-
Scholes model.
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Table 5. Hindsight call option prices under
the Black-Scholes model.

n= 5 n= 25 n= 50

Price 14.9413046399 17.6028684623 18.3264598300
Time 0.66s 20.55s 442.48s
(tridiagonal)

Here we again see that our method is extremely fast
and attains an accuracy of 10−10 within a fraction of one
second even for the case of n = 50. The lattice method
gives reasonably accurate results, but requires much longer
computational time. It is not easy to compare the perfor-
mance of our method with that of the tridiagonal algorithm,
because the implementation in Tse et al. (2001) is based
on MATLAB, while ours is based on C++. However, we
can point out that while the computational time of the
tridiagonal probability algorithm increases drastically with
the number n of monitoring dates, our computational time
seems to increase only as O�n

√
n� when the accuracy of

the result is fixed. This is natural, because the width of the
transition probability density function p�xi � xi−1� is pro-
portional to

√
�t =√

T /n, and therefore we need the step
size proportional to

√
T /n to attain the same level of accu-

racy. Hence, the computational work for each convolution
is O�

√
n� and the total work is O�n

√
n�.

4. Bermudan Options

4.1. The DE-FGT Method for Bermudan Options

The rational price of Bermudan options can be calculated
as a discounted expectation value (under the risk-neutral
measure) of the payoff under the optimal (adapted) exercise
strategy, that is,

Q0�S0�= sup
C

e−rCE0�hC�SC��� (70)

where ht�St� is the payoff from exercise at time t and C
is a stopping time that takes a value on the discrete set
�ti�

n
i=1. It is well known that Q0�S0� can be computed by

the backward recursion

Qi�Si�=max�hi�Si��Ci�Si��� (71)

Ci�Si�= e−r�tEi�Qi+1�Si+1��� (72)

where Qi and Ci are the option value and the continuation
value at time ti, respectively, and Ei�·� is the expectation
value operator given information up to time ti. Equa-
tion (72) can be written more explicitly using the transition
probability density function p�Si+1 � Si�:

Ci�Si�= e−r�t
∫ �

0
p�Si+1 � Si�

·max�hi+1�Si+1��Ci+1�Si+1��dSi+1� (73)

From the numerical point of view, Equation (73) is dif-
ficult to evaluate accurately because the integrand contains
the max operator and its higher-order derivatives are dis-
continuous. For the standard Bermudan option,

hi�Si�= �Si −K�+� (74)

and there is a value Sc
i called the optimal exercise price

for each exercise date i �i= 0�1� � � � � n� such that hi�Si� >
Ci�Si� for S > Sc

i and hi�Si� � Ci�Si� for S � Sc
i . Hence,

the higher-order derivatives of the integrand are discontin-
uous at Si = Sc

i . This is the main reason why the conver-
gence of the high-order multinomial methods (Alford and
Webber 2001, Broadie and Yamamoto 2003) is slower for
Bermudan options than for European options. The DE for-
mula applied directly to Equation (73) will not work well
either, for the efficiency of the DE formula hinges on the
assumption that the integrand is analytical.
We therefore choose to locate the optimal exercise price

at each exercise date by the bisection method, divide the
integration region into two at the price, and then apply the
DE formula for each of the subregions. We move to the log
asset price defined by Equation (6) and denote the log opti-
mal exercise price at ti by xc

i . Then, Equation (73) can be
rewritten as

Ci�xi�= e−r�t

{∫ xc
i+1

−�
p�xi+1 � xi�hi+1�xi+1�dxi+1

+
∫ �

xc
i+1

p�xi+1 � xi�Ci+1�xi+1�dxi+1

}
� (75)

Both of the integrals appearing in Equation (75) become
convolutions under the Black-Scholes or Merton’s model
and can be computed efficiently by the DE-FGT methods
we have described in §§2.4 and 2.5.3, respectively.
To be more specific, assume that we know the value

of xc
i+1, that �ai+1

j � and �bi+1
j � are the sample points of

the DE formula in the regions �xc
i+1��� and �−�� xc

i+1�,
respectively, and that we have the the values of hi+1�xi+1� at
points �ai+1

j � and the values of Ci+1�xi+1� at points �bi+1
j �.

Clearly, these assumptions hold for i = n − 1. Then, one
time step of our method proceeds as follows:
(1) Determine a lower bound xc

L and an upper bound xc
H

for xc
i . Then, using the fact that the value of Ci�xi� for an

arbitrary point xi can be computed from the given values
of hi+1�xi+1� and Ci+1�xi+1� through Equation (75) and the
DE formula, compute the log optimal exercise price xc

i by
the bisection method.
(2) Generate the sample points �ai

j ′� of the DE formula
in the region �xc

i ���. Also, generate sample points �bi
j ′� of

the DE formula in the region �−�� xc
i �.

(3) Compute the values of Ci�xi� at �ai
j ′� and �bi

j ′� by
the DE-FGT method.
It may appear that the computation of xc

i by the bisec-
tion method requires extra work and lowers the efficiency
of this method. However, we can reduce this work by also
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using the FGT for Step 1 above. Let m and N denote the
number of points used in the bisection and the number of
sample points used in the DE formula, respectively. If direct
evaluation is used in the bisection to compute Ci�xi�, the
computational work is O�mN�. Instead, we can perform
Steps 1 and 2 of the FGT (see §2.3) before the bisection,
using the sample points �ai+1

j � and the values of hi+1�xi+1�
there. Note that in these two steps, no information on the
target points is necessary. We then have the coefficients
B6�J . Similarly, we perform Steps 1 and 2 using the sample
points �bi+1

j � and the values of Ci+1�xi+1� there, and obtain
another set of coefficients B′

6�J . Once we have these coef-
ficients, we can evaluate Ci�xi� for each xi in O�1� work,
using Step 3 of the FGT. Hence, the work for the bisec-
tion can be reduced to O�m�. Note that the computation of
B6�J and B′

6�J was originally done in Step 3 of the above
algorithm, so they incur no extra work.
It is also possible to reduce m by a judicious choice of

the lower bound xc
L and the upper bound xc

H . For example,
because the optimal exercise boundary of the Bermudan
call option is a monotonically decreasing function of t, xc

i+1
gives a lower bound on xc

i . An upper bound can easily be
obtained from the boundary for an infinite maturity Amer-
ican call option.
The DE-FGT method we proposed in this subsection has

computational work of O�n�m+N�� when the number of
exercise dates is n. It can also be expected that the compu-
tational error decreases faster than any negative power of N
because both of the integrands appearing in Equation (75)
are analytical. We will confirm this in the next subsection.

4.2. Numerical Results

4.2.1. Bermudan Call Options Under the Black-
Scholes Model. We show results for Bermudan call
options under the Black-Scholes model in Figure 7. The
parameters are S0 = 100, T = 0�5, r = 0�03, q = 0�07,
� = 0�2, and n = 10. The strike price K was varied from
90 to 110 in increments of 5. The reference values com-
puted using the multinomial FGT method (Broadie and
Yamamoto 2003) are shown in Table 6. The multinomial-
FGT method is a variant of the multinomial method, which
has a large number of branches and which uses the FGT to
speed up the computation of the continuation values. The
number of branches used is 2b+ 1, where b = 409�600.
In Figure 7, we show the results of three numerical meth-

ods: the binomial method, the multinomial-FGT method,
and our DE-FGT method. The number of time steps for
the binomial method, the value of b for the multinomial-
FGT method, and the number of sample points N for the

Table 6. Bermudan call option price under the Black-Scholes
model.

K = 90 K = 95 K = 100 K = 105 K = 110

Price 10.73001013 7.32288562 4.75727741 2.94105489 1.73255637

Figure 7. Bermudan call option price under the Black-
Scholes model.
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DE-FGT method are also shown in the graph. It can be
seen from the graph that the binomial method is accept-
able if low accuracies are required, but if higher accuracies
are required, the multinomial-FGT method is much faster.
Our DE-FGT method is even faster and shows exponen-
tial decrease of the absolute error, attaining an accuracy of
10−10 within one CPU second.

4.2.2. Bermudan Put Options Under Merton’s
Model. Finally, we show pricing results for Bermudan put
options under Merton’s jump-diffusion model. The param-
eters are S0 = 40, K = 30 to 50 (in increments of 5),
T = 1�0, r = 0�08, q = 0, � = √

0�05, < = 5�0, ? = 0,
and 4 = √

0�05. We show the reference values computed
using a modified version of the multinomial-FGT method
(referred to as FGT II in Broadie and Yamamoto 2003)
with b = 102�400 in Table 7.
Here we compare the performance of four numerical

methods: Amin’s algorithm (1993), FGT I, FGT II (Broadie
and Yamamoto 2003), and our DE-FGT method. FGT I is
a variant of Amin’s algorithm that uses the FGT to reduce
the work of computing the continuation values at each time
step from O�N 2� to O�N�. FGT II is a multinomial-FGT
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Table 7. Put option prices under Merton’s model.

K = 30 K = 35 K = 40 K = 45 K = 50

Price 2.70636133 4.58094453 6.99527475 9.90671277 13.25586096

method that takes the effect of jumps into account. See
Broadie and Yamamoto (2003) for more details about these
two methods. The convergence results of the four methods
are shown in Figure 8. The numbers in the graph represent
the number of grid points or sample points used at each
time step. Again, the two FGT-based methods, FGT I and
FGT II, converge much faster than Amin’s algorithm, but
the DE-FGT method shows exponential convergence and is
even faster.

5. Conclusion
In this paper, we have shown that under the Black-Scholes
framework, the price of many path-dependent and quasi
path-dependent options—such as the barrier, lookback,
hindsight, and Bermudan options—can be computed by a
series of convolutions of the Gaussian distribution and a
known function. Using this fact, we proposed a new pricing
algorithm, the DE-FGT method, that computes this convo-
lution by a combination of the double-exponential integra-
tion formula and the FGT.
The computational work of our method is O�nN� when

the number of monitoring/exercise dates is n and the num-
ber of sample points at each date is N . Theoretically, the
errors of our method decrease faster than any negative
power of N , and our experiments on the above four options
show an exponential decrease of the errors. We also extend
the method to Merton’s lognormal jump-diffusion model

Figure 8. Bermudan put option price under the Merton
jump-diffusion model.
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and obtain the same order of computational work and con-
vergence properties as in the Black-Scholes case.
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