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1. Derivatives Markets:
Introduction and Definitions

Management Science has a long tradition of publish-
ing important research in the finance area, includ-
ing significant contributions to portfolio optimization;
asset-liability management; utility theory and stochas-
tic dominance; and empirical finance and derivative
securities. Within the derivatives area, contributions
in the journal have advanced our understanding of
the pricing, hedging, and risk management of deriva-
tive securities in a wide variety of financial mar-
kets, including equity, fixed income, commodity, and
credit markets. In addition to theoretical advances,
several articles have focused on practical applications
through the design of efficient numerical procedures
for valuing and hedging derivative securities. In this
paper we survey the option pricing literature over
the last four decades, including many articles that
have appeared in the pages ofManagement Science. We
begin with a description of derivative securities and
their properties.
A derivative security is a financial asset whose pay-

off depends on the value of some underlying variable.
The underlying variable can be a traded asset, such
as a stock; an index portfolio; a futures price; a cur-
rency; or some measurable state variable, such as the
temperature at some location or the volatility of an
index. The payoff can involve various patterns of cash
flows. Payments can be spread evenly through time,
occur at specific dates, or a combination of the two.
Derivatives are also referred to as contingent claims.
An option is a derivative security that gives the right

to buy or sell the underlying asset, at or before some

maturity date T , for a prespecified price K, called the
strike or exercise price. A call (put) option is a right to
buy (sell). Because exercise is a right and not an obli-
gation, the exercise payoff is �S−K�+ ≡max�S−K�0�
for a call option and �K − S�+ ≡max�K − S�0� for a
put option, where S denotes the price of the underly-
ing asset. Options can be European style, which can
only be exercised at the maturity date, or American
style, where exercise is at the discretion of the holder,
at any time before or at the maturity date.
Plain vanilla options, such as those described above,

were introduced on organized option exchanges such
as the Chicago Board of Options Exchange (CBOE) in
1973. Since then, innovation has led to the creation
of numerous products designed to fill the needs of
various types of investors. Path-dependent options,
such as barrier options, Asian options, and lookbacks
are examples of contractual forms that have emerged
since and are now routinely traded in markets or
quoted by financial institutions, or both. Even more
exotic types of contracts, whose payoffs depend on
multiple underlying assets or on occupation times of
predetermined regions, have emerged in recent years
and have drawn interest.
This paper surveys past contributions in the field

and provides an overview of recent trends. We
first review the fundamental valuation principles for
European-style (§2) and American-style (§3) deriva-
tives. Next, we outline extensions of the basic
model (§4) and survey numerical methods (§5). An
assessment of the future and comments on open prob-
lems are formulated in the concluding section (§6).
The appendix treats derivatives in the fixed income
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and credit markets, real options, path-dependent con-
tracts, and derivatives written on multiple underlying
assets.

2. European-Style Derivatives
The focus of this section is on the fundamentals
of derivatives’ valuation and applications to plain
vanilla European options. We first review the no-
arbitrage (§2.1) and the risk-neutral (§2.2) approaches
to valuation for European-style derivatives. We then
turn our attention to valuation in the presence of
unhedgeable risks (§2.3).

2.1. No-Arbitrage Valuation
The no-arbitrage principle is central to the valuation
of derivative securities. One of the most important
insights of the seminal papers by Black and Scholes
(1972) and Merton (1973) was to show how the prin-
ciple can be used to characterize the price of an arbi-
trary derivative asset.

2.1.1. The Black-Scholes-Merton Framework. The
Black-Scholes-Merton (BSM) analysis starts from the
premise that the underlying asset price S follows a
geometric Brownian motion process

dSt

St

= ��− ��dt+ dWt� (1)

where ���, and  are constants, which represent the
expected (total) return on the asset, the dividend rate,
and the return volatility, respectively. The process W
is a standard Brownian motion, under the physical
(or statistical) probability measure P , that captures the
underlying uncertainty in this market. Trading in this
asset is unrestricted, i.e., no taxes, transactions costs,
constraints, or other frictions. Likewise, investors can
invest without restrictions, at the constant risk-free
rate r .1 The asset paying interest at the riskless rate
and the underlying risky asset are sometimes called
the primary assets.
In the sequel we refer to this model as the BSM

framework or setting.

2.1.2. The FundamentalValuationEquation. Sup-
pose that we seek to value a European-style derivative
that pays off g�ST � at a given maturity date T . Assum-
ing that the current price Vt ≡ V �S� t� of the security
has suitable differentiability properties (specifically
V �S� t� ∈ �2�1 on the domain � ≡ �+ × �0�T �) one
can apply Itô’s lemma (see Karatzas and Shreve 1988,
p. 149) to show that

dVt=
(
�V

�t
+ �V

�S
St��−��+ 1

2
�2V

�S2
S2t 

2

)
dt+ �V

�S
StdWt

1 Trading strategies are subject to a mild regularity condition. To
ensure a well-defined value process the quadratic variation of a
portfolio value must be finite P -a.s.

on �. Letting �V �t� S� and V �t� S� be the mean and
volatility of the derivative’s return enables us to write
dVt = Vt��

V �t� St� dt+V �t� St� dWt�.
A self-financing portfolio of the risk-free asset, the

underlying asset, and the derivative contract, how-
ever, has value X evolving according to

dXt = rXt dt+Xt�t���− r� dt+ dWt�

+Xt�
V
t ���V �t� St�− r� dt+V �t� St� dWt��

with initial value X0 = x� the cost of the portfolio
at initiation. Here X� represents the (dollar) amount
invested in the underlying asset, X�V the amount in
the derivative, and X�1−� −�V � the balance in the
riskless asset (���V and 1−� −�V are the fractions
of the portfolio’s value invested in the three assets).
With the choices Xt�

V
t = V �St� t� and Xt�t = −St ×

�V �St� t�/�S we obtain

dXt =
(
rXt −

�V

�S
St��− r�+ �V

�t
+ �V

�S
St��− ��

+ 1
2
�2V

�S2
S2t 

2− rV

)
dt�

Note that this portfolio is locally riskless. Because the
initial capital could also have been invested risklessly,
to preclude the existence of arbitrage opportunities
the portfolio return must be equal to the risk-free rate.
Equivalently, the derivative’s price V must satisfy

�V

�t
+ �V

�S
St�r − ��+ 1

2
�2V

�S2
S2t 

2− rV = 0 (2)

on �. This partial differential equation, along with the
boundary conditions


V �ST �T �= g�ST � on �+

V �0� t�= g�0�e−r�T−t� on �0�T �

lim
S→	

V �S� t�= g�	�e−r�T−t� on �0�T ��

(3)

characterizes the derivative’s price. Equation (2) is
known as the fundamental valuation equation for
derivatives’ prices. The equation is called fundamen-
tal because it applies to any derivative security, inde-
pendently of its payoff structure. What changes across
securities are the relevant Boundary Conditions (3).
One can also introduce the new variables �x� �� and

the function u�x� �� such that

S=Kexp�x�� t=T − �
1
2

2
� V �S�t�=e−�x−��u�x����

where �≡ �r−�− 1
2

2�/2, �≡ �2+2r/2, and where
K is an arbitrary positive constant (in the special
case of options, K represents the strike). The function
u�x� �� solves the modified valuation equation

�u

��
= �2u

�x2
(4)
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subject to the boundary conditions


e−�xu�x�0�=g�Kexp�x�� on �

lim
x→−	e−�x−��u�x���=g�0�e−2r�/

2
on � ∈[0� 122T ]

lim
x→	e−�x−��u�x���=g�	�e−2r�/

2
on � ∈[0� 122T ]�

(5)

Condition (4) is known as the heat equation. This
partial differential equation, which characterizes the
propagation of heat in a continuous medium, has
been extensively studied in physics. Its fundamen-
tal solution (subject to the boundary condition
limx→±	 u�x� �� = 0) is the Gaussian density function
u�x� t�= �2

√
�t�−1 exp�−x2/4t� with mean 0 and stan-

dard deviation
√
2t (see Wilmott et al. 1993, p. 81).

2.1.3. The Black-Scholes Formula. When the pay-
off is specialized to a call option g�S� = �S − K�+

the valuation equation and boundary conditions
admit the solution

c�St� t!K� = Ste
−��T−t�N �d�St!K�T − t��

−Ke−r�T−t�N �d�St!K�T − t�−
√
T − t��

(6)

where N�·� is the cumulative standard normal distri-
bution and

d�St!K�T − t�

= 1


√
T − t

[
log

(
St

K

)
+
(
r − �+ 1

2
2

)
�T − t�

]
�

(7)

This expression is the celebrated Black-Scholes for-
mula for the price of a European call option with
strike K and maturity date T . That the Black-Scholes
Formula (6)–(7) satisfies all the pricing conditions can
be verified by computing the relevant derivatives and
limits, and substituting in (2)–(3). Alternatively, one
can work with the fundamental solution of the heat
equation to deduce C�S� t�.
Similar arguments lead to the value of a European

put option,

p�St� t!K� = Ke−r�T−t�N
(−d�St!K�T − t�+

√
T − t

)
−Ste

−��T−t�N
(−d�St!K�T − t�

)
� (8)

with d�St!K�T − t� as defined in (7). The put for-
mula can also be derived by a straightforward appli-
cation of the put-call parity relationship for European
options on dividend-paying assets. This no-arbitrage
condition, which relates call and put options with
identical maturities and strike prices, states that

c�St� t!K�+Ke−r�T−t� = p�St� t!K�+ Ste
−��T−t� (9)

for all t ∈ �0�T �. The condition reflects the fact that
the portfolios on the left- and right-hand sides of
the equation have the same payoff �ST − K�+ + K =
�K − ST �

+ + ST at the maturity date: Because terminal
payoffs are identical, their prices must also be iden-
tical, at all times prior to maturity, to preclude arbi-
trages. Solving for the put price from (9), substituting
the call Formula (6), and simplifying establishes (8).
Extensions of the model to settings with trad-

ing costs, short-sales constraints, and other frictions
have been developed. See, for example, Leland (1985),
Hodges and Neuberger (1989), Bensaid et al. (1992),
Boyle and Vorst (1992), Karatzas and Kou (1996), and
Broadie et al. (1998).

2.1.4. Delta Hedging. An important function of
options and, more generally, of derivatives, is to pro-
vide the means to hedge given exposures to the
underlying sources of risk or given positions in
the underlying assets. Conversely, firms dealing in
options often wish to hedge against the fluctuations
inherent in their derivatives positions. The key to
immunizing these positions is the delta of the option:
The delta is the sensitivity of the option price with
respect to the underlying asset price. Simple differen-
tiation shows that the delta of a call is

%c�St� t�≡
�C�St� t�

�S
= e−��T−t�N �d�St!K�T − t���

Thus, immunizing a call position against fluctuations
in the value of the underlying asset entails shorting
%c�St� t� units of the underlying asset. Because delta
depends on the asset price and time to maturity, delta
hedging is inherently a dynamic process that requires
continuous monitoring and rebalancing of the hedge
over time.
Similar derivations establish the formula for the

delta of a put: %p�St� t�=−e−��T−t�N �−d�St!K�T − t��.
Immunizing a put position entails a long posi-
tion consisting of %p�St� t� units of the underlying
asset.
Comparison with the formulas of §2.1.2 shows that

the delta of an option is closely related to the self-
financing portfolio used to synthesize a riskless posi-
tion. Simple analysis reveals that delta also represents
the number of shares to be held in order to replicate
the option, i.e., the number of shares in the replicating
portfolio. Further perspective on the relation between
delta hedging and the self-financing condition can be
found in Ingersoll (1987, p. 363). Carr and Jarrow
(1990) provide a nice analysis of a trading strategy,
the stop-loss start-gain strategy; it appears to replicate
the option’s payoff but in fact does not.
The sensitivities of option prices with respect to

other parameters of the model are also of interest
to traders. In particular, the second derivative of the
option’s price with respect to the underlying price
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(gamma) and the derivatives with respect to time
(theta), volatility (vega), and the interest rate (rho)
have received attention. Formulas for these Greeks are
easy to derive from (6) and (8) and can be found in
standard textbooks such as Hull (2003).

2.2. Risk-Neutral Valuation
The fundamental valuation equations (2)–(3) reveal
that the only market parameters relevant for pricing
derivatives are the interest rate r , the volatility  , and
the dividend yield � of the underlying asset. Surpris-
ingly, the expected return � does not matter. This
property lies at the heart of the second approach to
option valuation, the so-called risk-neutralization pro-
cedure. This method was discovered by Cox and Ross
(1976). Its formalization and the identification of some
fundamental underlying principles can be found in
Harrison and Kreps (1979) and Harrison and Pliska
(1981).

2.2.1. A Risk-Neutral Pricing Formula. Suppose
that the financial market behaves in a risk-neutral
manner with underlying asset price evolving accord-
ing to

dSt

St

= �r − ��dt+ dW ∗
t � (10)

whereW ∗ is a Brownian motion process. Risk neutral-
ity implies that the expected total return on the asset
equals the risk-free rate: E∗

t �dSt/St +�dt�= r dt, where
E∗

t �·� is the conditional expectation at t with respect
to the Brownian motion W ∗. This property is reflected
in the dynamics (10) of the asset price. Also assume
that, in other respects, the market structure remains
the same (securities are freely traded and a riskless
asset is available).
In this environment, the no-arbitrage analysis of

§2.1 applies and, as can be verified, leads to the same
valuation equation. Derivative security prices in our
risk-neutral economy and in the original risk-averse
economy will therefore coincide! Moreover, an appli-
cation of the Feynman-Kac formula (see Karatzas and
Shreve 1988, p. 366) shows that

V �St� t�= e−r�T−t�E∗
t �g�ST �� (11)

solves (2)–(3). It follows that the derivative’s price is
simply the expected payoff discounted at the risk-free
rate, as should be the case with risk neutrality.
These observations motivate the second approach

to the valuation of derivatives, the risk-neutralization
procedure, which involves two steps. The first step
consists of risk neutralizing the underlying price pro-
cess, as in (10), by replacing the expected return
� with the risk-free rate r . The second step con-
sists of computing the price from (10) by taking the
expectation over the distribution of the underlying

price implied by (11), or equivalently over the distri-
bution of the Brownian motion W ∗.
The risk-neutral Formula (11) seems to emerge as

an alternative to the standard present value rule,
which states that the expected payoff of a security
ought to be discounted at a risk-adjusted rate. Risk
adjustment follows from equilibrium considerations
linking the riskiness of an asset to its expected return
(or risk premium). Somewhat surprisingly, Formula
(11) appears to obviate the need for adjusting discount
rates for the purpose of valuing derivatives.

2.2.2. The Equivalent Martingale Measure: Some
Definitions. Resolution of this puzzle follows by tak-
ing a closer look at the relationship between the no-
arbitrage and risk-neutralization approaches.
Consider again the price dynamics of the underly-

ing security (1) in our risk-averse economy and note
that it can be expressed in the form

dSt

St

= �r − ��dt+�dWt + ' dt��

where ' ≡ −1�� − r�. The variable ' is known as
the market price of risk or the Sharpe ratio. It mea-
sures the reward (i.e., the risk premium) per unit
risk. Defining dW ∗

t ≡ dWt + ' dt then enables us to
write the price evolution in precisely the form (10). Of
course, W ∗ is a Brownian motion process with drift
' in this original economy with physical probability
measure P .
At this point, however, one can appeal to the

Girsanov change of measure (see Karatzas and Shreve
1998, p. 191) to construct a new measure Q under
which W ∗ has the (standard) Brownian motion prop-
erty. Specifically, define the process

)t ≡ exp
(− 1

2'
2t− 'Wt

)
� t ∈ �0�T �

and construct the measure dQ ≡ )T dP . An applica-
tion of Itô’s lemma shows that ) is a P -martingale
with initial value )0 = 1.2 Combining this with the
fact that )T > 0 (P -a�s�) enables us to conclude that
Q is a probability measure, and that Q is equivalent
to P .3 It is referred to as the equivalent martingale
measure (EMM). The random variable )T represents
the Radon-Nikodym derivative of Q with respect to P
(i.e., )T = dQ/dP ). Because )T depends on the mar-
ket price of risk, the measure Q can be interpreted
as a risk-adjusted probability measure. Girsanov’s
theorem can then be invoked to assert that W ∗ is a
Q-Brownian motion.4

2 The process ) is a P -martingale if and only if Et�)v�= )t for all
t ≤ v, where Et�·� is the expectation with respect to P .
3 The measures Q and P are equivalent if they have the same null
sets.
4 Alternatively, this can also be verified by computing the charac-
teristic function of W ∗ under Q, given by

E∗�ei/W∗
t � = E�ei/W∗

t )T �= E�ei/W∗
t )t�
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2.2.3. The Equivalent Martingale Measure: Asset
Price Representations. The developments above
show that W ∗ is a Brownian motion under Q. Let us
now describe the behavior of prices under the new
measure. Another straightforward application of Itô’s
lemma shows that

e−r�T−t�ST +
∫ T

t
e−r�v−t�Sv�dv= St +

∫ T

t
e−r�v−t�Sv dW ∗

v

for all t ∈ �0�T �. Taking expectations with respect
to Q, on both sides of this equality, establishes the
formula

St = E∗
t

[
e−r�T−t�ST +

∫ T

t
e−r�v−t�Sv�dv

]
� (12)

This expression shows that the asset price equals
the expected value of the discounted dividends aug-
mented by the expected value of the discounted ter-
minal price. Expectations are computed under the
EMM Q. The discount factor is evaluated using the
risk-free rate. The formula therefore suggests that
the asset is priced, under Q, as if the market were risk
neutral. This is why the EMM is often called the risk-
neutral measure. This label should be used with some
caution, however, because (as pointed out above) the
EMM is effectively adjusted for risk. Recall that the
standard present-value formula computes expected
cash flows under the statistical (i.e., real-world) mea-
sure P and discounts those at a risk-adjusted discount
rate. Our alternative Formula (12) proceeds the other
way: It first corrects probabilities for risk and cal-
culates a risk-adjusted expected cash flow, then dis-
counts those at the risk-free rate.
It is also important to note that the discounted stock

price augmented by the discounted value of divi-
dends is a martingale under the EMM. This can easily
be seen by rewriting (12) in the following manner:

e−rtSt +
∫ t

0
e−rvSv�dv= E∗

t

[
e−rT ST +

∫ T

0
e−rvSv�dv

]
�

This property explains why Q is referred to as an
equivalent martingale measure.

= E�e�i/−'�Wt+�i/'− 12 '2�t �

= e
1
2 �i/−'�2t+�i/'− 12 '2�t = e−

1
2 /2t

for all t ∈ �0�T �. In this sequence of equalities the first follows
from the passage to the measure P , the second uses the martin-
gale property of ), and the fourth the distributional properties of
the Brownian motion W under P and the moment-generating func-
tion of a normal distribution. Other equalities involve standard
manipulations. The final expression corresponds to the characteris-
tic function of a normal distribution with mean zero and variance t.
Combining this distributional property with the continuity of the
sample path of W ∗, the initial condition W ∗

0 = 0, and the indepen-
dence of increments establishes the Brownian motion behavior of
W ∗ under the risk-adjusted probability measure Q.

Finally, it bears pointing out that the risk-neutral
valuation Formula (12) for the underlying asset can
also be restated in terms of expectations with respect
to P . Indeed, changing the measure yields the alter-
native representation

St = Et

[
0t�T ST +

∫ T

t
0t�vSv�dv

]
� (13)

where 0t�T ≡ e−r�T−t�)T /)t . The quantity 0v ≡ 00�v is
known as the state price density. The Arrow-Debreu
price at date 0 of a dollar received at date v in state 1
equals 0v dP�1�. Conditional Arrow-Debreu prices at
date t for cash flows received at v are given by
0t�v dPt�1�. Arrow-Debreu prices are also known as
state prices (see Debreu 1959). The present value of
the underlying asset (13) is the sum of cash flows mul-
tiplied by state prices.

2.2.4. Martingale Representation and No-Arbitrage
Pricing. Let ��·� be the filtration generated by the
Brownian motion W .5 The martingale representation
theorem—hereafter MRT—(see Karatzas and Shreve
1988, p. 188) states that any random variable B that
is measurable with respect to �T and is almost surely
finite can be written as a sum of Brownian increments.
More formally,

B= E�B�+
∫ T

0
3s dWs (14)

for some process 3 that is adapted and square inte-
grable (P -a.s.).6 If the stochastic integral in (14) is a
martingale we can also take conditional expectations
and get Et�B�= E�B�+ ∫ t

0 3s dWs for all t ∈ �0�T �. This
holds, in particular, if B has a finite second moment,
E�B2� <	 (i.e., B ∈ L2). In that instance the stochastic
integral also has finite second moment and

E
[(∫ t

0
3s dWs

)2]= E
[∫ t

0
32s ds

]
<	!

in addition, 3 is unique (see Karatzas and Shreve
1988, p. 185 and p. 189).
When applied to the deflated payoff of a derivative

security such that 0T g�ST � ∈ L2 the MRT gives

Et�0T g�ST ��= E�0T g�ST ��+
∫ t

0
3s dWs (15)

for some adapted process 3 such that E�
∫ t

0 3
2
s ds� <	.

Suppose now that we invest an initial amount x ≡
E�0T g�ST �� and follow the portfolio policy consisting

5 The filtration generated byW is the increasing collection of sigma-
algebras ��t 6 t ∈ �0�T �� where �t =  − �Ws6 s ∈ �0� t��, i.e., �t is the
collection of possible trajectories of the Brownian motion at t.
6 The process 3 is said to be adapted to the filtration ��·� if 3t is
�t-measurable for all t ∈ �0�T �. The process 3 is square integrable
(P -a.s.) if

∫ T

0 32s ds <	, P -a�s�
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of an investmentXt�t =Xt
−1'+0−1

t −13t in the risky
asset and the complement Xt�1 − �t� in the riskless
asset, for t ∈ �0�T �. Then, by Itô’s lemma, we obtain7

d�0tXt�= 0tXt��t − '�dWt =3t dWt!

subject to 00X0 =X0 = x�

Writing this differential equation in integral form
yields

0tXt = x+
∫ t

0
3s dWs = Et�0T g�ST ���

where the second equality follows from the defini-
tion x≡ E�0T g�ST �� and the martingale representation
of the discounted payoff (15). In particular, for t = T
we see that 0TXT = 0T g�ST �, which means XT = g�ST �:
Our selected portfolio duplicates the derivative’s pay-
off at maturity. The no-arbitrage principle can then be
invoked to conclude that the claim’s price must be the
same as the portfolio value. That is,

V �St� t�=Xt = 0−1
t Et�0T g�ST ��= Et�0t�T g�ST ��

for all t ∈ �0�T �. Any breakdown in this relation, at
any point in time, means that two traded assets with
identical payoffs have different prices, which implies
the existence of an arbitrage opportunity.
These arguments establish that derivative securi-

ties, in the BSM market, satisfy the same type of valu-
ation formulas as those characterizing the underlying
asset. In effect, we can write

V �St� t�= Et�0t�T g�ST ��= e−�T−t�E∗
t �g�ST ���

where we recall that E∗
t �·� is the expectation under the

risk-neutral measure Q. As before, we see that dis-
counted prices are Q-martingales, e−rtV �St� t� = e−rT ·
E∗

t �g�ST ��. We also observe that deflated prices are
P -martingales, 0tV �St� t�= Et�0T g�ST ��.

2.2.5. Risk-Neutral Pricing with Itô Price Pro-
cesses: Some Generalizations. The principles out-
lined above, namely the change of measure and the
representations of underlying and derivatives’ prices,
remain valid in the context of more general markets
with stochastic interest rate and Itô price processes.
Specifically, suppose that the interest rate r is a pro-

gressively measurable process and that the market is
comprised of d risky securities whose evolution is
governed by the stochastic differential equation (SDE)

dSt

St

= ��t − �t� dt+t dWt� (16)

7 Itô’s lemma gives d�0tXt�= 0tdXt +Xtd0t +d�0�X�t where d�0�X�t
is the cross-variation of the processes 0 and X. Substituting dX�d0
and d�0�X�t = −0tXt�t' dt, and rearranging gives the result
stated.

where ���� are progressively measurable pro-
cesses and  is invertible.8 In this setting W is a
d-dimensional Brownian motion, � is a d × 1 vec-
tor of appreciation rates (expected total returns), � is
a d × 1 vector of dividend rates, and  is a d × d
matrix of volatility coefficients. This class of models
includes Markovian diffusion models with stochastic
interest rates, stochastic dividends, and or stochastic
volatilities. It includes deterministic volatility func-
tion models proposed in Dupire (1994), Derman and
Kani (1994), and Rubinstein (1994). An important lim-
itation is that all processes are driven by the hedge-
able multidimensional Brownian motionW ; therefore,
models with nonhedgeable factors are excluded.
Under the assumption that the market price of risk

't ≡ −1
t ��t − rt1� is bounded, the density process

)t ≡ exp
(
−1
2

∫ t

0
'′
v'v dv−

∫ t

0
'′
v dWv

)
� t ∈ �0�T �

(17)

is a P -martingale with initial value )0 = 1. The mea-
sure Q, such that dQ ≡ )T dP , is well defined and
has the same properties as in §2.2.3. It represents the
EMM or risk-neutral measure in our more general
market. The process

W ∗
t ≡Wt +

∫ t

0
'v dv� t ∈ �0�T �

is a d-dimensional Q-Brownian motion and the asset
price S has the representations

St = E∗
t

[
bt�T ST +

∫ T

t
bt�vSv�v dv

]

= Et

[
0t�T ST +

∫ T

t
0t�vSv�v dv

]
(18)

under the measures Q and P , respectively. The quan-
tity bt�v = exp�−

∫ v

t
ru du� is the discount factor at the

locally riskless rate, and 0t = b0� t)t ≡ bt)t is the appli-
cable state price density.
A multidimensional version of the arguments in

§2.2.4 can again be invoked to yield no-arbitrage rep-
resentations of derivatives prices. For a derivative
security generating a continuous payment ft , per unit
time, at date t and a terminal cash flow YT we obtain
the valuation formula

Vt�f �Y � = E∗
t

[
bt�T YT +

∫ T

t
bt�vfv dv

]

= Et

[
0t�T YT +

∫ T

t
0t�vfv dv

]
� (19)

8 A process x is said to be progressively measurable if xt is measur-
able with respect to the product sigma-algebra �t ⊗���0� t�� for all
t ∈ �0�T �, where ���0� t�� is the Borel sigma-field on �0� t�.
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where the expectations are taken with respect to Q
and P , respectively.
The principles presented in this section and §2.2.4

are either special cases or bear relationship to the fun-
damental theorem of asset pricing (FTAP). In essence,
the FTAP states that a market is arbitrage free if and
only if there exists a probability measure Q under
which (discounted) security prices are martingales.
The probability measure Q is the equivalent martin-
gale measure. Harrison and Kreps (1979) show that
market completeness, as defined there (see also §2.3),
is equivalent to the existence of a unique EMM. The
EMM clearly relates to a change of numeraire. When
the EMM as defined above exists, prices expressed
in units of the bond (i.e., in the bond numeraire) are
Q-martingales. As discussed in more detail in §3.6,
prices can also be expressed in other numeraires and
will retain the martingale property relative to a suit-
ably adjusted probability measure.
Original versions of the theorem were established

by Harrison and Kreps (1979), Harrison and Pliska
(1981), and Kreps (1981). Versions of the theorem, as
well as extensions to more-general contingent claims
spaces or to more-general models with frictions can
be found in a variety of papers. References include
Dybvig and Ross (1987), Delbaen and Schachermayer
(1994), Jacod and Shiryaev (1998), Pham and Touzi
(1999), and Kabanov and Stricker (2001).

2.3. Incomplete Markets
A critical aspect of the models described in prior sec-
tions is the ability to hedge all risks with the existing
menu of assets. This property is called market com-
pleteness. When the underlying source of risk consists
of a d-dimensional Brownian motion, market com-
pleteness can be ensured if d + 1 primary securities,
namely d risky assets and one locally riskless asset,
are freely traded (see Duffie 1986). In §2.3 and its
subsections we examine valuation in market settings
where not all risks can be eliminated.

2.3.1. Effectively Complete Markets. A simple
approach to valuation, when risks cannot all be
hedged, is to resort to a general equilibrium analysis.
Pioneered by Lucas (1978) and Cox et al. (1985) this
approach rests on the notion that the economy, in the
aggregate, behaves like a single, well-defined agent.
Analysis of this representative agent’s behavior com-
bined with market-clearing conditions lead to equilib-
rium values for the interest rate, the market price of
risk, and the prices of primary and derivative assets.
For exposition purposes we sketch a continuous

time version of the Lucas pure exchange economy
model. The economy has a finite time horizon �0�T �:
All processes described below are understood to live

on that interval. The fundamental quantity, aggregate
consumption, is assumed to follow an Itô process

dCt =Ct��
c
t dt+c

t dWt��

where W is a d-dimensional Brownian motion, �c

is a progressively measurable process representing
the expected consumption growth rate, and c is a
1× d vector of progressively measurable processes
capturing the volatility exposures of the consumption
growth rate with respect to the various sources of risk.
Financial markets are composed of primary and

derivative assets. Primary assets include n risky
stocks and one riskless asset. The riskless asset is
in zero net supply and pays interest at the rate r ,
a progressively measurable process. Each stock is in
unit supply (one share outstanding) and pays divi-
dends. Stock j pays Dj per unit time, where dD

j
t =

D
j
t ��

j
t dt+

j
t dWt� with ��j�j� progressively measur-

able. Assuming that dividends are the only source
of consumption mandates the consistency condition∑n

j=1D
j
t = Ct . Derivative assets are in zero net supply

and consist of k securities with payoffs ��f j�Y
j
T �6 j =

1� � � � � k�, where f j is a continuous, progressively mea-
surable payment and Y

j
T a terminal, measurable cash

flow. No specific restrictions are placed on n�d, and k.
Hence n+ k < d is an admissible market structure.
Stock prices �Sj 6 j = 1� � � � �n� and derivative prices

�V j 6 j = 1� � � � � k� are conjectured to satisfy Itô pro-
cesses whose evolution is described by

dS
j
t +D

j
t dt = S

j
t ��

s� j
t dt+

s� j
t dWt�� j = 1� � � � �n (20)

dV
j
t + f

j
t dt = V

j
t ��

d� j
t dt+

d� j
t dWt��

V
j
T = YT ! j = 1� � � � � k (21)

with progressively measurable coefficients ��s� j �
s� j �j=1�����n and ��d� j�d� j �j=1�����k. These coefficients, as
well as the rate of interest, are endogenous in equilib-
rium. All assets, primary and derivatives, are freely
traded at the relevant prices.
The economy has a representative agent who max-

imizes welfare by consuming and investing in the
assets available. The consumption space is the space
of progressively measurable, nonnegative processes.
Preferences over consumption processes, denoted
by c ≡ �ct6 t ∈ �0�T ��, are represented by the von
Neumann–Morgenstern utility

U�c�≡ E
[∫ T

0
u�ct� t� dt

]
� (22)

where u�ct� t� is the utility of consumption at time t.
The utility function is assumed to be strictly increas-
ing and concave in consumption and to satisfy
the limiting (Inada) conditions limc→0 u′�c� t� = 	,
limc→	 u′�c� t� = 0, for all t ∈ �0�T �, where u′�c� t� is
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the derivative with respect to consumption. Invest-
ment policies are progressively measurable processes
denoted by � ≡ ��s��d� ≡ ���s

t ��
d
t �6 t ∈ �0�T ��

where �s represents the vector of fractions of wealth
invested in stocks and �d the vector of fractions in
derivatives. The complement 1 − ��s + �d�′1 is the
fraction in the risk-free asset (1 is a vector of ones
with suitable dimension). For a given consumption-
portfolio policy �c���, wealth X evolves according to
the dynamic budget constraint

dXt = �rXt − ct� dt+Xt��
s
t �

′���s
t − rt1� dt+s

t dWt�

+Xt��
d
t �

′���d
t − rt1� dt+d

t dWt�� (23)

subject to some initial condition X0 = x. The represen-
tative agent maximizes (22) over policies �c��� satis-
fying the budget constraint (23) and the nonnegativity
constraint Xt ≥ 0, for all t ∈ �0�T �. Policies that solve
this maximization problem are said to be optimal for
U at the given price processes �S�V � r�.
To close this model we need to specify a notion of

equilibrium. A competitive rational expectations equi-
librium is a collection of price processes ��S��s�s��
�V ��d�d�� r� and consumption-portfolio policies
�c��� such that �c��� is optimal for U at the price
processes �S�V � r� and markets clear. Market clearing
mandates c = C (consumption good market), X�s =
S (stock market), X�d = 0 (derivatives market), and
X�1− ��s+�d�′1�= 0 (riskless asset market).
Under suitable conditions, standard arguments can

be invoked (see, for instance, Karatzas and Shreve
1998) to show that optimal consumption satisfies the
first-order condition u′�ct� t� = y0t , where y is a con-
stant and 0 is the relevant state price density implied
by the given price processes �S�V � r� (recall that
0t = bt)t with ) as in (17)). Equilibrium in the goods
market then gives the condition u′�Ct� t� = y0t . Since
00 = 1 it must be that y = u′�C0�0� and therefore

0t =
u′�Ct� t�

u′�C0�0�
� (24)

The equilibrium state price density is therefore equal
to the marginal rate of substitution between consump-
tions at time t and time 0. Moreover, the same argu-
ments that were used in prior sections can be applied
in this context to establish the price representations

S
j
t = E∗

t

[∫ T

t
bt�vD

j
v dv

]
= Et

[∫ T

t
0t�vD

j
v dv

]
(25)

V
j
t �f �Y �= E∗

t

[
bt�T Y

j
T +

∫ T

t
bt�vf

j
v dv

]

= Et

[
0t�T Y

j
T +

∫ T

t
0t�vf

j
v dv

]
� (26)

where bt�v = exp�− ∫ v

t
ru du� (by convention S

j
T = 0

because the economy lives on �0�T � and ceases to pay
dividends at T ). The equilibrium interest rate r and
the market price of risk ' are obtained by applying

Itô’s lemma to both sides of (24 ). This yields

rt =−�u′�Ct� t�/�t

u′�Ct� t�
+R�Ct� t��

c
t

− 1
2
R�Ct� t�P�Ct� t�

c
t �

c
t �

′ (27)

'′
t =R�Ct� t�

c
t � (28)

where R�C� t� = −u′′�C� t�C/u′�C� t� is the relative
risk-aversion coefficient and P�C� t� = −u′′′�Ct� t�Ct/
u′′�Ct� t� the relative-prudence coefficient.
The valuation Formulas (25)–(26) issued from this

general equilibrium analysis have the same structure
as those prevailing in the complete market settings of
earlier sections. In light of this structural property, the
representative agent model is said to have effectively
complete markets.
Formulas (24)–(28) and their extensions to settings

with discontinuous price processes (see, e.g., Naik
and Lee 1990), have been used in a variety of con-
texts involving the valuation of primitive as well as
derivative assets. The formulas are especially useful
in settings with stochastic volatility, stochastic inter-
est rates, and jump risk, where all the risks cannot be
hedged away. In those instances pricing based on the
representative agent paradigm provides a simple and
often attractive approach to valuation.

2.3.2. Incomplete Markets: Private Values and
Certainty-Equivalents. There are situations, how-
ever, in which a representative agent analysis might
not be adequate. A good example is the valuation of
executive stock options (ESOs). These securities are
granted to executives as part of their compensation
packages, to provide incentives for them to act in the
best interest of shareholders. ESOs cannot be traded in
organized markets and carry restrictions on the abil-
ity to trade the underlying asset (grantees, typically,
cannot short the stock of the firm). In essence they
represent nontraded assets that are in positive supply
and cannot be fully hedged.
For those types of situations valuation becomes an

individual matter. An ESO, for instance, has value for
the executive holding it because it affects his or her
private consumption in the future. To the extent that
it does not materially impact the rest of the market, it
will have little relevance for prices in general and for
the policies pursued by other investors. The execu-
tive’s trading strategy and consumption choices, how-
ever, could be significantly affected.
In order to value securities that are privately held

one can resort to the notion of certainty-equivalent
(or private value) discussed by Pratt (1964). The
certainty-equivalent of a claim �f �Y � is the sure cash
amount V̂ �f �Y � that leaves the individual indifferent
between holding the claim to maturity or receiving
the said cash amount.
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Before proceeding with the continuous time market
setting, it is useful to visualize the notion in a sim-
ple one-period context. Accordingly, suppose that the
investor cares about terminal wealth, which consists
exclusively of the risky payoff Ỹ . By definition the
certainty-equivalent of the risky cash flow Ỹ is the
sure amount V̂ �Y � such that

u�V̂ �Y ��= E�u�Ỹ ���

Equivalently, V̂ �Y � = u−1�E�u�Ỹ ���. Simple properties
of this certainty-equivalent can be readily established.
Under the standard assumption of a concave and
increasing utility function, V̂ �Y � is increasing in the
expected cash flow and decreasing in the riskiness of
the cash flow.
In a continuous time setting, the investor holding

the nontraded asset consumes and invests in traded
securities. Assume the Itô market of §2.2.5 and sup-
pose that the investor derives utility from consump-
tion over time as well as from terminal wealth. Also
suppose that the nontraded asset produces cash flows
�f �Y � adapted to the filtration generated by �W�Z�,
where Z is a Brownian motion orthogonal to W .
The individual’s optimization problem becomes

max
c��

E
[∫ T

0
u�ct� t� dt+B�XT �

]
subject to a dynamic budget constraint

dXt = �rXt + ft − ct� dt+Xt�t���t − rt� dt+t dWt��

t ∈ �0�T �! X0 = x� XT =XT− +YT �

where u�·� t� is utility of consumption at time t
and B�·� is the utility of terminal wealth (bequest
function). As usual, this optimization is subject to
the liquidity constraint X ≥ 0. This constraint man-
dates a nonnegative portfolio value, i.e., the indi-
vidual cannot borrow against the future cash-flows
generated by the nontraded asset.9 Let J �x� f �Y � be
the value function associated with this optimization
problem.
Alternatively, suppose that �f �Y � is exchanged, at

date zero, against a sure cash amount V̂ �f �Y �. The
new optimization problem faced by the agent has the
same structure as the one just described, but with
�f �Y � = �0�0� and X0 = x + V̂ �f �Y �. The associated
value function is J �x+ V̂ �f �Y ��0�0�.
The certainty-equivalent V̂ �f �Y � is now easily

defined. It is the cash amount that leaves the indi-
vidual indifferent between holding on to the claim
or giving it up, i.e., the solution of the problem

9 One could weaken this restriction by allowing for borrowings
against the hedgeable components of these cash flows.

J �x+ V̂ �f �Y ��0�0�= J �x� f �Y �. If the value function
J �·�0�0� is invertible the solution is

V̂ �f �Y �= J−1�J �x� f �Y ��0�0�− x�

The certainty-equivalent value is a private value to
the extent that it depends on the preferences of the
individual holding the asset and exposed to the non-
traded risks. It represents the ask price for this partic-
ular individual.10

The practical computation of the certainty equiv-
alent is arduous due to the difficulty in resolving
the optimization problem with the nontraded asset
(a constrained optimization problem). Problems of
this nature are analyzed by Duffie et al. (1997),
Cuoco (1997), Cvitanić et al. (2001), Karatzas and
Zitkovic (2003), and Hugonnier and Kramkov (2004),
in continuous time settings. Implementation of the
certainty-equivalent method is easier in some discrete
time settings. For results in the binomial framework
and an application to ESO valuation, see Detemple
and Sundaresan (1999).
Several other approaches have been proposed to

deal with incomplete markets and unspanned risks.
A popular notion, which appears in several con-
texts, is to use the minimal martingale measure 0o

for pricing purposes. In essence, this measure assigns
null market price to risks that cannot be hedged
with the menu of traded assets. Derivative prices
satisfy the usual present value Formula (19), substi-
tuting 0o for 0. The method is consistent with the
dynamic consumption-portfolio choice problem of a
myopic individual, with logarithmic utility function.
The resulting price can be interpreted as a price at the
margin calculated using the marginal rate of substitu-
tion of that particular individual. Originally proposed
by Föllmer and Sondermann (1986) and Föllmer and
Schweizer (1991), the method has since been gen-
eralized or applied in a number of papers (e.g.,
Schweizer 1992, 1995a). Other pricing measures, such
as the minimal variance measure (Schweizer 1995b,
Delbaen and Schachermayer 1996) and the mini-
mal entropy measure (Fritelli 2000) have also been
studied.

3. American Options
American-style derivatives can be exercised at any
point in time before maturity. As a result, part of the
valuation problem consists of identifying the optimal
exercise policy, i.e., the exercise time that maximizes
value for the holder of the security.

10 This definition assumes that the claim is held to maturity. Varia-
tions of the concept could allow for liquidation at a selected set of
dates and for divisibility of the claim in a finite number of lots.



Broadie and Detemple: Option Pricing: Valuation Models and Applications
1154 Management Science 50(9), pp. 1145–1177, © 2004 INFORMS

This section reviews the various approaches to
value American-style contracts. We survey the free-
boundary approach (§3.1), the variational inequalities
method (§3.2), and the risk-neutralization procedure
(§3.3). Useful representation formulas for the values
of those derivatives are reviewed last (§3.4).

3.1. The Free-Boundary Approach
The free-boundary method goes back to Samuelson
(1965), McKean (1965), Taylor (1967), and Merton
(1973). It applies to Markovian settings such as the
Black-Scholes framework of §2.1. An important ele-
ment is the observation that the arguments of §2.1.2
apply, even when the claim under consideration is
American style. The fundamental valuation equation
therefore characterizes its price, provided the contract
is alive. In the complementary event, where the claim
is exercised, its value must equal the exercise payoff.
Let V �S� t� be the price of an American deriva-

tive with payoff g�S� at exercise. Because exercise
is at the option of the holder we know that it is
suboptimal to exercise if g�S� < 0. Attention can
therefore be restricted to securities with nonnegative
payoffs, g�S� ≥ 0. Assume that the payoff function
g�·� is continuous, continuously differentiable almost
everywhere, and twice continuously differentiable on
�S6 g�S� > 0�.11 The continuation region, � ≡ ��S� t� ∈
�+ × �0�T �6 V �S� t� > g�S��, is the set of point �S� t�
at which the derivative is worth more alive. Its com-
plement is the exercise region, � ≡ ��S� t� ∈ �+ ×
�0�T �6 V �S� t� = g�S��. Under the weak assumption
that the derivative’s price is continuous with respect
to its arguments, the continuation region is an open
set and the exercise region a closed set. The boundary
of �, denoted by B, is then part of the exercise region
(i.e., B ∈ �) and serves to distinguish points where
exercise is optimal from those where continuation is
best. This set is called the immediate exercise bound-
ary. Its t-section, B�t� ≡ �S ∈ �+6 �S� t� ∈ B�, is the set
of boundary points at time t. Note that B�t�, for gen-
eral payoff function g�·�, might not be single valued:
The exercise region can, in principle, have lower and
upper boundaries, or can even be the union of discon-
nected intervals. The immediate exercise boundary is
the collection of its t-sections: B = �B�t�6 t ∈ �0�T ��.
The identification of B is key to the resolution of the
valuation problem. Because B is not known a priori it
is often referred to as a free boundary. The American
claim valuation problem is a free-boundary problem.
When the option is alive, in �, it makes intu-

itive sense to assume that the price is smooth, pre-
cisely that V �S� t� ∈ �2�1. The same assumption was
invoked for European claims. Under this assumption

11 These are weak assumptions, satisfied by standard option con-
tracts such as puts and calls.

Itô’s lemma applies and the arguments leading to (2)
can be invoked. The derivative’s price satisfies (2)
in �.
Characterizing the immediate exercise boundary is

more difficult. Of course, for �S� t� ∈ B immediate
exercise is optimal, so V �B�t�� t� = g�B�t��. This con-
dition, however, is not enough to fully determine
B. Indeed, one could specify any arbitrary function
B�t� and simply solve the valuation partial differen-
tial equation (PDE) subject to that boundary condi-
tion. This would only produce different functions V
corresponding to different contractual specifications
(i.e., exercise policies). To solve the pricing problem
under consideration one must therefore add a condi-
tion reflecting the optimality of exercise along B.
No-arbitrage arguments can be used for that pur-

pose. Suppose that the derivative of the option price,
at B�t�, does not coincide with that of the payoff,
i.e., �V �B�t�� t�/�S �= g�B�t��. If so, one can show that
an arbitrage opportunity exists. Indeed, consider a
sequence Sn ∈� that converges to B�t� and such that
limn→	 ��V �Sn� t�/�S� > �g′�B�t���. Then, for n large
enough (i.e., Sn ∈ � and close to B�t�), it must be
that V �Sn� t� < g�S�, in contradiction with the defi-
nition of � (equivalently, an arbitrage opportunity).
The existence of an arbitrage opportunity can also
be established if �g′�B�t���> limn→	 ��V �Sn� t�/�S�. An
informal argument is provided by Wilmott et al.
(1993).12 The combination of these two results gives
the condition �V �S� t�/�S = g′�S� at the point S = B�t�.
This condition, mandating that the price and pay-
off derivatives match along the immediate exercise
boundary, is known as the high contact or smooth
pasting condition (see, e.g., Ingersoll 1987, p. 374 or
Dixit and Pindyck 1994, p. 130).
In summary, the price of the derivative solves the

fundamental valuation Equation (2) subject to the
boundary conditions



V �S�T �= g�S� on �+

V �0� t�= g�0� for t ∈ �0�T �

V �S� t�= g�S� for �S� t�= �B�t�� t�

�V �S� t�

�S
= g′�S� for �S� t�= �B�t�� t��

(29)

The system (2), (29) is the free-boundary characteriza-
tion of the pricing function.

3.2. Variational Inequalities
Free-boundary problems are often difficult to solve
because of the need to identify the unknown bound-
ary in the resolution process. An alternative is to

12 Another informal proof, based on the notion that B�t� is optimal,
is found in Merton (1992).
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recast the problem in terms of a variational inequality.
This transformation is attractive because the inequal-
ity does not explicitly depend on the boundary. The
pricing function can be obtained directly from this
characterization. The boundary can then be identified
from this solution.
To understand the variational inequality formula-

tion it might be useful to first express the pricing
problem in linear complementarity form. Recall that
the pricing function can be recovered from the solu-
tion, denoted by u, of the heat Equation (4) and its
corresponding boundary condition (5). To simplify
notation, write

�u�x� ��≡ �u

��
− �2u

�x2
�

and note that � is the Itô differential operator
associated with a time-reversed Brownian motion
x ≡ �x� 6 � ∈ �0� 12

2T ��: It represents the drift of the
function u�x� �� as time moves backward (i.e., as
the rescaled time-to-maturity measure � = 1

2
2�T − t�

increases). In the continuation region where
u�x� �� > e�x+��g�K exp�x��≡ ĝ�x� �� the price satisfies
�u�x� �� = 0. In the exercise region u�x� �� = ĝ�x� ��,
and therefore

�u�x� ��=�ĝ�x� ���

Moreover, because �ĝ�x� �� represents the local gains
from exercising, it cannot be negative when exer-
cise is optimal: This gives �u�x� ��= �ĝ�x� ��≥ 0. In
summary,

�u�x� ���u�x� ��− ĝ�x� ���= 0 (30)

u�x� ��− ĝ�x� ��≥ 0 and �u�x� ��≥ 0� (31)

The problem of finding a continuous and almost
everywhere differentiable function u�x� �� that satis-
fies (30)–(31) subject to the boundary conditions


u�x�0�= e�xg�K exp�x�� for x ∈�

lim
x→−	 e−�x−��u�x� ��= g�0� for � ∈ [

0� 12
2T

]
lim
x→	 e−�x−��u�x� ��= g�	� for � ∈ [

0� 12
2T

]
�

(32)

is called the linear complementarity problem (LCP).
Note that the unknown exercise boundary corre-
sponding to the problem expressed in terms of x does
not appear in (30)–(32). The LCP can be interpreted as
an obstacle problem where a function, whose uncon-
strained evolution is governed by the fundamental
valuation equation, must exceed an obstacle given by
the exercise payoff and meet conditions at the bound-
aries of its domain.

The variational inequality formulation is obtained
by integrating and relaxing the previous conditions
(30)–(31). Specifically, let � be a set of test functions
consisting of functions v�x� �� that are continuous,
continuously differentiable in � , differentiable almost
everywhere in x, and that satisfy the boundary con-
ditions (32) and the inequality constraint v�x� �� ≥
ĝ�x� �� for all �x� �� ∈�×�0� 12

2T �. Note that the solu-
tion of our problem, the function u, belongs to � .
Moreover, for any v ∈� we have v�x� ��≥ ĝ�x� �� and
therefore �u�x� ���v�x� ��− ĝ�x� ���≥ 0, with equality
if v�x� ��= ĝ�x� ��. Integrating over x yields13∫ 	

−	
�u�x� ���v�x� ��− ĝ�x� ��� dx≥ 0 (33)∫ 	

−	
�u�x� ���u�x� ��− ĝ�x� ��� dx= 0� (34)

Taking the difference between (33) and (34) eliminates
the function ĝ�x� �� and gives∫ 	

−	
�u�x� ���v�x� ��−u�x� ��� dx≥ 0�

Integration by parts now enables us to get rid of sec-
ond derivatives14

0 ≤
∫ 	

−	
�u

��
�v�x� ��−u�x� ��� dx

− �u

�x
�v�x� ��−u�x� ���

∣∣∣∣
	

−	

+
∫ 	

−	
�u

�x
�v′�x� ��−u′�x� ��� dx�

v�u ∈� , thus they satisfy the same boundary condi-
tions at x=±	 and therefore, after collecting terms,

0 ≤
∫ 	

−	
�u

��
�v�x� ��−u�x� ��� dx

+
∫ 	

−	
�u

�x
�v′�x� ��−u′�x� ��� dx� (35)

The variational inequality problem is to find u ∈ �
such that (35) holds for all t ∈ �0�T �, for all test func-
tions v ∈� . One could also go an extra step by inte-
grating over time, to produce a global variational
inequality.
The variational inequality approach for pricing

American claims is developed in Jaillet et al. (1990).
Mathematical treatises on the method can be found
in Bensoussan and Lions (1978) and Kinderlehrer and
Stampacchia (1980).

13 Note (30)–(31) holds if and only if (33)–(34) holds for u ∈� and
for all v ∈� .
14 A consequence is that the existence of a second derivative is not
needed. The variational inequality approach applies even if the
payoff is only required to be differentiable almost everywhere.
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3.3. The Risk-Neutralization Approach
The risk-neutralization principle described in §2.2 also
applies to American claims. To develop this point let
us adopt the general framework with Itô processes of
§2.2.5 and suppose that the claim under consideration
has an exercise payoff given by a progressively mea-
surable process Y . In this context, let 	 ��t� T �� be the
set of stopping times of the filtration with values in
�t� T � and define the process

Zt ≡ sup
�∈	 ��t� T ��

E∗
t �b�Y��� (36)

where we recall that b� ≡ exp�− ∫ �

0 rv dv� is the dis-
count factor at the locally risk-free rate and E∗

t �·� is
the conditional expectation at date t, under the risk-
neutral measure Q defined earlier. The process Z is
known as the Snell envelope of the discounted payoff
b�Y� . It is the result of the maximization described on
the right-hand side of ( 36). The solution of this maxi-
mization is a stopping time, indexed by time, denoted
by ��t�. The Snell envelope is the value function of
this maximization.
The Snell envelope has several attractive properties

(see El Karoui 1981 and Karatzas and Shreve 1998 for
details). For one, it is a Q-supermartingale because15

E∗
t �Zs� = E∗

t

[
sup

�∈	 ��s� T ��

E∗
s �b�Y��

]
= E∗

t �b��s�Y��s��≤ sup
�∈	 ��t� T ��

E∗
t �b�Y��=Zt�

where the first equality on the second line follows
from the definition of ��s�, i.e., the solution of (36)
at time s, and the law of iterated expectations, and
the inequality on the same line from the inclusion
	 ��s� T �� ⊂ 	 ��t� T ��, for t ≤ s. The last equality is
simply the definition of Z.
It also has paths that are right continuous with left

limits RCLL and is nonnegative because exercise is
at the option of the holder. Immediate exercise at t
is always feasible, thus it must also be that Zt ≥ btYt :
The Snell envelope majorizes the discounted payoff.
In fact, it is the smallest supermartingale majorant of
the discounted payoff.
To see the relation with our pricing problem it suf-

fices to invoke a no-arbitrage argument. Let ��0� be
the solution at t = 0. An application of the martingale
representation theorem (assuming 0��0�Y��0� is almost
surely finite) gives

Et�0��0�Y��0��= E�0��0�Y��0��+
∫ t

0
3v dWv

15 A process Z ≡ �Zt6 t ∈ �0�T �� is a supermartingale if Et�Zs� ≤ Zt ,
P -a.s., for all s ≥ t and t ∈ �0�T �. It is a Q-supermartingale if the
expectation is taken with respect to the measure Q.

for all t ∈ �0� ��0�� and for some progressively mea-
surable process 3. The arguments in §2.2.4 can then
be used to show that the portfolio X� ≡ �Xt�t =
Xt

−1' + 0−1
t −13t6 t ∈ �0� ��0��� has value Xt =

Et�0t� ��0�Y��0��. X��0� = Y��0�, therefore this policy repli-
cates the claim’s payoff at the exercise time ��0�. Its
initial cost is X0 = E�0��0�Y��0��. A claim paying off Y��0�
at ��0� must therefore be worth

V0 = E�0��0�Y��0��

at inception, to preclude arbitrage opportunities. But
by definition ��0� maximizes E�0�Y�� (recall that
Z0 ≡ sup�∈	 ��0�T �� E

∗�b�Y��= sup�∈	 ��0�T �� E�0�Y��). It can
therefore not be improved upon: ��0� represents the
optimal exercise policy for the American claim issued
at t = 0 and V0 is its market (no-arbitrage) value.
Similarly, ��t� can be interpreted as the optimal exer-
cise time for the American claim issued at time t; its
market value is Vt = Et�0t� ��t�Y��t��, which can also be
expressed as Vt = E∗

t �bt� ��t�Y��t�� under the risk-neutral
measure.
These developments show that valuation principles

for American claims are fully consistent with those
established for European-style contracts. The value of
a claim is simply the present value of its exercise pay-
off, where present value is calculated by discount-
ing cash flows at the locally risk-free rate and taking
expectations under the risk-neutral measure. In this
calculation the exercise payoff is at the optimal exer-
cise time, i.e., the stopping time that maximizes value.
Alternatively, the price can be written as the expected
deflated value of the exercise payoff where the expec-
tation is under the original measure and the (stochas-
tic) deflator is the state price density.
The theory of optimal stopping has a long history.

The Markovian case is considered by several authors,
including Fakeev (1971), Bismut and Skalli (1977),
and Shiryaev (1978). An extensive treatment for gen-
eral stochastic processes can be found in El Karoui
(1981). Karatzas and Shreve (1998, Appendix D) con-
tains detailed results for continuous time processes.
The connection between the Snell envelope and no-
arbitrage pricing is drawn by Bensoussan (1984) and
Karatzas (1988).

3.4. Exercise Premium Representations
The arguments outlined in §3.3 provide a theoreti-
cal resolution of the valuation problem for American
claims. Several transformations of the pricing for-
mula, however, prove useful for interpretation pur-
poses and practical implementation.
The first transformation leads to a formula known

as the early exercise premium (EEP) representation of
the claim’s price. The key to this formula is the behav-
ior of the Snell envelope Z. In the event ���v�= v�,
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where stopping is optimal, the Snell envelope is the
discounted payoff Z��v� = b��v�Y��v�. Therefore, by Itô’s
lemma,

dZv = bv�dYv − rvYv dv�� for ���v�= v��

On the complementary event ���v� > v�, the formula
Zv ≡ E∗

v�b��v�Y��v�� shows that Z is a Q-martingale, i.e.,
dZv =3∗

v dW
∗
v for some progressively measurable pro-

cess 3∗. Combining these two elements shows that

ZT = Z0+
∫ T

0
dZv

= Z0+
∫ T

0
1���v�=v�bv�dYv − rvYv dv�

+
∫ T

0
1���v�>v�3

∗
v dW

∗
v �

Taking expectations (under Q) and rearranging them
yields

Z0 = E∗�ZT �+E∗
[∫ T

0
1���v�=v�bv�rvYv dv− dYv�

]
�

where ZT ≡ bT YT is the discounted terminal payoff.
Now note that the left-hand side of this expression is
the initial price V0 of the American claim. The first
term on the right-hand side is the initial price of its
European counterpart. The second term on the right
is called the EEP. It captures the present value of the
gains associated with exercise prior to the maturity
date. These gains are interest-rate gains, realized by
investing the exercise payoff at the risk-free rate, net
of the opportunity cost associated with the forgone
appreciation of the payoff.
The same argument yields, for any time t ∈ �0�T �,

Vt = E∗
t �bt�T YT �+E∗

t

[∫ T

t
1���v�=v�bt�v�rvYv dv− dYv�

]
�

(37)

The price of a newly issued American claim (or an
unexercised claim, if t < ��0�) is the same as the
European claim value plus an EEP given by the
present value of the gains to be realized by optimally
exercising prior to maturity.16

The second transformation, called the delayed exer-
cise premium (DEP) representation, emphasizes the
gains realized by deferring exercise. This formula fol-
lows almost immediately from the pricing formula for
the claim. Indeed,

Vt = E∗
t �bt� ��t�Y��t��= Yt +E∗

t

[∫ ��t�

t
d�bt�vYv�

]

= Yt +E∗
t

[∫ ��t�

t
bt�v�dYv − rvYv dv�

]
�

16 Note that only the drift of dY under the risk-neutral measure mat-
ters in (37). Martingale components vanish because of the expecta-
tion in front.

The first term is the immediate exercise payoff. The
second is the present value of the gains from delaying
exercise, the negative of the gains from exercising (see
the structure of the EEP above). The second compo-
nent can also be interpreted as the time value of the
American claim; the immediate exercise payoff is the
intrinsic value.
The EEP representation corresponds to the Riesz

decomposition of the Snell envelope. This decompo-
sition states that any supermartingale is the sum of a
martingale and a potential.17 The EEP representation
essentially identifies the structure of the processes in
this decomposition in terms of the underlying param-
eters of the model and the payoff process. The Riesz
decomposition of the Snell envelope was established
by El Karoui and Karatzas (1991) for a setting with
Brownian motion. The EEP formula for American
options, in the Black-Scholes framework with constant
coefficients, is due to Kim (1990), Jacka (1991), and
Carr et al. (1992). An extension to payoffs adapted
to a general filtration is given in Rutkowski (1994)
and to jump-diffusion processes in Gukhal (2001). The
DEP formula above extends the corresponding for-
mula in Carr et al. (1992) derived for the Black-Scholes
framework.

3.5. Integral Equation for American Options
For American call options immediate exercise will
only occur if S > K. Yv = Sv −K, thus the local gains
from exercise, in the exercise region, equal rvYv dv −
E∗

v�dYv�= ��vSv − rvK�dv and the EEP formula for the
call price is given by

Ct = E∗
t �bt�T �ST −K�+�

+E∗
t

[∫ T

t
1���v�=v�bt�v��vSv − rvK�dv

]
�

The net local benefits from exercise are now seen to
consist of the dividends paid on the underlying asset
net of the interest forgone by paying the strike.
In the Black-Scholes setting, with constant coeffi-

cients, the formula can be further refined. First, it is
easy to verify that immediate exercise takes place, at
date v, provided Sv > B�v� where B�v� is the value at
v of a function of time B�·�. Expectations can then be
computed more explicitly to give

C�St�t!B�·��K�

=c�St�t!K�+
∫ T

t
�Ste

−��v−t�N �d�St!B�v��v−t��dv

−
∫ T

t
rKe−r�v−t�N �d�St!B�v��v−t�−

√
v−t�dv�

(38)

17 A process x is a potential if it is a right-continuous nonnegative
supermartingale such that limt→	 Ext = 0.
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where c�St� t!K� is the Black-Scholes Formula (6) and
d�St!B�v− t� is defined in (7).
In order to implement (38) one still needs to

identify the unknown exercise boundary B. A few
additional steps provide the characterization needed.
Indeed, recall that immediate exercise is optimal
when S = B. It follows that

B�t�−K = c�B�t�� t!K�

+
∫ T

t
�B�t�e−��v−t�N �d�B�t�!B�v��v− t�� dv

−
∫ T

t
rKe−r�v−t�N �d�B�t�!B�v��v− t�

−
√
v− t� dv� (39)

Moreover, because t → T , it can be verified that
limt→T B�t� = max�K� �r/��K�. Equation (39) is the
integral equation for the exercise boundary. Solving
the integral equation subject to the boundary condi-
tion indicated identifies the optimal exercise bound-
ary. Substituting in (38) provides the American call
option price.
This characterization of the exercise boundary and

the resulting two-step valuation procedure have come
to be known as the integral equation method. This
approach to American option pricing can be traced to
Kim (1990), Jacka (1991), and Carr et al. (1992). Vari-
ations of the method have been proposed in subse-
quent work. Little et al. (2000), in particular, point to
an interesting reduction in dimensionality leading to
an equation for the boundary with a single integral.

3.6. Put-Call Symmetry
The valuation of put options is a simple matter once
call option prices are known. Indeed, a straightfor-
ward change of variables shows that a put is identical
to a call in a suitably modified financial market. This
result is known as put-call symmetry.
For exposition purposes we adopt the Itô finan-

cial market of §2.2.5 assuming a single asset and
Brownian motion (d= 1) and focus on American-style
claims (the symmetry relation for European claims is
a special case). In this context the price of a put is
given by Pt = E∗

t �bt� � �K− S��
+� where � stands for the

optimal exercise time. Simple transformations yield

Pt = E∗
t �bt� �St� � �K/St�� − St�

+�

= Êt

[
exp

(
−
∫ �

t
�v dv

)
�Ŝ� − St�

+
]
� (40)

where the first equality uses St�� ≡ S�/St and the sec-
ond one a change of measure to Q̂ such that dQ̂ =
exp�− 1

2

∫ T

0 2v dv+∫ T

0 v dW
∗
v � dQ. The expectation Êt�·�

is under Q̂ and Ŝ� ≡K/St�� is a new price whose evo-
lution (under Q̂) is described by

dŜv = Ŝv���v − rv� dv+v dŴv�� Ŝt =K� (41)

where dŴv ≡−dW ∗
v + v dv is a Q̂-Brownian motion.

Passage to the measure Q̂ is akin to using the stock
as a new numeraire. The right-hand side of (40) is the
value of a call, exercised at � , with strike St , written
on an asset with price Ŝ and paying dividends at the
rate r , and in a financial market with interest rate �.
Although derived for the optimal put exercise

time � , the relation (40) holds for any stopping time
of the filtration. It follows that optimal stopping times
must be identical across the two markets, i.e., the opti-
mal exercise time of the American put in the original
market is the same as the optimal exercise time of the
American call option, identified by the formula, in the
modified financial market. The call option in the mod-
ified market is therefore symmetric to the put in the
original market.
Early versions of the symmetry relation, in

restricted settings, can be found in Grabbe (1983),
Bjerksund and Stensland (1993), Chesney and Gibson
(1995), McDonald and Schroder (1998). For general
markets with semimartingale prices the symmetry
relation is established by Schroder (1999); see also
Kholodnyi and Price (1998), for an approach using
group theory. This general result relies on a change
of numeraire method introduced in Jamshidian (1989)
and Geman et al. (1995). A review of these results and
some extensions appear in Detemple (2001).

4. Beyond the BSM Model
The BSM Equation (6) is one of the most successful
and widely used in financial economics. The under-
lying Model (1) and its related assumptions are sim-
ple and elegant. But as a tool for real-world use the
model must be compared to financial data. Devia-
tions between the model and empirical evidence offer
opportunities for the development of more-realistic
models, which in turn create new computational chal-
lenges for the pricing and hedging of derivative
securities. Section 4 and its subsections present brief
empirical results (§4.1), as well as extensions of the
BSM model to include jumps in returns (§4.2) and
stochastic volatility (§4.3).

4.1. Empirical Evidence
The BSM model can be tested using data from the
underlying asset (or underlying variable) or options
data. The first approach checks for consistency
between the data and the assumed geometric
Brownian motion process. The second approach exam-
ines the data for consistency between observed option
prices and those implied by the model, and therefore
jointly tests the model for the asset price process and
additional assumptions required for deriving pricing
equations (e.g., frictionless trading).
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The BSM model in Equation (1) is an exactly solv-
able SDE with solution

St+h = Ste
��−�−2/2�h+

√
hZ� (42)

where Z is a standard normal random variable.
Equation (42) implies that log-returns ln�St+h/St� are
normally distributed.
A quick examination of financial time series for

almost any underlying asset (equities, commodi-
ties, bonds) indicates violations of the normality
assumption for log-returns. To give an example, on
October 19, 1987, the S&P 500 index closed at 224.84,
which represented a one-day log-return of −22�9%
from the previous business day’s close of 282.70.
Using reasonable values for the parameters �� , and
�, the probability of a market drop of this magni-
tude or smaller is approximately 10−97 under the nor-
mality assumption of the BSM model. The expected
time to observe an event as extreme as this is approx-
imately 1084 billion years. Repeating the calculation
for the less extreme one-day log return of −6�3%
on October 13, 1989, gives a probability of approxi-
mately 10−9. The expected time to observe an event
with this probability is approximately 1 million years.
The data are clearly not consistent with the normal-
ity assumption of log-returns. Statistical tests that are
more formal show that the kurtosis (fourth moment)
of log-returns is significantly larger than implied by
normality, i.e., financial data have fatter tails than
does the normal distribution. Extremely large returns
that occur more frequently in financial data is one
motivation for the addition of a jump process to the
BSM diffusion model for asset prices.
The BSM model assumes that price changes over

nonoverlapping time intervals are independent. The
quantity E ≡ E��ln�St+h/St��

2� �ln�St+u+h/St+u��
2� rep-

resents the autocorrelation of lagged squared log-
returns. The independent increments assumption in
the BSM model implies that E should be zero. Choos-
ing the return interval h and time lag u both equal
to one business day, and computing E using clos-
ing prices of the S&P 500 index from January 1997
through December 2002 gives an estimated autocor-
relation value of Ê = 16�5%. If the assumptions of
the BSM model hold, the standard error of the esti-
mate is 2.5. In other words, the observed autocorrela-
tion estimate cannot be explained by statistical error
because the estimate is more than six standard errors
from zero. Figure 1 shows that autocorrelations are
also statistically significant at much longer time lags.
Squared log-returns are a measure of volatility, thus
the positive autocorrelation value indicates that high-
volatility days (i.e., large positive or negative returns)
are more likely to be followed by high-volatility days
than by low-volatility days. This phenomenon of

Figure 1 Autocorrelation of S&P 500 Squared Log-Returns
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volatility clustering is one motivation for the addi-
tion of a stochastic volatility process to the BSM
model.
Although a diffusion process for volatility can gen-

erate autocorrelations in returns that are consistent
with the data, such a process cannot easily generate
the extreme returns (i.e., jumps) found in the data.
These two departures from the BSM model are in a
sense complementary.
It is useful to measure option prices in units

of volatility rather than dollars. The BSM implied
volatility (or simply the implied volatility) of an
option is the volatility parameter that equates the
BSM model price with the market price. Suppose a
European call option with a strike K and maturity T
is traded in the market at the dollar price ĉ. Define
the option’s implied volatility ̂ to be the solution of
the equation

ĉ= c�St� t!K�T � ̂�� (43)

where c�St� t!K�T � ̂� is computed using the BSM
Formula (6). Because the right-hand side of (6) is
a monotonically increasing function of ̂ , a unique
solution exists as long as the market price does not
violate the no-arbitrage condition. Different options
will have different implied volatilities, so ̂ can be
viewed as a function of the option parameters, i.e.,
̂ = ̂�St� t!K�T �. Quoting an option price in terms
of implied volatility is analogous to quoting a bond
price in terms of yield to maturity. For a bond the
price-yield equation allows a dollar bond price to be
converted to a yield; for an option the BSM equation
allows a dollar option price to be converted to an
implied volatility.
Whether or not the BSM model is correct, option

prices can be, and often are, quoted in units of implied
volatility. In the BSM model, the constant volatility 
is a property of the underlying asset, and does not
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Figure 2 BSM-Implied Volatility Curves, February 4, 1985 (Top Panel)
and September 16, 1999 (Bottom Panel)
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depend on an option’s strike or maturity. So if the
BSM model is correct, then options of all strikes and
maturities traded on the same underlying asset will
have identical implied volatilities. In practice, option-
implied volatilities depend in a systematic way on K
and T and vary through time t.
Figure 2 shows BSM-implied volatilities for options

on the S&P 500 (futures) on February 4, 1985, and
on September 16, 1999. These options began trad-
ing on the Chicago Mercantile Exchange (CME) in
1985. For the two maturities shown on February 4,
1985, options traded in the narrow implied volatility
range of 14% to 17%. Prior to the crash of October
1987, option-implied volatilities showed relatively lit-
tle dependence on strike and maturity. After the
crash, however, the situation changed dramatically.
For example, on September 16, 1999, options traded in

Figure 3 Time-Series of One Month at-the-Money BSM-Implied
Volatility
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the implied volatility range of 16% to 53%. Restricted
to the single shortest maturity, the implied volatili-
ties ranged from 23% to 53%. For a fixed maturity,
the implied-volatility curve ̂�St� t!K�T � as a func-
tion of K is often called the implied volatility skew
or the implied volatility smile (see, e.g., the curve for
the shortest maturity on September 16, 1999). Simi-
lar departures from the BSM model are obtained for
many other financial markets.
The systematic dependence of implied volatility

on strike and maturity is further dramatic evidence
of the inconsistency of the BSM model with mar-
ket data. Higher implied volatilities for low-strike
options means that these options are relatively more
expensive than predicted by the BSM model. Expres-
sion (11) relates the option price to the expected dis-
counted payoff under the risk-neutral measure. For a
fixed-option payoff, e.g., a put payoff, a higher put
price is generated by a higher risk-neutral probabil-
ity of ST < K. In other words, a downward slop-
ing implied volatility curve (which associates higher
volatilities with lower strikes) corresponds to a fat-
ter left-tail of the risk-neutral distribution of ST than
would be implied by the BSM model. Thus market
option data suggest the need for an asset price model
where log-returns have fatter tails than occurs with
the normal distribution.
Not only do implied volatility curves depend in

a systematic way on K and T , but this dependence
changes in an unpredictable way with the passage
of calendar time t. Figure 3 shows a time series
of BSM-implied volatility for 30-day maturity at-
the-money options (i.e., the strike Kt equals St).18

18 An option with this exact strike and maturity cannot be traded,
thus interpolation might be necessary to define this quantity.
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Large changes in volatility are seen to occur in the
data and these changes are often associated with
significant economic or political events. If the BSM-
constant volatility model assumption were correct,
then the correlation of daily changes in implied
volatility with daily log-returns should be zero. Com-
puting this correlation using S&P 500 futures options
data from January 1997 through December 2002 gives
a value of −57%, which is again highly statistically
significant. The negative correlation is interpreted to
mean that options become more expensive when mar-
ket returns are negative and is reflected in a skewed
distribution of asset returns.
There is a vast literature on empirical tests and

econometric estimation of option pricing models. An
influential early paper is Engle (1982). Recent con-
tributions include Bakshi et al. (1997), Bates (2000),
Chernov and Ghysels (2000), Pan (2002), Chernov
et al. (2003) and Eraker et al. (2003). For recent
surveys see Garcia et al. (2004) and Bates (2003).
Empirical price data for the underlying asset and
associated options suggest significant departures from
the assumptions of the BSM model. Researchers have
proposed many extensions of the BSM model to incor-
porate these and other empirical features. Some of
these extensions are described next.

4.2. Jump Models
For the underlying price, Merton (1976) proposed the
following jump-diffusion model:

dSt

St−
= ��− ��dt+ dWt + d

( Nt∑
n=1

�eZn − 1�
)
� (44)

where Nt is a Poisson process with intensity / and the
jumps in returns are determined by Zn ∼ N��s�

2
s �,

which are independent of W . This model has three
additional parameters: / determines the arrival rate
of jumps; and �s and s determine the mean and
variance of the jumps in return. When the nth jump
occurs at time t the stock price changes from St− to
eZnSt− . The average jump size is then E�eZn − 1� =
exp��s +2s /2�−1≡�1. It is often more convenient to
specify �1 and s rather than �s and s as primitive
model parameters.
In this model, option payoffs cannot be replicated

by trading in the primitive assets, i.e., the market
is not complete, so option prices are not uniquely
determined from arbitrage considerations (i.e., market
prices of risk, implied by the asset structure, are not
unique). In order to proceed, Merton (1976) assumed
that jump risk was diversifiable, so the market price
of jump risk is zero. This model can provide a better
fit to empirical asset price data, it can produce a range
of implied volatility curves, and maintains almost all
of the analytical tractability of the BSM model. For a

discussion of the jump-risk premium, see Bates (1988,
1996) and Naik and Lee (1990).
To price call and put options in this model, note

that the risk-neutralized model has the same form as
Equation (44), but with the drift � − � replaced by
r−�−/�1. The SDE under the risk-neutral Q-measure
has the explicit solution

ST = S0e
�r−�−/�1−2/2�T+

√
T Z0

NT∏
n=1

eZn� (45)

where Z0 is a standard normal variate. Let xt = ln�St�.
Then conditional on x0 = ln�S0� and NT = j , the distri-
bution of XT = ln�ST � is normal with mean x0 + �r −
�−/�1− 2

2 �T + j�s and variance 2T + j2s . Analytical
tractability is maintained because ST is a product of a
(random number) of lognormal random variables.
Using the extension of Equation (11) to the setting

with discontinuous prices under consideration, the
time t = 0 price of a call option, cM�S0�0�, can be writ-
ten as

e−rT E∗
0 ��ST −K�+�

= e−rT E∗
0 �ST 1�xT >ln�K���− e−rT KE∗

0 �1�xT >ln�K���� (46)

The term E∗
0 �1�xT >ln�K��� = Q�xT > ln�K�� can be com-

puted as follows. Let f �3� = E∗
0 �e

i3xT � be the charac-
teristic function of xT . Using the Fourier inversion
formula

Q�xT > y�= 1
2
+ 1

�

∫ 	

0
Re

(
f �3�

e−i3y

i3

)
d3� (47)

the characteristic function can be computed explicitly
as

f �3� = E∗
0 �e

i3xT �=
	∑
j=0

�/T �je−/T

j! E∗
0 �e

i3xT �x0�NT = j�

=
	∑
j=0

�/T �je−/T

j! exp
(
i3m− 322T

2

)

·
(
exp

(
i3�s −

322s
2

))j

= exp
(
i3m− 322T

2
−/T

)

· exp
(
/T exp

(
i3�s −

322s
2

))
� (48)

where m≡ x0+ �r − �−/�1−2/2�T .19

The term E∗
0 �ST 1�xT >ln�K��� in Equation (46) can be

transformed to a probability computation by using

19 The equality on the second line follows from E�ei3Z�= exp�i3�−
32 2/2� when Z ∼ N��� 2� and the equality on the last line uses
ey =∑	

j=0 y
j/j! for all complex y.
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the change of measure outlined in §3.6, adapted to
the present context. Let )t ≡ e−�r−��tSt/S0 and recall the
measure dQ̂ ≡ )T dQ∗. Then E∗

0 �)T h�XT �� = Ê0�h�XT ��
and so E∗

0 �ST 1�xT >ln�K��� = e�r−��T S0Q̂�xT > ln�K��. The
characteristic function under the new measure can be
computed explicitly as

g�3� = Ê0�e
i3xT �= E∗

0 �)T e
i3xT �

= e−�r−��T−x0E∗
0 �e

�1+i3�xT �= e−�r−��T−x0f �−i+3�

(49)

where f �·� is defined in (48). The probability Q̂�xT >
ln�K�� can be computed using the Fourier inversion
Formula (47) with f replaced by g.
To summarize, the price of a European call in

Merton’s jump-diffusion model is

cM�S0�0�= S0e
−�T Q̂�xT > ln�K��− e−rT KQ�xT > ln�K���

(50)
where the two probabilities can be computed using
(47) and the explicit Formulas (48) and (49). The
result is equivalent to Merton’s original formula that
expressed the option price as an infinite weighted
sum of BSM formulas. Although the expressions (48)
and (49) are lengthy, the final Equation (50) involves
two one-dimensional integrals that can be easily com-
puted numerically. Put prices can be derived in a sim-
ilar manner, or computed from call prices using the
put-call parity relation (9).
The form of Equation (50) mirrors the BSM For-

mula (6). Indeed, the two formulas coincide for /= 0,
and so this Fourier inversion approach provides an
alternate derivation and procedure for computing the
BSM formula.
The Merton jump-diffusion model can provide a

better fit to underlying asset price data and it can gen-
erate implied volatility curves that are more consis-
tent with market option prices. To illustrate, Figure 4
shows implied volatility curves for the Merton model
with the parameters S0 = 100,  = 20%, / = 10%,
�1 =−20%, s = 40%, �= 1%, and r = 5%. For exam-
ple, for 30-day maturity options (i.e., T = 30/365�25
years) with strikes of K = 80�90, and 100, European
put option prices under the Merton model are
0.103, 0.211, and 2.243, respectively. These dollar
option prices correspond to BSM-implied volatilities
of 40.7%, 25.6%, and 21.1%, respectively. The negative
value of the average jump size parameter, �1, gener-
ates a fatter left tail compared with the lognormal dis-
tribution of ST under the BSM model, which in turn
produces the declining implied volatilities mentioned.
For the shortest one-day maturity options, the param-
eter s is large enough to generate positive jumps, so
the implied volatility curve becomes the smile shown
in Figure 4.

Figure 4 Merton Jump-Diffusion Model Implied Volatility Curves (Top
Panel); Heston SV Model Implied Volatility Curves (Bottom
Panel)

15%

20%

25%

30%

35%

40%

45%

70 80 90 100 110 120

Strike

B
S

M
 Im

p
lie

d
 V

o
la

ti
lit

y

1-day 30-day 60-day

15%

20%

25%

30%

35%

40%

45%

70 80 90 100 110 120

Strike

B
S

M
 Im

p
lie

d
 V

o
la

ti
lit

y

1-day 30-day 60-day

Other models that feature jumps in returns include
Bates (1996), Madan et al. (1998), Carr et al. (2002),
and Carr and Wu (2003), Scott (1997), and Kou (2002).
For a more complete treatment of jump models, see
Cont and Tankov (2004). Although jump-diffusion
and pure-jump models can generate jumps in returns
and implied volatility skews consistent with empirical
data, asset returns under these models produce zero
autocorrelation of squared log-returns. Furthermore,
implied volatility curves, for a fixed option matu-
rity, would remain constant through time. To address
these empirical observations, researchers have pro-
posed modeling volatility as a random process rather
than as a constant, as in the BSM model. An illustra-
tive stochastic volatility model is discussed next.

4.3. Stochastic Volatility Models
Heston (1993) proposed the following two-factor asset
price model:

dSt

St

= ��− ��dt+√
Vt dWt (51)

dVt = H�'−Vt� dt+v

√
Vt dW

v
t � (52)
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where Wt and Wv
t are two Brownian motion pro-

cesses with E�dWt dW
v
t �= Edt, H is the speed of mean

reversion in the variance process, and ' is the long-
run variance mean. Equation (52) models variance
as a mean-reverting process: When Vt > ' the drift
is negative and variance is more likely to decrease
than increase and, conversely, when Vt < ' variance is
more likely to increase. Variance cannot become neg-
ative because the volatility of variance approaches
zero as Vt decreases due to the

√
Vt term. This same√

Vt term leads to a exponential affine structure in
the solution, which affords a considerable degree of
analytical tractability. Equation (52) generates volatil-
ity clustering—i.e., high-volatility periods are more
likely to be followed by high-volatility periods—and
also generates positive autocorrelation of squared log-
returns. The parameter E allows correlation between
log-returns and changes in variance to be incorpo-
rated in the model. The distribution of ST can be
viewed as an infinite mixture of lognormals with
different volatility parameters. This mixing property
generates excess kurtosis (compared with the BSM
model), which produces implied volatility curves.
Heston (1993) showed that the price of a

European call, in this setting, has the same form
as Equation (50). The characteristic functions have
explicit, exponential-affine forms and the Fourier
inversion formula can again be used to numerically
compute the probabilities required for the option
price. Alternative inversion formulas are presented
and analyzed in Lee (2004). For a discussion of the
volatility risk premium and its impact on option
prices, see Bates (1988, 1996) and Lewis (2000). As an
illustration, Figure 4 shows implied volatility curves
for the Heston model with parameters S0 = 100,
V0 = �0�26�2, H = 6, ' = �0�35�2, v = 3, E = −50%,
�= 1%, r = 5%, and the strikes and maturities indi-
cated. Although the parameters were not chosen to
optimally fit any given set of data, it is clear that the
stochastic volatility (SV) model can generate implied-
volatility curves that are similar to those observed in
the data. Furthermore, the curves change randomly
through time as Vt evolves, with correlated changes in
volatility and returns. The model has a difficult time
reproducing steep smiles typically observed for very
short maturity options.
The Fourier inversion approach was first proposed

in Stein and Stein (1991) and Heston (1993). Impor-
tant early contributions to the SV literature include
Cox (1975, 1996) and Hull and White (1987). Recent
contributions include Duan (1995), Fouque et al.
(2000), Davydov and Linetsky (2001), Detemple and
Tian (2002), and Cvsa and Ritchken (2001). For an
overview of SV models see Ghysels et al. (1996) and
Lewis (2000).

The attractive features of jump-diffusion and SV
models have been combined in the models of Bates
(1996), Scott (1997), Bakshi et al. (1997), and the recent
model in Carr et al. (2003). A general affine jump-
diffusion framework that includes many of these
models as special cases is provided in Duffie et al.
(2000). Affine jump-diffusion interest-rate models are
given in Chen and Scott (1992), Duffie and Kan (1996),
and Dai and Singleton (2000).

5. Numerical Methods
The pricing of American, path-dependent, and multi-
asset options in the BSM framework generally requires
the use of numerical methods. More recent models
incorporating jumps in returns, SV, jumps in volatility,
stochastic interest rates, default risk, etc., pose com-
putational challenges for European-style options and
more-exotic structures. Calibration of models to mar-
ket data typically involves an optimization procedure
to determine a set of parameters that best fit the data,
and each step in the optimization can require many
price and derivative computations that can result in
a tremendous computational challenge. Investment
banks, mutual funds, and many other financial and
nonfinancial institutions hold portfolios containing
large numbers of derivative securities. Determining
the risk of these positions typically requires portfo-
lio revaluations under many potential future market
outcomes, and this presents another difficult yet prac-
tically important computational task.20

In theory, closed-form analytical solutions are quick
to evaluate and perfectly accurate. In practice, how-
ever, even the BSM formula requires either numerical
integration or the use of approximations for determin-
ing the normal probabilities in the formula. Although
typically not a major issue for the BSM formula, it
does illustrate the point that almost all derivative
pricing problems ultimately require a numerical pro-
cedure, and the choice of methods involves trade-offs
between speed and accuracy and between simplicity
and generality.
The major numerical approaches can be classified

in one of four categories: (i) formulas and approx-
imations, (ii) lattice and finite difference methods,
(iii) Monte Carlo simulation, or (iv) other specialized
methods.
In the first category, the most significant advances

have been in the application of transform meth-
ods and asymptotic expansion techniques. Fourier,
Laplace, and generalized transform methods have

20 Financial risk management is another important area of theoret-
ical and practical interest. A theoretical foundation is provided in
Artzner et al. (1999). A related early paper is Rudd and Schroeder
(1982). Numerical algorithms are treated in Glasserman et al. (2000).
For a comprehensive introduction to this field, see Jorion (2001) and
the references therein.
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been applied to SV models (Stein and Stein 1991,
Heston 1993, Duffie et al. 2000), the pricing of Asian
options (Reiner 1990, Geman and Yor 1993) and many
other options pricing models. Asymptotic expansion
and singular perturbation techniques have proved
especially useful in developing analytical formulas
and approximations for SV models (Hull and White
1987, Hagan and Woodward 1999, Fouque et al. 2000,
Andersen et al. 2001).

5.1. Lattice and Finite Difference Methods
Lattice methods use discrete-time and discrete-state
approximations to SDEs to compute derivative prices.
Lattice approaches were first proposed in Parkinson
(1977) and Cox et al. (CRR) (1979). Lattice meth-
ods are easy to explain and implement and they are
described in virtually every textbook on derivatives.
The triangular lattice obviates the need for spatial
or side boundary conditions required for finite dif-
ference methods. These features make lattice meth-
ods attractive for pedagogical purposes and for the
computation of derivative prices in simpler models.
Finite difference methods provide numerical solutions
to the fundamental pricing PDE, and are often the
method of choice for models and securities that are
more complicated.
The risk-neutral BSM model has an exact solution

St+h = Ste
Z, where Z∼
 ��r −�−2/2�h�2h�. Over a

discrete time step, a lattice method replaces Z with a
discrete random variable X, where X = xi with prob-
ability pi for i= 1�2� � � � �m. Over multiple time steps
this leads to a distribution of asset prices: binomial
for m = 2, trinomial for m = 3, and multinomial for
general m. There have been dozens of proposals for
discrete approximations X; the four widely used lat-
tices of CRR (1979), Jarrow and Rudd (1983), Amin
(1991), and Boyle (1986) are given in Table 1.
The discrete distribution St+h�i� = Ste

xi , for i =
1� � � � �m, is chosen to closely approximate the exact

Table 1 Standard Lattice Methods

Lattice Outcome Probability

CRR (1979) (1) x1 = �
√
h p1 =

e�r−�	h − e−�
√
h

e�
√
h − e−�

√
h

x2 =−�
√
h p2 = 1− p1

Jarrow and Rudd (1983) (2) x1 = �r − �− � 2/2	h+ �
√
h p1 =

e�
2h/2 − e−�

√
h

e�
√
h − e−�

√
h

x2 = �r − �− � 2/2	h− �
√
h p2 = 1− p1

Amin (1991) (3) x1 = �r − �− ln�cosh��
√
h			h+ �

√
h p1 = 1/2

x2 = �r − �− ln�cosh��
√
h			h− �

√
h p2 = 1/2

Boyle (1986) (4) x1 = ��
√
h p1 =

1
2�2

+ �r − �− � 2/2	
√
h

2��
x2 = 0 p2 = 1− 1/�2

x3 =−��
√
h p3 =

1
2�2

− �r − �− � 2/2	
√
h

2��

continuous distribution. For m= 2, the points x1 and
x2 and associated probabilities are chosen so that the
first and second moments either match exactly or
match in the limit as h→ 0. Additional lattices have
been proposed with m= 4 or higher, and with those
it is possible to match higher moments of the dis-
tribution (see, e.g., Heston and Zhou 2000, Alford
and Webber 2001). Unfortunately, when applied to the
pricing of American options, values of m greater than
two have not resulted in better overall convergence
when the additional computational time is taken into
consideration.
Pricing options with the trinomial Lattice (4)

requires three calculations at each node instead
of two. Although the additional outcome produces
American option prices that are more accurate, com-
pared with the binomial method, the additional
accuracy is almost exactly balanced by the addi-
tional computational cost, as shown in Broadie and
Detemple (1996). An advantage of the Boyle (1986) tri-
nomial approach is that the additional stretch param-
eter /≥ 1 can be used to adjust a particular asset node
to a convenient level, e.g., to coincide with a strike or
barrier.
Lattices (1) and (4) have the advantage of maintain-

ing constant asset price levels through time, so the
number of distinct asset price levels ST is linear in
the number of time steps, n. This happens because
up and down moves lead back to the same asset
price level. For example, in Lattice (1), Ste

x1ex2 = St but
Ste

x1ex2 �= St in Lattices (2) and (3). In Lattices (1) and
(4), the drift is captured by the probabilities, whereas
in (2) and (3) the drift is captured in the stock price
levels. When pricing options, the constant level prop-
erty of Lattices (1) and (4) results in computational
savings because O�n� distinct asset price levels can be
computed once and stored; in the other lattices O�n2�
distinct price levels need to be computed.
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Related to lattice methods are numerical solu-
tions of the PDE (2) with Boundary Conditions (3).
The finite difference approach to option pricing was
first proposed by Brennan and Schwartz (1977, 1978).
A major advantage of this approach is the wealth
of existing theory, algorithms, and numerical soft-
ware that can be brought to bear on the problem.
Issues of numerical consistency, convergence, and sta-
bility have been well studied. The generality of finite
difference methods is especially important for mod-
els that extend beyond the constant coefficients BSM
model. The finite difference method can handle pro-
cesses with time-varying coefficients, Itô processes
that are more general, jump and SV models, single
and multifactor interest-rate models, etc. Generaliz-
ing lattice methods for these models requires separate
developments, the resulting algorithms are often com-
plicated to implement, and it is difficult to theoret-
ically analyze their convergence properties. In addi-
tion to widely available numerical libraries of finite
difference methods, a higher-level language for auto-
matic code generation has also been developed and
is described in Randall et al. (1997). The language
enables users to concisely represent financial models
and solution methods; these specifications are then
automatically translated into source code in a stan-
dard programming language, e.g., C.
Lattice methods can be viewed as explicit finite

difference methods, but the fundamental BSM PDE
can also be solved with a number of other meth-
ods, including implicit, Crank-Nicolson, and finite
element methods and alternating direction implicit
(ADI) methods for higher-dimensional problems. The
finite difference approach offers considerable flexibil-
ity in the choices of grids for the time and space
dimensions, which is useful for dealing with dis-
crete dividends, barriers, and other common features.
Higher-order derivative approximations are possible
in the finite difference approach, and these can lead
to improved convergence. For a general treatment of
numerical methods for PDEs, see Morton and Mayers
(1994), and for applications to financial derivatives see
Tavella and Randall (2000).
The computation time (or w for work) of lattice

methods for pricing options in the BSM model is
O�mn�, where m is the number of time steps and n
is the number of asset price levels. Typically, m is
O�n�, in which case the computation time is O�n2�.
The pricing error decreases as O�1/n� (see Diener and
Diener 2004), which implies that the error decreases
as O�1/

√
w�. Faster convergence for many numer-

ical applications can be obtained using extrapola-
tion techniques, but these techniques usually require
a smoothly converging solution. Both lattice and
finite difference methods are affected by option pay-
offs that are discontinuous or have discontinuous

derivatives (which includes standard put and call
payoff structures as well as many others). This lack
of smoothness typically results in oscillatory con-
vergence of the solution as the grid size decreases
(i.e., as the number of time steps increases), and
this poses an obstacle to applying extrapolation to
accelerate convergence. For the American option pric-
ing problem, Broadie and Detemple (1996) propose
smoothing the solution by applying the European for-
mula for the continuation value at the penultimate
time step in combination with Richardson extrapola-
tion. This idea, which applies equally well to lattice
and finite difference methods, can increase the con-
vergence rate by an order of magnitude (the error
decreases as O�1/w�) and is also often trivial to imple-
ment. Rannacher timestepping (Rannacher 1984) is an
alternative smoothing procedure for finite difference
methods when a closed-form solution or approxima-
tion is not available. For a general introduction to
extrapolation methods see, e.g., Brezinski and Zaglia
(1991). Richardson extrapolation was introduced in
derivatives pricing in Geske and Johnson (1984).
Accelerated convergence for American options in a
finite difference method is given in Forsyth and Vetzal
(2002).
Lattice and finite difference methods for interest-

rate models are given in Ho and Lee (1986), Black
et al. (1990), Hull and White (1994), and Pelsser
(2000). Fitting a model to a given initial term structure
involves numerically solving for a time-dependent
drift function. The forward induction idea of
Jamshidian (1991) has proved to be particularly useful
in these applications.

5.1.1. Path-Dependent Options. Many options
have payoff structures that depend not just on the
current asset price, but also on the history of the asset
price through time. Pricing options with these general
payoff structures require keeping track of the asset
price through time, and this leads to nonrecombining
lattice or bushy tree algorithms. A nonrecombining
lattice algorithm for the pricing of interest-rate deriva-
tives in the general Heath-Jarrow-Morton (HJM)
framework is proposed in Heath et al. (1990). A
nonrecombining lattice with branches determined
through Monte Carlo sampling, i.e., a simulated tree
algorithm, is proposed in Broadie and Glasserman
(1997) for the pricing of path-dependent (and higher-
dimensional) American options. The computational
time of these methods is O�mn�, where n is the num-
ber of branch points in the time dimension and m
is the number of branches at each node. The mem-
ory requirement, however, is only O�mn� (see Broadie
et al. 1997 for details). The exponential dependence
on the number of branch points renders these meth-
ods infeasible for all but small values of n. Neverthe-
less, it is feasible to use n up to 30 or 40 with small
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values of m (e.g., two or three) on today’s personal
computers (PC). Applications with a small number of
exercise opportunities, e.g., some Bermudan options,
are natural for this approach. Combined with extrap-
olation techniques (see, e.g., Broadie et al. 1997) the
nonrecombining lattice approach can lead to surpris-
ingly accurate option price approximations in some
applications.
Fortunately, most path-dependent payoff structures

seen in practice do not depend in an arbitrary way on
the path of asset prices. Mildly path-dependent pay-
off structures depend on the current asset price and a
single sufficient statistic that summarizes the relevant
information from the path. For example, for Asian
options whose payoff depends on an average asset
price, it suffices to track the current average price (also
called the running average or the average to date). In
the case of barrier and lookback options, it suffices to
track the current maximum or minimum asset price,
or both. Mildly path-dependent options can be priced
in an enlarged state space, which includes the cur-
rent price as well information related to the sufficient
statistic. For example, in the case of in barrier options,
the state space includes the current asset price and
whether or not the option has been knocked in (i.e.,
the asset price has breached the knock-in level). In
lattice and finite difference methods, the placement of
the barrier relative to the discrete asset price levels
can have a large effect on the accuracy of the method.
Boyle and Lau (1994) first noticed and proposed a
solution to the problem. In the case of Asian options,
the state space can be expanded to include the current
asset price and the current average price. Ingersoll
(1987) shows that the Asian option price satisfies a
two-dimensional PDE, and finite difference methods
are given in Zvan et al. (1998). Alternatively, for each
node in the lattice or finite difference grid, it is pos-
sible to keep track of option values corresponding to
each value of the average. Unfortunately, the num-
ber of potential average prices is typically exponential
in the number of time steps. So, rather than storing
information for each distinct average price, a range
of possible averages are grouped into bins or buck-
ets, and interpolation is used in a backwards pricing
procedure. The convergence of lattice and finite dif-
ference methods for pricing mildly path-dependent
options using interpolation is investigated in Forsyth
et al. (2002).
In some cases significant computational savings

when pricing mildly path-dependent options can
be obtained by a change of measure, also called
the change of numeraire technique (see §3.6). Babbs
(1992) applies this idea to the lattice pricing of look-
back options and Rogers and Shi (1995), Andreasen
(1998), and Vecer (2001) apply it to the pricing of
Asian options. Significant computational savings are

possible using the related dimensionality-reduction
idea presented in Hilliard et al. (1995).

5.1.2. Jump Processes and SV Models. When
jumps are added to the BSMmodel as in Equation (44),
the fundamental pricing PDE (2) becomes a par-
tial integro-differential equation (PIDE). Numerical
methods to solve the pricing equation are more
complicated, because the computation of the contin-
uation value at any node now requires an integral
over the jump distribution. Straightforward exten-
sions of lattice or finite difference methods take an
order-of-magnitude more computation time (i.e., the
CPU time is O�n3�, where n is the number of time
steps) to achieve comparable accuracy to models
without jumps (see, e.g., Amin 1993). Andersen and
Andreasen (2000) develop a finite difference approach
using a combination of fast Fourier transform and
ADI methods; this approach is stable and reduces
the computional time requirement to O�n2 log�n��.
Their method applies to a jump-diffusion and local
volatility function model that enables exact calibra-
tion to a set of market option prices. For the stan-
dard Merton jump-diffusion model in (44), Broadie
and Yamamoto (2003) develop a method based on the
fast Gauss transform that is easy to implement and
further reduces the computational time requirement
to O�n2�. Hirsa and Madan (2004) develop a finite dif-
ference method for the solution of the PIDE that arises
in pricing American options in the variance gamma
model.
SV models are treated in detail in Lewis (2000).

Most of the explicit formulas provided there are
derived through transform analysis (e.g., gener-
alized Fourier transforms) and apply to path-
independent European-style options. American and
path-dependent options require numerical solutions
of the pricing PDE. Examples include Forsyth et al.
(1999), who present a finite element approach to the
pricing of lookback options with SV; Kurpiel and
Roncalli (2000), who develop hopscotch methods for
SV and other two-state models; and Apel et al. (2002),
who develop a finite element method for an SV
model.

5.1.3. Multiasset Options. A multidimensional
extension of the BSM model is given in the SDE (16).
Formulas for the prices of European derivatives usu-
ally involve multidimensional integrals, so numeri-
cal methods are needed even in this comparatively
simple case. As in the single-asset case, two related
approaches are multidimensional lattices and multidi-
mensional finite difference methods. Suppose that the
time dimension is divided in m time steps and that
each of d assets is divided into n asset price levels.
Then a multidimensional lattice or finite difference
grid will have O�mnd� nodes and the computational
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time will be of the same order. Pricing algorithms do
not need to store information at all nodes simulta-
neously, but typically store information at the nodes
of two adjacent time steps, which leads to an O�nd�
storage (i.e., memory) requirement. Both memory and
computation time are exponential in the number of
assets d. Given typical processor speeds and mem-
ory configurations on today’s PCs, it turns out that
memory is the limiting factor on the size of prob-
lems that can be solved. Problems with three to four
assets can be feasibly solved. For example, the stor-
age requirement for a four-asset finite difference grid
with 50 nodes for each asset and two time steps
in memory is 95 megabytes (MB). This assumes an
8-byte double precision number is stored for each
of the 504 × 2 nodes, where each double requires
8/1�0242 MB of memory. A similar five-asset problem
would require 4,768 MB of memory, which is not cur-
rently feasible.
A lattice for an arbitrary number of assets in the

multidimensional BSM model was proposed in Boyle
et al. (BEG) (1989). At each node in the lattice a
discrete approximation to a multidimensional log-
normal distribution is required. Their lattice uses a
discrete approximation with 2d outcomes, i.e., there
are 2d branches at each node. Kamrad and Ritchken
(KR) (1991) generalize the BEG lattice by adding an
additional outcome together with a stretch param-
eter (analogous to the parameter in the Boyle 1986
single-asset trinomial lattice). The additional flexibil-
ity in the placement of nodes afforded by the stretch
parameter is useful, for example, in the pricing of
barrier options. An advantage of the BEG and KR
lattices over finite difference approaches is that spa-
tial boundary conditions do not need to be specified.
Finite difference approaches, however, offer consid-
erable flexibility in the choice of grid (i.e., node
placement) and a variety of approaches for multidi-
mensional PDEs, e.g., ADI methods or improvements
based on Krylov subspace reduction as presented in
Druskin et al. (1997).
Relatively little work has been done to date on com-

putational methods for multiasset options in the pres-
ence of SV or jumps, or both.

5.2. Monte Carlo Methods
As illustrated in (19), derivative pricing often reduces
to the computation of an expected value. In some
cases this calculation can be done explicitly, e.g., in
the case of the BSM formula, whereas in other cases
lattice or finite difference methods prove useful for
numerical evaluation. Monte Carlo simulation is a
natural approach for expected value computations.
Consider, for example the calculation of the price of a
derivative security represented as

V �S0� t0�= E∗�h�St0
� St1

� � � � � Stm
��� (53)

where h represents the discounted derivative payoff
that depends on the path of underlying (and possi-
bly vector-valued) state variables St0

� St1
� � � � � Stm

. The
Monte Carlo method consists of three main steps. The
first step is to generate n random paths of the under-
lying state variables. The next step is to compute the
corresponding n discounted option payoffs. The final
step is to average the results to estimate the expected
value; usually a standard error of the estimate is also
computed. In this situation, the convergence rate of
the Monte Carlo method is often O�1/

√
n� by the

central limit theorem, independent of the problem
dimension, which makes it especially attractive for
pricing high-dimensional derivatives. This forward
path generation approach also makes simulation well
suited for pricing complex path-dependent deriva-
tives. Much of the focus of recent research has been
on (i) path simulation methods, especially when there
are nonlinearities in the financial SDEs; (ii) computa-
tional improvements through variance reduction tech-
niques; and (iii) extending the Monte Carlo method
to calculate price derivatives and American option
values. For a survey of the literature in this area,
see Boyle et al. (1997), and for a more extensive
treatment see Glasserman (2004), which contains over
350 references.
An extensive treatment of the numerical solu-

tion of nonlinear SDEs is given in Kloeden and
Platen (1999). In the area of efficiency improve-
ments, much attention has been given to quasi–Monte
Carlo or low-discrepancy methods (Niederreiter 1992,
Birge 1994, Paskov and Traub 1995, Joy et al. 1996,
Owen 1997). Variance reduction techniques based on
moment matching are presented and analyzed in Bar-
raquand (1995), Duan and Simonato (1998), and Duan
et al. (2001). Algorithms for computing security price
derivatives using simulation are given in Broadie and
Glasserman (1996).
The determination of optimal exercise strategies

in the pricing of American options requires a back-
wards dynamic programming algorithm that appears
to be incompatible with the forward nature of Monte
Carlo simulation. Much research was focused on the
development of fast methods to compute approxi-
mations to the optimal exercise policy. In this con-
text, fast refers to a method whose computation
time requirement is a multiple of the time to price
the corresponding European option using simulation.
Notable examples include the functional optimization
approach in Andersen (2000) and the regression-based
approaches of Carriere (1996), Longstaff and Schwartz
(2001), and Tsitsiklis and Van Roy (1999, 2001).
These methods often incur unknown approxima-

tion errors and are limited by a lack of error bounds.
Broadie and Glasserman (1997) propose a method
based on simulated trees that generates error bounds
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(in the form of confidence intervals) and converges
to the correct value under broadly applicable condi-
tions. The simulated tree method, while able to han-
dle high-dimensional problems, has a computation
time requirement that is exponential in the number
of potential exercise dates, making it practical only
for problems with a small number of potential exer-
cise dates. The stochastic mesh method of Broadie
and Glasserman (2004) avoids this exponential depen-
dence on the number of exercise opportunities, is a
provably convergent method, and also generates error
bounds. This method has a work requirement that is
quadratic in the number of simulated paths; experi-
mental results suggest a square-root convergence in
the error, leading to an overall complexity in which
the error decreases as the fourth-root of the work,
which is rather slow. Glasserman (2004, §8.6) shows
that the regression-based approaches can be viewed
as special cases of the stochastic mesh method.
All of the fast approximation methods mentioned

above share the same limitation: the lack of known
error bounds. Each method, though, by virtue of
explicitly or implicitly providing a suboptimal exer-
cise strategy, can be used to generate a lower bound
on the true price, because any suboptimal policy triv-
ially delivers less value than the value-maximizing
optimal stopping rule. A complete bound on the true
price would be available if an upper bound could be
generated from any given exercise policy.
A dual formulation that represents the American

option price as the solution to a minimization prob-
lem was independently developed by Haugh and
Kogan (2004) and Rogers (2002). In addition to its the-
oretical interest, a computationally effective method
to compute upper bounds based on this dual formula-
tion was introduced in Andersen and Broadie (2004).
Let h�x� tk� represent the discounted option payoff

at time tk when the state Stk
= x is a d-dimensional

vector. As in §3.3, the discrete-time American option
price is given by

V �S0� t0�= sup
�

E∗�h�S�� ���� (54)

where � is a stopping time taking values in � =
�t1� t2� � � � � tm�. Let Mtk

be any adapted martingale.
Then

V �S0� t0� = sup
�∈�

E∗�h�S�� ��+M� −M��

= Mt0
+ sup

�∈�
E∗�h�S�� ��−M��

≤ Mt0
+E∗

[
max

k=1�����m
�h�Sk� tk�−Mtk

�
]
� (55)

where the second equality follows from the optional
sampling property of martingales. The upper bound
given above is especially useful because, for an

appropriate choice of the martingale M , the inequal-
ity holds with equality, i.e., the duality gap is zero. To
see this, recall that the American option value process
Vk ≡ V �Sk� tk� is a Q-supermartingale (see §3.3) and
so admits a Doob-Meyer decomposition Vk =M ′

k−Ak,
where M ′

k is a martingale, A0 = 0, and Ak is a nonde-
creasing process. Now set Mk =M ′

k, i.e., use the mar-
tingale component of the true American option price
to get

V �S0� t0�

≤M ′
0+E∗

[
max

k=1�����m
�h�Sk� tk�−M ′

k�
]

= V �S0� t0�+E∗
[
max

k=1�����m
�h�Sk� tk�−V �Sk� tk�−Ak�

]
≤ V �S0� t0�� (56)

where the last inequality follows from V �Sk� tk� ≥
h�Sk� tk� and Ak ≥ 0.
There are two challenges to developing tight upper

bounds with this approach. First, because the true
value process V is unknown, the optimal martin-
gale is also unknown. Second, the determination of a
nearly optimal martingale and a corresponding upper
bound must be done in a computationally practi-
cal manner. The approach taken in Andersen and
Broadie (2004) is to base the upper bound compu-
tation on any exercise policy by taking M to be the
martingale component of that policy. Their algorithm
is based on a simulation within a simulation. The
inner simulation is used to compute the martingale
M based on any approximate exercise policy, and the
outer simulation is used to compute the expectation
E∗�maxk=1�����m�h�Xk� tk�−Mk�� to determine an upper
bound. Although this approach sounds computation-
ally intensive, much of the work in the inner sim-
ulation can be avoided by using the properties of
the chosen martingale M . The resulting algorithm can
generate practically useful lower and upper bounds
on many problems of financial importance in nearly
real time (e.g., within a few minutes on a current PC)
and further improvements are possible with specially
designed variance reduction techniques.

6. Conclusions
Valuation methods for derivative securities have
reached a fair degree of maturity. Nevertheless, chal-
lenges remain on several fronts. It is sure to be a
continuing goal to develop asset price models that
better match observed data, while maintaining as
much parsimony and tractability as possible. Multi-
factor SV, stochastic correlation, and regime-switching
models are potential avenues for further investiga-
tion. Models that are more detailed and that incor-
porate information arrival; liquidity; trading volume
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and open interest; market incompleteness; and inter-
actions between multiple securities or multiple agents
might prove useful. Models that integrate market and
credit risk in a general equilibrium framework await
development.
Ever-improving computing technology will expand

the amounts and types of data that can be ana-
lyzed; the types of financial models that can be
feasibly studied and numerically solved will be simi-
larly expanded. Added computing power alone, how-
ever, is of fairly limited usefulness. Many problems
are effectively exponential in their memory or com-
putation time requirement, and these will require
algorithmic advances. For example, it is not currently
feasible to calibrate model parameters to a large set
of securities that are priced by simulation (a prob-
lem of simulation within optimization). Efficient and
convergent methods for pricing high-dimensional and
path-dependent American securities depend on the
development of new algorithms, not faster computers.
New markets and products continue to be intro-

duced. Recent examples include passport options,
variance swaps, and volatility futures, which began
trading on the CBOE in 2004.21 Businesses could run
markets to better predict the success of a new prod-
uct or service, to predict the market share of existing
products, or to predict other factors of interest. Mar-
kets with payoffs tied to political events already exist,
and trading in the outcomes of other events has been
proposed. Environmental markets and the trading of
emissions permits might expand on a global scale.
New markets might develop to protect an individual’s
home value or a country’s gross domestic product, as
envisioned in Shiller (2003). In each case, new mod-
els, valuation theory, and numerical methods might
need to be developed. What is certain is that there
will be surprising developments and continuing chal-
lenges in this exciting and expanding field.
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Appendix. Securities and Markets
Since 1973, when plain vanilla equity options were first
introduced on the CBOE, numerous products have been cre-
ated to fill various needs of investors. In this appendix we
briefly review the vast literature on fixed income deriva-
tives, credit derivatives, real options (§A.1), path-dependent
contracts (§A.2), and derivatives with multiple underlying
assets (§A.3).

21 For a description and analysis of passport and related options
see Andersen et al. (1998) and Shreve and Vecer (2000). Volatility
derivatives are treated in Neuberger (1994), Detemple and Osakwe
(2000), Carr and Madan (1998), and Demeterfi et al. (1999).

A.1. Fixed Income, Credit, and Other Derivatives
The same principles for pricing and hedging derivatives
apply to many markets. However, each market has impor-
tant and unique features that need to be modeled, and
these in turn raise new analytical and computational issues.
The rise of equity derivatives in the 1970s was followed
by the development of derivatives in fixed income, foreign
exchange, commodity, and credit markets. More recently,
energy, weather, catastrophe (e.g., earthquake and hurri-
cane), and other derivatives have traded. The literature is
far too vast to do any justice in this brief space, so we
settle for mentioning a few selected highlights, represen-
tative pieces of research, and pointers to more extensive
references.
A central challenge in the fixed income market is the

consistent modeling of a set of related securities, in this
case bonds of different maturities that make up a yield
curve. James and Webber (2000) provide over 500 refer-
ences in this area. The seminal paper of Heath et al. (1992)
unifes and substantially extends previous interest-rate mod-
els, including those of Vasicek (1977), Ho and Lee (1986),
and Black et al. (1990). Working with discretely rather than
continuously compounded rates, Brace et al. (1997) and Mil-
tersen et al. (1997) propose the Libor market model, which
generates prices consistent with the Black (1976) formula
for European options on a market interest rate. Signifi-
cant analytical developments were enabled with the change
of measure approach proposed in Jamshidian (1989) and
Geman et al. (1995). Extensions of interest-rate models to
include jumps in rates are given in Duffie and Kan (1996)
and Glasserman and Kou (2003). An extension to SV is
given in Andersen and Brotherton-Ratcliffe (2001). Empir-
ical evidence supporting SV and jumps in interest rates is
given in Collin-Dufresne and Goldstein (2002) and Johannes
(2004).
An important application of interest-rate modeling is

to the pricing of mortgage-backed securities, asset-backed
securities (e.g., securities backed by credit card receivables),
and related derivative securities. Relevant papers in this
area include Dunn and Spatt (1985), Schwartz and Torous
(1989), Kau et al. (1990), McConnell and Singh (1993),
Zipkin (1993), and Akesson and Lehoczky (2000). See the
textbook by Sundaresan (2002) for more discussion and
references.
Credit risk and the pricing of securities in the presence

of default risk have been investigated since at least the
1970s. A commonly traded credit derivative is the credit
default swap, or CDS. This is an agreement between two
parties, where party A makes a fixed periodic payment
to party B, until either the maturity of the CDS, or until
there is a default by the reference entity (e.g., a publicly
traded company). In the event of a default, party B pays
party A a contractually specified amount, which can depend
on the market value of a specific bond, (or in some cases,
party B delivers to party A a specific bond issued by the
reference entity). Credit risk models are often classified
as structural or reduced form. In the structural approach
(sometimes called the firm-value approach) default occurs
based on a model of an issuer’s ability to meet its liabil-
ities. In reduced-form models (sometimes called intensity-
based or hazard rate models) default is an exogenous
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process that is calibrated to observed historical or current
market data. The seminal contributions given in Black and
Scholes (1973), Merton (1974), and Black and Cox (1976),
and the more recent models of Leland (1994) and Anderson
and Sundaresan (1996) fall in the first category. Important
reduced-form models include Jarrow and Turnbull (1995)
and Duffie and Singleton (1999). In recent years the mar-
kets for convertible bonds and credit derivatives (including
default swaps, collateralized debt obligations, multiname
credit derivatives, and others) has grown substantially and
there has been a corresponding growth in related research.
Representative papers in this area include Hull and White
(1995), Das and Sundaram (2000), Li (2000), and Andersen
and Buffum (2004). Excellent sources for more information
include the books by Bielecki and Rutkowski (2002), Duffie
and Singleton (2003), and Schonbucher (2003).
Government deregulation is one factor that has fueled

the expansion of existing markets for energy and the devel-
opment of new markets for energy derivatives. Electricity
markets present new challenges primarily because of elec-
tricity’s limited ability to be stored. Supply and demand
must be balanced through time, whereas demand varies
significantly between day and evening hours and between
warm and cold months. These factors together with recent
instances of enormous price spikes illustrate the need for
models that are specifically tailored to these markets. Recent
work in this area includes Schwartz and Smith (2000),
Lucia and Schwartz (2002), Barlow (2002), and the books by
Pilipović (1998) and Clewlow and Strickland (2000).
Weather affects the revenues and expenses of many

energy and nonenergy businesses, and weather derivatives
offer a means of hedging the associated risks. Securities
with payoffs linked to the occurrence or nonoccurrence of
earthquake, hurricane, or other events are called catastrophe
derivatives. References in these areas include Litzenberger
et al. (1996), Canter et al. (1997) and Geman (1999).
The term real options refers to the opportunity to ini-

tiate, expand, or contract a capital investment in a real
asset, such as land, physical plant, or equipment. Diffi-
culties arise because market prices might not be contin-
uously observable. Investment decisions can be discrete
rather than continuous; decisions might be reversible or
irreversible; and current decisions could lead to different
potential future decisions. A seminal paper in this area is
Brennan and Schwartz (1985), and representative research
includes Cortazar et al. (1998), Kulatilaka and Perotti (1998),
Bollen (1999), and Schwartz and Zozaya-Gorostiza (2003).
Books on the subject include Dixit and Pindyck (1994), Tri-
georgis (1996), Amram and Kulatilaka (1999), and Copeland
and Antikarov (2001).

A.2. Path-Dependent Options
A path-dependent option is an option whose payoff depends
on prices not only at, but also prior to the exercise
time. Some of the most popular path-dependent contracts,
reviewed in §§A.2.1–A.2.3, are barrier options, capped
options, and Asian options. Occupation time derivatives are
examples of recent products that are experiencing a surge
of interest in the academic community. Definitions and ref-
erences for those contracts will be provided in §A.2.4.

A.2.1. Barrier Options. A barrier option is an option
whose payoff depends on the hitting time of some prespeci-
fied barrier. Standard barrier options have a constant barrier
and come into existence (in-options) or expire (out-options)
when the barrier is breached. Examples include down-
and-out, down-and-in, up-and-out, and up-and-in options.
A down-and-out option, for instance, expires when the asset
price breaches a barrier whose level is below the price of the
underlying asset at inception of the contract. Out-options
sometimes involve a rebate, such as a flat payment, in the
event of early termination.
In- and out-barrier options with constant barriers are easy

to price in the BSM setting. A comprehensive set of formu-
las can be found in Rubinstein and Reiner (1991).
Symmetry relations also tie pairs of barrier options

together. For example, an up-and-out put can be priced
from a down-and-out call by using a change of variables.
Indeed, suppose that H is the put barrier and that ��H�=
inf�v ∈ �t� T �6 Sv =H� represents the first hitting time of H .
Performing the transformations described in §3.6 yields
��H�= ��Ĥ�, where Ĥ =KSt/H and

��Ĥ�= inf�v ∈ �t� T �6 Ĥ =KSt/Sv = Ŝv��

with Ŝ described in (41). It is then apparent that an up-
and-out put on S, with barrier H , strike K, and matu-
rity date T has the same price as a down-and-out call
on Ŝ, with barrier Ĥ = KSt/H , strike St , and maturity
date T in a modified financial market with interest rate �
and dividend rate r . Equivalently, puo�S� t!K�H�T � r��� =
cdo�K� t! S� Ĥ�T ��� r�, where the last two arguments have
been added to capture the market structure (interest rate
and dividend rate).
In-options can be valued by complementarity. Simple

inspection reveals that a standard option is the sum of an
in-option plus an out-option with identical characteristics.
For instance, for calls we have

cdo�S� t!K�H�T �+ cdi�S� t!K�H�T �= c�S� t!K�T �

cuo�S� t!K�H�T �+ cui�S� t!K�H�T �= c�S� t!K�T ��

where the expressions on the right-hand side are the prices
of standard call options. Similar relations hold across puts.
Valuation formulas for European barrier options, in the

BSM setting, are found in Rubinstein and Reiner (1991).
American barrier options are priced by Rubinstein and
Reiner (1991) in the binomial model and Gao et al. (2000) in
the BSM setting. The latter paper establishes an EEP decom-
position of the price and derives an integral equation for
the exercise boundary.

A.2.2. Capped Options. Capped options were intro-
duced on the CBOE in 1991 (see the capped-style index
options (CAPS) contract) and have also appeared as com-
ponents of hybrid securities issued by firms for financ-
ing purposes (such as the Mexican index-linked euro secu-
rity (MILES) contract). Capped options can be European or
American style, and can include various types of automatic
exercise provisions in the event that the underlying price
breaches the cap. The caps involved can be constant, time-
dependent functions, or stochastic processes.
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A typical capped option involves a limit on the amount
realized upon exercise. A standard capped call option, for
instance, pays �min�S�L�−K�+ upon exercise, where L>K
is a constant cap on the underlying price (L−K is the cap
on the payoff). European-style capped options, with payoff
at the maturity date, are easily valued. A European capped
call is identical to a bull spread and is therefore simply the
difference between two call option prices: c�S� t!K�L�T �=
c�S� t!K�T �− c�S� t!L�T �.
American-style contracts are usually more difficult to

price. A relatively simple case is when the cap is a constant.
In that case it is clear that immediate exercise is optimal at
the cap, because the maximal value of the payoff, L−K, is
attained. This is true under the relatively weak assumption
of a positive interest rate. Of course exercise can also be
optimal prior to hitting the cap, but the optimality of exer-
cise at the cap enables us to conclude that the capped-call
option is in fact an up-and-out barrier option with barrier
L and rebate L− K. Valuation methods for barrier options
can then be applied to this contract.
In the context of the BSM model one can also use sim-

ple dominance arguments to show that the exercise bound-
ary of the capped option, B�·!L�T �, is the minimum of the
cap L and of the exercise boundary of the corresponding
uncapped option B�·!T �. That is B�t!L�T �=min�L�B�t!T ��.
The price of the claim is the present value of the payoff
stopped at this first hitting time of this boundary.
Some of these insights and extensions to growing caps

can be found in Broadie and Detemple (1995) for the
BSM framework. Results for some diffusion models are in
Detemple and Tian (2002).

A.2.3. Asian Options. The payoff of an Asian option
depends on an average of prices over time. An Asian call
option has the payoff �A−K�+, where A is the underlying
average price and K the strike price. An average strike call
has payoff �S − A�+ based on the difference between the
current and average prices. Asian puts are defined in a sym-
metric fashion. Arithmetic averages are common, although
geometric averages are sometimes used. Continuously aver-
aged prices are of great theoretical interest, whereas aver-
ages at discrete time intervals are typically used in practice.
Asian options were first proposed in Boyle and Emanuel

(1980) and have become very popular in practice. For firms
with periodic revenues or expenses tied to an underlying
price or index level an Asian option is a better hedging
instrument than a European option whose payoff depends
on a price at a single point in time. The pricing of Asian
options in the BSM model is quite challenging. A numerical
approach based on Monte Carlo simulation for the pricing
of Asian options was developed in Kemna and Vorst (1990),
and additional numerical approaches (including the case of
American Asian options) were presented in Ritchken et al.
(1993), Curran (1994), Hansen and Jorgensen (2000), and
Ben-Ameur et al. (2002). An analytical formula for continu-
ously averaged Asian options was first published by Geman
and Yor (1993).22 Series solutions for continuously averaged
Asians have been developed in Dufresne (2000), Schröder
(2002), and Linetsky (2004).

22 A similar formula was presented in Reiner (1990).

A.2.4. Occupation Time Derivatives. Occupation time
derivatives are fairly new products attracting some atten-
tion from investors and researchers. A defining character-
istic of these contracts is an exercise payoff that depends
on the time spent by the underlying asset in some pre-
determined region(regions). Typical specifications of the
occupation region involve barriers, thus an occupation time
derivative can be thought of as a type of barrier option.
Various claims with features of this type have been

studied. One example is the quantile option. A European
�-quantile call pays off �M���T � − K�+ at exercise where
M���T � is the smallest (constant) barrier such that the frac-
tion of time spent by the underlying price at or below
M���T �, during �0�T �, exceeds �. Formally,

M���T �≡ inf
{
x6

∫ T

0
1�Sv≤x� dv > �T

}
�

where
∫ T

0 1�Sv≤x� dv is the occupation time of the set �S ≤ x�
during the period �0�T �.
Quantile options were suggested by Miura (1992) as an

alternative to standard barrier options, which have the
drawback of losing all value at the first touch of the bar-
rier. Quantile options lose value more gradually. The bar-
rier implied by the quantile � decreases as the underlying
asset spends more time at lower levels. The option loses all
value only if M���T � ≤ K. Pricing formulas are provided
by Akahori (1995) and Dassios (1995). Formulas for the dis-
tribution of the quantiles of a Brownian motion with drift
can be found in Embrecht et al. (1995) and Yor (1995).
A second example is the Parisian option. A Parisian out

option with window D, barrier L, and maturity date T will
lose all value if the underlying price has an excursion of
duration D above or below the barrier L during the option’s
life. If the loss of value is prompted by an excursion above
(below) the barrier, the option is said to be an up-and-
out (down-and-out) Parisian option. A Parisian in option
with window D, barrier L, and maturity date T comes
alive if the underlying price has an excursion of duration D
before maturity. If specification involves an excursion above
(below) the barrier the option is an up-and-in (down-and-
in) Parisian option.
Parisian contractual forms were introduced and stud-

ied by Chesney et al. (1997). The motivation parallels the
motivation for quantile options. Parisian options are more
sturdy, because they lose value more gradually than do
standard barrier options. Contracts of this type are more
robust to eventual price manipulations. The pricing formu-
las in Chesney et al. (1997) involve inverse Laplace trans-
forms. Implementation issues are examined by Chesney
et al. (1997). A variation of the Parisian option is the
cumulative Parisian option, which pays off based on the
cumulative amount of time above or below a barrier. Pric-
ing formulas are provided by Chesney et al. (1997) and
Hugonnier (1999).
Our last example is the step option. This derivative’s pay-

off is discounted at some rate that depends on the amount
of time spent above or below a barrier. Various discounting
schemes can be used. For instance, a proportional step call,
with strike K and barrier L, pays off

exp�−Eot�S�L���St −K�+
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at exercise, for some constant E > 0, where ot�S�L� is the
amount of time spent by time t above (or below) the
barrier L. The discount rate E is the knock-out rate, and
exp�−Eot�S�L�� is the knock-out factor. Proportional step
options are also referred to as geometric or exponential step
options. Simple step options use a piecewise linear amorti-
zation scheme instead of an exponential one. A down-and-
out simple step call, with strike K and barrier L, pays off

max�1−Eot�S�L��0��St −K�+�

This option is knocked out at the first time at which
ov�S�L�≥ 1/E. This stopping time is the knock-out-time.
Step options were studied by Linetsky (1999). Laplace

transforms and their inverses are central to the valuation
formulas provided.

A.3. Multiasset Options
Derivatives written on multiple underlying assets have long
been of interest to investors. Contracts such as options on
the maximum (max-options) or the minimum (min-options)
of several underlying prices have long been quoted over the
counter. Options on the spread between two prices (spread
options) can now be traded on organized exchanges such as
the New York Mercantile Exchange (NYMEX—an example
is the Gasoline Crack Spread Option). Options to exchange
one asset for another (exchange options) appear in vari-
ous financial contexts including convertible securities and
takeover attempts.
Pricing formulas for European contracts were provided

early on. Margrabe (1978), for instance, prices exchange
options, whereas Johnson (1981) and Stulz (1982) deal with
max- and min-options. Results for American options are
more recent. Broadie and Detemple (1997) study max-call
options, spread options, and related contracts (dual max-
calls, min-put options, capped exchange options, etc.)
written on dividend-paying assets. Min-call options are
examined by Villeneuve (1999) for non-dividend-paying
assets and Detemple et al. (2003) for dividend-paying assets.
The main difference between options on a single underly-

ing price and those written on multiple prices rests with the
structure of the exercise region. In the single-asset case opti-
mal exercise can be described in terms of a single exercise
boundary. This simple structure fails in the multiasset case:
Multiple exercise boundaries are typically needed in order
to describe the optimal exercise decision. This section illus-
trates the complexity of the exercise policy for the special
case of a call on the maximum of two prices. The properties
described were established in the BSM framework.
A max-call option written on two underlying prices pays

off �S1 ∨ S2 − K�+ at exercise. The function S1 ∨ S2 is not
differentiable along the diagonal S1 = S2, thus this payoff
does not have the usual smoothness properties. This feature
is a source of surprising exercise properties, described next.
Figure A1 illustrates the structure of the exercise region

for the contract. The most notable aspect is that this region
is the union of two subregions, corresponding to sets where
Asset 1 is the maximum or Asset 2 is the maximum, with
disjoint time sections for t < T . That is, �max = �max1 ∪�max2
where

�max1 =��S1�S2�t�∈�2+×�0�T �6 S1=S1∨S2 and S1≥B1�S2�t��

�max2 =��S1�S2�t�∈�2+×�0�T �6 S2=S1∨S2 and S2≥B2�S1�t��

Figure A1 Exercise Region of a Max-Call Option
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for some boundaries B1�S2� t� and B2�S1� t�, such that
B1�S2� t� > S2 for all �S2� t� ∈ �+ × �0�T � and B2�S1� t� > S1

for all �S2� t� ∈�+ × �0�T �. Indeed, for max-calls immediate
exercise along the diagonal, where S1 = S2, is never optimal
prior to maturity; this is true independently of the values
taken by underlying prices, i.e., even if they become very
large, S1 = S2 →	! Intuition for this property can perhaps
be gained by considering the case of independent and sym-
metric price processes. Consider a point along the diagonal
S1 = S2 and suppose that the holder of the security must
decide whether to exercise or wait. By independence the
probability of an increase in the maximum of the two prices,
over the next time increment, is roughly equal to 3/4. With
identical price volatilities value increases if the decision to
exercise is postponed by an infinitesimal amount of time.
This argument also prevails for prices off the diagonal but
sufficiently close to it. At those points immediate exercise
can be improved on by capitalizing on likely increases in
the max of the two prices over the next short time period.
The pricing methods presented for single-asset options

also apply to multiasset options. The price of the max-
call can be characterized as the solution of a free-boundary
problem, or a variational inequality problem. The EEP rep-
resentation also applies. This representation gives rise to a
pair of coupled integral equations for the boundary compo-
nents B1�S2� t� and B2�S1� t�.
Several contracts display exercise properties similar to

those of the max-call. For a dual max-call, with payoff
��S1−K1� ∨ �S2 − K2��

+, immediate exercise is suboptimal
along the translated diagonal S1 = S2+K1−K2. The immedi-
ate exercise region can also be described by two subregions,
each defined by its own boundary. A spread call option,
with payoff �S1−S2−K�+, can be viewed as a one-sided ver-
sion of a dual max-call. Immediate exercise is suboptimal
on or below the translated diagonal S1 = S2+K; the exercise
region is characterized by a single boundary, parametrized
by �S1� t�, that lies above this line. A min-put option, paying
off �K − S1 ∧ S2�+, has two exercise boundaries issued from
the origin and lying either above or below the diagonal.
Immediate exercise along the diagonal is also suboptimal
for this contract.



Broadie and Detemple: Option Pricing: Valuation Models and Applications
Management Science 50(9), pp. 1145–1177, © 2004 INFORMS 1173

The min-call option, with payoff �S1 ∧ S2 −K�+, presents
additional challenges for valuation. For this contract imme-
diate exercise could be optimal along the diagonal. The
exercise region has two exercise boundaries that meet and
merge along the diagonal (see Detemple et al. 2003). In the
absence of dividend payments it collapses to a subset of the
diagonal (see Villeneuve 1999). Valuation can be performed
using any of the methods previously discussed. One novel
aspect is the appearance of a local time component in the
EEP representation of the price. This term is related to the
discontinuities in the derivatives of the payoff function in
the exercise region.
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