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1. Introduction
Closed-form expressions have been derived for many
European options under a variety of financial mod-
els, the most notable being the Black-Scholes formula
for equity options under the geometric Brownian
motion model. To date, no similar expressions have
been found for the prices of American options, i.e.,
options that can be exercised at any time up until
the maturity of the option, except in (trivial) spe-
cial cases. Many numerical methods for pricing
American options have been proposed, and although
tremendous progress has been made, the pricing of
these options in multifactor models with possibly
path-dependent payouts has remained a formidable
challenge.
In this paper we present a simple and efficient

method for pricing of American claims under general
asset price or factor process dynamics. The method
allows for jumps, stochastic volatility, multiple driv-
ing factors, etc., and supports virtually any type of
payout specification, including path-dependent ones.
The single main requirement of our method is a
routine to value claims under a proposed (subopti-
mal) exercise strategy, a requirement that is generally
easy to satisfy using existing techniques. The rou-
tine is called repeatedly to generate an upper bound

that complements the lower bound consistent with
the proposed exercise strategy. The approach taken
in the paper is both practical and efficient, and can
be applied to a number of challenging models and
option payouts of practical importance. As a particu-
lar example, we use the method to examine and ver-
ify the tightness of certain frequently applied exercise
rules used for Bermudan options on swaps (i.e., swap-
tions) in multifactor interest-rate models.
There is a long and rich history of numerical meth-

ods for pricing American-style contingent claims.
Among the earliest approaches are the explicit finite
difference scheme in Brennan and Schwartz (1977)
and the binomial lattice in Cox et al. (1979). The meth-
ods of Brennan and Schwartz, and Cox et al., both fall
into the category of lattice-based methods, to which
other finite difference methods also belong. Lattice-
based methods work particularly well for American
options on a single underlying asset. However, many
American-style options have been introduced that
depend on multiple underlying assets or state vari-
ables. Examples include spread options, outperfor-
mance options, and swaptions, to name a few. Many
of these options, particularly the Bermudan interest-
rate swaption, have significant economic importance.
Multidimensional generalizations of the Cox et al.
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binomial method were proposed in Boyle (1988),
Boyle et al. (1989), He (1990), and others. A related
approach involves extensions of the finite difference
method to higher dimensions, as exemplified by the
alternating directions implicit (ADI) method; see, e.g.,
Mitchell and Griffiths (2001). Adapting binomial, tri-
nomial, or finite difference methods to higher dimen-
sions works well for options on two or perhaps
three state variables, but because their computational
effort grows exponentially with the number of state
variables, these methods are impractical for higher-
dimensional problems. Because simulation methods
do not suffer the curse of dimensionality, it is natural
to consider adapting the Monte Carlo approach for
this problem.
Boyle (1977) first proposed Monte Carlo simula-

tion for the pricing of Eurpoean claims. However, it
was not until much later that the possibility of using
Monte Carlo simulation for pricing American-style
options was suggested by Bossaerts (1989) and Tilley
(1993). Broadie and Glasserman (1997) proposed a
convergent algorithm based on simulated trees. Their
method generates both lower and upper bounds so
that valid confidence intervals on the true Bermudan1

price can be determined.2 The simulated tree method
removes the exponential dependence of the computa-
tion (CPU) time on the problem dimension; however,
the CPU time is still exponential in the number of
exercise opportunities. The stochastic mesh method
proposed in Broadie and Glasserman (2004) has a
computation time requirement that is linear in the
number of exercise opportunities and quadratic in
the number of simulation paths. The stochastic mesh
method also generates lower and upper bounds and
converges to the true Bermudan price.
The stochastic mesh method uses a dynamic

programming-style backwards recursion for approx-
imating the price and optimal exercise policy. The
weights that are used to approximate the continua-
tion value of the option are determined by likelihood
ratios. An alternate way to compute these weights
based on regression was proposed in Carriere (1996),
Tsitsiklis and Van Roy (1999), and Longstaff and
Schwartz (2001). The computational effort in these
methods is linear in the number of exercise oppor-
tunities and (nearly) linear in the number of simula-
tion paths. Convergence results for the algorithm are

1 Bermudan options are finitely exercisable American options, i.e.,
options where the holder has the right to exercise at a finite num-
ber of dates prior to the option maturity. Because of the finite
nature of computer-based methods, most algorithms effectively
price Bermudan options.
2 Broadie and Detemple (1996) proposed a method for computing
lower and upper bounds for American options on a single asset.
Their method is based on an explicit integral representation of the
American option price.

given in Tsitsiklis and Van Roy (2001) and Clément
et al. (2001). These methods are able to generate lower
bounds by using regressions to determine approxima-
tions to continuation values, thus giving an approxi-
mation to the optimal stopping policy.
Many other simulation-based methods have been

proposed, but, like the regression approach, these
methods can only be used to compute lower bounds
on the Bermudan option price. Andersen (2000) pro-
poses a method that parameterizes the exercise pol-
icy and then optimizes these parameters over a set
of simulated paths to determine an approximation
to the optimal exercise strategy. Improvements to
this method are proposed and tested in Jensen and
Svenstrup (2002). Other simulation methods based
on parameterizing the exercise decision include Li
and Zhang (1996) and Garcia (2003). The quantization
method recently proposed in Bally et al. (2002a, b)
is another alternative that may be competitive for
higher-dimensional problems. Simulation methods
based on dimensionality reduction or nonparametric
representations of the early exercise region include
Barraquand and Martineau (1995), Carr and Yang
(2001), Clewlow and Strickland (1998), and Raymar
and Zwecher (1997).
Valid upper bounds based on a duality approach

were recently and independently proposed in Haugh
and Kogan (2004) and Rogers (2002) and are related
to the earlier work of Davis and Karatzas (1994). The
duality approach provides a method to compute an
upper bound from the specification of some arbitrary
martingale process. The tightness of the upper bound
will depend critically on the choice of the martingale
process.
Rogers (2002) generates a martingale process by

forming a weighted average of analytically tractable
martingale processes that are related to the true value
function. The weights used in the average are deter-
mined by an optimization procedure conducted in
a separate simulation. The choice of martingale pro-
cesses is highly option and process specific and, as
stated in Rogers (2002, p. 275), “appears to be more
art than science.” Interestingly, this approach can be
used to compute an upper bound without requiring
a lower bound as a starting point, and is done in
a way quite different from the upper bound gener-
ated by the stochastic mesh or simulated tree algo-
rithms. To complete a valid confidence interval with
Rogers’ approach also requires the determination of
a lower bound, which is typically determined as
the value associated with some exercise policy. The
determination of a good exercise rule is also some-
what of an art, as evidenced in part by the num-
ber of papers proposing different approaches to this
problem, but it appears to be a much easier prob-
lem than that of finding good martingale processes.
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Haugh and Kogan (2004) take as their starting point
an approximation to the American option value on
the entire state space of the underlying stochastic pro-
cess. In their paper, this approximation (which may
be biased either high or low) is generated by a neural
network algorithm, though regression methods could
be used as well. The approximate American option
value function is, in turn, used to extract a martingale
process using a computationally intensive procedure.
The approach taken in this paper is similar in spirit

to that of Haugh and Kogan (2004). Our numerical
technique for constructing upper bounds, however,
involves only straightforward Monte Carlo simula-
tion and significantly improves the performance of
the upper bound computation in several respects. Our
algorithm does not build or require an approxima-
tion to the option price process throughout the state
space. Instead, it uses only the information from the
approximation to the optimal exercise strategy, which
substantially reduces computation time and approxi-
mation error.
Working with exercise strategies rather than value

approximations inherently expands the scope of the
method and allows us to take advantage of sit-
uations where good exercise strategies are known
independently of value approximations. For instance,
Svenstrup (2002) demonstrates that excellent exer-
cise strategies can be obtained from relatively crude
low-dimensional approximations implemented in
finite difference grids. Upper bounds correspond-
ing to these strategies can easily be obtained in
our approach. Further, our algorithm is applicable
for options with exercise values that are not avail-
able in closed form. Because our approach relies
only on Monte Carlo simulation, the resulting algo-
rithm is also very straightforward to implement. We
note that the original approach in Haugh and Kogan
(2001) generated upper bounds from supermartin-
gales, which are always more conservative than those
generated by martingale processes proposed in this
paper. The more recent Haugh and Kogan (2004)
approach adopts the martingale approach of this
paper.
In the next section, the primal pricing problem

and its dual are presented. An algorithm for comput-
ing upper bounds on Bermudan prices is developed
and discussed in §3. Numerical results that demon-
strate the simplicity and practicality of our suggested
approach are given in §4, which is followed by brief
concluding remarks.

2. The Pricing Problem
In this section we set up the notation and prelimi-
naries for the Bermudan option pricing problem. Let
St = �S1

t � � � � � Sn
t � be a vector-valued Markov process

on �n with fixed initial state S0. These represent the
underlying assets or state variables of the model. Let
Bt denote the value at time t of $1 invested in a risk-
less money market account at time 0. In the special
case of a constant risk-free rate r , we have Bt = ert . In
general, Bt may depend on the current and past state
variables S0� � � � � St . The Bermudan option has d exer-
cise opportunities at times t1 < t2 < · · · < td = T , with
t1 ≥ 0. The problem of pricing a Bermudan option is
to find

Primal: Q0 = sup
�∈�

E0

[
h�

B�

]
� (1)

where � is a stopping time taking values in the finite
set � = �t1� t2� � � � � td�, and ht ≥ 0 is interpreted as the
payoff from exercise at time t. We will use the terms
stopping time and exercise policy interchangeably in
this paper. The payoff ht will depend on the current
state and may, in general, depend on the entire history
of the process until time t. The quantity h�/B� is the
exercise value measured in time 0 dollars. The nota-
tion Et�·� is short for the expectation conditional on
the information available until time t, i.e., Et�·� = E�· �
�t�. We assume that the financial markets are com-
plete and that the expectation is taken under the risk-
neutral measure.3

The Bermudan option value at some time ti ∈� can
also be written as:

Qti
=max

(
hti

� Eti

[
Bti

Bti+1
Qti+1

])
� (2)

i.e., Qti
represents the maximum of exercising the

option or continuing. Exercising gives a value of hti
,

while the expected present value of continuing (and
following an optimal exercise policy thereafter), mea-
sured in time ti dollars, is Eti

��Bti
/Bti+1�Qti+1 �. Note

that Qti
represents the value of a Bermudan option

newly issued at time ti, and does not equal the value
of a Bermudan option issued at time 0 (because the
option issued at time 0 may have been exercised prior
to time ti). The process Qt/Bt is the smallest super-
martingale4 that dominates ht/Bt on t ∈ � , i.e., is
the Snell envelope of ht/Bt (see, e.g., Lamberton and
Lapeyre 1996). The terminal condition is QT = hT , and
we are interested in computing Q0.
Equation (1) defines the primal pricing problem.

Clearly, the value achieved by following some specific

3 More generally, we could eliminate B� in Equation (1) and define
h to be the payoff in units of an arbitrary numeraire asset contained
in the vector of state variables with the law of the state variables
adjusted accordingly.
4 Recall that a process Zt is a supermartingale if Zt ≥ Et�Zs� for
all s > t. Roughly speaking, a supermartingale is expected to drift
down over time. Discounted Bermudan and American option price
functions are seen to be supermartingales, due to the loss of exer-
cise rights as time progresses.
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exercise strategy is dominated by an optimal strategy,
so

E0

[
h�

B�

]
≤Q0� (3)

In other words, any algorithm that gives a stopping
rule � can be used to compute a lower bound on the
Bermudan value Q0.
In order to define a dual problem, we first find an

upper bound. Let H represent the space of adapted
martingales � for which supt∈� � �t �< � and �0 = 0.
For a martingale � ∈H , we have:

Q0 = sup
�∈�

E0

[
h�

B�

+�� −��

]
=�0 + sup

�∈�
E0

[
h�

B�

−��

]

≤ �0 +E0

[
max
t∈�

(
ht

Bt

−�t

)]
� (4)

where the second equality follows from the mar-
tingale property of � and the Optional Sampling
Theorem.
Because � ∈ H was arbitrary, the inequality in (4)

holds after taking the infimum:

Q0 ≤ inf
�∈H

(
�0 +E0

[
max
t∈�

(
ht

Bt

−�t

)])
�

The right-hand side of the previous equation defines
a dual problem:

Dual: inf
�∈H

(
�0 +E0

[
max
t∈�

(
ht

Bt

−�t

)])
� (5)

The “duality gap” will be zero if the upper bound
in (4) holds with equality. To find a martingale that
gives a tight upper bound, we rely on the super-
martingale property of Qt/Bt , which allows for a
Doob-Meyer decomposition of the form

Qt

Bt

=Mt −At� (6)

where Mt is a martingale and At is an increasing pro-
cess with A0 = 0. Now take �t =Mt in Equation (4) to
get:

Q0 ≤Q0 +E0

[
max
t∈�

(
ht

Bt

− Qt

Bt

−At

)]
≤Q0� (7)

where the second inequality follows because Qt ≥ ht

and At ≥ 0. Thus, the inequality in (4) holds with
equality (i.e., there is no “duality gap”) when �t is
taken to be the martingale component of the dis-
counted price process, Qt/Bt .
To get a good lower bound, we need to find an exer-

cise policy (stopping time) � that is, loosely speaking,
close to some optimal policy �∗. The algorithms men-
tioned earlier, and others, can all be used to gener-
ate candidate exercise policies � . To get a good upper

bound, Equation (7) suggests we take �t to be the
martingale component of a good approximation to the
discounted price process Qt/Bt . Our approach will be
to find an exercise policy � that defines a lower bound
price process Lt and then take �t to be the martingale
component of Lt/Bt . Computational issues are impor-
tant because the upper bound requires computing the
martingale �, which in turn depends on the lower
bound Lt function. In many algorithms, however, the
lower bound function is not available at every point
in the state space and must itself be computed, e.g.,
by simulation or some interpolation scheme. Because
noise or simulation error can propagate through this
process, choices made at each stage will affect the
final result. The next section addresses these issues.

3. Computing the Upper Bound
This section describes an algorithm for computing
an upper bound for the Bermudan option price. For
any given exercise strategy, we can always define an
adapted exercise indicator process lt that equals 1 if
exercise should take place at time t (given �t) and 0
otherwise. For all 0≤ t ≤ td we define t-indexed stop-
ping times �t as

�t = inf�u ∈� ∩ �t� T �" lt = 1��

Thus, �t denotes the first instance at time t or later
at which an option that is newly issued at time t (or
simply alive at time t) should be exercised according
to the given strategy. Notice that we in effect associate
the term “exercise strategy” with a sequence of stop-
ping times. With this definition, a discounted lower
bound price process Lt/Bt can be defined as

Lt

Bt

= Et

[
h�t

B�t

]
� (8)

i.e., Lt is the value at time t of following the chosen
exercise policy from time t onward. Lt is also seen to
be the value of an option that is newly issued at time t
and exercised according to the exercise indicator pro-
cess. Defining the sequence of stopping times, �t , is
useful because we will need to track the evolution of
lower bound process defined in terms of these newly
issued options. If �t is close to an optimal strategy �∗

t

that solves

Et

[
h�∗t
B�∗t

]
= sup

�t∈�∩�t� T �

Et

[
h�t

B�t

]
= Qt

Bt

�

then Lt should be close to Qt . We will use the lower
bound process Lt as the basis for computing the
upper bound through Equation (4). As Lt can be com-
puted for any adapted exercise strategy, specification
of an exercise strategy through the indicator process
lt (or, equivalently, through the sequence of stopping
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times �t) in principle suffices to compute an upper
bound.5

To apply the upper bound in Equation (4), we now
define a martingale �t by �0 = L0, �1 = L1/B1, and for
2≤ k ≤ d,

�k =�k−1 +
Lk

Bk

− Lk−1
Bk−1

− ltk−1Ek−1

[
Lk

Bk

− Lk−1
Bk−1

]
� (9)

where we use the simplified notation Lk for Ltk
. With

this definition �k is easily seen to be a martingale. If
continuation is indicated at tk−1, i.e., if ltk−1 = 0, then

Lk−1
Bk−1

≡ Ek−1

[
h�k−1
B�k−1

]
= Ek−1

[
Ek

[
h�k−1
B�k−1

]]
= Ek−1

[
Lk

Bk

]
�

(10)
Therefore, the discounted lower bound process is a
martingale in the continuation region. Thus, Ek−1��k�
= �k−1 and � is a martingale in the continuation
region as well. If exercise is indicated at tk−1, i.e., if
ltk−1 = 1, then

Ek−1��k� = �k−1 +Ek−1

[
Lk

Bk

− Lk−1
Bk−1

]
−Ek−1

[
Lk

Bk

− Lk−1
Bk−1

]
= �k−1�

and � is a martingale in the exercise region.
Because � is a martingale, Equation (4) from the

previous section gives an upper bound on the price
of a Bermudan option:

Q0 ≤ L0 +E0

[
max
t∈�

(
ht

Bt

−�t

)]
�

This equation shows that an upper bound is given by
the lower bound plus a term that is the value at time
0 of a lookback option that pays maxt∈� �ht/Bt − �t�.
The “perfect foresight” nature of lookbacks can make
these options quite expensive, and hence the upper
bound could be quite loose.
To investigate the tightness of this bound, rewrite

Equation (9) as

�k = L0 +
k−1∑
i=0

[
Li+1
Bi+1

−Ei

(
Li+1
Bi+1

)]
� k = 1�2� � � � � d�

(11)
where we have used the fact that Ek−1�Lk/Bk −
Lk−1/Bk−1� is zero whenever ltk−1 is zero. Define the
difference process ek = �Qk − Lk�/Bk, where Qk is the
true Bermudan price at time tk, and note that ek ≥ 0.
Substituting in Equation (11) gives

�k =Mk − e0 −
k−1∑
i=0

[
ei+1 −Ei�ei+1�

]
� k = 1�2� � � � � d�

(12)

5 For example, the Andersen (2000) method and others specify a
parametric form of the exercise policy and do not directly compute
an option value approximation throughout the region. Neverthe-
less, an upper bound for these methods can be computed using
only the specification of the exercise policy.

where Mk is the optimal martingale defined from Qk

in Equation (6). Let � = �1� � � � � d�. Then the upper
bound can be written as:

U0 = L0+E0

[
max
k∈�

(
hk

Bk

−�k

)]

= L0+E0

[
max
k∈�

(
hk

Bk

−Mk+e0+
k−1∑
i=0

�ei+1−Ei�ei+1��
)]

≤ Q0+E0

[
max
k∈�

(k−1∑
i=0

�ei+1−Ei�ei+1��
)]

�

where the inequality follows because hk/Bk ≤Qk/Bk ≤
Mk. It appears difficult to bound this expression in
general, but because ei+1 ≥ 0 and Ei�ei+1�≥ 0, we have

U0 ≤Q0+E0

[
max
k∈�

(k−1∑
i=0

ei+1

)]
≤Q0+E0

[ d∑
i=1

ei

]
� (13)

Equation (13) shows that if the lower bound is uni-
formly close to the true price, e.g., if ek = �Qk −Lk�/Bk

≤ %, then the upper bound will differ by at most d%
from the true value. Thus, the upper bound deteri-
orates at most linearly with the number of exercise
dates, though in practice the upper bound appears to
be much better. This is illustrated next for the case of
a single asset.

Lower and Upper Bound: Numerical Results for a
Single Asset
To illustrate and compare the lower and upper
bounds, we use a finely spaced binomial lattice to
compute the bounds for Bermudan and American call
options on a single asset in the standard Black-Scholes
model. Suboptimal exercise policies are specified as
fixed multiples of the optimal exercise policy. For
example, suppose at time t the optimal policy is to
exercise when St ≥ S∗

t . For a fixed fraction f , define
the suboptimal exercise policy by exercising when
St ≥ fS∗

t , for all t ∈ � and t < T (where at time T the
option is exercised if it is in the money). Exercising too
early corresponds to taking f < 1 and exercising too
late corresponds to f > 1. Clearly, the suboptimal pol-
icy approaches the optimal policy as f approaches 1.
The dependence of the lower and upper bounds on f
is given in Table 1 below.
Table 1 shows that the lower and upper bounds

improve as f approaches 1 (i.e., as � approaches �∗).
Even though the upper bound deteriorates as the
number of exercise opportunities increases, the lower
bound deteriorates as well. So, for most parameter
values, the lower and upper bounds are compara-
ble in magnitude. In the cases with the largest dif-
ferences, the upper bound is tighter than the lower
bound. Most importantly, Table 1 indicates that if the
lower bound is reasonably tight, we can expect that
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Table 1 Lower and Upper Bounds on a Single Asset

d = 2 d = 10 American

f Lower Upper Lower Upper Lower Upper

0.86 −0�93 0.11 −2�19 0.66 −2�60 2.45
0.88 −0�56 0.08 −1�35 0.49 −1�57 1.77
0.91 −0�29 0.05 −0�71 0.30 −0�83 1.11
0.94 −0�12 0.03 −0�29 0.13 −0�35 0.54
0.97 −0�03 0.01 −0�07 0.03 −0�08 0.13
1.00 0�00 0.00 0�00 0.00 0�00 0.00
1.03 −0�03 0.01 −0�05 0.03 −0�05 0.04
1.06 −0�10 0.05 −0�17 0.11 −0�19 0.13
1.10 −0�19 0.10 −0�34 0.25 −0�37 0.29
1.13 −0�30 0.15 −0�53 0.41 −0�57 0.50
1.17 −0�42 0.21 −0�73 0.59 −0�78 0.74

True 7.18 7.98 8.17

Notes. Parameters: The initial stock and option strike prices are S = K =
100, the interest rate is r = 5%, the dividend rate is � = 10%, the option
matures in T = 3 years, and the stock volatility parameter is 	 = 20%. In
the Bermudan cases, there are exercise opportunities at times ti = iT /d

i = 01 � � �  d. Continuous exercise is allowed in the American case. The call
option payoff is h�St �= max�St − K0� when exercised at time t when the
stock price is St . In the first column f gives the ratio of the critical exer-
cise price under the suboptimal policy to the optimal critical exercise price.
For comparison, the corresponding European option value is 6.02. The table
shows the differences between the bounds and the true value. For example,
for f = 0�86 and d = 2, the lower bound is 7�18−0�93 and the upper bound
is 7�18 + 0�11. The numbers in this table were computed using a binomial
lattice with 2,000 time steps. Monte Carlo simulations were used to compute
the upper bounds.

the upper bound will be reasonably tight as well.
Also, the upper bound deteriorates quite slowly as
the number of exercise dates increases. This exam-
ple illustrates the practical usefulness of the upper
bound and indicates the potential benefit from a com-
putationally efficient method for computing the upper
bound.

Computing the Upper Bound via Simulation
Let lt be the exercise indicator process of an arbi-
trary exercise policy and let Lt denote the option value
under this policy, as defined in Equation (8). Given
Lt , define the martingale � as in Equation (9). Then,
an upper bound is given by

L0 +E0

[
max
t∈�

(
ht

Bt

−�t

)]
= L0 +'0� (14)

The quantity '0 can be estimated by the following
procedure.

Summary of the Simulation Procedure to Estimate
the Upper Bound.
1. Simulate a path of state variables: S0 = �S1

0�
� � � � Sn

0 �, S1 = �S1
1� � � � � Sn

1 �, � � �, Sd = �S1
d� � � � Sn

d � and the
associated B1� � � � �Bd factors used for discounting.
2. Along the path generated in Step 1, check the

exercise policy at each time k = 1� � � � � d. If continua-
tion is recommended at time k, i.e., ltk = 0, follow the
procedure in Step 2a, otherwise use 2b.

(a) (ltk = 0). Launch a “simulation within a simu-
lation” to estimate:

Lk

Bk

= Ek

[
h�k

B�k

]
�

In particular, use N2 subpaths starting from Sk which
are stopped according to �k, and average h�k

�S�k
�/B�k

over these subpaths. Also, note in this case that in
defining � in Equation (9) the term

ltkEk

[
Lk+1
Bk+1

− Lk

Bk

]

is zero.
(b) (ltk = 1). Set Lk/Bk equal to the discounted

exercise value hk/Bk. If k < d, launch a “simulation
within a simulation” to estimate:

Ek

[
Lk+1
Bk+1

]
= Ek

[
h�k+1

B�k+1

]
�

In particular, use N3 subpaths starting from Sk, which
are stopped at the first time t ≥ tk+1 such that lt = 1
and average h�k+1�S�k+1�/B�k+1 over these subpaths.
These quantities will be used to estimate the term

ltkEk

[
Lk+1
Bk+1

− Lk

Bk

]
= Ek

[
Lk+1
Bk+1

]
− hk

Bk

in defining � in Equation (9).
3. Set �1��2� � � � ��d as in Equation (9) and compute

max
k∈�

(
hk

Bk

−�k

)
�

Repeat Steps 1–3 for N1 simulation trials, then average
the results in Step 3 to estimate the quantity '0 in the
upper bound in Equation (14).
Here are some comments on the procedure. In

Step 1, a path of the state variables is simulated.
The simulation should include at least the poten-
tial exercise times t1� t2� � � � � td = T , but might include
additional times. The intermediate times might
be necessary to record information about path-
dependent payoffs or because a simulation discretiza-
tion scheme (e.g., Euler or Milstein) requires smaller
time steps between exercise dates.
Step 2 is used to estimate �k from the lower bound

process Lk. Suppose at time k that �k specifies contin-
uation. In this case,

Lk

Bk

= Ek

(
Lk+1
Bk+1

)
= Ek

(
h�k

B�k

)

(see Equation (10)) and simulation is used in Step 2a
to estimate the quantity Lk/Bk by estimating the ex-
pectation on the right, Ek�h�k

/B�k
�. Suppose at time

k that �k specifies exercise. Then Lk/Bk is sim-
ply hk/Bk. However, the quantity Ek�Lk+1/Bk+1� now
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represents the value (in time 0 dollars) of the strategy
that continues at time k (even though �k specifies exer-
cise) and then exercises according to the �k+1 exercise
policy. In short, it represents the continuation value at
time k, given the information available at time k. In
Step 2b this quantity is estimated through

Ek

(
Lk+1
Bk+1

)
= Ek

[
h�k+1

B�k+1

]
�

Because this simulation is started at Sk in the exer-
cise region, it is likely that lt will recommend exer-
cise at time tk+1, so this “inner simulation” is likely to
be fast. Thus, Steps 2a and 2b use the same “inner”
simulation procedure, with only a slight difference in
interpretation. Also note that the inner simulations in
Step 2 are not recursive—further simulations are not
run on each subpath.
The quantity Ek�Lk+1/Bk+1� from Step 2b could

be estimated with one-step simulation (or integra-
tion procedure) using an estimate of Lk+1�Sk+1�/Bk+1
at states Sk+1 at time k + 1. The estimate could
be obtained through a functional approximation
(e.g., regression, spline, or neural network). A func-
tional approximation approach, though, requires hav-
ing good estimates of Lk+1�Sk+1�/Bk+1 over a range
of states Sk+1. Instead, we estimate the quantity
Ek�Lk+1/Bk+1� directly from the exercise indicator pro-
cess lt . This approach does not require any function
approximation, and the resulting accuracy of the esti-
mate is more easily controlled.
Similarly, the quantity Lk�Sk�/Bk at a continuation

point required in Step 2a could be taken from a func-
tional approximation. Instead, we estimate this quan-
tity directly from the exercise indicator process lt .
Finally, note that Steps 2a and 2b are used to esti-

mate conditional expectations of the forms Lk/Bk and
Ek�Lk+1/Bk+1�. Monte Carlo simulation is only one con-
venient and general method for approximating these
expectations. Given any particular pricing problem,
it might be that these quantities can be computed
analytically or by some other numerical procedure
that is faster and/or more accurate than simulation.
If such other numerical methods are available, then,
of course, they should be employed.
Figure 1 illustrates the simulation procedure. At

time t1, the state S1 is in the continuation region spec-
ified by the exercise policy. In order to estimate L1/B1,
we begin a simulation from the state S1 and simu-
late subpaths Si

2� Si
3� � � � � Si

�1
for i = 1�2� � � � �N2. Each

subpath is stopped when specified by the exercise
policy �1. The discounted payoffs h�1

�Si
�1

�/B�1
for i =

1� � � � �N2 are averaged to give a simulation estimate
of L1/B1. At time t2, the state S2 is in the continu-
ation region, and L2/B2 is estimated using subpaths
Si
3� Si

4� � � � � Si
�2
for i = 1�2� � � � �N2. The discounted pay-

offs h�2
�Si

�2
�/B�2

for i = 1� � � � �N2 are averaged to give a

Figure 1 Simulation in a Simulation

Exercise Region

Continuation Region

t

S

t 1 2t d
t4t3t

Subpath 1

Subpath 2

Subpath 3

0

Notes. This figure illustrates the computation of L1/B1 using three subpaths
that start from S1 at time t1. The exercise policy is defined by continuing (i.e.,
not exercising) in the lower shaded area and exercising in the upper region.
Subpath 1 is exercised at time t2, subpath 2 at time t3, and subpath 3 is
not exercised. Additional subpaths would be used to compute L2/B2 starting
from S2. Because S3 lies in the exercise region, the term L3/B3 is set to
h3/B3. Additional subpaths starting from S3 are used to compute E3�L4/B4�,
which represents the value of continuing at time t3.

simulation estimate of L2/B2. At time t3, the state S3 is
in the exercise region. Therefore, L3/B3 is set to h3/B3.
In order to estimate E3�L4/B4�, we begin a simulation
from the state S3 and simulate subpaths Si

4� � � � � Si
�4

for i = 1�2� � � � �N3. Each subpath is stopped when
specified by the exercise policy �4, and the resulting
h�4

/B�4
are averaged to give a simulation estimate of

E3�L4/B4�.
To briefly demonstrate that the simulation algo-

rithm will produce an upper bound, notice that the
Monte Carlo simulations embedded in the algorithm
above introduces noise in the estimates for the mar-
tingale �. In particular, the terms Lk/Bk in (9) are
effectively replaced by Lk/Bk + %k, where %k is a pure
noise term with mean zero and standard deviation
proportional to 1/

√
N2 (if Sk is a point of continua-

tion; otherwise, if Sk is a point of exercise the standard
deviation is zero). Similarly, the terms Ek�Lk+1/Bk+1�
will be replaced by Ek�Lk+1/Bk+1� + %′

k, where %′
k is

a pure noise term with mean zero and standard
deviation proportional to 1/

√
N3. Compared with (9),

we get

��k = ��k−1 +
Lk

Bk

+ %k −
Lk−1
Bk−1

− %k−1

− ltk−1

(
Ek−1

[
Lk

Bk

− Lk−1
Bk−1

]
+ %′

k − %k−1

)
� (15)

By induction, we can write

��k =�k + %̃k�

where %̃k is a sum of mean zero noise terms. Rather
than computing maxk∈��hk/Bk − �k� exactly along
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each path, our algorithm instead generates the noisy
estimate:

max
k∈�

(
hk

Bk

−�k − %̃k

)
�

Let m denote the random index in the exercise set at
which hk/Bk −�k takes its maximum. Then

E0

[
max
k∈�

(
hk

Bk

−�k − %̃k

)]
≥ E0

[
hm

Bm

−�m − %̃m

]

= E0

[
hm

Bm

−�m

]

= E0

[
max
k∈�

(
hk

Bk

−�k

)]
�

where the first equality follows from the zero mean of
%̃m. Thus, our algorithm’s estimate of '0, and thereby
of the price upper bound, will be biased high for finite
samples N2 and N3, but still yielding a valid upper
bound. Of course, the higher we set N2 and N3, the
lower this bias will be.
Before proceeding to concrete numerical examples,

we discuss how to use the lower and upper bound
results to construct confidence intervals for Bermudan
option prices. Suppose that the Monte Carlo estimate
of the lower bound is �L0 with a sample standard devi-
ation ŝL based on N independent simulation trials.
Also, let the simulation estimate of '0, determined
from the algorithm above, be denoted �'0 with sam-
ple standard deviation ŝ' based on N1 trials. With zx

denoting the xth percentile of a standard Gaussian
distribution, asymptotically a 100�1−,�%-probability
confidence interval for the Bermudan price Q0 must
be tighter6 than[

�L0−z1−,/2
ŝL√
N

� �L0+ �'0+z1−,/2

√
ŝ2L
N

+ ŝ2'
N1

]
� (16)

The confidence interval in (16) is conservative because
of the low bias in �L0 (i.e., E0��L0� ≤ Q0) and the high
bias in �L0 + �'0, which comes from the nature of the
upper bound and the additional high bias described in
the discussion after Equation (15). The standard error
for the upper bound is based on the assumption that
the lower bound estimate (�L0) and the upper bound
increment ( �'0) are computed using independent sim-
ulation trials. We choose to separate the lower and

6 In addition to the random Monte Carlo error, simulation of some
models will also involve a systematic error stemming from the time
discretization of the process for St and/or Bt . An example of this
is the simulation of the Libor market model, see, e.g., Andersen
and Andreasen (2000). Such discretization errors are not accounted
for in (16), nor in any previous arguments. For the case of Libor
market models, Andersen and Andreasen (2000) demonstrate that
the discretization errors associated with typical schemes are often
very small relative to the random Monte Carlo error.

upper bound computations in this fashion because
the time required to compute the lower bound esti-
mate is typically less than required to estimate the
increment �'0. The computational effort and precision
associated with these two quantities can be set sepa-
rately through the choices of N and N1. This freedom
appears to be well worth the cost of both standard
errors appearing in the upper endpoint of the confi-
dence limit in (16). The lower and upper bounds can
be combined in many ways to give a point estimate of
the price. Based on the limited results in Table 1, the
obvious point estimate

�Q0 = �L0 + 1
2
�'0 (17)

appears to give better price estimates than either the
lower or upper bound alone.
The computation time required to approximate '0

is, in the worst case, proportional to:

n×N1 ×max�N2�N3�× d2� (18)

Equation (18) says the worst-case CPU time is linear
in the problem dimension, n. Each of N1 outer sim-
ulation trials involves simulating paths with exercise
opportunities at steps 1�2� � � � � d. In addition, each of
the N2 or N3 inner simulation trials involves simulat-
ing additional paths of up to d steps each. Putting
this together gives the result in Equation (18). In prac-
tice, the inner simulation trials are often stopped very
quickly, and so the actual running time of the algo-
rithm appears to be closer to linear in d.

4. Computational Results
In this section we test the method on two classes
of problems: the pricing of multiasset equity options,
and the pricing of interest-rate derivatives in single-
and multifactor term structure models. In particular,
we price max-call equity options, a problem which
has become a standard test case in the literature. We
also price Bermudan swaptions in the Libor mar-
ket model, which is a problem of significant practi-
cal interest. We focus on the determination of upper
bounds through our method, and we illustrate the
procedure using two different methods for determin-
ing lower bounds. For the equity options, we use a
regression method for estimating continuation values
and determining an exercise strategy. For the interest-
rate derivatives, we use a method that parameter-
izes the exercise region and then optimizes over these
parameters to determine an exercise policy.

Equity Max-Options
Our first test of the method is to price equity options
in a multiasset Black-Scholes framework. In particu-
lar, we suppose that the risk-neutral dynamics of n
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assets follow correlated geometric Brownian motion
processes, i.e.,

dSi
t

Si
t

= �r − -i� dt +.i dW i
t � (19)

where W i
t , i = 1� � � � �n, are standard Brownian motion

processes and the instantaneous correlation of W i and
W j is 1ij . For simplicity, in our numerical results we
take -i = - and 1ij = 1 for all i� j = 1� � � � �n and
i �= j . The interest rate r is assumed to be constant,
so the value of the money market account at time t
is Bt = ert . Exercise opportunities are equally spaced
at times ti = iT /d, i = 0�1� � � � � d. The option that we
price is the max-call option, which has a payoff upon
exercise at time t of7

ht�St�= �max�S1
t � � � � � Sn

t �−K�+�

Properties of the exercise region for this option are
studied in Broadie and Detemple (1997). Numeri-
cal results for this option using the stochastic mesh
method are given in Broadie and Glasserman (2004).
Function approximation methods for determin-

ing lower bounds are described in Carriere (1996),
Tsitsiklis and Van Roy (1999), Longstaff and Schwartz
(2001), and others. The basic idea is to use a functional
approximation scheme (e.g., splines, linear regression,
neural network, or a similar method) to estimate
the continuation value of the option at each exer-
cise time. Improvements based on the control vari-
ate technique are investigated in Rasmussen (2002).
We follow the Longstaff and Schwartz approach and
use linear regression. The method, though, is not well
specified until the precise set of regression basis func-
tions is chosen. In our tests, we use a slightly different
set of basis functions than Longstaff and Schwartz. In
particular, we use a set of 12 functions, consisting of
the largest and the second largest asset prices, three
polynomials of degree two (e.g., the squares of each
asset price and the product of the two), four polyno-
mials of degree three, the value of a European max-
call option on the largest two assets, and the square
and the cube of this value (and a constant term is also
included). In particular, the use of the European max-
call value and its powers is new. Different choices
of basis functions may lead to better lower bounds;
however, this choice of 13 basis functions is suffi-
cient for purposes of illustration, because we mainly
wish to focus on the determination of upper bounds
given approximate exercise policies (and hence lower
bounds). For recent work investigating other basis
functions and the trade-off between the number of
simulated paths and the number of basis functions;
see Glasserman and Yu (2003).

7 The notation x+ means max�x�0�.

Table 2 Bermudan Max-Call Equity Options in Multiasset Black-
Scholes Models

Lower Upper
S0 bound bound 95% CI Binomial

n= 2 assets:
90 8�065 �0�006� 8�069 �0�007� [8.053, 8.082] 8�075

100 13�907 �0�008� 13�915 �0�010� [13.892, 13.934] 13�902
110 21�333 �0�009� 21�340 �0�010� [21.316, 21.359] 21�345

n= 3 assets:
90 11�279 �0�007� 11�290 �0�009� [11.265, 11.308] 11�29

100 18�678 �0�009� 18�703 �0�013� [18.661, 18.728] 18�69
110 27�531 �0�010� 27�627 �0�019� [27.512, 27.663] 27�58

n= 5 assets:
90 16�618 �0�008� 16�634 �0�010� [16.602, 16.655]

100 26�128 �0�010� 26�253 �0�020� [26.109, 26.292]
110 36�725 �0�011� 36�798 �0�017� [36.704, 36.832]

Notes. The payoff of the max-call option is:

�max�S1
t  � � �  S

n
t �−K�+�

The parameters are: K = 100, r = 5%, �= 10%, �= 0, T = 3, and 	 = 20%.
The initial vector is S0 = �S � � �  S�, with S = 90, 100, or 110 as indicated
in the table. Exercise opportunities are equally spaced at times ti = iT /d,
i = 01 � � �  d, with d = 9. Values in parentheses are the standard errors.
N0 = 200000 trials were used to estimate regression coefficients that deter-
mine the exercise policy; N = 2000000 trials were used to estimate the
lower bound; N1 = 1500 and N2 = N3 = 10000 were the parameter settings
used for the upper bound. The regression estimates of the continuation value
used the largest two assets in a regression with 12 independent variables.
Binomial values were determined from the multidimensional BEG routine of
Boyle et al. (1989). For n = 2 assets, the BEG results were from 1,350 time
steps with an approximate error of 0.003. For n = 3 assets, the BEG results
were from 270 time steps with an approximate error of 0.015.

Results for n = 2�3, and 5 assets are given in
Table 2. When the true value is unknown, the accu-
racy of the method can be estimated in a number
of ways. Denote the confidence interval by �a� b� and
take the half-width of the interval, �b − a�/2, and
divide by the midpoint of the interval, �a + b�/2.
The result, �b − a�/�b + a�, is a conservative error
estimate, which ranges from 0.10% to 0.35% for the
results in Table 2. In general, the errors appear to be
smaller for the lower-dimensional options (which is
to be expected given the choice of basis functions)
and for the out-of-the-money options, i.e., when the
early exercise premium is lower. The confidence inter-
vals are consistent with and somewhat tighter than
the stochastic mesh results reported in Broadie and
Glasserman (2004). For n = 2 and n = 3 it is feasi-
ble to compare the lower and upper bound results
with the multidimensional binomial method of Boyle
et al. (1989). In every case, the binomial point esti-
mate of the Bermudan option value lies within the
95% confidence intervals determined through sim-
ulation. A less conservative error estimate can be
obtained using the binomial value, b0, as an estimate
of the true value Q0. In this case, the absolute rela-
tive error can be approximated as: ��L0 + 1

2
�'0 − b0�/b0.
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For n = 2 and 3 when a binomial estimate is avail-
able, the absolute relative error ranges from 0.00% to
0.10%.
The results reported in Table 2 are fairly remark-

able given the simplicity of the method, the rela-
tively limited effort in determining the lower bounds,
and the absence of any variance reduction techniques.
Clearly, improvements in the lower bound will lead to
tighter upper bounds. Introducing appropriate vari-
ance reduction techniques will reduce the standard
errors of the lower and upper bounds and further nar-
row the confidence intervals.
Although little effort was made to optimize the

computer code, a rough breakdown of computational
effort is instructive. Determining the regression coef-
ficients took approximately 1%–10% of the total CPU
time. Determining the lower bound given the regres-
sion coefficients took about 5%–30% of the CPU time,
and then determining the upper bound took about
60%–95% of the CPU time. Therefore, the determina-
tion of the upper bound took between 2 and 15 times
the effort of determining the lower bound. This is
very reasonable given the use of nested simulations to
determine the upper bound. Of course, these results
are highly dependent on the number of exercise
opportunities. With larger values of d, the time spent
in determining the upper bound relative to the lower
bound will grow.

Bermudan Swaptions in the Libor Market Model
Next we examine upper bounds for Bermudan swap-
tions in the Libor market model framework of Brace
et al. (1997), Jamshidian (1997), and Miltersen et al.
(1997). To make our discussion precise, we first intro-
duce some new notation. Let P�t�T � denote the time t
price of $1 received with certainty at time T . Using
the dates in our exercise set as a tenor reference, we
can define Libor-style discrete forwards as

Fi�t�=
P�t� ti�/P�t� ti+1�

ti+1 − ti

�

Typically, the accrual periods ti+1 − ti are either three
or six months. Following Andersen and Andreasen
(2000), the dynamics of forward rates are assumed to
satisfy

dFi�t�=7i�t� dt +8�Fi�t��9
T
i �t� dW�t�� (20)

where W is an l-dimensional Brownian motion, 9i�t�
is an l-dimensional bounded deterministic function of
time, and 8 is a “skew” function satisfying certain
regularity conditions. The drift in Equation (20) can
be determined by arbitrage restrictions, and depends
on the numeraire asset chosen. Typically, the drift will
be a function of multiple forwards; see Andersen and
Andreasen (2000) for details.

Consider now a regular fixed-for-floating interest-
rate swap exchanging a fixed coupon : for discretely
compounded floating rates, with the first payment
exchange8 at time t2, and the last exchange at time td.
As seen by the fixed payer, at time t < t1 the value of
the swap is

s�t�=
d−1∑
i=1

P�t� ti+1��Fi�t�− :��ti+1 − ti�� (21)

For t > t1, we adjust the formula above to account for
cash flows that were made in the past and should no
longer be counted. Specifically, if tk < t ≤ tk+1 for some
value of k, we simply modify the sum in Equation (21)
to start at i = k rather than i = 1.
A European swaption ci�t� with maturity ti entitles its

holder to exercise into the swap s at time ti. Assum-
ing that the option is held by the fixed side payer
(a payer swaption), the time ti payout is thus ci�ti� ≡
s�ti�

+. A Bermudan swaption is the right to exercise into
the above-described swap at any one9 of the dates
t1� t2� � � � � td. The date t1 is often known as the lock-
out date of the Bermudan swaption. The Libor mar-
ket model (20) is jointly Markov in the entire set of
Libor forward rates, often totalling more than 30 or
40 variables. As such, lattice-based methods are
unsuited for numerical work, and pricing generally
requires Monte Carlo simulation. We here wish to
test our upper-bound algorithm on the pricing of
Bermudan swaptions.
As a first step, we need a reasonable exercise

strategy. Andersen (2000) proposes a variety of such
strategies, the simplest and fastest of which is the
following:

Exercise strategy 1:

lti =1 if and only if s�ti�>H�ti�� (22)

In other words, we simply exercise if the proceeds
from doing so are bigger than some deterministic
function of time H . An optimization algorithm for
determining H is discussed in Andersen (2000).
To focus on a specific example, assume that the for-

ward curve is flat at 10%, the accrual periods are three
months, and the skew function is 8�x� = x. We will
consider two volatility scenarios: a one-factor scenario
with 9i�t� = 0�2 for all i and t, and a two-factor sce-
nario with

9i�t�= �0�15�0�15−√
0�009�ti − t��T � t ≤ ti�

8 As is common practice, we assume that interest-rate payments are
made in arrears. That is, the payment associated with the floating
forward rate observed at time t1 will be paid at time t2, and so on.
9 The right to exercise at time td is worthless as the swap is expired
on this date. We include it to ensure notational consistency with
the rest of the paper.
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Table 3 Bermudan Payer Swaptions in a One-Factor Libor Market Model

Lower bound Lower bound ��0 Lower-upper
t1 td � Strategy 1 Strategy 2 Strategy 1 95% CI average

0.25 1�25 8% 184�6 �0�1� 184�6 �0�1� 0�02 �0�01� [184.5, 184.7] 184�6
0.25 1�25 10% 49�1 �0�1� 48�9 �0�1� 0�02 �0�003� [48.8, 49.4] 49�1
0.25 1�25 12% 8�9 �0�1� 8�7 �0�1� 0�004 �0�001� [8.7, 9.1] 8�9

1 3 8% 355�6 �0�4� 355�1 �0�4� 0�07 �0�01� [354.9, 356.4] 355�6
1 3 10% 157�8 �0�5� 156�8 �0�5� 0�2 �0�02� [156.9, 158.9] 157�9
1 3 12% 61�8 �0�4� 61�0 �0�3� 0�04 �0�01� [61.1, 62.5] 61�8

1 6 8% 807�2 �0�9� 808�0 �0�9� 0�23 �0�03� [805.4, 809.3] 807�3
1 6 10% 417�8 �0�9� 416�9 �0�9� 0�63 �0�06� [415.9, 420.3] 418�1
1 6 12% 212�7 �0�9� 212�6 �0�9� 0�33 �0�04� [210.9, 214.8] 212�9

1 11 8% 1381�6 �1�6� 1380�2 �1�6� 1�3 �0�1� [1,378.4, 1,386.2] 1382�3
1 11 10% 812�9 �1�4� 813�2 �1�4� 1�3 �0�1� [810.0, 817.0] 813�5
1 11 12% 495�8 �1�5� 496�7 �1�4� 0�7 �0�1� [492.7, 499.6] 496�2

3 6 8% 493�2 �0�8� 493�3 �0�8� 0�08 �0�01� [491.6, 494.9] 493�2
3 6 10% 293�6 �0�9� 293�0 �0�9� 0�65 �0�07� [291.8, 296.1] 293�9
3 6 12% 170�3 �0�8� 169�9 �0�8� 0�53 �0�06� [168.6, 172.5] 170�6

Notes. The numbers in the table were generated in an Euler-discretized, log-normal Libor market model with one factor, ��x� = x, and �i �t� = 0�2 for all i
and t . The accrual periods are three months and the initial forward curve is flat at 10%. All numbers are in basis points, with numbers in parentheses denoting
sample standard deviations. The first three columns denote the lock-out date, the final maturity, and the coupon of the Bermudan payer swaption, respectively.
The lower bounds in the fourth and fifth columns were generated using N = 50000 paths with antithetic sampling; they are identical to numbers reported in
Table 6a in Andersen (2000). The estimates ��0 reported in the sixth column were generated with N1 = 750 and N2 = N3 = 300. The seventh column reports
the 95% confidence interval for the true price as determined by Equation (16). The lower-upper average in the last column were computed as the sum of the
fourth column and one-half of the sixth column as in Equation (17).

Results for a variety of Bermudan swaptions are
shown in Tables 3 and 4 below. In the tables, we have
also included lower bound estimates from an alter-
native exercise strategy (Strategy 2), of the following
form:

Exercise Strategy 2:

lti = 1 if and only if

s�ti� >max�ci+1�ti�� � � � � cd−1�ti��+H2�ti�� (23)

That is, we exercise if the proceeds from doing so
exceed the maximum price of the European options
underlying the Bermudan structure, plus some
deterministic spread to be found by optimization.
The rationale behind this strategy is discussed in
Andersen (2000).
For the one-factor scenario in Table 3, the spread

between the lower and upper bounds generated from
Strategy 1 are very low, never more than one or more
basis points, leading us to conclude that Strategy 1
very accurately captures the correct exercise decision
for the data in Table 3. In the two-factor scenario
in Table 4, the spreads between upper and lower
estimates are, not surprisingly, wider than for the
one-factor case, although still relatively small for
most of the contracts examined. Reasonably signifi-
cant spreads,10 in the order of 15 to 20 basis points,

10 Bid-offer spreads in Bermudan swaptions markets are generally
quite high, often around 5%–10% of the contract value.

can be observed for the 11-year contract with one-year
lockout. The suboptimality of Exercise Strategy 1 for
this particular case is also reflected in the fact that
the more complicated Exercise Strategy 2 here picks
up significant additional value relative to Strategy 1.
In fact, Strategy 2 produces prices that lie very close
to the average of the upper and lower bound, sug-
gesting that this strategy is close to optimal. Using
Strategy 2 to form an upper bound confirms this: The
spread between the upper and lower bounds for the
11-year contract with one-year lockout is reduced to
7.3, 6.3, and 3.5 basis points for coupons of 8%, 10%,
and 12%, respectively.
As a general rule, we typically find that Strategy 1

works quite well for most Bermudan swaption con-
tracts, even in a multifactor framework. Indeed,
computing upper and lower bounds based on this
strategy for all the different contracts and models in
Andersen (2000) (covering a variety of factor, volatil-
ity, and skew scenarios), the only set of data that pro-
duced estimates for '0 in excess of six basis points
was that reported in our Table 4 above. As we have
seen, Strategy 1 must still be approached with some
care in a multifactor setting, primarily for contracts
with short lock-out periods and long maturities. In
such cases, Strategy 2 will often pick up the loss
in value. In any case, the existence of an upper
bound will always allow one to estimate the error
involved in a particular strategy and, if necessary,
improve it.
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Table 4 Bermudan Payer Swaptions in a Two-Factor Libor Market Model

Lower bound Lower bound ��0 Lower-upper
t1 td � Strategy 1 Strategy 2 Strategy 1 95% CI average

0.25 1�25 8% 184�0 �0�0� 184�0 �0�0� 0�05 �0�01� [183.9, 184.1] 184�0
0.25 1�25 10% 43�3 �0�1� 43�2 �0�1� 0�06 �0�01� [43.1, 43.6] 43�3
0.25 1�25 12% 5�6 �0�1� 5�6 �0�1� 0�01 �0�003� [5.5, 5.7] 5�6

1 3 8% 339�7 �0�2� 339�4 �0�2� 0�4 �0�1� [339.2, 340.6] 339�9
1 3 10% 125�8 �0�3� 125�7 �0�3� 0�7 �0�1� [125.1, 127.2] 126�2
1 3 12% 36�9 �0�2� 36�6 �0�2� 0�2 �0�0� [36.4, 37.6] 37�0

1 6 8% 750�2 �0�6� 751�6 �0�6� 3�7 �0�3� [749.0, 755.2] 752�1
1 6 10% 317�0 �0�7� 319�4 �0�7� 5�0 �0�3� [315.6, 323.5] 319�5
1 6 12% 127�7 �0�6� 129�2 �0�6� 2�6 �0�2� [126.5, 131.6] 129�0

1 11 8% 1247�3 �1�2� 1253�7 �1�3� 18�1 �1�4� [1,245.1, 1,269.0] 1256�3
1 11 10% 620�8 �1�1� 633�2 �1�3� 20�8 �1�2� [618.4, 645.0] 631�2
1 11 12% 327�1 �1�2� 337�0 �1�2� 14�8 �1�0� [324.7, 345.0] 334�5

3 6 8% 444�7 �0�6� 445�2 �0�6� 0�8 �0�1� [443.6, 446.6] 445�1
3 6 10% 226�9 �0�7� 227�5 �0�7� 1�2 �0�1� [225.5, 229.5] 227�5
3 6 12% 107�1 �0�6� 107�6 �0�6� 0�8 �0�1� [105.9, 109.0] 107�5

Notes. The numbers above were generated in an Euler-discretized, log-normal Libor market model with two factors, ��x� = x, and �i �t� = �0�150�15 −√
0�009�ti − t��T , t ≤ ti . The accrual periods are three months and the initial forward curve is flat at 10%. All numbers are in basis points, with numbers in

parentheses denoting sample standard deviations. The first three columns denote the lock-out date, the final maturity, and the coupon of the Bermudan payer
swaption, respectively. The lower bounds in the fourth and fifth columns were generated using N = 50000 paths with antithetic sampling; they are identical
to numbers reported in Table 6b in Andersen (2000). The estimates ��0 reported in the sixth column were generated with N1 = 750 and N2 = N3 = 300. The
seventh column reports the 95% confidence interval for the true price as determined by Equation (16). The lower-upper average in the last column were
computed as the sum of the fourth column and one-half of the sixth column as in Equation (17).

This section has focused primarily on establishing
and verifying the basic Monte Carlo algorithm for
the upper bound computation, with little emphasis
put on maximizing numerical efficiency. The applica-
tion of standard variance reduction methods would
clearly improve the running time and error bounds
for the method. Specialized variance reduction meth-
ods for computing lower and upper bounds with
this simulation approach are developed and investi-
gated in Broadie and Cao (2003). Extensions of this
method for the computation of lower and upper
bounds on option Greeks are given in Kaniel et al.
(2003).

5. Conclusions
American-style contingent claims continue to be an
extremely important component of the market for
financial derivatives. Financial models with multi-
ple driving factors (including, for example, stochas-
tic volatility and jump components) are growing in
importance as empirical evidence mounts. However,
empirical and theoretical work with American-style
derivatives in these more realistic, multifactor mod-
els has been significantly hampered by computational
issues. Our paper contributes to this challenging and
important area by proposing a simple, efficient, and
general method for generating valid price intervals
for American-style options. For higher-dimensional
pricing problems, the algorithm is most naturally
implemented as a Monte Carlo simulation that is used

to estimate the value of a dual problem associated
with the primal option pricing problem. When cou-
pled with any of a number of algorithms for esti-
mating lower bounds on Bermudan prices, the upper
bound can be used both to compute a better price
estimate and to determine whether more effort is
required to improve the lower bound. In many cases
of practical importance, lower bounds can be deter-
mined very quickly, and then the associated upper
bound can be used to demonstrate the tightness of the
lower bound.
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