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Thi s  a r t i c l e  addres se s  the  p rob l em o f  va lu ing
Amer i can  ca l l  op t i ons  w i th  caps  on  d i v idend-
paying assets .  Since early  exercise is  al lowed,
the valuat ion problem requires  the determina-
t ion of  opt imal  exercise pol icies .  Options with
two  t ypes  o f  caps  a re  ana ly zed  cons tan t  caps
and caps with a constant growth rate. For con-
stant caps, it is optimal to exercise at the first
time at which the underlying asset’s price equals
or exceeds the minimum of the cap and the op-
t imal  exercise  boundary for  the corresponding
uncapped option. For caps that grow at a con-
stant rate, the optimal exercise strategy can be
specif ied by three endogenous parameters .
The valuation of American capped call options is a
problem of theoretical as well as practical importance.
Indeed, in the past few years several securities have
been issued by financial institutions which include
cap features combined with standard American call
options. One example is the Mexican Index-Linked
Euro Security, or “MILES.” The MILES is an American
This paper was presented at the 1993 Derivative Securities Symposium,
1993 Western Finance Association Meetings, 1994 American Finance Asso-
ciation Meetings, Baruch College, and Université de Genève. We thank the
participants of the seminars, Phelim Boyle, Bjorn Flesaker, and two anony-
mous referees for their comments. We are especially grateful to the editor,
Chi-fu Huang, for detailed suggestions which have improved this paper.
Address correspondence to Mark Broadie, 415 Uris Hall, Graduate School
of Business, Columbia University, New York, NY 10027.

The Review of Financial Studies Spring 1995 Vol. 8, No. 1, pp. 161-191
© 1995 The Review of Financial Studies 0893-9454/95/$l.50



call option on the dollar value of the Mexican stock index, the Bolsa
Mexicana de Valores. The option is nonstandard because it has both a
cap and an exercise period that is less than the full life of the option.
The underlying asset is an index which involves dividend payments.
The decision to exercise the option is under the control of the security
holder.

Other examples of options with caps are the capped call (and put)
options on the S&P 100 and S&P 500 indices that were introduced by
the Chicago Board of Options Exchange (CBOE) in November, 1991.
These capped index options combine a European exercise feature
(the holder does not have the right to exercise prior to maturity) and
an automatic exercise feature. The automatic exercise is triggered if
the index value exceeds the cap at the close of the day. Flesaker
(1992) discusses the design and valuation of capped index options.
These options differ from the MILES because the holder of the option
does not have any discretion In the exercise policy; i.e., they are not
American options. Other examples of European capped call options
include the range forward contract, collar loans, indexed notes, and
index currency option notes [see Boyle and Turnbull (1989) for a
description of these contracts].

The motivation for introducing capped options is clear. Written un-
capped call options are inherently risky because of their unlimited
liability. By way of contrast, capped call options have limited liability
and are therefore attractive instruments to market for an issuer, or to
hold short for an investor. Wide acceptance of these new securities in
the marketplace, however, depends on a thorough understanding of
their features and properties. Understanding valuation principles is im-
portant not only for pricing these new securities, but also for hedging
the risks associated with taking positions in the securities. Because
early exercise (i.e., before the option’s maturity) may be beneficial
with American capped call options, it is also essential to understand
the structure of optimal exercise policies.

While these types of securities can be valued numerically by stan-
dard techniques, numerical results alone offer little explanation as to
why certain exercise strategies are optimal. When standard binomial
valuation procedures are applied to capped call options, the number
of iterations required to obtain a desired level of accuracy is greatly
increased compared to uncapped options. In this article, optimal ex-
ercise policies and valuation formulas are derived.

Options with caps were studied by Boyle and Turnbull (1989)
Their article provides valuation formulas for European capped op-
tions as well as insights about early exercise for American capped op-
tions. The possibility of optimal early exercise with American capped
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call options was recognized by Boyle and Turnbull. They point out
that when the underlying asset price substantially exceeds the cap,
immediate exercise dominates a waiting policy.

Barrier options are related contracts which were studied in Cox
and Rubinstein (1985) and more recently in Rubinstein and Reiner
(1991). Barrier options combine a European-style exercise feature and
an automatic exercise feature. The automatic exercise is triggered if the
price of the underlying asset reaches the barrier (cap). The automatic
exercise feature is slightly different than for CBOE’s capped index
options, where exercise can only occur at the close of a trading day.
The combination of exercise features of barrier options -places them
between European options and American options.

The presence of a cap on a call option complicates the valuation
procedure. The floor on an option (i.e., the strike price) gives an
incentive to exercise as late as possible. This is the source of the clas-
sical result that early exercise is suboptimal for American uncapped
call options on non-dividend paying stocks. The American feature is
worthless in this case, and American and European options have the
same value. When the underlying asset pays dividends an incentive
to exercise early is introduced. The optimal exercise boundary arises
from the conflict between these two incentives. For standard American
options without caps, the optimal exercise boundary can be written
as the solution to an integral equation [see, e.g., Kim (1990) and Carr,
Jarrow, and Myneni (1992)].

The introduction of a cap adds a further incentive to exercise early.
On the surface, it seems that the cap could interact with the previous
incentives to completely alter the form of the optimal exercise re-
gion. However, we show that the optimal exercise region is changed
in a straightforward way. We show that the optimal exercise policy
is to exercise at the first time at which the underlying asset’s price
equals or exceeds the minimum of the cap and of the optimal exer-
cise boundary for the corresponding uncapped call option. For low-
and non-dividend paying assets the optimal exercise policy simplifies
to exercising at the cap. When the underlying asset price follows a
geometric Brownian motion process with constant proportional divi-
dends, an explicit valuation formula is given.

The valuation formula is then generalized to options with delayed
exercise periods, that is, American options that cannot be exercised
before a prespecified future date. The MILES contract has a delayed
exercise period, which can be viewed as a time-varying or growing
cap. In this case, the growing cap is a step function with a single jump.
Growing caps may be preferred by investors since the upside potential
increases over time. These caps may also be attractive to issuers who
can accept a larger potential liability as time passes. A step function is
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an extreme form of a growing cap. We proceed to analyze caps that
grow at a constant rate. For these caps we derive optimal exercise
strategies and show that they can be completely characterized in terms
of only three endogenous parameters.

The article is organized as follows. American capped call options
with constant caps are analyzed in the next section. Results are given
for finite and infinite maturity options. Section 2 extends the analysis
to capped call options that have delayed exercise periods and to the
MILES contract, that is, a capped call option on the dollar value of an
index with a delayed exercise period. The case of caps that grow at
a constant rate is considered in detail in Section 3. Section 4 provides
numerical results comparing European capped calls to their American
counterparts. A comparison of hedge ratios is also given. Conclusions
and remarks on possible extensions of the model are given in Sec-
tion 5. Proofs of results and some of the more lengthy formulas are
collected in the Appendix.

. Valuation of American Capped Call Options

We consider a class of derivative securities written on a dividend-
paying underlying asset which may be interpreted as a stock or an
index. The price of the underlying asset, St, satisfies the stochastic
differential equation

(1)

where is a Brownian motion process and
the coefficients µ, δ, and σ are constants. Equation (1) implies that
the stock price follows a geometric Brownian motion (lognormal)
process with a constant dividend rate of δ. We also assume that funds
can be invested in a riskless money market account bearing a constant
positive rate of interest denoted r.

Let represent the value of an American capped call option at
time t. The option has a strike price of K, a cap of L, and a maturity of
T. Throughout the article, we assume that L ≥ K > 0. Exercise may
take place, at the discretion of the owner of the security, at any date
during the life of the option [0, T]. The payoff of the capped option
when exercised at time t is where the operator x ∧ y
denotes min(x, y) and x+ denotes max(x, 0).1
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Let Bt denote the optimal exercise boundary for an uncapped call
option with-the same maturity and strike price as the capped call
option. That is, immediate exercise is optimal at time for all
prices St ≥ Bt. Integral equations which implicitly define Bt are given
in Kim (1990) and Carr, Jarrow, and Myneni (1992).

Theorem 1. Consider an American call option with exercise price K,
cap equal to L, and maturity T. Let denote the optimal exercise
boundary of the capped option. Then, for

That is, immediate exercise is optimal for the capped option if
and suboptimal if St < Bt.

Because of the conflicting exercise incentives provided by a floor,
cap, and dividends, the optimal exercise boundary might seem to be
quite complicated. However, Theorem 1 shows that the optimal ex-
ercise boundary for a capped option has a simple relationship to the
optimal exercise boundary for the corresponding uncapped option.
It says that the optimal exercise time for the capped option is the
minimum of the first time at which the price of the underlying asset
attains or exceeds the value of the cap and the first time at which ex-
ercise of the uncapped option is optimal. The shaded area in Figure 1
illustrates an optimal exercise region, that is, the set of times and asset
prices (t, St) where it is optimal to exercise the capped call option.

In the case of no dividends, a simple arbitrage argument shows
that a stronger result holds. Namely, for a continuous time-varying
cap denoted Lt, it is not optimal to exercise at any time t for which
St < Lt.

2 This result holds even if the cap declines precipitously shortly
after time t.

For small dividend rates with a constant cap the optimal exer-
cise policy simplifies. Recall that Bt is decreasing in t and BT =

Hence, for dividend rates δ ≤ rK/L, Bt ≥ L for all
(0, T]. In this case Bt = L, and the optimal exercise policy for the

capped option is to exercise at the first time at which the price of the
underlying asset equals or exceeds the value of the cap.
2 Suppose an investor purchases one call, shorts one unit of the underlying asset, and invests the
strike price in the riskless bond. If the value of the call were equal to the immediate exercise value,
these transactions would have zero cost. Now, if the investor closes the position at the first hitting
time of the time-depedent boundary or at maturity, the net cash flow is always nonnegative
and is strictly positive with positive probability, which implies an arbitrage opportunity. Hence,
no-arbitrage means that immediate exercise is not optimal for St < Lt.
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Figure 1
Optimal exercise region
Once the optimal exercise policy is known it is straightforward to
derive a valuation formula for the American capped call option. We
first consider the special case of an infinite maturity option. Recall
that the optimal exercise boundary for an infinite maturity uncapped
option is a constant, which we denote

Corollary 1 (American capped call with infinite maturity).
Consider an American capped call option with infinite maturity and
payoff ((St ∧ L) - K)+ if exercised at time t. Then the optimal exercise
boundary of the capped option is the constant That is, the
optimal exercise time is The value
of the option at time t for

where α is defined in (9) below. Furthermore, if the underlying asset



American Capped Call Options on Dividend-Paying Assets
pays no dividends, that is, δ =   0, then the option value simplifies to4

In both cases, for the option value is (St ∧ L) - K.

When the option has an infinite maturity, the valuation formulas
have especially simple forms. Equations (2) and (3) square with intu-
ition in several senses. They show that the value of the infinite option
is an increasing function of the cap, a decreasing function of the strike
price, and is bounded above by the exercise payoff L - K and below
by zero.

Valuation formulas for finite-maturity capped options are given
next. Let represent the first hitting time of
the set [L, ∞), that is, the first time at which the value of the under-
lying dividend paying asset equals or exceeds L. Let t* be defined by
the solution to the equation Bv = Lv for [0, T] if a solution exists.5

If Bv < L for all set t* = 0, and if Bv > L for all [0, T] set
t* = T. Also, let Ct(St) denote the value of an American uncapped
call option with maturity T on the same dividend-paying underlying
asset. Throughout the article, n(z) represents the density function of
a standard normal random variable and N(z) denotes the cumulative
distribution function of a standard normal random variable.

Theorem 2. Consider an American call option with exercise price K,
cap equal to L, and maturity T. For St ≥ L ∧ Bt the option value is
(St ∧ L) - K. For St < L ∧ Bt and t ≥ t*, the option value is Ct(St). For

the option value is given by

(4)

The valuation formula for  can be written more explic-
itly as

(5)
4 For St < L, equation (3) in the absence of dividends is valid for more general price proceses. In
fact, the last part of the proof of Corollary 1 in the Appendix shows that the equation holds for
Itô price processes where r is constant and σ t is progressively measurable
with respect to W. We thank Bjorn Flesaker for pointing out the generality of equation (3).

5 Since L is constant and Bt is continuous and strictly decreasing in t, there cannot be more than
one solution t*.
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where

(8)

(9)

In Theorem 2 and elsewhere in the article, denotes the expecta-
tion operator with respect to the equivalent (risk-neutral) martingale
measure and the subscript t denotes conditioning on the information
at date t. The risk-neutral representation formula in equation (4) is
standard [see, for instance, Harrison and Kreps (1979)].

When the dividend rate is sufficiently small the optimal exercise
boundary for the uncapped option lies above the cap. In particular,
when f o r  a l l In this case, t* = T, the op-
timal exercise policy is to exercise at the cap, and equation (5) can be
written more explicitly. The resulting expression for the option value
is given next in Corollary 2. Equation (10) was stated in Rubinstein
and Reiner (1991) for the value of a capped option with automatic
exercise at the cap.

Corollary 2 (American capped call valuation with low divi-
dends). Suppose that the underlying asset’s price follows the geometric
Brownian motion process specified in equation (1). Also, suppose that

Then the value of an American capped call option, for St ≤ L
a n d
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(10)

In (10) the expressions for are the same as in (7) and
(8) but with T - t replacing t* - t. The expressions for b, f, φ, α, and
λ t are the same as in (9).

Corollary 3 (European capped call valuation). Let
T - t) represent the value of an option at time t that has a strike
price of K, a cap of L, a maturity of T, and which cannot be exercised
until maturity. Then the value of this European capped call is given by

(11)

The expression for is the same as in (8) but with T - t replacing
t *  -  t .

Since the European capped call does not allow for early exercise,
its price is a lower bound on the price of the American capped call
option. That is, in equation (11) then

(12)

which is the Black-Scholes European option formula adjusted for div-
idends [Black and Scholes (1973)].

2. American Capped Calls with Delayed Exercise Periods

Some American capped call options, such as the MILES contract, in-
volve restrictions on the time period in which exercise is allowed. If
the underlying stock price follows a geometric Brownian motion pro-
cess, Theorem 2 can be generalized to handle the delayed exercise
period.

Theorem 3 (American capped call with delayed exercise pe-
riod). Suppose that the underlying asset’s price follows a geometric
Brownian motion process and consider an American capped call
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option with exercise period equal to [te, T]. The value at time t ≤ te

is

(13)

In (13), denotes the value of the American capped call
option from Theorem 2 with T - te replacing T - t and max(t*, te)
replacing t* in equation (5), and where is given in (8)
with te - t replacing t* - t.

The optimal exercise policy is to exercise at time te if
Otherwise, exercise at the first time after te that St reaches L ∧ Bt, and
if this does not occur then exercise at time T. The formula given in
(13) simplifies when the maturity of the contract is infinite.

2.1 Capped call options on the dollar value of an index
The MILES security is an American capped call option on the dollar
value of the Mexican stock index with a delayed exercise period. The
previous analysis is applied to this type of security next.

Let St = etMt represent the dollar value of the Mexican stock index,
where et is the dollar-peso ($/peso) exchange rate and Mt is the value
in pesos of the Mexican stock index (all at time t). Suppose that et

and Mt follow the geometric Brownian motion processes

where the volatility coefficients are constant, the
drifts µe and µM are constant, δ M is the constant dividend rate of the.
Mexican index, and W1t and W2t are independent Brownian motion
processes.

With these assumptions, Itô’s lemma implies that the dollar value
of the Mexican index satisfies

where is the (local) correlation between the pro-
cesses e and M.
170



Since the volatility coefficients are assumed to be constant, the only
risk which matters is

which is a Brownian motion process. This risk can be hedged away
by trading in the dollar value of the index. Hence formula (13) of
Theorem 3 applies with

3. Caps with a Constant Growth Rate

The MILES option contract has a delayed exercise period which can
be viewed as a time-varying cap. In this case, the cap is a step function
with a single jump. Options with time-varying caps — more specif-
ically, growing caps — may be preferred by investors over constant
caps. Increasing caps enable investors to capture more upside poten-
tial, and so may increase the attractiveness of the contract from their
point of view. Also, issuers may be prepared to accept an increasing
potential liability as time passes in return for a higher premium today.
In this section we analyze time-varying caps that grow at a constant
rate g ≥ 0.6 That is, the cap as a function of time is

(14)

&here we assume L0 > K.
For time-varying caps given by equation (14), the optimal exercise

policy depends on three parameters. To define the policy, recall that
Bt denotes the optimal exercise boundary for an uncapped call option
with the same maturity and strike price as the capped call option. Let
t* be defined by the solution to the equation Bv = Lv for v [0, T], if
a solution exists. If Bv < Lv for all
for all

Definition 1 Exercise Policy). Let te and tf satisfy 0 ≤
Define the stopping time

 or, if no such v exists, set = T. Set the stopping
time equal to tf if Stf ≥ Ltf; otherwise set = T. Define the stopping
time by or, if no such v exists, set = T.
An exercise policy is a (te, t*, tf) policy if the option is exercised at the
stopping time min
171



Figure 2
Exercise region for a (te, t*, tf) policy
A typical exercise region corresponding to a (te, t*, tf) exercise pol-
icy is illustrated in Figure 2. The exercise region is indicated by the
shaded area together with the darker line segment joining Lte to Lt*. If
a (te, t*, tf) policy is optimal, then it is not optimal to exercise prior
to te even if the underlying asset’s price equals the cap. Prior to tf

it is not optimal to exercise if the underlying asset’s price is strictly
above the cap. The shaded region from tf to T collapses to a vertical
line when tf = T. In the case of a constant cap, te = tf = 0, and the
optimal policy simplifies to the one described in Theorem 1.

The main results are given next. The optimal exercise policy is
characterized in Theorem 4. A formula for valuing a capped call option
for any (te, t*, tf) policy is given in Theorem 5. Finally, equations
characterizing the optimal values of te and tf are given in Theorem 6.

Theorem 4. Consider an American call option with exercise price K,
cap given by equation (14), and maturity T. Then the optimal exercise
policy is a (te, t*, tf) policy.

In the absence of dividends, Bt = for all t and t* = T. In this
case, Theorem 4 shows that the optimal exercise policy reduces to
a twoparameter (te, tf) policy where exercise below the cap is not
optimal.
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Some intuition behind Theorem 4 follows. It is shown in the proof
of Theorem 6 that the present value at time t of Lv - K is strictly
increasing with respect to v up to some [defined in equation (18)
below], and strictly decreasing thereafter. Hence, a waiting strategy is
optimal if St > Lt and t < while immediate exercise is optimal if
St ≥ Lt and t ≥ If t* ≤ t ≤ T and Bt ≤ St ≤ Lt, then immediate
exercise is optimal. This follows since immediate exercise is optimal
for an uncapped option and since the holder of the capped option
can attain (but cannot improve upon) this value by exercising imme-
diately. If St < Lt ∧ Bt then immediate exercise is suboptimal by an
argument similar to the one in the proof of Theorem 1.

Theorem 5 gives a valuation formula for a capped call option for
a given (te, t*, tf) exercise policy.

Theorem 5. Consider American call option with exercise price K,
cap given by equation (14), and maturity T. Suppose that a (te, t*, tf)
exercise policy is followed for some fixed values of te and tf. The value
at time t ≤ te corresponding to this policy is given by

where
are defined below.

At time te with Ste > Lte, the value corresponding to the (te, t*, tf)
policy is independent of t* and is given by where
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At time te with Ste ≤ Lte, the value corresponding to the (te, t*, tf)
policy is given by where

(17)

The value at time t ≤ te under the (te, t*, tf) policy is the present
value of the corresponding policy at time te. This present value is the
risk-neutral probability weighted average of the possible values on
the event {Ste > Lte} and the event {Ste ≤ Lte}. This observation leads
to equation (15).

Theorem 6 characterizes the optimal values of te and tf in a (te, t* , tf)
exercise policy.

Theorem 6. Consider an American call option with exercise price K,
cap given by equation (14), and maturity T. Let denote the optimal
due of tf in a (te, t*, tf) policy. Then is given by

(18)

In particular, if

(19)

then = T. Also, if

(20)

then = 0. Otherwise, 0 < < T and is given by

 (21)
7 Note that differs from b because of g. Also f, φ, and α have slightly different meanings than
before because of in their definitions.
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Let denote the optimal value of te in a (te, t*, tf*) exercise policy.
The following conditions are satisfied by First,
then te* is a solution to equation (22):

Second, if then the lefthand side of (22) is nonnegative.
Third, if t*e = 0, the lefthand side of equation (22) has a nonpositive
limit as te ↓ 0.8

The value of the American option at time t ≤ t*e is then given by
equation (15) evaluated at te = t*e and tf = t*f.

Theorem 6 specifies a three-step procedure for valuing American
capped call options where the cap has a constant growth rate. First,
t*f is found, then t*e is found, and finally the option value is deter-
mined. The optimal value t*f solves (18). Note that if g ≥ r then
condition (19) holds and t*f = T, The optimal t*e is the time that
maximizes the option value given in equation (15) when tf = t*f.
For interior solutions, that is, when 0 < t*e < t* ∧ t*f, the optimal
t*e solves = 0. This optimal time balances the
marginal benefit (or loss) of increasing te on the event {Ste > Lte} with
the marginal loss (or benefit) on the event {Ste ≤ Lte}. For boundary
solutions, that is, when, the equality of the
marginal benefit to the marginal loss is replaced by the appropriate
inequality. Once are determined, the option value is given
by equation (15).

Equation (21) reveals how depends on the parameters r, g, K,
and L0. First, the optimal time is independent of σ and δ. Also, a
8 Explicit expressions for all of the partial derivatives in equation (22) can be obtained from the
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4. Computational Results

decrease in the riskless rate r or an increase in the ratio K/L0 will
increase An increase in the rate of growth g increases if and
only if < g/(r - g).

Numerical results are given in the next section. These results in-
dicate that the magnitude of the loss when following the policy of
exercising at the cap instead of the optimal policy can be
substantial. Additional results illustrate how t*e varies with g and σ.

In this section we provide computational results using the valuation
formulas derived in this article. The results are used to qualitatively
compare the behavior of capped versus uncapped and American ver-
sus European option values.

In the presence of dividends, the valuation formulas (5), (13), and
(17) can be difficult to evaluate. Broadie and Detemple (1994) give a
fast way to approximate the exercise boundary which appears in (5),
(13), and (17). Boyle and Law (1994) discuss effective modifications
of the Cox, Ross, and Rubinstein (1979) binomial procedure for the
valuation of capped options. Here, to simplify the presentation, we
consider the case of no dividends (that is, δ = 0) throughout this
section.

4.1 Comparison of option prices and the early exercise
premium

Figure 3 shows a comparison between: (i) standard European un-
capped call option, (ii) American capped call option, (iii) Ameri-
can capped call option with delayed exercise period, and (iv) Eu-
ropean capped call option. The option values are computed from
equations (12), (10), (13), and (11) for options (i)-(iv), respectively.
The parameters for the comparison are r = 0.05, σ = 0.2, T = 1,
t = 0, K = 30, L = 60, and te = 0.5 [for option (iii)]. The option
values are plotted versus S0, where S0 ranges from 35 to 75.

Since option values are increasing functions of the cap, it must be
that the option values satisfy (i) ≥ (ii) ≥ (iii) ≥ (iv). This ordering of
option values is illustrated in Figure 3. For stock values well below
the cap, that is, for S0 L, the four option values are nearly identical.
This makes sense, since the probability of the stock price exceeding
the cap by the maturity date approaches zero as S0 ↓ 0.

The early exercise premium is the difference between the Ameri-
can and European option values. For uncapped call options on non-
dividend paying assets the early exercise premium is zero, that is, early
exercise is not optimal. For capped call options, the early exercise
176



Comparison of option values for different stock prices

Table 1
Early exercise premium

Stock European capped American capped Early exercise
price option value (a) option value (b) premium ( c=b-a ) c/a (%)

35 6.95 6.96 0.02 0.27
40
45

70
75

11.45
15.91
19.85
22.96

27.53
28.02

11.57
16.40
21.17
25.73
30.00
30.00

30.00

0.12 1.08

4.81
3.35 12.57
2.47 8.98
1.98 7.06
premium is positive, that is, the value of an American option exceeds
its European counterpart. Table 1 illustrates the magnitude of the early
exercise premium for the previous parameter values. As shown in the
last two columns of Table 1, the early exercise premium first increases
and then decreases as the initial stock price rises. When the stock price
is near the cap, the early exercise premium is nearly 20 percent of the
value of the European option.

4.2 Hedging American capped call options
The valuation formulas derived in the article are important to the
issuers and holders of capped call options not only for pricing but
also for hedging. The valuation formulas permit a straightforward and
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T a b l e  2
Hedge ratios

American American capped European
delayed exercise capped

(iii) (iv)

0.87 0.81 0.87
0.96 0.96 0.95
0.99 0.94 0.85
1.00 0.82 0.71
1.00 0.61 0.53
1.00 0.36

1.00 0.07

*The hedge ratio for S0 = 59.99 is 0.79. The derivative is discontinuous at S0 = L.
efficient computation of hedging strategies designed to eliminate the
risk inherent in a position in these contracts.

Table 2 illustrates how the hedge ratios, depend on the
current stock price, S0 The hedge ratios of all four options are similar
for S0 << L. For S0 >> L, the hedge ratio of option (i) approaches one,
(ii) is zero, and (iii) and (iv) approach zero.

The hedge ratios in Table 2 for the American contract [column (ii)
may differ quite significantly from those for the European contract
[column (iv)]. For example, when the stock price is $50 the respective
hedge ratios are 0.94 and 0.71. If the stock price increases to $65,
the hedge ratios fall to 0 and 0.23, respectively. Hence, using hedge
ratios based on European formulas as an approximation would leave
the hedger exposed to significant risk associated with the fluctuation
in the underlying asset value.

4.3 Valuing caps with a constant growth rate
We consider an option with parameter values: g = r = 0.10, σ = 0.05,
T = 1, t = 0, K = 30, S0 = 60, and L0 = 60. Since g = r,
condition (19) in Theorem 4 implies that t*f = T. Figure 4 plots

for te ranging from 0 to T. Since δ = 0, t* = T. For
= 30 because the exercise policy calls for imme-

diate exercise. For te = is the value of a European
capped call option with cap LT = L0e

gT. For these parameters, this
gives a value of 31.66. The optimal value of te is t*e = 0.88 and the
option value is = 31.68. The policy of exercising
immediately would result in a loss of more than 5 percent of the value
of the option.
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Option value vs. exercise policy

Optimal exercise policy vs. cap growth rate
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Figure 5 shows how t*e varies with the growth rate of the cap, g, and
with volatility, σ. The parameter values are the same as in the previous
example, except for g, which ranges from 0.05 to 0.195, and σ, which
ranges from 0.03 to 0.09. In this example, t*e = 0 for low growth rates
and t*e increases as g increases. The volatility of the underlying asset
has the opposite effect, that is, t*e decreases as σ increases. For all
of these parameter values, t*f = T. The parameter t*f becomes less
than T for smaller values of g. For example, suppose that r = 0.05,
L0 = 60, K = 30, and T = 1. Then for g = 0.0255, t*f = 0.79. As g
decreases, t*f decreases to zero. As g increases, t*f increases to T.

5. Conclusions

This article focused on the problem of valuing American call options
with caps. Since early exercise is allowed, the valuation problem re-
quires the determination of optimal exercise policies. The proof of
Theorem 2 showed that early exercise is not optimal whenever the
underlying asset’s value is below the minimum of the cap and the
optimal exercise boundary for the corresponding uncapped option.
When the cap is constant and the dividend rate satisfies δ ≤ rK/L, it
is optimal to exercise at the first time that the price equals or exceeds
the cap.

Once the form of the optimal exercise policy is known, a valuation
formula for options with delayed exercise periods can be derived.
In Section 2, a valuation formula was given for the MILES option
contract. A delayed exercise period is one example of a time-varying
cap. In Section 3 time varying caps with constant growth rates were
analyzed. For these caps, the optimal exercise strategy is given by
three endogenous parameters. The exact form of the optimal policy
was given in Theorem 4. In part, Theorem 4 says that it is not optimal
to exercise prior to time t*e no matter what the value of the underlying
asset. This differs. from uncapped call options on dividend paying
assets which should be exercised when the value of the underlying
asset is sufficiently large.

Computational results were given in Section 4. A comparison of
hedge ratios in Table 2 showed similar hedge ratios for capped and
uncapped call options when the underlying asset’s price is well below
the cap. However, as the price increases toward the cap, the hedge
ratios differ significantly. For caps with a constant growth rate, optimal
exercise parameters t*e and t*f were computed. The dependence of t*e

on g and σ was also illustrated.
One issue for future analysis is the incorporation of stochastic

volatilities into the valuation equations. This may be important in
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view of the empirical evidence which suggests that volatilities are
time varying. Another interesting question is the optimality of caps
and the design of capped option contracts taking into consideration
the interests of the owner and the issuer.

Appendix: Proofs of Theorems

Proof of Theorem 1. Clearly when St ≥ L ∧ Bt immediately exercise
is optimal. Now suppose St < L ∧ Bt and L ≥ (r/ δ )K. In this case
there always exists an (uncapped) American option with a shorter
maturity T0, with t < T0 ≤ T, such that its optimal exercise boundary
B0 satisfies

(23)

See Figure 6 for an illustration. Since early exercise is optimal
for this T0 maturity option, its value strictly exceeds St - K. From
equation (23), this exercise policy is admissible for the capped option.
H e n c e and early exercise is suboptimal for the capped
o p t i o n .

Suppose now that St < L ∧ Bt and L < (r/ δ )K. In this case, an
investor could purchase one call, short one share of stock, and invest
Figure 6
Shorter maturity option boundary
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the proceeds, that is, lend K, in the money market account which
accrues interest at a rate r. If immediate exercise were optimal, then
the, total cash flow from these transactions at date t would be zero.
Now suppose that the call is exercised at time defined by
where is the hitting time of the cap. Then the net cash flow at time

would be

Clearly
we have Hence the integral

dv > 0 (probability a.s.). Thus for the value of the call to
be consistent with no-arbitrage, immediate exercise at time t cannot
be optimal. That is, ■

To prove Corollary 1, Theorem 2, Corollary 2, and later results for
caps with constant growth rates, we first state three auxiliary lemmas.
These lemmas characterize first-passage times of sets with exponential
boundaries when the asset price follows a geometric Brownian motion
process. The results complement those of Black and Cox (1976) who
characterize the first passage time of the set [0, L] when the stock
price starts above the cap, i.e., St > L. Equation (24) below can be
derived from equation (7) on p. 356 of Black and Cox (1976) by an
appropriate change of variables.

Lemma 1. Suppose St satisfies the stochastic differential equation

For A ≤ B, define U(St, A, B, t, T) to be P[ST ≤ A and Sv < B for
[t, T)]. Then

when St ≤ B and [0, T], where
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Lemma 2. Suppose that the cup is given by Lt = L0e
gt and represents

the first time at which St reaches Lt. The distribution of the first passage
time is

Lemma 3. The density of the first passage time is

The next lemma summarizes a useful integral of the first passage
time density. The integral is parameterized by a constant a, which
appears in expressions for defined in Lemma 4.
Elsewhere in the article, when f, φ, and α appear without an argu-
ment, they refer to respectively.

Lemma 4.

Proof of Corollary 1. The optimal exercise boundary is im-
mediate from Theorem 1. For St ≥ L ∧ immediate exercise is
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optimal and the option value is the
value of the option can be written as

(25)

where is the hitting time of The risk-neutral valuation equa-
tion (25) follows from the optimal exercise boundary and standard
pricing results [see Harrison and Kreps (1979)]. The expectation can
be written as

The second equality follows from Lemma 4 with a = g = 0 and
This proves equation (2).

If there are no dividends, and equation (3)
follows directly from equation (2). Alternatively, for δ = 0, the dis-
counted stock price is a martingale, and by the optional sampling
theorem, for any stopping time Taking to be
the hitting time of the cap L gives St Substituting this
formula into equation (25) gives equation (3). ■

Proof of Theorem 2. By Theorem 1, for St ≥ L ∧ Bt immediate
exercise is optimal and the option value is
and t ≥ t*, optimal exercise occurs at the first time the boundary B
is reached or at maturity, so the capped option value is the standard
uncapped option value Ct(St). For St < L ∧ Bt and t < t* the valuation
formula (4) is immediate from Theorem 1.

To obtain (5), first define Sn to be the process which is followed
by S in the absence of dividends. That is, the processes S and Sn

are related by This can be used to compute the first
expectation in equation (4). When t* > t we have



in (26), γ(γ) represents the density of the first passage time of St to
the level L. The formula for γ(γ) is given. in Lemma 3 for the case
St ≤ L and g = 0. Equation (27) follows from (26) using Lemma 4
with a = g = 0.

The second expectation can be written as

The formula for u(x, t, t*) in equation (6) in the text follows by dif-
ferentiating U(St, x, L, t, t*) with respect to x [see equation (24) in
Lemma 1]. ■

Proof of Corollary 2. The first term in equation (10) is the same as
the term in (5) in Theorem 2 with t* replaced by T.

The remaining terms in equation (10) follow from

A simplification of the integral in the previous line gives equation (10)
and proves Corollary 2. ■

Proof of Theorem 3. The event {Ste ≥ L} is equivalent to the event
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Proof of Theorem 4. We start by considering whether it is optimal
to exercise above the cap. At time 0, the perfect. foresight value of
exercising the option at time s (when Ss > Ls) is

For a trajectory such that St ≥ Lt for all 0 ≤ t ≤ T, the optimal exercise
time is given by I n  f a c t ,  t h i s as shown
next.

Suppose that s < T and Ss > Ls. There exists a random variable
such that (probability a.s.). Hence, it pays to

delay exercise if f'(s) > 0. Defining it is easy
to show that f'(s) > 0 for s < t*f  and f'(s) < 0 for s > t*f. It follows
that it does not pay to exercise if St > Lt and t < t*f. On the other
hand, immediate exercise is optimal if St ≥ Lt and t ≥ t*f.

The same argument as in the proof of Theorem 1 shows that it is
not optimal to exercise at any time t < T when St < Lt ∧ Bt. It also
shows that exercise is optimal whenever t ≥ t* and Bt ≤ St ≤ Lt.

Hence, exercise is only optimal at time To show
that a (te, t*, tf) exercise policy is optimal, it remains to be shown that
the optimal exercise set at the cap is connected and extends for some
te to t* ∧ t*f. Lemma 5, which follows, asserts exactly this result and
hence proves Theorem 4. ■

Lemma 5 (Connectedness of the exercise set). Suppose that it is
optimal to exercise at time tl when St1 = Lt1. Then for all times t2
satisfying tl ≤ t2 ≤ t* ∧ t*f, it is optimal to exercise when Ste = Lt2.

Proof of Lemma 5. Without loss of generality, we assume that t*f =
T. Let (L, t, T) denote the optimal time to exercise an option with a
cap of L, starting at time t, which matures at time T. Let
denote the option price under the policy (L, t, T) when the stock
price at time t is S, the cap function is L, and the option matures at
time T. Define the cap
and S2 = Lt2. By the definition of Figure 7 illustrates these
definitions.
9 For t < t2 the cap is never used.
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Illustration of the caps
Proof of Claim 1.

(since it is optimal to exercise at t1)

(American option with a shorter maturity)

(S is a Markovian process)

In the second line, is the optimal exercise policy
at time t1 for an option with maturity T - (t2 - t1) and cap L. Since the
cap L between t1 and T - (t2 - t1)  is same as the cap between
t2 and T, the equality in the third line holds. ■

Proof of Claim 2.
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(since on the event

(see the argument in the text below)

For the quantity can be written as

where S2 > S1. Since δ ≥ 0, the process is a super-
martingale. Hence for any stopping time the last inequality
follows. ■

Combining Claims 1 and 2 gives

which implies that exercise is optimal at time t2 if S
2 = Lt2. This shows

that the optimal exercise set is connected and proves Lemma 5. ■

Proof of Theorem 5. The option value under the (te, t*, tf) policy
can be written as

wri t ing
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note that Using these expressions
in the expectation above gives equation (15). Expressions for and

are proved in Lemmas 6 and 7, which follow. ■

Lemma 6. At time te with Ste > Lte, the value of the option correspond-
ing to the (te, t*, tf) policy is independent of t* . The value, denoted

is given by equation (16) in the statement of Theorem 5.

Proof of Lemma 6.

Applying Lemma 4 with a = g to the first integral, with a = 0 to the
second integral, and then applying Lemma 2 to the last expectation
proves Lemma 6. ■

Lemma 7. At time te with Ste ≤ Lte, the value of the option under
the (te, t*, tf) policy, denoted is given by equation (17) in the
statement of Theorem 5.

Proof of Lemma 7.

The first two integrals can be evaluated using Lemma 4. The term
represents the density of St* given that Applying

Lemma 1 with a change of variables gives a formula for P[St* ≤ x
and Sv < Lv for Differentiating with respect to x gives the
stated formula for ■
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Proof of Theorem 6. The first part of the proof of Theorem 4 shows
that t*f is given by

(18)

(28)

Equation (28) implies that f is unimodal. If condition (19) holds, i.e.,
This means

that the marginal value of waiting to exercise is positive, so it is not
optimal to exercise above the cap. Hence t*f = T.

If condition (20) holds, that is, if
for all 0 ≤ s ≤ T. This means that the marginal value of waiting to
exercise is negative, so immediate exercise is always optimal at or
above the cap. Hence t*f = 0. Finally, if 0 < t*f < T, then f'(t*f) = 0,
which implies equation (21).

The optimal value of te, denoted t*e, is given by the solution of the
univariate nonlinear program (P):

subjec t  to :

The Karush-Kuhn-Tucker Theorem gives necessary conditions for t*e
to solve (P). If the optimal solution to (P) is an interior solution, that
is, if 0 < t*e < t* ∧ t*f , then

(29)

By the Markovian property of the underlying asset process, the opti-
mal solution to (P) is independent of S0. For convenience, we take
S0 = L0, that is, λ 0 = 1, in equation (29). Taking the partial derivative
of the expression for in equation (15) and setting the re-
sult to zero at te = t*e gives the integral equation (22). If t*e= t* ∧ t*f,

then when evaluated at te = t* ∧ t*f. If t*e = 0 is
the optimal solution to (P), then
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