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In this paper we provide valuation formulas for several types of American options on two or more
assets. Our contribution is twofold. First, we characterize the optimal exercise regions and provide
valuation formulas for a number of American option contracts on multiple underlying assets with
convex payoff functions. Examples include options on the maximum of two assets, dual strike options,
spread options, exchange options, options on the product and powers of the product, and options on
the arithmetic average of two assets. Second, we derive results for American option contracts with
nonconvex payoffs, such as American capped exchange options. For this option we explicitly identify
the optimal exercise boundary and provide a decomposition of the price in terms of a capped exchange
option with automatic exercise at the cap and an early exercise premium involving the benefits of
exercising prior to reaching the cap. Besides generalizing the current literature on American option
valuation our analysis has implications for the theory of investment under uncertainty. A specialization
of one of our models also provides a new representation formula for an American capped option on a
single underlying asset.
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1. INTRODUCTION

In this paper we analyze several types of American options on two or more assets. We study
options on the maximum of two assets, dual strike options, spread options, and others. For
each of these contracts we characterize the optimal exercise regions and develop valuation
formulas.

Our analysis provides new insights since many contracts that are traded in modern finan-
cial markets, or that are issued by firms, invoAmericanoptions on several underlying
assets. A standard example is the case of an index option that is based on the value of a
portfolio of assets. In this case the option payoff upon exercise depends on an arithmetic
or geometric average of the values of several assets. For example, options on the S&P 100,
which have traded on the Chicago Board of Options Exchange (CBOE) since March 1983,
are American options on a value weighted index of 100 stocks. Other contracts pay the
maximum of two or more asset prices upon exercise. Examples include option bonds and
incentive contracts. Embedded American options on the maximum of two or more assets
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can also be found in firms choosing among mutually exclusive investment alternatives, or
in employment switching decisions by agents. American spread options and options to ex-
change one asset for another also arise in several contexts. Gasoline crack spread options,
traded on the NYMEX (New York Mercantile Exchange), are American options written
on the spread between the NYMEX New York Harbor unleaded gasoline futures and the
NYMEX crude oil futures. Likewise, heating oil crack spread options, also traded on the
NYMEX, are American options on the spread between the NYMEX New York Harbor
heating oil futures and the NYMEX crude oil futures. Options on foreign indices with
exercise prices quoted in the foreign currency can now be bought by American investors
(one example is the option on the Nikkei index warrants traded on the AMEX; another is the
option on the CAC40 on the MONEF). Stock tender offers, which are American options to
exchange the stock of one company for the stock of another, are also common in financial
markets.

In most cases the underlying assets in these contracts pay dividends or have other cash
outflows. It is well known that standard American options written on a single dividend
paying underlying asset may be optimally exercised before maturity. The same is true
for options on multiple dividend paying assets: The American feature is valuable and
exercise prior to maturity may be optimal. However, when several asset prices determine
the exercise payoff, the shape of the exercise region often cannot be determined by simple
arguments or by appealing to the intuition known for the single asset case. Furthermore, the
structure of the exercise region may differ significantly among the various contracts under
investigation. As a result it is important to identify optimal exercise boundaries in order to
provide a thorough understanding of these contracts.

In the last few years there has been much progress in the valuation of standard American
options written on a single underlying asset (see, e.g., Karatzas 1988, Kim 1990, Jacka 1991,
and Carr, Jarrow, and Myneni 1992). The optimal exercise boundary and the corresponding
valuation formula have also been identified for American call options with constant and
growing caps, which are contracts with nonconvex payoffs (see Broadie and Detemple
1995). European options on multiple assets have been studied previously. European options
to exchange one asset for another were analyzed by Margrabe (1978). Johnson (1981) and
Stulz (1982) provide valuation formulas for European put and call options on the maximum
or minimum of two assets. Their results are extended to the case of several assets by
Johnson (1987).

The case of American options on multiple dividend-paying underlying assets, however,
has received little attention in the literature. In recent independent work, Tan and Vetzal
(1994) perform numerical simulations to identify the immediate exercise region for some
types of exotic options. Independent work by Geltner, Riddiough, Stojanovic (1994) also
provides insights about the exercise region for a perpetual option on the best of two assets
in the context of land use choice.

We start with an analysis of a prototypical contract with multiple underlying assets and
a convex payoff: an American option on the maximum of two assets. One of the surprising
results obtained is that it is never optimal to exercise this option prior to maturity when the
underlying asset prices are equal, even if the option is deep in the money and dividend rates
are very large. This counterintuitive result rests on the fact that delaying exercise enables
the investor to capture the gains associated with the event that one asset price exceeds the
other in the future. This gain is sufficiently important to offset the benefits of immediate
exercise even when the underlying asset prices substantially exceed the exercise price of
the option. Beyond its implications for the valuation of financial options, this result is
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also of importance for the theory of investment under uncertainty (e.g., Dixit and Pindyck
1994). In this context our analysis provides a new motive for waiting to invest—namely
the benefits associated with the possibility of future dominance of one project over the
other investments available to the firm. In a global economy in which firms are constantly
confronted with multiple investment opportunities this motive may well be at work in
decisions to delay certain investments. We also derive an interesting divergence property of
the exercise region: For equal underlying asset prices, the distance to the exercise boundary
is increasing in the prices.

Another contribution of the paper is a new representation formula for a class of contracts
with nonconvex payoffs, such as capped exchange options. We show that the optimal
exercise policy consists in exercising at the first time at which the ratio of the two underlying
asset prices reaches the minimum of the cap and the exercise boundary of an uncapped
exchange option. A valuation formula, in terms of the uncapped exchange option and the
payoff whenthe cap is reached, follows. We also provide an alternative representation of the
price of this option which involves the value of a capped exchange option with automatic
exercise at the cap and an early exercise premium involving the benefits of exercising
prior to reaching the cap. The optimal exercise boundary, in turn, is shown to satisfy a
recursive integral equation based on this decomposition. When one of the two underlying
asset prices is a constant our formulas provide the value of an American capped option on
a single underlying asset (Broadie and Detemple 1995). Hence, beside generalizing the
literature on American capped call options we also produce a new decomposition of the
price of such contracts.

American max-options are analyzed in Section 2. Section 3 focuses on American spread
options and the special case of exchange options. In Section 4 we build on the results of
Section 3 in order to value American capped exchange options which have a nonconvex
payoff function. American options based on the product of underlying asset prices, such as
options on a geometric average, are analyzed in Section 5. In Section 6 American options
on arithmetic averages are examined. Generalizations to the cas@dérlying assets are
given in Section 7 and proofs of the propositions are relegated to the appendices.

2. AMERICAN OPTIONS ON THE MAXIMUM OF TWO ASSETS

We consider derivative securities written on a pair of underlying assets which may be
interpreted as stocks, indices, futures prices, or exchange rates. The prices of the underlying
assets at timg, §t, andS?, satisfy the stochastic differential equations

(2.1) dg = S - spdt + 01d7]
(2.2) d§ = [ — 8)dt + 02d 7]

wherez! andz? are standard Brownian motion processes with a constant correjation
To avoid trivial cases, we assume throughout that< 1. Herer is the constant rate of
interest; > 0 is the dividend rate of assietando; is the volatility of the price of assét
i = 1,2. The price processes (2.1) and (2.2) are represented in their risk neutral form.
Throughout the papeE; denotes the expectation at tirnander the risk neutral measure.

Let C;(S) denote the theoretical value of an American call option at tiroe a single
asset (e.g., asset 1 above) that matures atTimad has a strike price &€. Throughout
the paper, this option is referred to as #tandardoption. LetCX(S!, §) denote the
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FIGURE 2.1. lllustration ofB; for a standard American call option.

theoretical value of an American call option on the maximum of two assets, or max-option
for short. The payoff of the max-option, if exercised at some tirhefore maturityT, is
(max(§, §) — K)*. The notationx* is short for maxx, 0). The optimal or immediate
exercise region of an American call on a single underlying assetg (S, t) : Ci(]) =

(8§ — K)*}. Similarly, for an American call option on the maximum of two assets, the
immediate exercise region&* = {(§, ,t) : CX(F, ) = (max S, §) — K)*}.

Standard American Options

Before proceeding further, we review some essential results for standard American op-
tions (i.e., on a single underlying asset). IBtdenote the immediate exercise boundary
for a standard option on a single underlying asset. Thdiss inf{S : (S,t) € £}. An
illustration of B is given in Figure 2.1.

Van Moerbeke (1976) and Jacka (1991) show tBais continuous. Kim (1990) and
Jacka (1991) show thd; is decreasing ih. Kim (1990) shows thaBt- = lim{_,1 B; =
max((r /8)K, K). Merton (1973) shows thd&; is bounded above and derives a formula for
B_ = limi_, _ B;. Jacka (1991) shows that the option valli¢S) is continuous and
the immediate exercise regidhis closed.

Exercise Region of American Max-Options

How do the properties of the exercise region for a standard option compare to those for
a max-option? For a standard American optig8,t) € £ implies(AS,t) € & for all
A > 1.1 By analogy, an apparently reasonable conjecturé fois

1See Proposition A.1 in Appendix A for a proof.
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CoNJECTURE2.1. (S, F.t) € X implies (M S, 1., t) € €% forall o > 1 and
Ao > 1.

For a call option on a single asset with a positive dividend rate, immediate exercise is
optimal for all sufficiently large asset values. That is, there exists a corlgtanich that
(S,1) € Eforall § > M. Hence a reasonable conjecture £dtis

CONJECTURE2.2. If8§; > 0 ands, > O then there exist constant$, andM, such that
(S, F.t) e EX forall § > M; and all§ > M.

For standard options the exercise regiois convex with respect to the asset price. The
analogous conjecture f&r* is

CONJECTURE2.3. (!, 1) € £Xand(§. &.t) € £X implies (St 1) + (1 —
MG . t)eXforallo<a < 1.

Surprisingly, all three conjectures concerngturn out to befalse

However, by focusing on certain subregionsSdf, properties similar to those f@r do
hold. Define the subregiafy* of the immediate exercise regiérf by £X = £XNG; where
G ={(§ 1) S =maxs, )} fori =1, 2. Proposition 2.1 below states that, prior
to maturity, exercise is suboptimal when the prices of the underlying assets are equal. This
result holds no matter how large the prices are and no matter how large the dividend rates
are. In particular(S, S, t) ¢ £X forall S> 0 andt < T. Proposition 2.1 is the reason for
focusing attention on the subregiofj$.

ProPOSITION2.1. If St = § > 0andt < T then(S, S, t) ¢ £X. Thatis, prior to
maturity exercise is not optimal when the prices of the underlying assets are equal.

This proposition is proved in Appendix B. The intuition for the suboptimality of imme-
diate exercise follows. Delaying exercise up to some fixed §met provides at least

PV(s—t) = §e®) — Ke"&Y

plus a European option to exchange asset 2 for asset 1 with a maturity whieh has
valueE;[e"¢Y (S — gh*]. As s converges to, the present valu V(s — t) converges
to § — K at a finite rate. The exchange option value, however, decreases to zero at an
increasing rate which approaches infinity in the limit. Hence there is somestimesuch
that delaying exercise until provides a strictly positive premium relative to immediate
exercise.

The next proposition shows that subregions of the exercise region are convex.

PROPOSITION2.2 (Subregion Convexity). Let S= (S, $?) andS = (S, ). Suppose
(S;t) € X and(S;t) e X for afixed i = 1 or 2. Giveni, with0 < A < 1, define
S(A) = AS+ (1—1)S. Then(S(r),t) € EX. Thatis, if immediate exercise is optimal at
S andS and if(S, t) € G; and (S, t) € G; then immediate exercise is optimal ai.$

The convexity of the exercise region is a consequence of the convexity of the payoff
function with respect to the pafS', S?) and a consequence of the multiplicative structure
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of the uncertainty in (2.1) and (2.2). Additional properties of the exercise retjioare
summarized in Proposition 2.3. In this propositi&) represents the exercise boundary for
a standard American option on the single underlying @sset

PROPOSITION2.3. Let £X represent the immediate exercise region for a max-option.
Then&X satisfies the following properties.

(i) (§ Ft) e EXimplies(§, F,5) e EX forallt <s<T.
(i) (St e&fimplies(a S, S, t) € EF forall A > 1.
(i) (§, Ft) € & implies(§,2F, 1) e Ef forall0<x < 1.
(iv) (S,0,t) € & implies $ > B

In (ii), (iii) , and(iv), analogous results hold for the subregiéi.

Property (i) says that the continuation region shrinks as time moves forward. Property (i)
holds since a short maturity option cannot be worth more than the longer maturity option
and it can attain the value of the longer maturity option if it is exercised immediately.
Property (ii) states that the exercise subregion is connected in the direction of inci&hasing
(right connectedness). This follows since the option valu@ &, S, t) is bounded above
by the option value atS!, §,t) plus the difference in the asset price§t — §. Since
immediate exercise is optimal by assumptioi&tt S, t), the option value at\ S}, &, )
is bounded above by its immediate exercise value (which can be attained by exercising
immediately). Property (iii) is similar and states that the exercise subregion is connected
in the direction of decreasing (down connectedness). Finally, since zero is an absorbing
barrier for §?, the max-option becomes an option on asset 1 only wfes 0. In this
case the optimal exercise region is delimited by the exercise boundary corresponding to an
option on asset 1 alone.

LetEX(t) = (S, ): (§, . t) € £X} denote the-section of€* and similarly define
EXM) by (S, ): (S, F.1) € ). Convexity of £X(t) is assured by Proposition 2.2.
This implies that the boundary &*(t) is continuous, except possibly at the endpoints
where S or § is zero. However, continuity is assured at these points by part (iii) of
Proposition 2.3.

The next proposition states that the immediate exercise region diverges from the diagonal
(i.e., equal asset prices) as the asset prices become large. To state the result, let

R(A1, o) = (S, S) € R2 1 3,8 < S < S

for A, < A1 denote the open cone defined by the price ratioanda,.

PrOPOSITION2.4 (Divergence of the exercise region).Fix t < T. There exists.; and
Ao with 4> < 1 < Aq such that

EX() N R, A2) = 0.

From the results in this section, we can plot the shape of a typical exercise &gion
An example is shown in Figures 2.2—-2.4. Note in Figure 2.4Bf}at= max((r /81)K, K)
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0 B! 5!
FIGURE 2.2. lllustration of€*(t) for a max-option at timé witht < T.

andB2_ = max((r/8;)K, K). The figures also show that me&, S) is not a sufficient
statistic for determining whether immediate exercise is optimal.

Valuation of American Max-Options

RecallCX(S, §) is the value of an American option on the maximum of two assets
at timet with asset pricesSt, §). In some cases, we will ue*(St, $, t) to denote

CUE. .

SH EX®
L(s)

0 B! 51

FIGURE 2.3. lllustration of€*(s) for a max-option at tims witht <s < T.



248 MARK BROADIE AND JEROME DETEMPLE

SZ

0 Bl. st

FIGURE 2.4. lllustration of€* (T ~) for a max-option at timd ~.

PROPOSITIONZ2.5.

() The value of the American max-option*@S!, S, t), is continuous orR* x
R* x [0, T].
(i) CX(., S, t) and CX(S', -, t) are nondecreasing oR™* for all S, & in R* and
alltin[0O, T].
(i) CX(Sh, S, ) is nonincreasing off0, T] for all St and $ in R,
(iv) CX(., - t)isconvex ot x R* forall t in [0, T].

The continuity ofCX(St, 2, t) on R* x Rt x [0, T] follows from the continuity of
the payoff function(max(S§!, §) — K)* and the continuity of the flow of the stochastic
differential equations (2.1) and (2.2). The monotonicity®f(S', S, t) follows since
(max(§, ) — K)T is nondecreasing it and . Property (iii) holds since a shorter
maturity option cannot be more valuable. Convexity is implied by the convexity of the
payoff function. The next proposition characterizes the option price in terms of variational
inequalities (see Bensoussan and Lions 1978 and Jaillet, Lamberton, and Lapeyre 1990).

PROPOSITION2.6 (Variational inequality characterization for max-options)C* has par-
tial derivativesdC*/dS, i = 1,2, which are uniformly bounded andC*/dt and
92C* /0S99, i, j = 1,2, which are locally bounded of0, T) x R* x R*. Define
the operatorZ on the value function € by

9CX 3CX
5 X _ o _ 107 _ 20"
(23) LC* = (1 =805 + (1 — S
1 2 1232CX 1282 X 2 ZZaZCX X
=l o2(s 2p010,5'S S —rcX.
+2[01( ) s TS S Tans TS T | T
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Then G4 (S, ) satisfies

aCcx
(2.4) CX > maxs, - KT — LCX <0;

acx +£C*) (max§. §H - KT -=CcH =0
ot ’ vt

almost everywhere d0, T) x RT x R*.

COROLLARY 2.1. The spatial derivativedC*/3S,i = 1, 2, are continuous of0, T) x
Rt x RT.

Proposition 2.6 establishes the local boundedness of the partial derivatives of the value
functionC* (S}, §, t). The continuity of the spatial derivatives follows from the convexity
of CX(St, S, t) and the variational inequalit%% + £LC* < 0. Although Proposition 2.6
provides a complete characterization of the value of the max-option, itis of interest to derive
an alternative representation which provides additional insights about the determinants of
the option value. This representation expresses the value of the American max-option as the
value of the corresponding European option plus the gains from early exercise. Kim (1990),
Jacka (1991), and Carr, Jarrow, and Myneni (1992) provide such a representation for the
standard American option when the underlying asset price follows a geometric Brownian
motion process. The early exercise premium representation is the Riesz decomposition of
the Snell envelope which arises in the stopping time problem associated with the valuation
of the American option (see El Karoui and Karatzas 1991, Myneni 1992, and Rutkowski
1994).

Define the continuation regiofi to be the complement &, i.e.,C = {(S, . 1) :
cXE, S > max s, ) — K)*}. The properties in Proposition 2.5 imply that the
continuation regioit is open and the immediate exercise regidhis closed. Now define
B(. 1) to be the boundary of thesection&;*(t) and BX (S, t) to be the boundary of
thet—sectionEZX (t). The optimal stopping time can now be characterized by inf{t :
S > BX(S, 1) or § > BX(S, 1)}

The characterization & (St, ) given in Proposition 2.6 enables us to derive a system
of recursive integral equations for the optimal exercise boundaries and to infer the value of
the max-option. Toward this end, define

(2.5) (S, ) = Ef[e" TV (max(St, SF) — K)']

which represents the value of the European max-option and the functions

.
(2.6) al (g, &) = / e "VE (518 — rK)Lig. Bty Jdv

v=t

.
(2.7) a(§. ) = / e UVE (525 — rK)Lgopx (gt Jdv

v=t
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which are defined for a pair of continuous surfa@@s* (2, v), By(St,v) v e [t, T], St €

R*, ¢ € R*}. An explicit formula for the value of a European max-option in (2.5) is given
in Johnson (1981) and Stulz (1982). Explicit expressions for (2.6) and (2.7) in terms of
cumulative bivariate normal distributions can also be given.

PrOPOSITION2.7 (Early exercise premium representation for max-options}.he value of
an American max-option is given by

28) CME =g H+a(§ F. B¢+ (§ F B ),
where B*(-, -) and BX(-, -) are solutions to the system of recursive integral equations

(29  BU(EH-K =B, D +alBIE 0. §. B )
+ay (BY (S0, §. BX(. )

(210)  BX(S.t) —K = (. BX(§. ) +a(§. BX(S. 1), B{(. )
+a3 (S, BX (S 1), BX(-, )

subject to the boundary conditions

(211)  lmBJ(S,0 = maxBr, Sp),  lim B(§, 1) = max(BF, Sp)

2.12 BX©O,t) =Bl  BX(0t) = B2
1 2 t

The sum (S, &, BX(, ) + aX(§, F. BX(-, -)) is the value of the early exercise pre-
mium.

The representation (2.8) shows that the value of the American max-option is the value
of the European max-option plus the gains from early exercise. These gains have two
components corresponding to the gains realized if exercise takes pléfepin)X. Each
component is the present value of the dividends net of the interest rate losses in the event
of exercise.

Equations (2.8)—(2.12) have the potential to be used in a numerical valuation procedure,
although the implementation may be a challenge. In the single asset case, Broadie and De-
temple (1996) have shown that a numerical procedure based on the early exercise premium
representation (the “integral method”) is competitive with the standard binomial procedure.
Boyle, Evnine, and Gibbs (1989) give a multinomial lattice procedure which is very useful
for pricing American options on a small number of assets. For higher dimensional prob-
lems with a finite number of exercise opportunities Broadie and Glasserman (1994) have
proposed a procedure based on Monte Carlo simulation. Alternatively, Dempster (1994)
explores the numerical solution of the variational inequality formulation of some American
option pricing problems. These methods may offer a practical numerical solution for the
max-option using the formulation (2.4) in Proposition 2.6.
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For ease of exposition we have focused on max-options on two underlying assets. How-
ever, as we show in Section 7, the results above extend to options on the maximum of
assets. Next we show that similar results hold for dual strike options.

American Dual Strike Options

Dual strike options have the payoff functiomax §' — K1, § — Kz))*, i.e., they pay
the maximum of§! — K1, § — K>, and zero upon exercise at tirheDual strike options
have optimal exercise policies that are similar to options on the maximum of two assets. In
particular, there exist two exercise subregions that possess the properties of the subregions
for the max-option. In this case, however, inmediate exercise prior to maturity is always
suboptimal along the translated diagoBa= S + K, — Kj.

PROPOSITION2.8. Let £P represent the immediate exercise region for a dual strike
option. Define the subregiod® = P N{(F, F, 1) : § —Ki = max§ — Ky, F—K»)}
fori = 1, 2. Then the following properties hold.

(i) (g, Ft) e EPimplies(§, S, s) e EP forallt <s<T.
(i) (S 1) € P implies(A§, F,t) € EP forall » > 1.
(i) (S S t) € £ implies(S, A, t) e EL forall 0 < A < 1.
(iv) (§,0,t) € &P implies $ > BL.
(V) fS=5+Ky—Kiandmin(S, §) > 0andt < T then(§, F.t) ¢ £P.
(vi) (S Lt eclandF, Ft) € P impliesa(S, F.t) + A - (F, Fb) €
EP forall 0 < A < 1 (subregion convexity).

In (ii), (iii), (iv) , and(vi) analogous results hold for the subregi6§.

The price function of the dual strike option can be characterized in terms of variational
inequalities as in Proposition 2.6; an early exercise premium representation can also be
derived as in Proposition 2.7.

3. AMERICAN SPREAD OPTIONS

A spread optionis a contingent claim on two underlying assets that has a payoff upon

exercise at time of (max §? — S}, 0) — K)*. The payoff can be written more compactly

as(§ — § — K)*. Inthe special cask = 0, the spread option reduces to the option to

exchange asset 1 for asset 2. Exchange options were first studied by Margrabe (1978).
LetC3(S, S denote the value of the spread option at timéith asset pricesS, ).

As before, letB! denote the immediate exercise boundary for a standard option with under-

lying asset. Define the immediate exercise region for a spread optidithy {(S, . 1) :

Cts(slv SZ) — (SZ _ Sl _ K)+}.

PrOPOSITION3.1. Let&S represent the immediate exercise region for a spread option.
ThengS satisfies the following properties.

(i) (8 Ft) eESimplies § > §+K.

(i) (S S t) e ESimplies(S, S, 5) € ESforallt <s<T.
(i) (S 1) € ESimplies(S, A, t) € ESforall A > 1.
(iv) (S, t)e&Sforall0<ir<1,
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52 5 (1) s?=slg

0 “ 5l

FIGURE 3.1. lllustration of€S(t) for a spread option at timewith t < T.

(v) (0, t) € ESimplies $ > B S? > B2 and § = 0implies(0, &, t) € £°.
(i) (St € £8and(§, F.t) € &5 implies (S(h), (1), 1) € &S for all
0<xi<1where$3) =25 +1-1F fori =1,2

Property (i) in Proposition 3.1 follows since immediate exercis&at S' + K is
dominated by any waiting policy which has a positive probability of giving a strictly positive
payoff at some fixed future date. This property implies that the exercise region for the spread
option can be thought of as a one-sided version of the exercise region for the max-option.
The intuition behind properties (ii)—(vi) parallels the corresponding properties for the max-
option. An illustration of the exercise region is given in Figure 3.1.

The price of the spread option can also be characterized in terms of variational inequalities
as in Proposition 2.6. This characterization leads to the following early exercise premium
representation of the value of the spread option. Define

(3.1) (F. ) =Ee"TVE -5 - K]
which represents the value of the European spread option and the function

.
32  aE.H= /_t e UVE (02 — 815 — rK) L. gt oy dv

which is defined for a continuous surfad@s(St, v) : v € [t, T], St € R¥}.
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PrROPOSITION3.2 (Early exercise premium representation for spread optiong)he value
of an American spread option is given by

(3-3) CHS, ) =c(F. H+a(F, F. B, ),
where I%S(-, -) is a solution to the integral equation
(3.4) BY(S. ) — K =c(§, BX(S. ) +a3(§, B, 1), BS(, )

subject to the boundary conditions

. 8
(3.5) lim B3(St) = max(—ls% TIPS K)
1T 52 52

(3.6) B5(0,t) = B2
Here a5(S, S, B3(-, -)) is the value of the early exercise premium.

American Options to Exchange One Asset for Another

WhenK = 0 the spread option becomes an American option to exchange one asset for
another with payoff S — S')* upon exercise. This payoff can also be written as

(32 _ Sl)Jr — Sl(Rt _ 1)+

whereR, = $?/S'. Hence the exchange option can be thought ofasptions on an

asset with priceR and exercise price one. Of course, prior to the exercise date the random
number of options§! is unknown. The next proposition summarizes important properties

of the optimal exercise region for exchange options. Some of these properties are specific to
exchange options and do not follow from Proposition 3.1. See Figure 3.2 for an illustration.

ProPOsITION3.3. Let £ denote the optimal exercise region for an exchange option.
Then&E satisfies

(i) (S S.t)eEFimpliesR>1

(i) (§ S t) € EF implies(S, 2, t) e EE for A >1 (up connectedness)
(i) (S S t) € EE implies(A S, A, t) € EE fora > 0  (ray connectedness)
(iv) S'= 0implies immediate exercise is optimal for al S 0.

Properties (i) and (ii) are particular cases of (i) and (iii) of Proposition 3.1. Property (iii)
is new and states that if immediate exercise is optimal at a p8intS?) then it is optimal
at every point of the ray connecting the origin @', S?). This feature of the optimal
exercise region is a consequence of the homogeneity of degree one of the payoff function
with respect to(St, S?). Properties (i)—(iii) imply that there exisBF(t) > 1 such that
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FIGURE 3.2. lllustration of€E(t) for an American exchange option.

immediate exercise is optimal foreﬂ} > OwhenR; > BE(t). Hence, immediate exercise
is optimal whens? > BE(t)S! for all §' € R* and allt € [0, T]. Property (iv) follows
from (v) in Proposition 3.1 by noting th&?(t) = 0 whenK = 0.
Recall nowthatthe price processes satisfy (2.1) and (2.2) and that the quadratic covariation
process betweert andz?isd[z, Z2]; = pdt. By Itd'slemmaR, = §/S! hasthe dynamics

dR = R[(r — sr)dt + ordZ"]

wheresg = 8, +1 — 81 — 02 + po102, 03 = 02 + 02 — 2po102, anddzR = [0,dZ —
01dZ!]/or. The next proposition provides a valuation formula for the American exchange
option. Rubinstein (1991) originally showed how the valuation of American exchange
options could be simplified to the case of a single underlying asset in a binomial tree
setting.

PrOPOSITION3.4 (Early exercise premium representation for exchange optiofkg value
of the American option to exchange one asset for another, with pe§foff S')* at the
exercise date, is given by

(3.7) CE(S!, &, t) =cE(St, S 1)

)
+ / 5, ON(<b(R,, BE, v — t, 81 — 8, o))dv
t

.
—/ 815 € UN(-b(R;, BE, v—t, 81—82, 0r) —orvv — DdV

t
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where E(St, 2, t) = Ef[e"T-Y(S2 — SH)*] is the value of the European exchange
option and

E

(3.8) Db(R,BF,v—1t,8 —8,0r) = [log(i“t ) — (81— 82+ 303 (v —t)]

1
ORA/V —t.

X
The optimal exercise boundaryFB) solves the recursive integral equation

.
(3.9)BF —1=c®(1, BF, t)~|—/ 8,BEe™ " UN(—b(BF, BE, v—t, 81 —82, or))dv
t

.
—/ 8161 "UN(=b(BF, BE, v —t, 81 — 82, 0r) — orv/v — )dv
t

with boundary condition 8 = § v 1.

Formulas (3.7)—(3.9) reveal that the American exchange option with pe§foff SH)*
has the same value at tirhasS' American options with exercise prices 1 osiagleasset
with valueR;, dividend rateS,, and volatilityorg, in a financial market with interest rade.

Options on the Product with Random Exercise Price

This type of contract, which has a payoff 'S — K Sh*, is an option to exchange
one asset for another where the value of the asset to be received is a product of two prices.
An example is an option on the Nikkei index with an exercise pricgquoted in Japanese
yen (see Dravid, Richardson, and Sun 1993). THeéis the yen-value of the Nikkei§!
represents the $/Y exchange rate, & the yen-exercise price. The payoff can also be
written as

31(32 _ K)+

Upon exercise, the contract produces a random number times the payoff on an option
written on the asse$? only. Whensp = 8, + 8, — r — poy0, equals zero, early exercise

is suboptimal. Whersp > 0, the properties of the immediate exercise region can be
inferred from Proposition 3.3 by replacin§!, %, R) by (K St, S'S?, §?/K). Replacing

(81, 62, 8R, 01, 02, OR) in (37)—(39) by(81, ép, 82, 01, 0p, 02), together with the previous
substitutions, produces a valuation formula and a recursive integral equation for the optimal
exercise boundary.

4. AMERICAN EXCHANGE OPTIONS WITH PROPORTIONAL CAPS

This contract has a payoff equal@®® — S')* A LS whereL > 0. An example is a capped
call option on an index or an asset which is traded on a foreign exchange or issued in a
foreign currency. In the currency of reference the contract payofis K)* A L’ where



256 MARK BROADIE AND JEROME DETEMPLE

S 2
BEws! (1+1)s!

TE@) -

FIGURE4.1. Exercise region for an American exchange option with a proportional cap.

Sis the price of the asset in the foreign curreriyis the exercise price, and is the cap.
From the perspective of a U.S. investor the payoff eqedds— K)™ A L’e or equivalently
(eS— Ke)* A L’e. With the identifications? = eS S' = Ke, andL = L’/K we obtain
the payoff structure of an exchange option with a proportional cap.

Since the payoff of an exchange option with a proportional cap is nonconvex (and since
the derivative of the payoff is discontinuous at the cap), the approach that derives the exercise
boundary from the standard integral representation of the early exercise premium does not
apply. However, it is still possible to identify the exercise boundary explicitly and to derive a
valuation formula by using dominance arguments. Proposition 4.1 gives a characterization
of the exercise boundary. See Figure 4.1 for an illustration.

ProOPOSITION4.1. The immediate exercise boundary for an American exchange option
with a proportional cap L Sis given by

§=>BECt)S=BE0)S A1+,

i.e., theimmediate exercise boundary is the minimum of the exercise boundary for a standard
uncapped exchange option fB)S!) and the cap plus S

Since the option payoff is bounded above(sf — SH)* A LS! it is easy to verify that
the option price is bounded above by the minimum of the price of an uncapped American
exchange optio€E(S!, S, t) andL §. The optimality of inmediate exercise wh&h >
BEW)S A (L4 L)S follows. If < BEOS AL+ L)Sand 1+ L > (81/82) v 1it
is always possible to find an uncapped exchange option with shorter maigrityhose
optimal exercise bounda®E (t; Ty) lies below(1+ L) today and at alltimes, t < s < Ty
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and is greater than the rat83/ S at datet. Hence the optimal exercise strategy of this short
maturity exchange option is implementable for the holder of the capped exchange option.
It follows that

CEC(sh, £, 1) > CE(S!, S, t; To).

Since immediate exercise is suboptimal for Tematurity option whens* < BE(t)S!,

it is also suboptimal for the capped exchange optior§? &« BE(t)S A (1 + L)S and

1+ L < (81/62) v 1immediate exercise is dominated by the strategy of exercising at the
cap. This follows since the difference between these two strategies is the negative cash
flows 8,S? — 815! on the evenft < v < 7}, wherer,_is the hitting time of the cap (see
equation (4.1) below). This proves Proposition 4.1.

PrROPOSITION4.2. The value of an American exchange option with proportional cap is
given by

CEC(S, S t) = LE [e"™ Vs 11y o] + Ef [V VCE(S, S t%) L ot]
fort < . At* where
(4.1) w=inflvel0,T]: £=a+0LSH
or r = T if no such time exists ij0, T], and wheret is the solution to the equation
BEt) =1+L

if a solution exists. If B(t) > 1+ L forallt € [0, T] sett = T;if BE(t) < 1+ L for
allt e[0, T] sett =0.

The proposition above provides a representation of the option value in terms of the value
of an uncapped American exchange option and the payoff at the cap. We now seek to
establish another decomposition of the option price which emphasizes the early exercise
premium relative to an exchange option with automatic exercise at the cap.

Proposition 4.1 shows that immediate exercise is optimal v8%en (1 + L)S'. Hence
fort < 7., the value of the American capped exchange option can also be written as

CEC(8, 8. 1) = sup By [e" ™", — 5,07

LAT
TESLT

whereS; 1 is the set of stopping times taking valuestinT]. Thus, the American capped
exchange option has the same value as an exchange option with automatic exercise at the
cap that can be exercised prior to reaching the cap at the option of the holder of the contract.
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The value function for this stopping time problem solves the variational inequality

CEC(SL, &, 1) > (£ — Shyt, ac +LCEC <0 on R x R*N{(S, &):
< (1+L)SY

(30 + ECEC> (P —Sht —CE¢ =0 on R* x R* N{(St, S
< (1+L)SY

CEC(SL, &, T) = (S — sH+ at t=T

CEC(8, &, t)=LSt on =@1+0L)S

defined on the domaiR* x R* N {(S!, $): & < (1+ L)SY.
Consider now a capped exchange option with automatic exercise at the cap. The value
of this contract is

(4.2) CFt = Ef[e" ™ (& - S))7]

fort < 7, wherer, is the stopping time defined in (4.1). Define the function
(4.3) u(st, &, t) = CEC(St, £, 1) — CEL(Sh, S 1)

which represents the early exercise premium of the American capped exchange option over
the capped option with automatic exercise at the cap. It is easy to show that (4.3) satisfies

u=0 Mirus<o on RTxRTN{(S., ) P<1+L)Sh
(%—‘t’+ﬁu) [(S2—SH*—CEL—u]=0 on R*xR'N{(SL P): < (1+L)S}
ust, &, T)=0 at t=T

u(st, 1) =0 on =(@1+L)S.

An application of I18’s lemma enables us to prove the following representation formula.

PropPosITION4.3. The value of an American capped exchange option has the represen-
tation

T
(4.4) CEC(S', &, t) =CEH(SL . t) + Ef [ / eV (88 - 6183)1{szzsscs3}dv]
t

fort < 7., where CEL(St, S, 1) represents the value of a capped exchange option with
automatic exercise atthe cap definedin (4.2). In (4.4 inf{v € [0, T] : % = (1+L)S}}
ort, = T if no suchw exists in0, T]. The exercise boundary®8 = {BEC(t),t € [0, T]}
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satisfies the recursive integral equation

(4.5) §(BEC(t) — 1) = CENS, §BEC(h), 1)

7 (b)
+E; [ f e "5 - 3153)1{§g>55c$du]
t - 32231 BEC(t)

(4.6) BEC(T) = (1\/ %) A(l+1L)
2

wherer (t) = inf{v € [t, T] : & > (14 L)S}} or 7. (t) = T if no such time exists in
[t, T].

Itis easy to verify that the solution to the recursive integral equation (4.5) subject to (4.6)
is the optimal exercise strate@®8FC = BE A (1 + L) of Proposition 4.1. Indeed, by the
optional sampling theorem, the value of the uncapped exchange option can also be written
as

CE(S]-, SZ’ t) — Et* [e*r(f**t)(sg* _ S;L*)]

+ E»Ek [/ e_r(v_t)((SZS? - 813:)[)1{SLZ>BE(U)S]'}dU]
t

for any stopping time* € S; 7 such that* > tge = inf{v € [0, T] : § = BE(v)S}} (or

T if no suchv exists in [Q T]). In particular ift < 7 A tge andtge < 7 we can select

t* = 1 to obtain a representation of the American exchange option which is similar to
equation (4.4). Hence, as long BS < 1+ L andt < 7. (t), newly issued capped and
uncapped exchange options have the same representation. It followBffat < [t, T])

and (BE, s e [t, T]) solve the same recursive equation subject to the same boundary
condition. Ift < t* we know thatBF > 1+ L. SubstituteBEC(t) = 1+ L in equation
(4.5). Atthe pointS? = §'(1+ L), we haveCEL (St SY(1+ L), t) = LS andr (1) = t.

It follows that the right-hand side of (4.5) equal§!. HenceBEC(t) = 1+ L solves (4.5)
whent < t*.

The representation formula (4.4) differs from the standard early exercise premium rep-
resentation since it relates the value of the option to a contract that expires when the asset
price reaches the cap.

By settingS' = K (i.e., %‘ = K, 81 =r, 01 = 0) the American capped exchange option
reduces to a capped option on a single underlying asset with exercis&pfsee Broadie
and Detemple 1995) Proposition 4.3 then provides a new representation for an American
capped call option (on a single underlying asset) in terms of the value of a capped call option
with automatic exercise at the cap and of an early exercise premium. It also provides a
recursive integral equation for the optimal exercise boundary of American capped options.

2In Broadie and Detemple (1995) the payoff on a capped option is writté®as’ — K)*. This is equivalent
to (S— K)™ A (L'/K — 1)K. Hence a cap oL in the analysis above correspondsLto= (1 + L)K in our
previous notation.
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5. AMERICAN OPTIONS ON THE PRODUCT AND POWERS
OF THE PRODUCT OF TWO ASSETS

In this section we consider options which are “essentially” written on the product of two
assets. For instance, ¥ andS? are the underlying asset prices the payoffs under consid-
eration are

(i) product option:(§ — K)* = (P, — K)* whereP, = §S.
(i) power-product option( P/ — K)* for somey > 0.

Note that power-product options include as a special case product optioas1) and
options on a geometric average of asgets= %).
DefineY; = P/ = (§£)”. An application of It’s lemma yields

(5.1) dY; = Yi[(r — 8y)dt + oydz]

1
wheredy = ép + (1 — y)(r — 8p + %O’S), oy = yop = y(af + 2po102 + 022)5,
8p =81+ 82— 1 — po1oz, anddz” = i[oldztl + 02dZ2]. In the remainder of this section,
we assuméy > 0. Now consider an American option on the single a¥sdtet B (3v, 03)
denote its optimal exercise boundary ahdY;) its value.

PROPOSITIONS.1. The optimal exercise boundary for an American power-product op-
tionis
(B)YY

(5.2) BPP (5.0 = a

where B = B;(dy, 03) is the exercise boundary on a standard American call option written
on an asset whose price is Y satisfies (5.1). The power-product option value is

(5.3) CPP(g, S t) = Ci(Y).

where G(Y;) is the American call option value on the single asset Y .

The shaded region in Figure 5.1 illustrates the exercise region for an American product
option withy = 1.

REMARK 5.1.

@iy If y =1wegetsy = §p andoy = op. In this case we recover the American
option on a product of two assets.

(i) If y =3 wegetdy = 2(8p +r1) + 303 andoy = Jop. In this case we recover
the American option on a geometric average of two asset prices.
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YRy

BP(sL 1)

0 T st

FIGURE 5.1. lllustration of the exercise region for a product optign= 1) at timet with
t<T.

6. OPTIONS ON THE ARITHMETIC AVERAGE OF TWO ASSETS

We now consider American options which are written on an arithmetic average of &issets.
For simplicity we focus on the case of two underlying assets. Consider an option with
payoff (%(S} + §) — K)* upon exercise. The next proposition gives properties of the
optimal exercise region.

PROPOSITIONG.1. Let&¥ denote the optimal exercise region. Then

(i) (0, S, t) € £F implies § > 2BZ where B is the exercise boundary od-8ption.
(i) (S0,t) € ¥ implies $ > 2Bl where B is the exercise boundary of-8ption.
(i) (S . t) € EF implies(A S, 22, t) € ET with oy > 1, A, > 1 (NE connect-
edness).

(v) (S F.t)ecrand(§, F.t) € £F implies(AF+1-1)F AF+1-1P) €
E¥ (convexity).

V) (S 1) e implies(S, ,5) e EXfor T > s > t.

Properties (i), (i), (iv), and (v) are intuitive. Property (iii) states that the exercise region
is connected in the northeast direction. Indeedifor 1 andi, > 1the payoff(%(/\131+
12 — K)™ is bounded above by

GG+ -K"+ 3 -DS+ - D).

It follows that the option value at1 S, .S, t) is bounded above by the option value at
(§ .0 plusi( — DS + (ko — DSP). For an illustration of the exercise region see
Figure 6.1.

3An example of a related contract is the American option on the value-weighted S&P 100 index which has
traded on the CBOE since 1983. The underlying stocks, however, pay dividends at discrete points in time.
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Sl

BX(S, 1)

FIGURE 6.1. lllustration of the exercise region for an arithmetic average option atttime
witht < T.

The next proposition provides a valuation formula for an American arithmetic average
option.

PrROPOSITIONG.2 (Early exercise premium representation for arithmetic average options).
The value of the American option on the arithmetic average of 2 assets is

C*(S, &) = c* (S, S 1)
T
+ / %Slﬁle"gl(”’t)&)(ﬁz, B¥(-,v),v—1,0,014/v — Ddv
t
T ~
4 ft 15, e =0V G(S, BE(, v), v —t,
o2,/ 1— pgl\/v —t, 09021/ v — t)dv

.
- f rke™ = &(S, BE(-, v), v — t, 0, 0)dv
t

where ¢ (S, Sf, t) denotes the value of the European option on the arithmetic average of
two assets and (S, B=(-, v), v—t, X, y) = [* > n(w — y)N(=d(S, B*(St(w), v), v —
t, p, w) — x)dw and where Sw) = Fexp[(r — 81 — 302 (v — t) + ocrw/v — .

The optimal exercise boundary*BS, t) solves

2§ +B¥E D)) —K = (& B¥E . O +m(S, B¥(EL .1, te[0,T]

281t + 8:B¥(SE. T)) = rK v (5K + 3(81 — 82) St

B¥(2Bl,t) = 0
B¥(0,t) = 2B, te[0,T)

wherer, (St, S, t) denotes the early exercise premium.
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FIGURE 7.1.

7. AMERICAN OPTIONS WITHNn > 2 UNDERLYING ASSETS

In this section we treat the case of American options with 2 underlying assets. We
focus on the option on the maximum wfassets; optimal exercise policies and valuation
formulas for other contracts, such as dual strike options and spread options, writien on
assets can be deduced using similar arguments.

We use the following notation€*" denotes the optimal exercise region for the max-
option onn assetsC*" is the corresponding pric§ = (S, ..., 9" denotes the vector
of underlying asset prices, a@d‘ ={(S1): S = max(S1 .S fori=1,...,n
Our first result parallels Proposition 2.1 of Section 2.

PROPOSITION7.1. If maxSh,...,S") =S = Sifori # j,i € {1,...,n}, | €
{1,...,ntandift < T then(S, t) ¢ £X". That s, prior to maturity immediate exercise is
suboptimal if the maximum is achieved by two or more asset prices.

Proposition 7.1 states that immediate exercise is suboptimal on all regions where the
maximum asset price is achieved by two or more asset prices. The intuition for the result
is straightforward. It is clear tha®*"(S,t) > C*2(S, S/, t) whereC*2(S, S 1) is
the value of an American option on the maximumSfandS/. The result follows since
immediate exercise of this option is suboptimal wr@n= S (see Proposition 2.1).
Whenn = 3 these regions are the two-dimensional semiplanes connecting the diagonal
(St = & = S®)tothe diagonals in the subspaces spanned by two f(igks= S, S* = 0),

(St = 83 S =0),(S =S, St = 0)). There are three such semiplanes. Figure 7.1 graphs
the trace of these semiplanes on a simplex whose vertices lie on the thre8'agés
andS3.

Figure 7.2 graphs the trace of the optimal exercise sets on this simplex. In the upper
portion of the triangle, above the segments of IBle= & > S*andS' = S* > S the
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FIGURE 7.2.

maximum is achieved b§'. Hence &, lies in this region. Similarly€,* lies in the
lower right corner andy"? in the lower left corner with verte$®. The structure of these
sets and in particular their convexity follows from our next propositions.

PROPOSITION7.2 (Subregion Convexity). Consider two vectors & R’} and Se RY.
Suppose thatS, t) € " and (S,t) e £*" for the same i€ {1,...,n}. Givenx with

0 < A < 1denote ) = AS+ (1 — 1)S. Then(S(1),1) € Eix’“. That is, if immediate
exercise is optimal at S arfland if(S, t) € gix’” and(S,t) € giX’” then immediate exercise
is optimal at $1).

PROPOSITION7.3. £*" satisfies the following properties.

(i) (St) e EXMimplies(S,s) e X" forallt <s<T;
@iy (St)e & implies(SL,...,AS,...,S"t) e E " forall A > 1;
(i) (S.t) € &"implies(A1SL, A2, ..., S, AISH  AnS) e £°" for all
O<al <1, j=1,...,i—-L1i+1...,n;
(v) S =0and(St)e& " implies(Sh, ..., 71, S* ..., 1) e &ML

The proof of these results parallels the proofs of Propositions 2.2 and 2.3 for the case of
two underlying assets. Combining Propositions 7.1, 7.2, and 7.3 we see that the properties
of the max-option with two underlying assets extend naturally to the caseioderlying
assets. Similarly, the characterizations of the price function in Propositions 2.5, 2.6, and
2.7 can be extended in a straightforward manner to the max-option writtenioderlying
assets.
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8. CONCLUSIONS

In this paper we have identified the optimal exercise strategies and provided valuation
formulas for various American options on multiple assets. Several of our valuation formulas
express the value of the contracts in terms of an early exercise premium relative to a contract
of reference. For the contracts with convex payoff functions that we have analyzed, the
benchmarks are the corresponding European options with exercise at the maturity date
only. For a nonconvex payoff with discontinuous derivatives, a relevant benchmark may
be the corresponding contract with automatic exercise prior to maturity. For the case of an
American exchange option with a proportional cap, the benchmark is a capped exchange
option with automatic exercise at the cap. The early exercise premium in this case captures
the benefits of exercising prior to reaching the cap. These representation formulas are also of
interest since they can be used to derive hedge ratios and may be of importance in numerical
applications. In addition our analysis of the optimal exercise strategies has produced new
results of interest for the theory of investment under uncertainty. In particular we have
shown that firms choosing among exclusive alternatives may optimally delay investments
even when individual projects are well worth undertaking when considered in isolation.

One related contract that is not analyzed in the paper is a call option on the minimum of
two assets. When one of the two asset prices Safollows a deterministic process this
contract is equivalent to a capped option with growing cap written on a single underlying
asset. The underlying asset is the risky asset with g8fcethe cap is the price of the
riskless asseB'. When the cap has a constant growth rate and the risky asset price follows
a geometric Brownian motion process the optimal exercise policy is identified in Broadie
and Detemple (1995). The extension of these results to the case in which both prices
are stochastic is nontrivial. The determination of the optimal exercise boundary and the
valuation of the min-option in this instance are problems left for future research.

APPENDIX A
Standard American Options

PROPOSITIONA.1. For a standard American option (i.e., on a single underlying asset),
whose price follows a geometric Brownian motion process,

G -C(S) =r-DS

forall » > 1.

Proof of Proposition A.1Let 2 > 1 and suppose that the price of the underlying asset
is AS. Letr denote the optimal exercise strategy. Using the multiplicative structure of
geometric Brownian motion processes, we can write

C(xS) = E[e""V0S — K)T]
Effe " (A — DS + (S — K)T]

Effe ™ (- DS + (S — K)N)]
< (—1S +Cu().

ANl

A
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The first inequality follows from(a + b)™ < a* + b* for any real numbera andb. The
second inequality follows by the supermartingale propert$ afnd by the suboptimality
of the exercise policy for the standard American option. O

REMARK A.1. For a standard American optiofi$, t) € £ implies (AS,t) € £ for
all A > 1. This follows immediately from Proposition A.1 by noti§, t) € £ implies
Ci(S99 =S—K >0andsdCi(AS) < (A — 1)S+ Ci(S) = AS— K. Hence(AS,t) € £.

American Options on Multiple Assets

Next we consider derivative securities written manderlying assets. Throughout this
appendix, we suppose that the price of agsgttimet satisfies

(A1) d§ = S[(r - 8)dt +0idz]

wherez ,i = 1, ..., nare standard Brownian motion processes and the correlation between
Z andzl is oij. As beforer is the constant rate of interest,> 0 is the dividend rate of
asset, and the price processes indicated in (A.1) are represented in their risk neutral form.
We use this setting for ease of exposition. However, many of the results in this section hold
in more general settings.

Consider an American contingent claim written on thassets that matures at tirfie
Suppose that its payoff if exercised at timnis f (S, &, ..., §") > 0. For convenience,
let S represent the vectcﬁal, SE, ..., §. Denote the value of thisf-claim” at timet by

th (S). It follows from Bensoussan (1984) and Karatzas (1988) that

Cl(S) = sup Ei[e "V ()]

€St T

whereS; 7 is the set of stopping times of the filtration with valuestinT]. The immediate
exercise region for thé-clamis&’ = {(S,t) e R" x [0, T] : th(S) = f(9)}.
For any stopping time € Sp 1 and fori = 1, ..., n we can write

S = Sexplr — & — 0Pt +0i1Z V7] = S explr — & — 30H0T + 012 VOVT]

whered € Sp1. Now defineN); = exp[r — & — 362)0T +0i2/0V/T], i =1,...,n,

and letNyt = (N(}T, ..., NJp). In what follows, we writeS N to indicate the product of

two vectors. Using arguments similar to those in Jaillet, Lamberton, and Lapeyre (1990),
it can be verified that

Cl(S9) = sup E*[e TV f(SNyr_o))],
9630,1

where the expectation is taken relative to the random variahlés= 1, ..., n.
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PROPOSITIONA.2. Suppose immediate exercise is optimal at time t with asset prices S,
i.e., (S t) € £'. Then immediate exercise is optimal at all later times at the same asset
prices. Thatis(S,s) € £f forall s suchthatt<s < T.

Proof of Proposition A.2.Consider the new stopping ting = GI—:;. Sinced € Sp1

we haved’ € Spx wherek = I—:ts > 1fort < s. It follows that

th (S

sup E*[e""T9 f (SNy(r_g))]
0'eSo

IV

sup E*[e " T9 f (SNy(7-9)]
0’680_1

= CJ(9
where the inequality above holds sinfg ¢ Soxfork > 1. Suppose nowthas, s) ¢ Ef.
ThenCSf(S) > f(S) and the inequality above impli@f(S) > f(S). This contradicts

(Styeé&l. O

Definei o; Shy
roi S=(S,S,...,8S71 a8, St ... 9.

Proposition A.3 gives a sufficient condition for immediate exercise to be optimal at time
with asset prices. o; § andx > 1 if immediate exercise is optimal at tintevith asset
pricess.

ProOPOSITIONA.3 (Right/up connectedness). Consider an American f-claim with ma-
turity T that has a payoff on exercise at time t ofSf). Suppose immediate exercise is
optimal at time t with asset prices,$.e.,(S,t) € £, or equivalently, qf(s) = f(9).
Fix an index i and. > 1. Suppose that the payoff function f satisfies

(A.2) f(hoi §) = f(S)+cS

where c> 0is a constant that is independent ¢f But may depend onand $ forj #i.
Also suppose that

(A.3) f(hoi S < f(S +cS

forall S € R (with the same c asin (A.2)). Theéhno; §,t) € et



268 MARK BROADIE AND JEROME DETEMPLE

Proof of Proposition A.3.Suppose not; i.e., suppo@é (Ao §) > f(Aoj §) for some
fixedi andr > 1. We have

Cl(hoi S = sup E*[e TV (Ao SNyr_p)]

6eSo1
< sup EX[e TV (F(SNyr—1) + ¢S Nyr_y))] (by (A.3))
0eSo1
< c/(9+cS
= f(S +cS (since(S,t) € £F)
= f(Lho S (by assumption A.2
This contradicts our assumpti«il;f rLojS)> f(ho S). O

Conditions (A.2) and (A.3) are satisfied by the following option payoff functions (for the
indicated values af):

Option payoff function Valid
(a) f(S)=maxs,....H-K)*  {i:9 =maxs,.... )}
b) 1§ H=(EF-5-K7 i=2

First consider payoff function (a). We prove that conditions (A.2) and (A.3) hold for
alli such that§ = max s, ..., Y. Note that(S, t) belonging to€ " implies f(S) =

(§ —K)*=9 - K > 0. Forx > 1 we have

S — K
=S -K+x-D1S
= f(S)+c§.

f(hoi §)

thatifl #1,

f(hoi S) = (S —K)*
S -K*'+G-1S
= f(S)+cS.

A

Ifl =i, then

fO.o ) = (A8 —K)*
=[S -K) +x-DS]"

(S -KT+x-D1S

f(S)+cS.

IA

IA

The first inequality follows sincéa + b)™ < a*™ + b for any real numbera andb.
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For payoff function (b), conditions (A.2) and (A.3) hold foe= 2. To prove this, note
that(S,t) € £ implies f(§) = ¥ — § — K > 0. Thus, for» > 1 we have

fhoi §) = AF - —K
— 32_31_K+(A_1)32
= f(S)+cT,

S0 (A.2) holds forc = A — 1. To prove (A.3), note that

fOo 8) = 0 —S-K)*
=[(F-8-K+x-Dg*
S (E-8-K"+0-1
= f(S)+cS.
Proposition A.4 gives a sufficient condition for the optimality of immediate exercise at

timet with asset priced o; § and 0< 1 < 1 if immediate exercise is optimal at tinte
with asset price§.

PrROPOSITIONA.4. Consider an American f-claim with maturity T that has a payoff
on exercise at time t of (15). Suppose immediate exercise is optimal at time t with asset
prices $, i.e.,(S,t) € £, or equivalently, qf(s) = f(8). Fixan index i and fix. with
0 < A < 1. Suppose that the payoff function f satisfies

(A.4) f(o &) =H(S).

Also suppose that
(A.5) f(hoi S < (9
forall Se R}. Then(ro; S,t) € €.

Proof of Proposition A.4.The proof is similar to the proof of Proposition A.3. Suppose
not; i.e., supposéttf (Loj §) > f(A o] S). We have

Cl(or S = sup EX[e TV f((h o HNyer_t))]
0€So01

< sup EX[e" TV f(SNyt_1))] (by assumption (A.5)
9680_1

=C/ (9
= (9 (since(S,t) e &N

HenceCtf (Aoi 9 < T(S = f(roj S) by (A.4). This contradict@tf Aoi S > f(hoi S).
O
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Conditions (A.4) and (A.5) are satisfied by the following option payoff functions (for the
indicated values af):

Option payoff function Valid
(@) f(S) = maxs,...,§) - K)* i:9 <maxs,..., 9
b)) (&P =(F-9-K7 i=1

It is trivial to verify that conditions (A.4) and (A.5) hold for payoff functions (a) and (b)
for the indices indicated.
Definea S by the usual scalar multiplication

aS= (S oS ..., a).

Proposition A.5 gives a sufficient condition for immediate exercise to be optimal at time
with asset pricea§ (¢ > 1) ifimmediate exercise is optimal at tinhevith asset price§.

PrOPOSITIONA.5 (Ray connectedness). Consider an American f-claim with maturity T
that has a payoff on exercise at time t ofS). Suppose immediate exercise is optimal
at time t with asset prices;S.e., (S,t) € £, or equivalently, qf(s) = f(8). Also
suppose that for alk > 1 the payoff function f satisfies

(A.6) f(@S)=af(§)+c

where ¢> 0 is a constant that is independent qf But may depend om. Also suppose
that

(A7) f(@S) <af(S+c

forall S e RY. Then for alle > 1we have@§, 1) € AR

Proof of Proposition A.5.Suppose not; i.e., suppo@é (@]) > f(¢S)forsomex > 1.
A contradiction follows from the string of inequalities

sup E*[e TV f (@S Nyr_1))]

0e€Sp1

cl(@S)

IA

sup E'fe T Vot (SNyr_y) + O] (by assumption (A.7))
0€S0,1

actf(S) +c
af(S)+c (since(§,t) € £NH
= f(@S) (by (A.6)) O

IA
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Conditions (A.6) and (A.7) are satisfied by the option payoff functions

(@) f(8) = (maxg,.... ) - K)*
(b) (& =(EF-9-K7

For payoff function (a), conditions (A.6) and (A.7) hold. To prove this, note@fat) €
ET implies f(S) > 0. We then have

flaS) = ji’r}axnasj - K

.....

ag@xﬁ—KyHa—nK

..... n

af(§) +c,

that

f(@S = (@S —K)*
[a(S = K) + (@ — DK] T
a(S — K)" + (@ — DK

A

= af (S +c.

For payoff function (b), conditions (A.6) and (A.7) hold. To prove this, notetBat) e
Elimplies f(§) =¥~ S — K > 0. Then

f(@S) = aF —aS -K
a(§ -5 - K)+(@—-DK
af(§) +c,

so (A.6) holds forc = (@ — 1)K. To prove (A.7),

f@S = @ —aSt—K)T
[2(S?— St — K) + (« — DK]*
a(FP—St—K)T + (@ — DK

IA

af (S) +c.

PROPOSITIONA.6 (Convexity). Consider an American f -claim with maturity T that has
a payoff on exercise attime t of &). Suppose that f is a (strictly) convex function. Then
th (S) is (strictly) convex with respect to S.
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Proof of Proposition A.6.Using the convexity of the payoff function, we can write

Cl(S()) = sup EX[e TV F(ASNr_t 4+ (1 — D SNr_1)]
9650_1

< sup E* e T ORF (SNyr_t)) + (L — 1) F(SNyr—p))]
Oe 0,1

< sup E*[e " TYAf (SNyr_t)] + sup E*[e 7TV — 1) f (SNyr_1))]

0eSo1 0€So0,1

AC (9 + 1 —-nC (. O

APPENDIX B

Proof of Proposition 2.1.Suppose not; i.e., suppo&& (S, §) = (S — K)* for some
t < T. Consider a portfolio consisting of (1) a long position in one max-option, (2) a short
position of one unit of asset 1, and (3 $nvested in the riskless asset. The value of this
portfolio at timet, denotedv;, is zero since§t must be greater thald for the assumption
to hold?

Letu be a fixed time greater than Since exercise of the max-option at timenay not
be optimal, the value of the portfolio at timieV;, satisfies

Ve = Effe "V (maxs), §) - KT - § + K.

Next we show that the right-hand side of the previous inequality is strictly positive for some
u > t. Thatis,V; > 0 which contradicty/ = 0 asserted earlier.
To show\, > 0, first let A(u) denoteE;[e" U~V (max(§, §9) — K)*]. Then

Au) > Ef[e"“ Y (maxs, ) - K)]
= E[e"“ IS - K + Lg.g(§ — S]]

= e UI(E(SH - K + Ef[1[55>3}}(33 -
= §e U —Ke U 4 e T UVELig. ) (S — I

Clearly (a) Ste=@=Y — Ke"Ut — (g — K) — 0 asu — t. Also, (b)e "«
Et*[l{33>33}(s§ —§H] | 0asu — t. However, Lemma B.1 below shows that convergence
is faster in case (a). That is, there exists a t such thatA(u) > § — K. This implies
Wt > A(u) — § + K > 0 which contradict®; = 0. HenceCX(S, §) > (§ — K)* for
allt <T. O

LEMMA B.1. Suppose 5= & > 0andt< T. Thenthere exists atime ugtu < T,

4f § = § < K we can always find an exercise strategy whose value is strictly positive. It follows that
cxggH>o.
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such that

SEHV -1 —KEe Y -+ e UVE L g (S - S > 0.

Proof of Lemma B.1Letu =t + At andB(At) = e "4t E;‘[l{35>5u1]($f — Sb], where
the expectation is evaluated gt = . A straightforward computation gives

B(At) = /_Z S expl—(61 + 2021 — p2) AIN(=d(w) + %m)n(w)dw

- /oo R expl-8, AN (—d(w) — Mm)n(wmw

02\/1—/0

whered(w) = [(82— 81+ 302 — 302/ At +w(o1 — po2)] /(02¢/1 — p?). It can be shown
that B(0) = 0 andB’(0) = +oo. Let d(At) = S(e 4 — 1) — K(e"*' — 1). Then
®(0) = 0 and® has a finite derivative at zero given By(0) =rK — 8131. Hence, there
exists aAt > 0 (or equivalentlyy > t) such that the assertion of the lemma holds. O

Proof of Proposition 2.2.Since(S, t) € £ and(S,t) € £X we haveCX(S) = S — K
andCX(S) = S — K. Since(St v S — K)* is convex inSt and S* we can apply
Proposition A.6 and write

CX(SW) =ACKH S+ L -NCX (S =4S —K) + (1 -1)(E —K) =S 1) — K.

On the other hand, since immediate exercise is a feasible str@fegy(r)) > (St(L) v
() - K)* =S — K when(St) € £ and(S,t) € £X. Combining these two
inequalities impliegS(1), t) € &*. O

Proof of Proposition 2.3.

(i) This assertion follows immediately from Proposition A.2 in Appendix A.

(i) This is immediate from Proposition A.3 and the remarks for payoff function (a)
which follow that proposition.

(iif) Thisassertion follows from Proposition A.4 and the remarks for payoff function (a)
which follow that proposition.

(iv) If & = 0thenS? = 0 for allv > t. Hence the max-option is equivalent
to a standard option on the single asSét By definition, the optimal exercise
boundary for this standard option B . O

Proof of Proposition 2.4.The proof uses the following lemmas.
LEMMA B.2. Let K; > K, denote two exercise prices and &t(t, K1) and£X(t, K»)

represent the corresponding exercise regions at time t. Egh, K1) c £X(t, K»). In
particular, for K > 0we havegX(t, K) c £X(t, 0).
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Proof of Lemma B.2Suppose immediate exercise is optimal at tinfier the K; option
but not for theK,, option. Then

(Stv S — Kyt < CX(Sh S Ky)
= E' e v - K]
_ E*[efr(r—t)(sg- Vv STZ — K+ K1 —K»*]
Ee” (S v & — K)'T+ E e V(K — Kp)]
< CX(Sh S, Ky + K1 — Ko
(StvF—K)T+Ki— K,

IA

where the last line follows from the optimality of immediate exercise forKheoption.
The contradiction obtained shows that immediate exercise is optimal fétHugtion. O

LEMMA B.3 (Ray connectedness). If (S, S, t) € £X(t, 0)then(A S, AS?, t) € £X(t, 0)
forall A > 0.

Proof of Lemma B.3SupposeASt, AS%,t) ¢ £X(t, 0) for somer > 0. Then there
existst, € S; 1 such that

AStVAS? < C(LSHAS,0) = Ef[e " V(S v AS)] = AE [e TS v ).

Itfollows thatS'v & < Ej[e~" Y (Stv S)]; i.e., the stopping time strategy dominates
immediate exercise &6', S, t). This contradicts the hypothesis. O

LEMMA B.4. (S, S t) ¢ EX(t,0)fort < T.

Proof of Lemma B.4This follows from the proof of Proposition 2.1 withk = 0. O

Now to prove the proposition, Lemma B.4 states &S, t) ¢ £X(t, 0). Sinceg*(t, 0)
is a closed set, there exists an open neighborhod8,@) such tha( St, S, t) ¢ £X(t, 0)
for all (St, S?) in the neighborhood. The ray connectedness of Lemma B.3 implies the
existence of an open co¥A1, A,) suchthaR(r1, A2)NEX(t, 0) = @. Finally, LemmaB.2
implies R(A1, 1) N EX(t, K) = 0. O

Proof of Proposition 2.6.

(i) Uniform boundedness of the spatial derivatives: We focus on the derivative relative
to St. The argument foiS? follows by symmetry. Consider two asset values
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(§, &, t) and(§, &, t). For any stopping time € S; 1 we have

Bl ISVE-K"'—(EFVvE-K < 8vH -V
< IS -§
= 1§ — §lexp[(r —81)(r — 1)
—10f(t —t) + o012t — ZD)]
< IS -§lexplrz -1t

—20f(t —t) + o1zt — Z)].

Without loss of generality, suppo§ > Sl. Letr; € S; 1 represent the optimal
stopping time for S, ., t). We have

X, 0 -CcXE g0l < Effe" ™ VS v -K)T
—(§, V& - K
IS~ SE[exp(—30f(m — D)
+o1(z;, — 7)) (by (A8))
=18 - §I.

IA

Hence, [C*(S, S, 1) — CX(§, S 011/ — SI) < 1; i.e., one is a uniform
upper bound.

(i) Local boundedness of the time derivative: Defing) = C*(S!, $%, t) and let
0(t) € So.1 denote the optimal stopping time for this problem. We have

(B.2)lut) —u(s)| < |E*[e"OT Y (maxS Nj 7y — KT
I
—e_re(t)(T_s)(miaxg Nooyr—s = K]
(sinced (1) is suboptimal foru(s))
< E*[|efr9(t)(T7t) — e "OT-9(maxS Néi)(t)(T—t) —K)*
1

+e "OT-9 (maxs Nfe(t)(T—U - K7
|

—(miaxS Nboyr—s) — K)TI].

SinceG(t) = e "?OT Y js convex int, we can write

(B.3) [e VTV — e OT=9) < [sup (roe TN |rot)(t —s)| < k|t —s|
6€[0,1]
ve[0,T]
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for some constark. Also

2
(B-4) E"(MaxS Njjr 1 — K)* < ) E*(SNjgyr)

2 2
< Z;gexpﬂr—8i|(T—t)]EZ;ki§

for some constants.
Finally, lete; =1 — § — 2 o7,

0172 \/O()/T —s. We can write

2 i =1, 2, and defing; (s) = o0 (t)(T —s) +

(B.5W = |(Stet® v SPe2® _ K)T — (Slet® v @) _ K)¥
< Isleal(t) v L) _ glgu®) \, az(5)|
< |Slea1(t) v Pe2® _ glgul® \, Lg z(t>|
+ |Sl (s \, Pe® _ glgi® \, 2 az(5)|
< S'EeY v er9)jayt) —a(s)| + SR v e a(t) — ax(s)|
< (8 + S)enOTmErROMRO(ay (1) — ay(9)] + 22(t) — &(S))),

where the third inequality follows from the convexity of the exponential function.
But [ai ()] < lei[0()(T — 8) + 0i|Z |VODVT = < |oi|T +0i|2]V/T, and
Yila®) —a©)) < X (alf®t =) +ailZ VOO VT =t =T —9) <

At —s|+ > 1z|(VT —t — /T —5)) = h. Substituting these inequalities in
(A.12), taking expectations, and using the Cauchy—-Schwartz inequality yields

(B.6) E*[¥] < (St+ SZ)E*[e<Z. i DT+, oi|a|>ﬁh]

IA

IA

(S 4+ ) (EHEE DT+ o2 VT ¥ 2) 2

1
B(S'+ SH(E*h?)2,

IA

for some constarB. Furthermore
2
E*Ih> < D <|s— t2 4+ E* (124 + |2)° («/T —t—T— s) ) ,

for some constar. Sinceg(t) = /T —t hasg'(t) = —3(T —t)"¥? < 0 and
¢"(t) = —HT —1)"%2 < 0, we have 0< ¢(t) — ¢(s) < 3(T —9) Vs — ]
fort < s. It follows that

(B.7) E*|h/?

IA

<|s—t| +2(E*(zl>2+E*(zz>2) 1/4 |s—t|)

Dis -t
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Substituting (B.3), (B.4), (B.6), and (B.7) in (B.2) yields
lut) — u(s)| < (S'+ SHNs|t — s|

whereNs depends os. Local boundedness 6ii/dt follows.

Theorem 3.2 in Jaillet, Lamberton, and Lapeyre (1990) show<thatatisfies
the variational inequalities (2.4). These variational inequalities can be combined
with the convexity of the price function (Proposition 2.5, (iv)), the local bound-
edness 0HC*/at, and the uniform boundednessa* /39S, i = 1, 2, to prove
that the second partial derivatives are locally bounded (see equation (B.9) below).
O

Proof of Corollary 2.1.Using the transformatioS' = e andS? = e¥2 we can rewrite
equation (2.4) as

1[a%°CX 92CX 92CX aCX acx  acX
(B.8) = [—2012 +2 01002 + —2022] <rC*X—a —ap — ,
2 3yl ay]_ayz 8y2 8y1 3yZ ot

whereg; =1 — § — %oiz, i =1, 2. Convexity also implieg Hz > 0 for all z € R? where
H represents the Hessian Gf. Let ij( = fyz—%; fori,j = 1,2. Forz = (poy, 00) We

get
cl cf
povon (& €8 ) (77) = rPoicli+ 20moncl+ o > 0
21 22 2

whichimplieso?C;{ +200102C5+02C%, > (1-p?)0?C;¢ > 0. Combining this inequality
with (B.8) yields

aCX acC*x  JCX
B.9 0<11-pd»o2Ck <rcX— — - )
( ) = 2( 1Y )01 11 = o1 oy a2 s ot

Now consider the domain

Te={(y,¥2) I Yy < Y2 <Vs, YV (¥2) = B (Y2, 1) —€ < y1 < B (Y2, 1) +€ = y; (V2))

for given constanty, < y; ande > 0. Integrating (B.9) oveE: x [ti, to] yields

tr y; yf(yz) t2
0<ia-piof [ [* [ " chdndpdr=r [ [ cXaydyat
u Jy, Jy

I (Y2) 1 o

torogCX torogCX
_ " dy, dyp dt — f/—d dy, dt
alfﬁ /}: oy, rORGtTez [ | Gy, O a%

to BCX
- ——dy; dy, dt
/ﬁ /Et ot y1 0y at,
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for all e > 0. Equivalently

topyy
0= da-sol [ [ (CX0F 0 v — CXT . yo) Ay
1 Y,

2
r/ (supr>A(Et)dt
ty Xt

to pyy
- a1/ / (CX(Y{ (y2), ¥2) — C*(y; (Y2), Y2)) dyo dt
o Jy,

IA

o pyf
—a / / (CX(ya. v (Y1) — CX(ya. y5 (ya))) dys dt
o Jyp

2 9C*
+ / sup(——> A(Zp)dt
% at

whereA(%;) is the Lebesgue measure of the Sgt To obtain the integral relative tg,
we reversed the order of integratioy; , v, Y, (y1), andy; (y1) denote the edges of the
domainX; under this transformation.

As e | 0 all four terms on the righthand side converge to zero sin@g) | 0, CX is
locally bounded, andC*/at is locally bounded (see Proposition 2.6). We conclude that
CE (Y (¥2). ¥2) — CX (Y1 (Y2). ¥2) | Oase | Oforallt € [ty to;]and ally, € [y, y; 1.
SinceCX(Y; (2), ¥2) = 1 it follows thatCX(y; (y2), y2) = 1 forallt € [ty,t2], y2 €
[y5, y5]. Proceeding along the same lines we can skwyi, y5 (y1)) = O across the
boundaryB;‘(y2, t). O

Proof of Proposition 2.7.Since the partial derivatives exist and since the spatial deriva-
tives are continuous on [0) x RT x R* (by Proposition 2.6 and Corollary 2.1) we can
apply It9’s lemma and write

T 2 9CX

T (T-tH)~r X/l 2 _ X/l —r(s—t) Y o d i
(B.10) € CX(SH &£, T) =C (a,§,t)+/ e ; o5 01 Sd%

s=t

T acx
+ / <£[e’(“)C§‘] + er(“)—> ds
s as

=t
On the continuation regio6 we havedC* /at + LCX = 0. On the immediate exercise

region£* we haveC*(S!, &,t) = max s, §) — K. Thus

ot

E+£CX— —1 -0 -r(§-K)=-65+rK oné&f
TG-S -1 - K) = —5F+1K ong).

AlsoC*(St, $2,T) = (max(St, Sf) — K) ™. Substituting and taking expectations on both
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sides of (B.10) gives

(B.11)
Et*[efr(Tit)(maX(S%, S%) _ K)+] — CX(Sl, SZ’ t)

T
+/ Ef[e "¢ V(K —51351)1{3}335(53,5»
s=t

+eOVIK - 85D g pxaglds

Rearranging (B.12) produces the representation (2.8). The recursive equations (2.9) and
(2.10) for the optimal exercise boundaries are obtained by imposing the boundary conditions
CX(BX(S1), S = B (S t) — K andCX (S, BX (S, 1) = BX(St) — K. The
boundary conditions (2.11) hold since the max-option converges to an option on one asset
ast + T. Similarly, (2.12) holds since the max-option is a standard option on a single asset
when one price is zero. O

Proof of Proposition 3.1.

() Clearly immediate exercise is suboptimaft < § + K.

(i) This assertion follows immediately from Proposition A.2 in Appendix A.

(iii) This is immediate from Proposition A.3 and the remarks for payoff function (b)
which follow that proposition.

(iv) Thisassertionfollows from Proposition A.4 and the remarks for payoff function (b)
which follow that proposition.

(v) If § = 0thenS! = 0 forallv > t. Hence the spread option is equivalent
to a standard option on the single asSét By definition, the optimal exercise
boundary for this standard optionB§.

(vi) The proof is similar to the proof of Proposition 2.2. O

Proof of Proposition 3.3.

(i) If R < 1there exists a waiting policy which has positive value.
(i) Let x> 1and suppose thag', LS, t) ¢ EE. Then there exists a stopping time
7 such that € ;v and

C(§ At = E[e " " VSR, — 1)7]

= E[e"" VSR — 1+ (A — DR)"]
Efle " VSR — D1+ A — DE[e USR]
cE &+ -1e
f-S+0-pF=28-5"

A IA

(i) Considerx > 0 and suppose that S, A, t) ¢ EE. Then there exists € S; 1



280 MARK BROADIE AND JEROME DETEMPLE

with T > t such that

)L 2
C§H At > A5 (/\—21 - 1)
— Ee""MSR -D>r8R-DT
= E[e"" YR -DT>FR-D.

SinceC(§, &, t) > Ef[e " VSR, —D*]wegetC(F, F.t) > S(R-D.
This contradicts the assumptio§', §.t) € £E.

(iv) If § =0we haveS! = 0forallv >t. Hence,S? — St = < for all stopping
timest. But § > E;f[e~""~Y ] for all stopping times . The result follows

Proof of Proposition 3.4.The value of the option in the exercise regiotsfs— S which
has dynamics

d(§ - §) = Fr — 82dt + 02dZ] — §[(r —s1)dt+01dZ] on{R > BF}.

The value of the option can then be written as

.
CE(, Sty =cE(, .0+ Ef [/ e (8, — 5153)1{&23;}@}
t

wherecE(S, §,t) = Ef[e"TY(S2 — St)*] is the value of the European exchange
option.
ButR, > BE ifand only if zR > d(R;, BE, v — t), where

E

d(R,BE,v—t) = [Iog(B—”> —(r —aR—laz)(u—t)} 1
T R 2°R orJU —

Fori = 1,2, definez = pirzR +,/1 — p% u'R where

u

)

iR _ 2 — prZ" 1 (dS dR): 1

and pjrdt= ——Cov —[<7i2 — poioy]dt.

/1_10i2R Oi0R Oi0R

Letd(R;, BF, v —t) = d. Taking account of the fact thafR andu'R have standard
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normal distributions and are each independentpive can write the early exercise premium
as

/ / 5 Sze_az(” Y exp[-2 505 2(v — t) + o2(p2rZ"

UZR:(RZ:Jroo)}
+ /1= 3 U)o — tInEZP)nud Rd uPRdw

/ f 515e Y expl—202(v — 1) + o112

ZR>d
ulRe< 00,400) }
+ /1= pZe ™) Vv —tInZ®)nutP)d R dutRde
T [e'e) 00
= / / / 552 INn(ZR — 020V v — 1)
t d —00
X n(u2R —o0p/1— ,o%R«/v — t)dZRdUZRdv
T 00 00
- / / / 815 € 1 IR — g1p1rVV — 1)
t d —00

x nUR —o1,/1— pr«/v —t)dZdutRdv

T [e9) o)
= / / / Szﬁze_azw_t)n(wR)n(w)dwRdwdv
t d—o2p2r\/v—t J =00

T [ee] [ee)
- / / f 81§le’sl(vft)n(wR)n(w)dwRdwdv
t d—o1p1rvv—t J =00

-
= / SZSZe_BZ(v_t) N(—d(R, BUE, v —1t) + opprv/v — t)dv
t
T
- / Slsle_al(v_t)N(_d(Rt, Blli v—1) + o101rVV — D)dv

t

where

d(Rt,BvE,v—t)_O—Z,OZRVU—t

[Io <B—“E>—(a -4 +162)(v—t):|;
R 2T Ry —1
b(R, BE, v —t, 81 — 82, 0R)

and

BE
d(R;, BE, v —t) — o1p1rVV — [Iog( R ) — (81— 82+ 30R) (v —t)]
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1
X ——— 4+ orv/U —1
ORr/V — 1 R

= b(R;, B, v —t, 81 — 82, 0r) + orvV — L.

The recursive integral equation for the optimal boundary is obtained by dividirg} by
throughout and settinGE (!, §,t) = S{(BF — 1) atthe points?/St= R =Bf. O

The proof of Proposition 4.1 follows from the next lemma.

LEMMA B.5. The price of the exchange option with proportional cap satisfies the fol-
lowing inequalities,

0<(F-SHTALS < CE&SL, & t) < CE(S S, t) AV(LSLY)

where (L S!, t) is the date t value of an American contingent claim which paysup®n
exercise. Whe#y > Owe have (LS, t) = LS.

Proof of Lemma B.5The lower bound on the price follows since immediate exercise is
always a feasible strategy. To obtainthe upper bound noteShatShH) "AL S < (S>—9)*.
HenceCEC(S!, &2, 1) < CE(SL, £, t). On the other hants? — SH*™ A LSt < LS. This
yieldsCEC(St, &2, 1) < V(LS t). Combining these two bounds yields the upper bound
in the lemma. Finally note that wheda > 0 it does not pay to delay buying the assét
since this amounts to a loss of dividend payments. O

Proof of Proposition 4.1From the lemma it is straightforward to see that immediate
exercise is optimal i? > BE(t)S A (1+ L)S. WhenS? < BE()S A (1+ L)S, the
suboptimality of immediate exercise is proved in the text. O

Proof of Proposition 4.3 We first establish the continuity of the derivative €5 (St, S, t)
across the exercise boundayC.

LEMMA B.6. The spatial derivativesdCEC/3S)(S!, S 1), i = 1, 2 are continuous
on{S = BECSYN{SF < (1+L)SY).

Proof of Lemma B.60n{S? = BECS} N {S? < (14 L)S'} we know thatBE® = BE.
Thus if > BES! we can write($? — SHt = CE¢(St, &, 1) = CE(Sh, S2,t). On the
other hand, if$? < BES! we have(S? — SH* < CEC(St, S, t) < CE(SE, S)t).

Consider nows” = BES! and letS? = S+ ¢, & = $? — ¢ for e > 0. The following
bounds hold

(£ -SHt — (& -sht . CEC(s, &£,t) — CEC(sh, &, 1)
2¢ - 2¢
CE(Sl5 S_%_’ t) - CE(817 SE, t)
= 2
€
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for all ¢ > 0. Taking the limit ag | O yields

dCEC  jCEC dCE  3CE
1> 1 + = | > 1=+ 4+ —
— 2| 3R IR |~ 2| 3 0%

where the subscripts and— denote the right and left derivatives, respectively. By con-
tinuity of 9CE/3S? across the boundary and sing€F/9S? = 1 at that point the result
follows. A similar argument holds for the derivative relativeSo O

To prove the proposition it now suffices to applg’#femma noting thadu/dt + Lu = 0

in the continuation region angli/at + Lu = —6,S? + 6, S" in the exercise region. This
establishes (4.4). The recursive equation (4.5) follows by imposing the boundary condition
CEC(s, &, t) = SH(BEC(t) — 1) whenS? = BECS. O

Proof of Proposition 6.1.(i) and (ii) are obvious. To prove (iii), suppose that there exists
T € S1 with T > t such thaC® (S 1 t) = Ef[e " VG (S + 2. — K)T].
Then

C*(MS 2280 = E[e" " VES + 1S - K+ 30— DS + 300 — DSHT]
EeTVGS + ) - KT+ 300 - DE[eTVS]
+302— DE/[e""VS]
CH(S S0+ 300-DF +302-DF
= 3§+ -K+300-DF+30.-DF
= S+ 35 - K.

IA

IA

Assertion (iv) follows from the convexity of the payoff function and Proposition A.6.

To prove (v), note that ifSL, &, s) ¢ £* then there exists € Ss1 with T > s such
that waiting untilr dominates immediate exercise. But since s < T, the strategyt is
feasible at, and dominates immediate exercise. This contraditsS?, t) € £%. O

Proof of Proposition 6.2 We have
CHE. .0 = E[e" TGS +5) — K)'
T
+ / e "TVE(G01S) + 825 — rK) Lo ps (st ]dv.
t

Let r; denote the early exercise premium. We have

) Ik
£>B*Sv) & 2> [Iog (%) —(r =8 — 1D —t):|
— Z>d($B¥(S, v, v-1)

1
o24/V — 1
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= pzt+/1- p2P = d(F, B¥ (S ), v - 1)

— > d(S BE(Sh v, v —t) P

1
VI-02 J1-p?

— u?>d($ B v),v—t,p0,ZY.

Hence we can write

T = / e T- t)|: S Se(r 81)(v— t)/ f _— e 2(Z —01/v—1)? n(u21)du21dzldv
t

+ %stze(f—ﬁz)(v—t)

/-oo /w ef:—zLag(vft)wLaz(melJm/lfpgluﬂ)mn(zl)n(uZl)du21d Zldl)
—rK / / n(zl)n(u”)duzldzldv}
—oo Jd

T
1 1 \—81(v—t

+00
/ n(w — o14/v — t)N(—d(StZ, BE(Svl(w), v),v—1t, p, w))dwdv

T - [ 00
n / 15,SPe 20 / / 1 3@ o i op Tt L
t - Nz N2

e 2 oZ(v— t)+2 o2p (v— t)+2 o3 (1=p5) =04 214 Ady

T o)
— / rke @b / n(w)N(—d(Sz, BZ(Svl(w), v),v —t, p, w))dwdv.
t —00

It is easy to verify that the double integral in the second term equals

+o00
/ N(w — 02021/v — HN(=d(S, BE(S(w), v), v — t, p, w)

+o094/1— p%lx/v —t)dw dv.

Deflnlng &)(327 BE('» U), v — t’ P, Xv y) = f_oooo n(w - y)N(_d(Sza BZ(S}(w)’ v)a v —
t, p, w) + X)dw and substituting in the expression above yields the formula in the propo-
sition. O

Proof of Proposition 7.1.Let S™ denote am-dimensional subset ¢8', . .., S"}. Then
vm < nwe have,

CN(s 1) = CHM(S™. 1)
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In particular form = 2 the lower bound i€*2(S?, t). Now suppose that there exists
andj,i # j,(,]j) € {1,...,n} such that magSt,..., S") = S = SI. Then selecting
S? = (S, Sl)yieldsC*"(S,t) > C*%(S, S/, t). An application of Proposition 2.1 now
shows thaC*2(S, Si,t) > (S — K)* = (Sl — K)*. The result follows. O

REFERENCES

BENSOUSSAN A. (1984): “On the Theory of Option PricingActa Appl. Math,. 2, 139-158.

BENSOUSSAN A., and J. L. LONS (1978): Applications des laguations Variationnelles en Cobte
StochastiqueParis: Bordas (Dunod).

BovyLE, P. P., J. ENINE, and S. @Bs (1989): “Numerical Evaluation of Multivariate Contingent
Claims,”Rev. Financial Stug2, 241-250.

BROADIE, M., and J. [ETEMPLE (1995a): “American Capped Call Options on Dividend-Paying
Assets,"Rev. Financial Stu¢l8, 161-191.

BROADIE, M., and J. ETEMPLE(1996): “American Option Valuation: New Bounds, Approximations,
and a Comparison of Existing Method&éview of Financial Studie8, 1211-1250.

BROADIE, M., and P. GASSERMAN (1994): “Pricing American-Style Securities Using Simulation,”
unpublished manuscript, Columbia Univerity.

CARR, P., R. drRrROW, and R. MYNENI (1992): “Alternative Characterizations of American Put
Options,”Math. Finance 2, 87-106.

DEMPSTER M. A. H. (1994): “Fast Numerical Valuation of American, Exotic, and Complex Options,”
unpublished manuscript, University of Essex.

DixiT, A., and R. NDYCK (1994): Investment Under Uncertaintirinceton, NJ: Princeton University
Press.

DRrAVID, A., M. RICHARDSON, and T. S. 8N (1993): “Pricing Foreign Index Contingent Claims: An
Application to Nikkei Index Warrants,J. Derivatives 1, 1, 33-51.

EL Karoul, N., and |. KaraTzAs (1991): “A New Approach to the Skorohod Problem and its
Applications,”Stoch. Stoch. ReB4, 57-82.

GELTNER, D., T. RDDIOUGH, and S. $oJaNovIC (1994): “Insights on the Effect of Land Use Choice:
The Perpetual Option on the Best of Two Underlying Assets,” unpublished manuscript, MIT.

JACKA, S. D. (1991): “Optimal Stopping and the American PMAth. Finance 1, 1-14.

JAILLET, P., D. LAMBERTON, and B. LAPEYRE (1990): “Variational Inequalities and the Pricing of
American Options,Acta Appl. Math.21, 263-289.

JOHNSON H. (1981): “The Pricing of Complex Options,” unpublished manuscript, Louisiana State
University.

JOHNSON H. (1987): “Options on the Maximum or the Minimum of Several AsselsFinancial
Quant. Anal, 22, 227-283.

KARATZAS, |. (1988): “On the Pricing of American Options¥ppl. Math. Optim.17, 37—60.

Kim, 1. J. (1990): “The Analytic Valuation of American Option&ev. Financial Stud3, 547-572.

MARGRABE, W. (1978): “The Value of an Option to Exchange One Asset for Anotldeifinance
33, 177-186.

MERTON, R. C. (1973): “Theory of Rational Option Pricindell J. Econ. Mgt. Sci4, 141-183.

MYNENI, R. (1992): “The Pricing of the American Optior&hn. Applied Proh.2, 1-23.

RUBINSTEIN, M. (1991): “One for Another,Risk July—August.

RuTtkowskl, M. (1994): “The Early Exercise Premium Representation of Foreign Market American
Options,”Math. Finance 4, 313-325.

StuLz, R. M. (1982): “Options on the Minimum or the Maximum of Two Risky AsselsFinancial
Econ, 10, 161-185.



286 MARK BROADIE AND JEROME DETEMPLE

TAN, K., and K. \ETZAL, (1994): “Early Exercise Regions for Exotic Options,” unpublished manu-
script, University of Waterloo.

VAN MOERBEKE, P. (1976): “On Optimal Stopping and Free Boundary Problemsh. Rational
Mech. Anal, 60, 1976, 101-148.



